blob: 9991386fb70000f02e4ab0b345ab5c74fcfed2f3 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/acpi.h>
23#include <linux/amba/bus.h>
24#include <linux/platform_device.h>
25#include <linux/pci-ats.h>
26#include <linux/bitmap.h>
27#include <linux/slab.h>
28#include <linux/debugfs.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/dma-direct.h>
32#include <linux/iommu-helper.h>
33#include <linux/iommu.h>
34#include <linux/delay.h>
35#include <linux/amd-iommu.h>
36#include <linux/notifier.h>
37#include <linux/export.h>
38#include <linux/irq.h>
39#include <linux/msi.h>
40#include <linux/dma-contiguous.h>
41#include <linux/irqdomain.h>
42#include <linux/percpu.h>
43#include <linux/iova.h>
44#include <asm/irq_remapping.h>
45#include <asm/io_apic.h>
46#include <asm/apic.h>
47#include <asm/hw_irq.h>
48#include <asm/msidef.h>
49#include <asm/proto.h>
50#include <asm/iommu.h>
51#include <asm/gart.h>
52#include <asm/dma.h>
53
54#include "amd_iommu_proto.h"
55#include "amd_iommu_types.h"
56#include "irq_remapping.h"
57
58#define AMD_IOMMU_MAPPING_ERROR 0
59
60#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61
62#define LOOP_TIMEOUT 100000
63
64/* IO virtual address start page frame number */
65#define IOVA_START_PFN (1)
66#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
67
68/* Reserved IOVA ranges */
69#define MSI_RANGE_START (0xfee00000)
70#define MSI_RANGE_END (0xfeefffff)
71#define HT_RANGE_START (0xfd00000000ULL)
72#define HT_RANGE_END (0xffffffffffULL)
73
74/*
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
78 * that we support.
79 *
80 * 512GB Pages are not supported due to a hardware bug
81 */
82#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
83
84static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85static DEFINE_SPINLOCK(pd_bitmap_lock);
86
87/* List of all available dev_data structures */
88static LLIST_HEAD(dev_data_list);
89
90LIST_HEAD(ioapic_map);
91LIST_HEAD(hpet_map);
92LIST_HEAD(acpihid_map);
93
94/*
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
97 */
98const struct iommu_ops amd_iommu_ops;
99
100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101int amd_iommu_max_glx_val = -1;
102
103static const struct dma_map_ops amd_iommu_dma_ops;
104
105/*
106 * general struct to manage commands send to an IOMMU
107 */
108struct iommu_cmd {
109 u32 data[4];
110};
111
112struct kmem_cache *amd_iommu_irq_cache;
113
114static void update_domain(struct protection_domain *domain);
115static int protection_domain_init(struct protection_domain *domain);
116static void detach_device(struct device *dev);
117static void iova_domain_flush_tlb(struct iova_domain *iovad);
118
119/*
120 * Data container for a dma_ops specific protection domain
121 */
122struct dma_ops_domain {
123 /* generic protection domain information */
124 struct protection_domain domain;
125
126 /* IOVA RB-Tree */
127 struct iova_domain iovad;
128};
129
130static struct iova_domain reserved_iova_ranges;
131static struct lock_class_key reserved_rbtree_key;
132
133/****************************************************************************
134 *
135 * Helper functions
136 *
137 ****************************************************************************/
138
139static inline int match_hid_uid(struct device *dev,
140 struct acpihid_map_entry *entry)
141{
142 struct acpi_device *adev = ACPI_COMPANION(dev);
143 const char *hid, *uid;
144
145 if (!adev)
146 return -ENODEV;
147
148 hid = acpi_device_hid(adev);
149 uid = acpi_device_uid(adev);
150
151 if (!hid || !(*hid))
152 return -ENODEV;
153
154 if (!uid || !(*uid))
155 return strcmp(hid, entry->hid);
156
157 if (!(*entry->uid))
158 return strcmp(hid, entry->hid);
159
160 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
161}
162
163static inline u16 get_pci_device_id(struct device *dev)
164{
165 struct pci_dev *pdev = to_pci_dev(dev);
166
167 return PCI_DEVID(pdev->bus->number, pdev->devfn);
168}
169
170static inline int get_acpihid_device_id(struct device *dev,
171 struct acpihid_map_entry **entry)
172{
173 struct acpihid_map_entry *p;
174
175 list_for_each_entry(p, &acpihid_map, list) {
176 if (!match_hid_uid(dev, p)) {
177 if (entry)
178 *entry = p;
179 return p->devid;
180 }
181 }
182 return -EINVAL;
183}
184
185static inline int get_device_id(struct device *dev)
186{
187 int devid;
188
189 if (dev_is_pci(dev))
190 devid = get_pci_device_id(dev);
191 else
192 devid = get_acpihid_device_id(dev, NULL);
193
194 return devid;
195}
196
197static struct protection_domain *to_pdomain(struct iommu_domain *dom)
198{
199 return container_of(dom, struct protection_domain, domain);
200}
201
202static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
203{
204 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
205 return container_of(domain, struct dma_ops_domain, domain);
206}
207
208static struct iommu_dev_data *alloc_dev_data(u16 devid)
209{
210 struct iommu_dev_data *dev_data;
211
212 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
213 if (!dev_data)
214 return NULL;
215
216 dev_data->devid = devid;
217 ratelimit_default_init(&dev_data->rs);
218
219 llist_add(&dev_data->dev_data_list, &dev_data_list);
220 return dev_data;
221}
222
223static struct iommu_dev_data *search_dev_data(u16 devid)
224{
225 struct iommu_dev_data *dev_data;
226 struct llist_node *node;
227
228 if (llist_empty(&dev_data_list))
229 return NULL;
230
231 node = dev_data_list.first;
232 llist_for_each_entry(dev_data, node, dev_data_list) {
233 if (dev_data->devid == devid)
234 return dev_data;
235 }
236
237 return NULL;
238}
239
240static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
241{
242 *(u16 *)data = alias;
243 return 0;
244}
245
246static u16 get_alias(struct device *dev)
247{
248 struct pci_dev *pdev = to_pci_dev(dev);
249 u16 devid, ivrs_alias, pci_alias;
250
251 /* The callers make sure that get_device_id() does not fail here */
252 devid = get_device_id(dev);
253
254 /* For ACPI HID devices, we simply return the devid as such */
255 if (!dev_is_pci(dev))
256 return devid;
257
258 ivrs_alias = amd_iommu_alias_table[devid];
259
260 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
261
262 if (ivrs_alias == pci_alias)
263 return ivrs_alias;
264
265 /*
266 * DMA alias showdown
267 *
268 * The IVRS is fairly reliable in telling us about aliases, but it
269 * can't know about every screwy device. If we don't have an IVRS
270 * reported alias, use the PCI reported alias. In that case we may
271 * still need to initialize the rlookup and dev_table entries if the
272 * alias is to a non-existent device.
273 */
274 if (ivrs_alias == devid) {
275 if (!amd_iommu_rlookup_table[pci_alias]) {
276 amd_iommu_rlookup_table[pci_alias] =
277 amd_iommu_rlookup_table[devid];
278 memcpy(amd_iommu_dev_table[pci_alias].data,
279 amd_iommu_dev_table[devid].data,
280 sizeof(amd_iommu_dev_table[pci_alias].data));
281 }
282
283 return pci_alias;
284 }
285
286 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
287 "for device %s[%04x:%04x], kernel reported alias "
288 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
289 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
290 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
291 PCI_FUNC(pci_alias));
292
293 /*
294 * If we don't have a PCI DMA alias and the IVRS alias is on the same
295 * bus, then the IVRS table may know about a quirk that we don't.
296 */
297 if (pci_alias == devid &&
298 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
299 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
300 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
301 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
302 dev_name(dev));
303 }
304
305 return ivrs_alias;
306}
307
308static struct iommu_dev_data *find_dev_data(u16 devid)
309{
310 struct iommu_dev_data *dev_data;
311 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
312
313 dev_data = search_dev_data(devid);
314
315 if (dev_data == NULL) {
316 dev_data = alloc_dev_data(devid);
317 if (!dev_data)
318 return NULL;
319
320 if (translation_pre_enabled(iommu))
321 dev_data->defer_attach = true;
322 }
323
324 return dev_data;
325}
326
327struct iommu_dev_data *get_dev_data(struct device *dev)
328{
329 return dev->archdata.iommu;
330}
331EXPORT_SYMBOL(get_dev_data);
332
333/*
334* Find or create an IOMMU group for a acpihid device.
335*/
336static struct iommu_group *acpihid_device_group(struct device *dev)
337{
338 struct acpihid_map_entry *p, *entry = NULL;
339 int devid;
340
341 devid = get_acpihid_device_id(dev, &entry);
342 if (devid < 0)
343 return ERR_PTR(devid);
344
345 list_for_each_entry(p, &acpihid_map, list) {
346 if ((devid == p->devid) && p->group)
347 entry->group = p->group;
348 }
349
350 if (!entry->group)
351 entry->group = generic_device_group(dev);
352 else
353 iommu_group_ref_get(entry->group);
354
355 return entry->group;
356}
357
358static bool pci_iommuv2_capable(struct pci_dev *pdev)
359{
360 static const int caps[] = {
361 PCI_EXT_CAP_ID_ATS,
362 PCI_EXT_CAP_ID_PRI,
363 PCI_EXT_CAP_ID_PASID,
364 };
365 int i, pos;
366
367 if (pci_ats_disabled())
368 return false;
369
370 for (i = 0; i < 3; ++i) {
371 pos = pci_find_ext_capability(pdev, caps[i]);
372 if (pos == 0)
373 return false;
374 }
375
376 return true;
377}
378
379static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
380{
381 struct iommu_dev_data *dev_data;
382
383 dev_data = get_dev_data(&pdev->dev);
384
385 return dev_data->errata & (1 << erratum) ? true : false;
386}
387
388/*
389 * This function checks if the driver got a valid device from the caller to
390 * avoid dereferencing invalid pointers.
391 */
392static bool check_device(struct device *dev)
393{
394 int devid;
395
396 if (!dev || !dev->dma_mask)
397 return false;
398
399 devid = get_device_id(dev);
400 if (devid < 0)
401 return false;
402
403 /* Out of our scope? */
404 if (devid > amd_iommu_last_bdf)
405 return false;
406
407 if (amd_iommu_rlookup_table[devid] == NULL)
408 return false;
409
410 return true;
411}
412
413static void init_iommu_group(struct device *dev)
414{
415 struct iommu_group *group;
416
417 group = iommu_group_get_for_dev(dev);
418 if (IS_ERR(group))
419 return;
420
421 iommu_group_put(group);
422}
423
424static int iommu_init_device(struct device *dev)
425{
426 struct iommu_dev_data *dev_data;
427 struct amd_iommu *iommu;
428 int devid;
429
430 if (dev->archdata.iommu)
431 return 0;
432
433 devid = get_device_id(dev);
434 if (devid < 0)
435 return devid;
436
437 iommu = amd_iommu_rlookup_table[devid];
438
439 dev_data = find_dev_data(devid);
440 if (!dev_data)
441 return -ENOMEM;
442
443 dev_data->alias = get_alias(dev);
444
445 /*
446 * By default we use passthrough mode for IOMMUv2 capable device.
447 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
448 * invalid address), we ignore the capability for the device so
449 * it'll be forced to go into translation mode.
450 */
451 if ((iommu_pass_through || !amd_iommu_force_isolation) &&
452 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
453 struct amd_iommu *iommu;
454
455 iommu = amd_iommu_rlookup_table[dev_data->devid];
456 dev_data->iommu_v2 = iommu->is_iommu_v2;
457 }
458
459 dev->archdata.iommu = dev_data;
460
461 iommu_device_link(&iommu->iommu, dev);
462
463 return 0;
464}
465
466static void iommu_ignore_device(struct device *dev)
467{
468 u16 alias;
469 int devid;
470
471 devid = get_device_id(dev);
472 if (devid < 0)
473 return;
474
475 alias = get_alias(dev);
476
477 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
478 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
479
480 amd_iommu_rlookup_table[devid] = NULL;
481 amd_iommu_rlookup_table[alias] = NULL;
482}
483
484static void iommu_uninit_device(struct device *dev)
485{
486 struct iommu_dev_data *dev_data;
487 struct amd_iommu *iommu;
488 int devid;
489
490 devid = get_device_id(dev);
491 if (devid < 0)
492 return;
493
494 iommu = amd_iommu_rlookup_table[devid];
495
496 dev_data = search_dev_data(devid);
497 if (!dev_data)
498 return;
499
500 if (dev_data->domain)
501 detach_device(dev);
502
503 iommu_device_unlink(&iommu->iommu, dev);
504
505 iommu_group_remove_device(dev);
506
507 /* Remove dma-ops */
508 dev->dma_ops = NULL;
509
510 /*
511 * We keep dev_data around for unplugged devices and reuse it when the
512 * device is re-plugged - not doing so would introduce a ton of races.
513 */
514}
515
516/****************************************************************************
517 *
518 * Interrupt handling functions
519 *
520 ****************************************************************************/
521
522static void dump_dte_entry(u16 devid)
523{
524 int i;
525
526 for (i = 0; i < 4; ++i)
527 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
528 amd_iommu_dev_table[devid].data[i]);
529}
530
531static void dump_command(unsigned long phys_addr)
532{
533 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
534 int i;
535
536 for (i = 0; i < 4; ++i)
537 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
538}
539
540static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
541 u64 address, int flags)
542{
543 struct iommu_dev_data *dev_data = NULL;
544 struct pci_dev *pdev;
545
546 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
547 devid & 0xff);
548 if (pdev)
549 dev_data = get_dev_data(&pdev->dev);
550
551 if (dev_data && __ratelimit(&dev_data->rs)) {
552 dev_err(&pdev->dev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
553 domain_id, address, flags);
554 } else if (printk_ratelimit()) {
555 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
556 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
557 domain_id, address, flags);
558 }
559
560 if (pdev)
561 pci_dev_put(pdev);
562}
563
564static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
565{
566 struct device *dev = iommu->iommu.dev;
567 int type, devid, pasid, flags, tag;
568 volatile u32 *event = __evt;
569 int count = 0;
570 u64 address;
571
572retry:
573 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
574 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
575 pasid = PPR_PASID(*(u64 *)&event[0]);
576 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
577 address = (u64)(((u64)event[3]) << 32) | event[2];
578
579 if (type == 0) {
580 /* Did we hit the erratum? */
581 if (++count == LOOP_TIMEOUT) {
582 pr_err("AMD-Vi: No event written to event log\n");
583 return;
584 }
585 udelay(1);
586 goto retry;
587 }
588
589 if (type == EVENT_TYPE_IO_FAULT) {
590 amd_iommu_report_page_fault(devid, pasid, address, flags);
591 return;
592 }
593
594 switch (type) {
595 case EVENT_TYPE_ILL_DEV:
596 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 pasid, address, flags);
599 dump_dte_entry(devid);
600 break;
601 case EVENT_TYPE_DEV_TAB_ERR:
602 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603 "address=0x%016llx flags=0x%04x]\n",
604 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
605 address, flags);
606 break;
607 case EVENT_TYPE_PAGE_TAB_ERR:
608 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
609 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 pasid, address, flags);
611 break;
612 case EVENT_TYPE_ILL_CMD:
613 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
614 dump_command(address);
615 break;
616 case EVENT_TYPE_CMD_HARD_ERR:
617 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
618 address, flags);
619 break;
620 case EVENT_TYPE_IOTLB_INV_TO:
621 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
622 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
623 address);
624 break;
625 case EVENT_TYPE_INV_DEV_REQ:
626 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 pasid, address, flags);
629 break;
630 case EVENT_TYPE_INV_PPR_REQ:
631 pasid = ((event[0] >> 16) & 0xFFFF)
632 | ((event[1] << 6) & 0xF0000);
633 tag = event[1] & 0x03FF;
634 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
635 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 pasid, address, flags);
637 break;
638 default:
639 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640 event[0], event[1], event[2], event[3]);
641 }
642
643 memset(__evt, 0, 4 * sizeof(u32));
644}
645
646static void iommu_poll_events(struct amd_iommu *iommu)
647{
648 u32 head, tail;
649
650 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
651 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
652
653 while (head != tail) {
654 iommu_print_event(iommu, iommu->evt_buf + head);
655 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
656 }
657
658 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
659}
660
661static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
662{
663 struct amd_iommu_fault fault;
664
665 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
666 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
667 return;
668 }
669
670 fault.address = raw[1];
671 fault.pasid = PPR_PASID(raw[0]);
672 fault.device_id = PPR_DEVID(raw[0]);
673 fault.tag = PPR_TAG(raw[0]);
674 fault.flags = PPR_FLAGS(raw[0]);
675
676 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
677}
678
679static void iommu_poll_ppr_log(struct amd_iommu *iommu)
680{
681 u32 head, tail;
682
683 if (iommu->ppr_log == NULL)
684 return;
685
686 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
687 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
688
689 while (head != tail) {
690 volatile u64 *raw;
691 u64 entry[2];
692 int i;
693
694 raw = (u64 *)(iommu->ppr_log + head);
695
696 /*
697 * Hardware bug: Interrupt may arrive before the entry is
698 * written to memory. If this happens we need to wait for the
699 * entry to arrive.
700 */
701 for (i = 0; i < LOOP_TIMEOUT; ++i) {
702 if (PPR_REQ_TYPE(raw[0]) != 0)
703 break;
704 udelay(1);
705 }
706
707 /* Avoid memcpy function-call overhead */
708 entry[0] = raw[0];
709 entry[1] = raw[1];
710
711 /*
712 * To detect the hardware bug we need to clear the entry
713 * back to zero.
714 */
715 raw[0] = raw[1] = 0UL;
716
717 /* Update head pointer of hardware ring-buffer */
718 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
719 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
720
721 /* Handle PPR entry */
722 iommu_handle_ppr_entry(iommu, entry);
723
724 /* Refresh ring-buffer information */
725 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
726 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
727 }
728}
729
730#ifdef CONFIG_IRQ_REMAP
731static int (*iommu_ga_log_notifier)(u32);
732
733int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
734{
735 iommu_ga_log_notifier = notifier;
736
737 return 0;
738}
739EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
740
741static void iommu_poll_ga_log(struct amd_iommu *iommu)
742{
743 u32 head, tail, cnt = 0;
744
745 if (iommu->ga_log == NULL)
746 return;
747
748 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
749 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
750
751 while (head != tail) {
752 volatile u64 *raw;
753 u64 log_entry;
754
755 raw = (u64 *)(iommu->ga_log + head);
756 cnt++;
757
758 /* Avoid memcpy function-call overhead */
759 log_entry = *raw;
760
761 /* Update head pointer of hardware ring-buffer */
762 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
763 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
764
765 /* Handle GA entry */
766 switch (GA_REQ_TYPE(log_entry)) {
767 case GA_GUEST_NR:
768 if (!iommu_ga_log_notifier)
769 break;
770
771 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
772 __func__, GA_DEVID(log_entry),
773 GA_TAG(log_entry));
774
775 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
776 pr_err("AMD-Vi: GA log notifier failed.\n");
777 break;
778 default:
779 break;
780 }
781 }
782}
783#endif /* CONFIG_IRQ_REMAP */
784
785#define AMD_IOMMU_INT_MASK \
786 (MMIO_STATUS_EVT_INT_MASK | \
787 MMIO_STATUS_PPR_INT_MASK | \
788 MMIO_STATUS_GALOG_INT_MASK)
789
790irqreturn_t amd_iommu_int_thread(int irq, void *data)
791{
792 struct amd_iommu *iommu = (struct amd_iommu *) data;
793 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
794
795 while (status & AMD_IOMMU_INT_MASK) {
796 /* Enable EVT and PPR and GA interrupts again */
797 writel(AMD_IOMMU_INT_MASK,
798 iommu->mmio_base + MMIO_STATUS_OFFSET);
799
800 if (status & MMIO_STATUS_EVT_INT_MASK) {
801 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
802 iommu_poll_events(iommu);
803 }
804
805 if (status & MMIO_STATUS_PPR_INT_MASK) {
806 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
807 iommu_poll_ppr_log(iommu);
808 }
809
810#ifdef CONFIG_IRQ_REMAP
811 if (status & MMIO_STATUS_GALOG_INT_MASK) {
812 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
813 iommu_poll_ga_log(iommu);
814 }
815#endif
816
817 /*
818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts.
824 *
825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits
829 */
830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
831 }
832 return IRQ_HANDLED;
833}
834
835irqreturn_t amd_iommu_int_handler(int irq, void *data)
836{
837 return IRQ_WAKE_THREAD;
838}
839
840/****************************************************************************
841 *
842 * IOMMU command queuing functions
843 *
844 ****************************************************************************/
845
846static int wait_on_sem(volatile u64 *sem)
847{
848 int i = 0;
849
850 while (*sem == 0 && i < LOOP_TIMEOUT) {
851 udelay(1);
852 i += 1;
853 }
854
855 if (i == LOOP_TIMEOUT) {
856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
857 return -EIO;
858 }
859
860 return 0;
861}
862
863static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 struct iommu_cmd *cmd)
865{
866 u8 *target;
867
868 target = iommu->cmd_buf + iommu->cmd_buf_tail;
869
870 iommu->cmd_buf_tail += sizeof(*cmd);
871 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
872
873 /* Copy command to buffer */
874 memcpy(target, cmd, sizeof(*cmd));
875
876 /* Tell the IOMMU about it */
877 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
878}
879
880static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
881{
882 u64 paddr = iommu_virt_to_phys((void *)address);
883
884 WARN_ON(address & 0x7ULL);
885
886 memset(cmd, 0, sizeof(*cmd));
887 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
888 cmd->data[1] = upper_32_bits(paddr);
889 cmd->data[2] = 1;
890 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
891}
892
893static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
894{
895 memset(cmd, 0, sizeof(*cmd));
896 cmd->data[0] = devid;
897 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
898}
899
900static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
901 size_t size, u16 domid, int pde)
902{
903 u64 pages;
904 bool s;
905
906 pages = iommu_num_pages(address, size, PAGE_SIZE);
907 s = false;
908
909 if (pages > 1) {
910 /*
911 * If we have to flush more than one page, flush all
912 * TLB entries for this domain
913 */
914 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
915 s = true;
916 }
917
918 address &= PAGE_MASK;
919
920 memset(cmd, 0, sizeof(*cmd));
921 cmd->data[1] |= domid;
922 cmd->data[2] = lower_32_bits(address);
923 cmd->data[3] = upper_32_bits(address);
924 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
925 if (s) /* size bit - we flush more than one 4kb page */
926 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
927 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
928 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
929}
930
931static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
932 u64 address, size_t size)
933{
934 u64 pages;
935 bool s;
936
937 pages = iommu_num_pages(address, size, PAGE_SIZE);
938 s = false;
939
940 if (pages > 1) {
941 /*
942 * If we have to flush more than one page, flush all
943 * TLB entries for this domain
944 */
945 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
946 s = true;
947 }
948
949 address &= PAGE_MASK;
950
951 memset(cmd, 0, sizeof(*cmd));
952 cmd->data[0] = devid;
953 cmd->data[0] |= (qdep & 0xff) << 24;
954 cmd->data[1] = devid;
955 cmd->data[2] = lower_32_bits(address);
956 cmd->data[3] = upper_32_bits(address);
957 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
958 if (s)
959 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
960}
961
962static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
963 u64 address, bool size)
964{
965 memset(cmd, 0, sizeof(*cmd));
966
967 address &= ~(0xfffULL);
968
969 cmd->data[0] = pasid;
970 cmd->data[1] = domid;
971 cmd->data[2] = lower_32_bits(address);
972 cmd->data[3] = upper_32_bits(address);
973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
974 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
975 if (size)
976 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
977 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
978}
979
980static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
981 int qdep, u64 address, bool size)
982{
983 memset(cmd, 0, sizeof(*cmd));
984
985 address &= ~(0xfffULL);
986
987 cmd->data[0] = devid;
988 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
989 cmd->data[0] |= (qdep & 0xff) << 24;
990 cmd->data[1] = devid;
991 cmd->data[1] |= (pasid & 0xff) << 16;
992 cmd->data[2] = lower_32_bits(address);
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
994 cmd->data[3] = upper_32_bits(address);
995 if (size)
996 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
997 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
998}
999
1000static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1001 int status, int tag, bool gn)
1002{
1003 memset(cmd, 0, sizeof(*cmd));
1004
1005 cmd->data[0] = devid;
1006 if (gn) {
1007 cmd->data[1] = pasid;
1008 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1009 }
1010 cmd->data[3] = tag & 0x1ff;
1011 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1012
1013 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1014}
1015
1016static void build_inv_all(struct iommu_cmd *cmd)
1017{
1018 memset(cmd, 0, sizeof(*cmd));
1019 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1020}
1021
1022static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1023{
1024 memset(cmd, 0, sizeof(*cmd));
1025 cmd->data[0] = devid;
1026 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1027}
1028
1029/*
1030 * Writes the command to the IOMMUs command buffer and informs the
1031 * hardware about the new command.
1032 */
1033static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1034 struct iommu_cmd *cmd,
1035 bool sync)
1036{
1037 unsigned int count = 0;
1038 u32 left, next_tail;
1039
1040 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1041again:
1042 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1043
1044 if (left <= 0x20) {
1045 /* Skip udelay() the first time around */
1046 if (count++) {
1047 if (count == LOOP_TIMEOUT) {
1048 pr_err("AMD-Vi: Command buffer timeout\n");
1049 return -EIO;
1050 }
1051
1052 udelay(1);
1053 }
1054
1055 /* Update head and recheck remaining space */
1056 iommu->cmd_buf_head = readl(iommu->mmio_base +
1057 MMIO_CMD_HEAD_OFFSET);
1058
1059 goto again;
1060 }
1061
1062 copy_cmd_to_buffer(iommu, cmd);
1063
1064 /* Do we need to make sure all commands are processed? */
1065 iommu->need_sync = sync;
1066
1067 return 0;
1068}
1069
1070static int iommu_queue_command_sync(struct amd_iommu *iommu,
1071 struct iommu_cmd *cmd,
1072 bool sync)
1073{
1074 unsigned long flags;
1075 int ret;
1076
1077 raw_spin_lock_irqsave(&iommu->lock, flags);
1078 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1079 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1080
1081 return ret;
1082}
1083
1084static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1085{
1086 return iommu_queue_command_sync(iommu, cmd, true);
1087}
1088
1089/*
1090 * This function queues a completion wait command into the command
1091 * buffer of an IOMMU
1092 */
1093static int iommu_completion_wait(struct amd_iommu *iommu)
1094{
1095 struct iommu_cmd cmd;
1096 unsigned long flags;
1097 int ret;
1098
1099 if (!iommu->need_sync)
1100 return 0;
1101
1102
1103 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1104
1105 raw_spin_lock_irqsave(&iommu->lock, flags);
1106
1107 iommu->cmd_sem = 0;
1108
1109 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1110 if (ret)
1111 goto out_unlock;
1112
1113 ret = wait_on_sem(&iommu->cmd_sem);
1114
1115out_unlock:
1116 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1117
1118 return ret;
1119}
1120
1121static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1122{
1123 struct iommu_cmd cmd;
1124
1125 build_inv_dte(&cmd, devid);
1126
1127 return iommu_queue_command(iommu, &cmd);
1128}
1129
1130static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1131{
1132 u32 devid;
1133
1134 for (devid = 0; devid <= 0xffff; ++devid)
1135 iommu_flush_dte(iommu, devid);
1136
1137 iommu_completion_wait(iommu);
1138}
1139
1140/*
1141 * This function uses heavy locking and may disable irqs for some time. But
1142 * this is no issue because it is only called during resume.
1143 */
1144static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1145{
1146 u32 dom_id;
1147
1148 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1149 struct iommu_cmd cmd;
1150 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1151 dom_id, 1);
1152 iommu_queue_command(iommu, &cmd);
1153 }
1154
1155 iommu_completion_wait(iommu);
1156}
1157
1158static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1159{
1160 struct iommu_cmd cmd;
1161
1162 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1163 dom_id, 1);
1164 iommu_queue_command(iommu, &cmd);
1165
1166 iommu_completion_wait(iommu);
1167}
1168
1169static void amd_iommu_flush_all(struct amd_iommu *iommu)
1170{
1171 struct iommu_cmd cmd;
1172
1173 build_inv_all(&cmd);
1174
1175 iommu_queue_command(iommu, &cmd);
1176 iommu_completion_wait(iommu);
1177}
1178
1179static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1180{
1181 struct iommu_cmd cmd;
1182
1183 build_inv_irt(&cmd, devid);
1184
1185 iommu_queue_command(iommu, &cmd);
1186}
1187
1188static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1189{
1190 u32 devid;
1191
1192 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1193 iommu_flush_irt(iommu, devid);
1194
1195 iommu_completion_wait(iommu);
1196}
1197
1198void iommu_flush_all_caches(struct amd_iommu *iommu)
1199{
1200 if (iommu_feature(iommu, FEATURE_IA)) {
1201 amd_iommu_flush_all(iommu);
1202 } else {
1203 amd_iommu_flush_dte_all(iommu);
1204 amd_iommu_flush_irt_all(iommu);
1205 amd_iommu_flush_tlb_all(iommu);
1206 }
1207}
1208
1209/*
1210 * Command send function for flushing on-device TLB
1211 */
1212static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1213 u64 address, size_t size)
1214{
1215 struct amd_iommu *iommu;
1216 struct iommu_cmd cmd;
1217 int qdep;
1218
1219 qdep = dev_data->ats.qdep;
1220 iommu = amd_iommu_rlookup_table[dev_data->devid];
1221
1222 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1223
1224 return iommu_queue_command(iommu, &cmd);
1225}
1226
1227/*
1228 * Command send function for invalidating a device table entry
1229 */
1230static int device_flush_dte(struct iommu_dev_data *dev_data)
1231{
1232 struct amd_iommu *iommu;
1233 u16 alias;
1234 int ret;
1235
1236 iommu = amd_iommu_rlookup_table[dev_data->devid];
1237 alias = dev_data->alias;
1238
1239 ret = iommu_flush_dte(iommu, dev_data->devid);
1240 if (!ret && alias != dev_data->devid)
1241 ret = iommu_flush_dte(iommu, alias);
1242 if (ret)
1243 return ret;
1244
1245 if (dev_data->ats.enabled)
1246 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1247
1248 return ret;
1249}
1250
1251/*
1252 * TLB invalidation function which is called from the mapping functions.
1253 * It invalidates a single PTE if the range to flush is within a single
1254 * page. Otherwise it flushes the whole TLB of the IOMMU.
1255 */
1256static void __domain_flush_pages(struct protection_domain *domain,
1257 u64 address, size_t size, int pde)
1258{
1259 struct iommu_dev_data *dev_data;
1260 struct iommu_cmd cmd;
1261 int ret = 0, i;
1262
1263 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1264
1265 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1266 if (!domain->dev_iommu[i])
1267 continue;
1268
1269 /*
1270 * Devices of this domain are behind this IOMMU
1271 * We need a TLB flush
1272 */
1273 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1274 }
1275
1276 list_for_each_entry(dev_data, &domain->dev_list, list) {
1277
1278 if (!dev_data->ats.enabled)
1279 continue;
1280
1281 ret |= device_flush_iotlb(dev_data, address, size);
1282 }
1283
1284 WARN_ON(ret);
1285}
1286
1287static void domain_flush_pages(struct protection_domain *domain,
1288 u64 address, size_t size)
1289{
1290 __domain_flush_pages(domain, address, size, 0);
1291}
1292
1293/* Flush the whole IO/TLB for a given protection domain */
1294static void domain_flush_tlb(struct protection_domain *domain)
1295{
1296 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1297}
1298
1299/* Flush the whole IO/TLB for a given protection domain - including PDE */
1300static void domain_flush_tlb_pde(struct protection_domain *domain)
1301{
1302 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1303}
1304
1305static void domain_flush_complete(struct protection_domain *domain)
1306{
1307 int i;
1308
1309 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1310 if (domain && !domain->dev_iommu[i])
1311 continue;
1312
1313 /*
1314 * Devices of this domain are behind this IOMMU
1315 * We need to wait for completion of all commands.
1316 */
1317 iommu_completion_wait(amd_iommus[i]);
1318 }
1319}
1320
1321
1322/*
1323 * This function flushes the DTEs for all devices in domain
1324 */
1325static void domain_flush_devices(struct protection_domain *domain)
1326{
1327 struct iommu_dev_data *dev_data;
1328
1329 list_for_each_entry(dev_data, &domain->dev_list, list)
1330 device_flush_dte(dev_data);
1331}
1332
1333/****************************************************************************
1334 *
1335 * The functions below are used the create the page table mappings for
1336 * unity mapped regions.
1337 *
1338 ****************************************************************************/
1339
1340/*
1341 * This function is used to add another level to an IO page table. Adding
1342 * another level increases the size of the address space by 9 bits to a size up
1343 * to 64 bits.
1344 */
1345static void increase_address_space(struct protection_domain *domain,
1346 gfp_t gfp)
1347{
1348 unsigned long flags;
1349 u64 *pte;
1350
1351 spin_lock_irqsave(&domain->lock, flags);
1352
1353 if (WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1354 /* address space already 64 bit large */
1355 goto out;
1356
1357 pte = (void *)get_zeroed_page(gfp);
1358 if (!pte)
1359 goto out;
1360
1361 *pte = PM_LEVEL_PDE(domain->mode,
1362 iommu_virt_to_phys(domain->pt_root));
1363 domain->pt_root = pte;
1364 domain->mode += 1;
1365 domain->updated = true;
1366
1367out:
1368 spin_unlock_irqrestore(&domain->lock, flags);
1369
1370 return;
1371}
1372
1373static u64 *alloc_pte(struct protection_domain *domain,
1374 unsigned long address,
1375 unsigned long page_size,
1376 u64 **pte_page,
1377 gfp_t gfp)
1378{
1379 int level, end_lvl;
1380 u64 *pte, *page;
1381
1382 BUG_ON(!is_power_of_2(page_size));
1383
1384 while (address > PM_LEVEL_SIZE(domain->mode))
1385 increase_address_space(domain, gfp);
1386
1387 level = domain->mode - 1;
1388 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389 address = PAGE_SIZE_ALIGN(address, page_size);
1390 end_lvl = PAGE_SIZE_LEVEL(page_size);
1391
1392 while (level > end_lvl) {
1393 u64 __pte, __npte;
1394
1395 __pte = *pte;
1396
1397 if (!IOMMU_PTE_PRESENT(__pte)) {
1398 page = (u64 *)get_zeroed_page(gfp);
1399 if (!page)
1400 return NULL;
1401
1402 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1403
1404 /* pte could have been changed somewhere. */
1405 if (cmpxchg64(pte, __pte, __npte) != __pte) {
1406 free_page((unsigned long)page);
1407 continue;
1408 }
1409 }
1410
1411 /* No level skipping support yet */
1412 if (PM_PTE_LEVEL(*pte) != level)
1413 return NULL;
1414
1415 level -= 1;
1416
1417 pte = IOMMU_PTE_PAGE(*pte);
1418
1419 if (pte_page && level == end_lvl)
1420 *pte_page = pte;
1421
1422 pte = &pte[PM_LEVEL_INDEX(level, address)];
1423 }
1424
1425 return pte;
1426}
1427
1428/*
1429 * This function checks if there is a PTE for a given dma address. If
1430 * there is one, it returns the pointer to it.
1431 */
1432static u64 *fetch_pte(struct protection_domain *domain,
1433 unsigned long address,
1434 unsigned long *page_size)
1435{
1436 int level;
1437 u64 *pte;
1438
1439 *page_size = 0;
1440
1441 if (address > PM_LEVEL_SIZE(domain->mode))
1442 return NULL;
1443
1444 level = domain->mode - 1;
1445 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1446 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1447
1448 while (level > 0) {
1449
1450 /* Not Present */
1451 if (!IOMMU_PTE_PRESENT(*pte))
1452 return NULL;
1453
1454 /* Large PTE */
1455 if (PM_PTE_LEVEL(*pte) == 7 ||
1456 PM_PTE_LEVEL(*pte) == 0)
1457 break;
1458
1459 /* No level skipping support yet */
1460 if (PM_PTE_LEVEL(*pte) != level)
1461 return NULL;
1462
1463 level -= 1;
1464
1465 /* Walk to the next level */
1466 pte = IOMMU_PTE_PAGE(*pte);
1467 pte = &pte[PM_LEVEL_INDEX(level, address)];
1468 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1469 }
1470
1471 if (PM_PTE_LEVEL(*pte) == 0x07) {
1472 unsigned long pte_mask;
1473
1474 /*
1475 * If we have a series of large PTEs, make
1476 * sure to return a pointer to the first one.
1477 */
1478 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1479 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1480 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1481 }
1482
1483 return pte;
1484}
1485
1486/*
1487 * Generic mapping functions. It maps a physical address into a DMA
1488 * address space. It allocates the page table pages if necessary.
1489 * In the future it can be extended to a generic mapping function
1490 * supporting all features of AMD IOMMU page tables like level skipping
1491 * and full 64 bit address spaces.
1492 */
1493static int iommu_map_page(struct protection_domain *dom,
1494 unsigned long bus_addr,
1495 unsigned long phys_addr,
1496 unsigned long page_size,
1497 int prot,
1498 gfp_t gfp)
1499{
1500 u64 __pte, *pte;
1501 int i, count;
1502
1503 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1504 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1505
1506 if (!(prot & IOMMU_PROT_MASK))
1507 return -EINVAL;
1508
1509 count = PAGE_SIZE_PTE_COUNT(page_size);
1510 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1511
1512 if (!pte)
1513 return -ENOMEM;
1514
1515 for (i = 0; i < count; ++i)
1516 if (IOMMU_PTE_PRESENT(pte[i]))
1517 return -EBUSY;
1518
1519 if (count > 1) {
1520 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1521 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1522 } else
1523 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1524
1525 if (prot & IOMMU_PROT_IR)
1526 __pte |= IOMMU_PTE_IR;
1527 if (prot & IOMMU_PROT_IW)
1528 __pte |= IOMMU_PTE_IW;
1529
1530 for (i = 0; i < count; ++i)
1531 pte[i] = __pte;
1532
1533 update_domain(dom);
1534
1535 return 0;
1536}
1537
1538static unsigned long iommu_unmap_page(struct protection_domain *dom,
1539 unsigned long bus_addr,
1540 unsigned long page_size)
1541{
1542 unsigned long long unmapped;
1543 unsigned long unmap_size;
1544 u64 *pte;
1545
1546 BUG_ON(!is_power_of_2(page_size));
1547
1548 unmapped = 0;
1549
1550 while (unmapped < page_size) {
1551
1552 pte = fetch_pte(dom, bus_addr, &unmap_size);
1553
1554 if (pte) {
1555 int i, count;
1556
1557 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1558 for (i = 0; i < count; i++)
1559 pte[i] = 0ULL;
1560 }
1561
1562 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1563 unmapped += unmap_size;
1564 }
1565
1566 BUG_ON(unmapped && !is_power_of_2(unmapped));
1567
1568 return unmapped;
1569}
1570
1571/****************************************************************************
1572 *
1573 * The next functions belong to the address allocator for the dma_ops
1574 * interface functions.
1575 *
1576 ****************************************************************************/
1577
1578
1579static unsigned long dma_ops_alloc_iova(struct device *dev,
1580 struct dma_ops_domain *dma_dom,
1581 unsigned int pages, u64 dma_mask)
1582{
1583 unsigned long pfn = 0;
1584
1585 pages = __roundup_pow_of_two(pages);
1586
1587 if (dma_mask > DMA_BIT_MASK(32))
1588 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1589 IOVA_PFN(DMA_BIT_MASK(32)), false);
1590
1591 if (!pfn)
1592 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1593 IOVA_PFN(dma_mask), true);
1594
1595 return (pfn << PAGE_SHIFT);
1596}
1597
1598static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1599 unsigned long address,
1600 unsigned int pages)
1601{
1602 pages = __roundup_pow_of_two(pages);
1603 address >>= PAGE_SHIFT;
1604
1605 free_iova_fast(&dma_dom->iovad, address, pages);
1606}
1607
1608/****************************************************************************
1609 *
1610 * The next functions belong to the domain allocation. A domain is
1611 * allocated for every IOMMU as the default domain. If device isolation
1612 * is enabled, every device get its own domain. The most important thing
1613 * about domains is the page table mapping the DMA address space they
1614 * contain.
1615 *
1616 ****************************************************************************/
1617
1618/*
1619 * This function adds a protection domain to the global protection domain list
1620 */
1621static void add_domain_to_list(struct protection_domain *domain)
1622{
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1626 list_add(&domain->list, &amd_iommu_pd_list);
1627 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1628}
1629
1630/*
1631 * This function removes a protection domain to the global
1632 * protection domain list
1633 */
1634static void del_domain_from_list(struct protection_domain *domain)
1635{
1636 unsigned long flags;
1637
1638 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1639 list_del(&domain->list);
1640 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1641}
1642
1643static u16 domain_id_alloc(void)
1644{
1645 int id;
1646
1647 spin_lock(&pd_bitmap_lock);
1648 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1649 BUG_ON(id == 0);
1650 if (id > 0 && id < MAX_DOMAIN_ID)
1651 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1652 else
1653 id = 0;
1654 spin_unlock(&pd_bitmap_lock);
1655
1656 return id;
1657}
1658
1659static void domain_id_free(int id)
1660{
1661 spin_lock(&pd_bitmap_lock);
1662 if (id > 0 && id < MAX_DOMAIN_ID)
1663 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1664 spin_unlock(&pd_bitmap_lock);
1665}
1666
1667#define DEFINE_FREE_PT_FN(LVL, FN) \
1668static void free_pt_##LVL (unsigned long __pt) \
1669{ \
1670 unsigned long p; \
1671 u64 *pt; \
1672 int i; \
1673 \
1674 pt = (u64 *)__pt; \
1675 \
1676 for (i = 0; i < 512; ++i) { \
1677 /* PTE present? */ \
1678 if (!IOMMU_PTE_PRESENT(pt[i])) \
1679 continue; \
1680 \
1681 /* Large PTE? */ \
1682 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1683 PM_PTE_LEVEL(pt[i]) == 7) \
1684 continue; \
1685 \
1686 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1687 FN(p); \
1688 } \
1689 free_page((unsigned long)pt); \
1690}
1691
1692DEFINE_FREE_PT_FN(l2, free_page)
1693DEFINE_FREE_PT_FN(l3, free_pt_l2)
1694DEFINE_FREE_PT_FN(l4, free_pt_l3)
1695DEFINE_FREE_PT_FN(l5, free_pt_l4)
1696DEFINE_FREE_PT_FN(l6, free_pt_l5)
1697
1698static void free_pagetable(struct protection_domain *domain)
1699{
1700 unsigned long root = (unsigned long)domain->pt_root;
1701
1702 switch (domain->mode) {
1703 case PAGE_MODE_NONE:
1704 break;
1705 case PAGE_MODE_1_LEVEL:
1706 free_page(root);
1707 break;
1708 case PAGE_MODE_2_LEVEL:
1709 free_pt_l2(root);
1710 break;
1711 case PAGE_MODE_3_LEVEL:
1712 free_pt_l3(root);
1713 break;
1714 case PAGE_MODE_4_LEVEL:
1715 free_pt_l4(root);
1716 break;
1717 case PAGE_MODE_5_LEVEL:
1718 free_pt_l5(root);
1719 break;
1720 case PAGE_MODE_6_LEVEL:
1721 free_pt_l6(root);
1722 break;
1723 default:
1724 BUG();
1725 }
1726}
1727
1728static void free_gcr3_tbl_level1(u64 *tbl)
1729{
1730 u64 *ptr;
1731 int i;
1732
1733 for (i = 0; i < 512; ++i) {
1734 if (!(tbl[i] & GCR3_VALID))
1735 continue;
1736
1737 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1738
1739 free_page((unsigned long)ptr);
1740 }
1741}
1742
1743static void free_gcr3_tbl_level2(u64 *tbl)
1744{
1745 u64 *ptr;
1746 int i;
1747
1748 for (i = 0; i < 512; ++i) {
1749 if (!(tbl[i] & GCR3_VALID))
1750 continue;
1751
1752 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1753
1754 free_gcr3_tbl_level1(ptr);
1755 }
1756}
1757
1758static void free_gcr3_table(struct protection_domain *domain)
1759{
1760 if (domain->glx == 2)
1761 free_gcr3_tbl_level2(domain->gcr3_tbl);
1762 else if (domain->glx == 1)
1763 free_gcr3_tbl_level1(domain->gcr3_tbl);
1764 else
1765 BUG_ON(domain->glx != 0);
1766
1767 free_page((unsigned long)domain->gcr3_tbl);
1768}
1769
1770static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1771{
1772 domain_flush_tlb(&dom->domain);
1773 domain_flush_complete(&dom->domain);
1774}
1775
1776static void iova_domain_flush_tlb(struct iova_domain *iovad)
1777{
1778 struct dma_ops_domain *dom;
1779
1780 dom = container_of(iovad, struct dma_ops_domain, iovad);
1781
1782 dma_ops_domain_flush_tlb(dom);
1783}
1784
1785/*
1786 * Free a domain, only used if something went wrong in the
1787 * allocation path and we need to free an already allocated page table
1788 */
1789static void dma_ops_domain_free(struct dma_ops_domain *dom)
1790{
1791 if (!dom)
1792 return;
1793
1794 del_domain_from_list(&dom->domain);
1795
1796 put_iova_domain(&dom->iovad);
1797
1798 free_pagetable(&dom->domain);
1799
1800 if (dom->domain.id)
1801 domain_id_free(dom->domain.id);
1802
1803 kfree(dom);
1804}
1805
1806/*
1807 * Allocates a new protection domain usable for the dma_ops functions.
1808 * It also initializes the page table and the address allocator data
1809 * structures required for the dma_ops interface
1810 */
1811static struct dma_ops_domain *dma_ops_domain_alloc(void)
1812{
1813 struct dma_ops_domain *dma_dom;
1814
1815 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1816 if (!dma_dom)
1817 return NULL;
1818
1819 if (protection_domain_init(&dma_dom->domain))
1820 goto free_dma_dom;
1821
1822 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1823 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1824 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1825 if (!dma_dom->domain.pt_root)
1826 goto free_dma_dom;
1827
1828 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1829
1830 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1831 goto free_dma_dom;
1832
1833 /* Initialize reserved ranges */
1834 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1835
1836 add_domain_to_list(&dma_dom->domain);
1837
1838 return dma_dom;
1839
1840free_dma_dom:
1841 dma_ops_domain_free(dma_dom);
1842
1843 return NULL;
1844}
1845
1846/*
1847 * little helper function to check whether a given protection domain is a
1848 * dma_ops domain
1849 */
1850static bool dma_ops_domain(struct protection_domain *domain)
1851{
1852 return domain->flags & PD_DMA_OPS_MASK;
1853}
1854
1855static void set_dte_entry(u16 devid, struct protection_domain *domain,
1856 bool ats, bool ppr)
1857{
1858 u64 pte_root = 0;
1859 u64 flags = 0;
1860 u32 old_domid;
1861
1862 if (domain->mode != PAGE_MODE_NONE)
1863 pte_root = iommu_virt_to_phys(domain->pt_root);
1864
1865 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1866 << DEV_ENTRY_MODE_SHIFT;
1867 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1868
1869 flags = amd_iommu_dev_table[devid].data[1];
1870
1871 if (ats)
1872 flags |= DTE_FLAG_IOTLB;
1873
1874 if (ppr) {
1875 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1876
1877 if (iommu_feature(iommu, FEATURE_EPHSUP))
1878 pte_root |= 1ULL << DEV_ENTRY_PPR;
1879 }
1880
1881 if (domain->flags & PD_IOMMUV2_MASK) {
1882 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1883 u64 glx = domain->glx;
1884 u64 tmp;
1885
1886 pte_root |= DTE_FLAG_GV;
1887 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1888
1889 /* First mask out possible old values for GCR3 table */
1890 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1891 flags &= ~tmp;
1892
1893 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1894 flags &= ~tmp;
1895
1896 /* Encode GCR3 table into DTE */
1897 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1898 pte_root |= tmp;
1899
1900 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1901 flags |= tmp;
1902
1903 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1904 flags |= tmp;
1905 }
1906
1907 flags &= ~DEV_DOMID_MASK;
1908 flags |= domain->id;
1909
1910 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1911 amd_iommu_dev_table[devid].data[1] = flags;
1912 amd_iommu_dev_table[devid].data[0] = pte_root;
1913
1914 /*
1915 * A kdump kernel might be replacing a domain ID that was copied from
1916 * the previous kernel--if so, it needs to flush the translation cache
1917 * entries for the old domain ID that is being overwritten
1918 */
1919 if (old_domid) {
1920 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1921
1922 amd_iommu_flush_tlb_domid(iommu, old_domid);
1923 }
1924}
1925
1926static void clear_dte_entry(u16 devid)
1927{
1928 /* remove entry from the device table seen by the hardware */
1929 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1930 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1931
1932 amd_iommu_apply_erratum_63(devid);
1933}
1934
1935static void do_attach(struct iommu_dev_data *dev_data,
1936 struct protection_domain *domain)
1937{
1938 struct amd_iommu *iommu;
1939 u16 alias;
1940 bool ats;
1941
1942 iommu = amd_iommu_rlookup_table[dev_data->devid];
1943 alias = dev_data->alias;
1944 ats = dev_data->ats.enabled;
1945
1946 /* Update data structures */
1947 dev_data->domain = domain;
1948 list_add(&dev_data->list, &domain->dev_list);
1949
1950 /* Do reference counting */
1951 domain->dev_iommu[iommu->index] += 1;
1952 domain->dev_cnt += 1;
1953
1954 /* Update device table */
1955 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1956 if (alias != dev_data->devid)
1957 set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1958
1959 device_flush_dte(dev_data);
1960}
1961
1962static void do_detach(struct iommu_dev_data *dev_data)
1963{
1964 struct protection_domain *domain = dev_data->domain;
1965 struct amd_iommu *iommu;
1966 u16 alias;
1967
1968 iommu = amd_iommu_rlookup_table[dev_data->devid];
1969 alias = dev_data->alias;
1970
1971 /* Update data structures */
1972 dev_data->domain = NULL;
1973 list_del(&dev_data->list);
1974 clear_dte_entry(dev_data->devid);
1975 if (alias != dev_data->devid)
1976 clear_dte_entry(alias);
1977
1978 /* Flush the DTE entry */
1979 device_flush_dte(dev_data);
1980
1981 /* Flush IOTLB */
1982 domain_flush_tlb_pde(domain);
1983
1984 /* Wait for the flushes to finish */
1985 domain_flush_complete(domain);
1986
1987 /* decrease reference counters - needs to happen after the flushes */
1988 domain->dev_iommu[iommu->index] -= 1;
1989 domain->dev_cnt -= 1;
1990}
1991
1992/*
1993 * If a device is not yet associated with a domain, this function makes the
1994 * device visible in the domain
1995 */
1996static int __attach_device(struct iommu_dev_data *dev_data,
1997 struct protection_domain *domain)
1998{
1999 int ret;
2000
2001 /* lock domain */
2002 spin_lock(&domain->lock);
2003
2004 ret = -EBUSY;
2005 if (dev_data->domain != NULL)
2006 goto out_unlock;
2007
2008 /* Attach alias group root */
2009 do_attach(dev_data, domain);
2010
2011 ret = 0;
2012
2013out_unlock:
2014
2015 /* ready */
2016 spin_unlock(&domain->lock);
2017
2018 return ret;
2019}
2020
2021
2022static void pdev_iommuv2_disable(struct pci_dev *pdev)
2023{
2024 pci_disable_ats(pdev);
2025 pci_disable_pri(pdev);
2026 pci_disable_pasid(pdev);
2027}
2028
2029/* FIXME: Change generic reset-function to do the same */
2030static int pri_reset_while_enabled(struct pci_dev *pdev)
2031{
2032 u16 control;
2033 int pos;
2034
2035 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2036 if (!pos)
2037 return -EINVAL;
2038
2039 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2040 control |= PCI_PRI_CTRL_RESET;
2041 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2042
2043 return 0;
2044}
2045
2046static int pdev_iommuv2_enable(struct pci_dev *pdev)
2047{
2048 bool reset_enable;
2049 int reqs, ret;
2050
2051 /* FIXME: Hardcode number of outstanding requests for now */
2052 reqs = 32;
2053 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2054 reqs = 1;
2055 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2056
2057 /* Only allow access to user-accessible pages */
2058 ret = pci_enable_pasid(pdev, 0);
2059 if (ret)
2060 goto out_err;
2061
2062 /* First reset the PRI state of the device */
2063 ret = pci_reset_pri(pdev);
2064 if (ret)
2065 goto out_err;
2066
2067 /* Enable PRI */
2068 ret = pci_enable_pri(pdev, reqs);
2069 if (ret)
2070 goto out_err;
2071
2072 if (reset_enable) {
2073 ret = pri_reset_while_enabled(pdev);
2074 if (ret)
2075 goto out_err;
2076 }
2077
2078 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2079 if (ret)
2080 goto out_err;
2081
2082 return 0;
2083
2084out_err:
2085 pci_disable_pri(pdev);
2086 pci_disable_pasid(pdev);
2087
2088 return ret;
2089}
2090
2091/* FIXME: Move this to PCI code */
2092#define PCI_PRI_TLP_OFF (1 << 15)
2093
2094static bool pci_pri_tlp_required(struct pci_dev *pdev)
2095{
2096 u16 status;
2097 int pos;
2098
2099 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2100 if (!pos)
2101 return false;
2102
2103 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2104
2105 return (status & PCI_PRI_TLP_OFF) ? true : false;
2106}
2107
2108/*
2109 * If a device is not yet associated with a domain, this function makes the
2110 * device visible in the domain
2111 */
2112static int attach_device(struct device *dev,
2113 struct protection_domain *domain)
2114{
2115 struct pci_dev *pdev;
2116 struct iommu_dev_data *dev_data;
2117 unsigned long flags;
2118 int ret;
2119
2120 dev_data = get_dev_data(dev);
2121
2122 if (!dev_is_pci(dev))
2123 goto skip_ats_check;
2124
2125 pdev = to_pci_dev(dev);
2126 if (domain->flags & PD_IOMMUV2_MASK) {
2127 if (!dev_data->passthrough)
2128 return -EINVAL;
2129
2130 if (dev_data->iommu_v2) {
2131 if (pdev_iommuv2_enable(pdev) != 0)
2132 return -EINVAL;
2133
2134 dev_data->ats.enabled = true;
2135 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2136 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2137 }
2138 } else if (amd_iommu_iotlb_sup &&
2139 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2140 dev_data->ats.enabled = true;
2141 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2142 }
2143
2144skip_ats_check:
2145 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2146 ret = __attach_device(dev_data, domain);
2147 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2148
2149 /*
2150 * We might boot into a crash-kernel here. The crashed kernel
2151 * left the caches in the IOMMU dirty. So we have to flush
2152 * here to evict all dirty stuff.
2153 */
2154 domain_flush_tlb_pde(domain);
2155
2156 return ret;
2157}
2158
2159/*
2160 * Removes a device from a protection domain (unlocked)
2161 */
2162static void __detach_device(struct iommu_dev_data *dev_data)
2163{
2164 struct protection_domain *domain;
2165
2166 domain = dev_data->domain;
2167
2168 spin_lock(&domain->lock);
2169
2170 do_detach(dev_data);
2171
2172 spin_unlock(&domain->lock);
2173}
2174
2175/*
2176 * Removes a device from a protection domain (with devtable_lock held)
2177 */
2178static void detach_device(struct device *dev)
2179{
2180 struct protection_domain *domain;
2181 struct iommu_dev_data *dev_data;
2182 unsigned long flags;
2183
2184 dev_data = get_dev_data(dev);
2185 domain = dev_data->domain;
2186
2187 /*
2188 * First check if the device is still attached. It might already
2189 * be detached from its domain because the generic
2190 * iommu_detach_group code detached it and we try again here in
2191 * our alias handling.
2192 */
2193 if (WARN_ON(!dev_data->domain))
2194 return;
2195
2196 /* lock device table */
2197 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2198 __detach_device(dev_data);
2199 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2200
2201 if (!dev_is_pci(dev))
2202 return;
2203
2204 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2205 pdev_iommuv2_disable(to_pci_dev(dev));
2206 else if (dev_data->ats.enabled)
2207 pci_disable_ats(to_pci_dev(dev));
2208
2209 dev_data->ats.enabled = false;
2210}
2211
2212static int amd_iommu_add_device(struct device *dev)
2213{
2214 struct iommu_dev_data *dev_data;
2215 struct iommu_domain *domain;
2216 struct amd_iommu *iommu;
2217 int ret, devid;
2218
2219 if (!check_device(dev) || get_dev_data(dev))
2220 return 0;
2221
2222 devid = get_device_id(dev);
2223 if (devid < 0)
2224 return devid;
2225
2226 iommu = amd_iommu_rlookup_table[devid];
2227
2228 ret = iommu_init_device(dev);
2229 if (ret) {
2230 if (ret != -ENOTSUPP)
2231 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2232 dev_name(dev));
2233
2234 iommu_ignore_device(dev);
2235 dev->dma_ops = &dma_direct_ops;
2236 goto out;
2237 }
2238 init_iommu_group(dev);
2239
2240 dev_data = get_dev_data(dev);
2241
2242 BUG_ON(!dev_data);
2243
2244 if (iommu_pass_through || dev_data->iommu_v2)
2245 iommu_request_dm_for_dev(dev);
2246
2247 /* Domains are initialized for this device - have a look what we ended up with */
2248 domain = iommu_get_domain_for_dev(dev);
2249 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2250 dev_data->passthrough = true;
2251 else
2252 dev->dma_ops = &amd_iommu_dma_ops;
2253
2254out:
2255 iommu_completion_wait(iommu);
2256
2257 return 0;
2258}
2259
2260static void amd_iommu_remove_device(struct device *dev)
2261{
2262 struct amd_iommu *iommu;
2263 int devid;
2264
2265 if (!check_device(dev))
2266 return;
2267
2268 devid = get_device_id(dev);
2269 if (devid < 0)
2270 return;
2271
2272 iommu = amd_iommu_rlookup_table[devid];
2273
2274 iommu_uninit_device(dev);
2275 iommu_completion_wait(iommu);
2276}
2277
2278static struct iommu_group *amd_iommu_device_group(struct device *dev)
2279{
2280 if (dev_is_pci(dev))
2281 return pci_device_group(dev);
2282
2283 return acpihid_device_group(dev);
2284}
2285
2286/*****************************************************************************
2287 *
2288 * The next functions belong to the dma_ops mapping/unmapping code.
2289 *
2290 *****************************************************************************/
2291
2292/*
2293 * In the dma_ops path we only have the struct device. This function
2294 * finds the corresponding IOMMU, the protection domain and the
2295 * requestor id for a given device.
2296 * If the device is not yet associated with a domain this is also done
2297 * in this function.
2298 */
2299static struct protection_domain *get_domain(struct device *dev)
2300{
2301 struct protection_domain *domain;
2302 struct iommu_domain *io_domain;
2303
2304 if (!check_device(dev))
2305 return ERR_PTR(-EINVAL);
2306
2307 domain = get_dev_data(dev)->domain;
2308 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2309 get_dev_data(dev)->defer_attach = false;
2310 io_domain = iommu_get_domain_for_dev(dev);
2311 domain = to_pdomain(io_domain);
2312 attach_device(dev, domain);
2313 }
2314 if (domain == NULL)
2315 return ERR_PTR(-EBUSY);
2316
2317 if (!dma_ops_domain(domain))
2318 return ERR_PTR(-EBUSY);
2319
2320 return domain;
2321}
2322
2323static void update_device_table(struct protection_domain *domain)
2324{
2325 struct iommu_dev_data *dev_data;
2326
2327 list_for_each_entry(dev_data, &domain->dev_list, list) {
2328 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2329 dev_data->iommu_v2);
2330
2331 if (dev_data->devid == dev_data->alias)
2332 continue;
2333
2334 /* There is an alias, update device table entry for it */
2335 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2336 dev_data->iommu_v2);
2337 }
2338}
2339
2340static void update_domain(struct protection_domain *domain)
2341{
2342 if (!domain->updated)
2343 return;
2344
2345 update_device_table(domain);
2346
2347 domain_flush_devices(domain);
2348 domain_flush_tlb_pde(domain);
2349
2350 domain->updated = false;
2351}
2352
2353static int dir2prot(enum dma_data_direction direction)
2354{
2355 if (direction == DMA_TO_DEVICE)
2356 return IOMMU_PROT_IR;
2357 else if (direction == DMA_FROM_DEVICE)
2358 return IOMMU_PROT_IW;
2359 else if (direction == DMA_BIDIRECTIONAL)
2360 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2361 else
2362 return 0;
2363}
2364
2365/*
2366 * This function contains common code for mapping of a physically
2367 * contiguous memory region into DMA address space. It is used by all
2368 * mapping functions provided with this IOMMU driver.
2369 * Must be called with the domain lock held.
2370 */
2371static dma_addr_t __map_single(struct device *dev,
2372 struct dma_ops_domain *dma_dom,
2373 phys_addr_t paddr,
2374 size_t size,
2375 enum dma_data_direction direction,
2376 u64 dma_mask)
2377{
2378 dma_addr_t offset = paddr & ~PAGE_MASK;
2379 dma_addr_t address, start, ret;
2380 unsigned int pages;
2381 int prot = 0;
2382 int i;
2383
2384 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2385 paddr &= PAGE_MASK;
2386
2387 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2388 if (address == AMD_IOMMU_MAPPING_ERROR)
2389 goto out;
2390
2391 prot = dir2prot(direction);
2392
2393 start = address;
2394 for (i = 0; i < pages; ++i) {
2395 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2396 PAGE_SIZE, prot, GFP_ATOMIC);
2397 if (ret)
2398 goto out_unmap;
2399
2400 paddr += PAGE_SIZE;
2401 start += PAGE_SIZE;
2402 }
2403 address += offset;
2404
2405 if (unlikely(amd_iommu_np_cache)) {
2406 domain_flush_pages(&dma_dom->domain, address, size);
2407 domain_flush_complete(&dma_dom->domain);
2408 }
2409
2410out:
2411 return address;
2412
2413out_unmap:
2414
2415 for (--i; i >= 0; --i) {
2416 start -= PAGE_SIZE;
2417 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2418 }
2419
2420 domain_flush_tlb(&dma_dom->domain);
2421 domain_flush_complete(&dma_dom->domain);
2422
2423 dma_ops_free_iova(dma_dom, address, pages);
2424
2425 return AMD_IOMMU_MAPPING_ERROR;
2426}
2427
2428/*
2429 * Does the reverse of the __map_single function. Must be called with
2430 * the domain lock held too
2431 */
2432static void __unmap_single(struct dma_ops_domain *dma_dom,
2433 dma_addr_t dma_addr,
2434 size_t size,
2435 int dir)
2436{
2437 dma_addr_t i, start;
2438 unsigned int pages;
2439
2440 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2441 dma_addr &= PAGE_MASK;
2442 start = dma_addr;
2443
2444 for (i = 0; i < pages; ++i) {
2445 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2446 start += PAGE_SIZE;
2447 }
2448
2449 if (amd_iommu_unmap_flush) {
2450 domain_flush_tlb(&dma_dom->domain);
2451 domain_flush_complete(&dma_dom->domain);
2452 dma_ops_free_iova(dma_dom, dma_addr, pages);
2453 } else {
2454 pages = __roundup_pow_of_two(pages);
2455 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2456 }
2457}
2458
2459/*
2460 * The exported map_single function for dma_ops.
2461 */
2462static dma_addr_t map_page(struct device *dev, struct page *page,
2463 unsigned long offset, size_t size,
2464 enum dma_data_direction dir,
2465 unsigned long attrs)
2466{
2467 phys_addr_t paddr = page_to_phys(page) + offset;
2468 struct protection_domain *domain;
2469 struct dma_ops_domain *dma_dom;
2470 u64 dma_mask;
2471
2472 domain = get_domain(dev);
2473 if (PTR_ERR(domain) == -EINVAL)
2474 return (dma_addr_t)paddr;
2475 else if (IS_ERR(domain))
2476 return AMD_IOMMU_MAPPING_ERROR;
2477
2478 dma_mask = *dev->dma_mask;
2479 dma_dom = to_dma_ops_domain(domain);
2480
2481 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2482}
2483
2484/*
2485 * The exported unmap_single function for dma_ops.
2486 */
2487static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2488 enum dma_data_direction dir, unsigned long attrs)
2489{
2490 struct protection_domain *domain;
2491 struct dma_ops_domain *dma_dom;
2492
2493 domain = get_domain(dev);
2494 if (IS_ERR(domain))
2495 return;
2496
2497 dma_dom = to_dma_ops_domain(domain);
2498
2499 __unmap_single(dma_dom, dma_addr, size, dir);
2500}
2501
2502static int sg_num_pages(struct device *dev,
2503 struct scatterlist *sglist,
2504 int nelems)
2505{
2506 unsigned long mask, boundary_size;
2507 struct scatterlist *s;
2508 int i, npages = 0;
2509
2510 mask = dma_get_seg_boundary(dev);
2511 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2512 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2513
2514 for_each_sg(sglist, s, nelems, i) {
2515 int p, n;
2516
2517 s->dma_address = npages << PAGE_SHIFT;
2518 p = npages % boundary_size;
2519 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2520 if (p + n > boundary_size)
2521 npages += boundary_size - p;
2522 npages += n;
2523 }
2524
2525 return npages;
2526}
2527
2528/*
2529 * The exported map_sg function for dma_ops (handles scatter-gather
2530 * lists).
2531 */
2532static int map_sg(struct device *dev, struct scatterlist *sglist,
2533 int nelems, enum dma_data_direction direction,
2534 unsigned long attrs)
2535{
2536 int mapped_pages = 0, npages = 0, prot = 0, i;
2537 struct protection_domain *domain;
2538 struct dma_ops_domain *dma_dom;
2539 struct scatterlist *s;
2540 unsigned long address;
2541 u64 dma_mask;
2542
2543 domain = get_domain(dev);
2544 if (IS_ERR(domain))
2545 return 0;
2546
2547 dma_dom = to_dma_ops_domain(domain);
2548 dma_mask = *dev->dma_mask;
2549
2550 npages = sg_num_pages(dev, sglist, nelems);
2551
2552 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2553 if (address == AMD_IOMMU_MAPPING_ERROR)
2554 goto out_err;
2555
2556 prot = dir2prot(direction);
2557
2558 /* Map all sg entries */
2559 for_each_sg(sglist, s, nelems, i) {
2560 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2561
2562 for (j = 0; j < pages; ++j) {
2563 unsigned long bus_addr, phys_addr;
2564 int ret;
2565
2566 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2567 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2568 ret = iommu_map_page(domain, bus_addr, phys_addr,
2569 PAGE_SIZE, prot,
2570 GFP_ATOMIC | __GFP_NOWARN);
2571 if (ret)
2572 goto out_unmap;
2573
2574 mapped_pages += 1;
2575 }
2576 }
2577
2578 /* Everything is mapped - write the right values into s->dma_address */
2579 for_each_sg(sglist, s, nelems, i) {
2580 /*
2581 * Add in the remaining piece of the scatter-gather offset that
2582 * was masked out when we were determining the physical address
2583 * via (sg_phys(s) & PAGE_MASK) earlier.
2584 */
2585 s->dma_address += address + (s->offset & ~PAGE_MASK);
2586 s->dma_length = s->length;
2587 }
2588
2589 return nelems;
2590
2591out_unmap:
2592 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2593 dev_name(dev), npages);
2594
2595 for_each_sg(sglist, s, nelems, i) {
2596 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2597
2598 for (j = 0; j < pages; ++j) {
2599 unsigned long bus_addr;
2600
2601 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2602 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2603
2604 if (--mapped_pages == 0)
2605 goto out_free_iova;
2606 }
2607 }
2608
2609out_free_iova:
2610 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2611
2612out_err:
2613 return 0;
2614}
2615
2616/*
2617 * The exported map_sg function for dma_ops (handles scatter-gather
2618 * lists).
2619 */
2620static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2621 int nelems, enum dma_data_direction dir,
2622 unsigned long attrs)
2623{
2624 struct protection_domain *domain;
2625 struct dma_ops_domain *dma_dom;
2626 unsigned long startaddr;
2627 int npages = 2;
2628
2629 domain = get_domain(dev);
2630 if (IS_ERR(domain))
2631 return;
2632
2633 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2634 dma_dom = to_dma_ops_domain(domain);
2635 npages = sg_num_pages(dev, sglist, nelems);
2636
2637 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2638}
2639
2640/*
2641 * The exported alloc_coherent function for dma_ops.
2642 */
2643static void *alloc_coherent(struct device *dev, size_t size,
2644 dma_addr_t *dma_addr, gfp_t flag,
2645 unsigned long attrs)
2646{
2647 u64 dma_mask = dev->coherent_dma_mask;
2648 struct protection_domain *domain;
2649 struct dma_ops_domain *dma_dom;
2650 struct page *page;
2651
2652 domain = get_domain(dev);
2653 if (PTR_ERR(domain) == -EINVAL) {
2654 page = alloc_pages(flag, get_order(size));
2655 *dma_addr = page_to_phys(page);
2656 return page_address(page);
2657 } else if (IS_ERR(domain))
2658 return NULL;
2659
2660 dma_dom = to_dma_ops_domain(domain);
2661 size = PAGE_ALIGN(size);
2662 dma_mask = dev->coherent_dma_mask;
2663 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2664 flag |= __GFP_ZERO;
2665
2666 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2667 if (!page) {
2668 if (!gfpflags_allow_blocking(flag))
2669 return NULL;
2670
2671 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2672 get_order(size), flag & __GFP_NOWARN);
2673 if (!page)
2674 return NULL;
2675 }
2676
2677 if (!dma_mask)
2678 dma_mask = *dev->dma_mask;
2679
2680 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2681 size, DMA_BIDIRECTIONAL, dma_mask);
2682
2683 if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2684 goto out_free;
2685
2686 return page_address(page);
2687
2688out_free:
2689
2690 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2691 __free_pages(page, get_order(size));
2692
2693 return NULL;
2694}
2695
2696/*
2697 * The exported free_coherent function for dma_ops.
2698 */
2699static void free_coherent(struct device *dev, size_t size,
2700 void *virt_addr, dma_addr_t dma_addr,
2701 unsigned long attrs)
2702{
2703 struct protection_domain *domain;
2704 struct dma_ops_domain *dma_dom;
2705 struct page *page;
2706
2707 page = virt_to_page(virt_addr);
2708 size = PAGE_ALIGN(size);
2709
2710 domain = get_domain(dev);
2711 if (IS_ERR(domain))
2712 goto free_mem;
2713
2714 dma_dom = to_dma_ops_domain(domain);
2715
2716 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2717
2718free_mem:
2719 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2720 __free_pages(page, get_order(size));
2721}
2722
2723/*
2724 * This function is called by the DMA layer to find out if we can handle a
2725 * particular device. It is part of the dma_ops.
2726 */
2727static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2728{
2729 if (!dma_direct_supported(dev, mask))
2730 return 0;
2731 return check_device(dev);
2732}
2733
2734static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2735{
2736 return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2737}
2738
2739static const struct dma_map_ops amd_iommu_dma_ops = {
2740 .alloc = alloc_coherent,
2741 .free = free_coherent,
2742 .map_page = map_page,
2743 .unmap_page = unmap_page,
2744 .map_sg = map_sg,
2745 .unmap_sg = unmap_sg,
2746 .dma_supported = amd_iommu_dma_supported,
2747 .mapping_error = amd_iommu_mapping_error,
2748};
2749
2750static int init_reserved_iova_ranges(void)
2751{
2752 struct pci_dev *pdev = NULL;
2753 struct iova *val;
2754
2755 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2756
2757 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2758 &reserved_rbtree_key);
2759
2760 /* MSI memory range */
2761 val = reserve_iova(&reserved_iova_ranges,
2762 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2763 if (!val) {
2764 pr_err("Reserving MSI range failed\n");
2765 return -ENOMEM;
2766 }
2767
2768 /* HT memory range */
2769 val = reserve_iova(&reserved_iova_ranges,
2770 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2771 if (!val) {
2772 pr_err("Reserving HT range failed\n");
2773 return -ENOMEM;
2774 }
2775
2776 /*
2777 * Memory used for PCI resources
2778 * FIXME: Check whether we can reserve the PCI-hole completly
2779 */
2780 for_each_pci_dev(pdev) {
2781 int i;
2782
2783 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2784 struct resource *r = &pdev->resource[i];
2785
2786 if (!(r->flags & IORESOURCE_MEM))
2787 continue;
2788
2789 val = reserve_iova(&reserved_iova_ranges,
2790 IOVA_PFN(r->start),
2791 IOVA_PFN(r->end));
2792 if (!val) {
2793 pr_err("Reserve pci-resource range failed\n");
2794 return -ENOMEM;
2795 }
2796 }
2797 }
2798
2799 return 0;
2800}
2801
2802int __init amd_iommu_init_api(void)
2803{
2804 int ret, err = 0;
2805
2806 ret = iova_cache_get();
2807 if (ret)
2808 return ret;
2809
2810 ret = init_reserved_iova_ranges();
2811 if (ret)
2812 return ret;
2813
2814 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2815 if (err)
2816 return err;
2817#ifdef CONFIG_ARM_AMBA
2818 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2819 if (err)
2820 return err;
2821#endif
2822 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2823 if (err)
2824 return err;
2825
2826 return 0;
2827}
2828
2829int __init amd_iommu_init_dma_ops(void)
2830{
2831 swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2832 iommu_detected = 1;
2833
2834 /*
2835 * In case we don't initialize SWIOTLB (actually the common case
2836 * when AMD IOMMU is enabled and SME is not active), make sure there
2837 * are global dma_ops set as a fall-back for devices not handled by
2838 * this driver (for example non-PCI devices). When SME is active,
2839 * make sure that swiotlb variable remains set so the global dma_ops
2840 * continue to be SWIOTLB.
2841 */
2842 if (!swiotlb)
2843 dma_ops = &dma_direct_ops;
2844
2845 if (amd_iommu_unmap_flush)
2846 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2847 else
2848 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2849
2850 return 0;
2851
2852}
2853
2854/*****************************************************************************
2855 *
2856 * The following functions belong to the exported interface of AMD IOMMU
2857 *
2858 * This interface allows access to lower level functions of the IOMMU
2859 * like protection domain handling and assignement of devices to domains
2860 * which is not possible with the dma_ops interface.
2861 *
2862 *****************************************************************************/
2863
2864static void cleanup_domain(struct protection_domain *domain)
2865{
2866 struct iommu_dev_data *entry;
2867 unsigned long flags;
2868
2869 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2870
2871 while (!list_empty(&domain->dev_list)) {
2872 entry = list_first_entry(&domain->dev_list,
2873 struct iommu_dev_data, list);
2874 BUG_ON(!entry->domain);
2875 __detach_device(entry);
2876 }
2877
2878 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2879}
2880
2881static void protection_domain_free(struct protection_domain *domain)
2882{
2883 if (!domain)
2884 return;
2885
2886 del_domain_from_list(domain);
2887
2888 if (domain->id)
2889 domain_id_free(domain->id);
2890
2891 kfree(domain);
2892}
2893
2894static int protection_domain_init(struct protection_domain *domain)
2895{
2896 spin_lock_init(&domain->lock);
2897 mutex_init(&domain->api_lock);
2898 domain->id = domain_id_alloc();
2899 if (!domain->id)
2900 return -ENOMEM;
2901 INIT_LIST_HEAD(&domain->dev_list);
2902
2903 return 0;
2904}
2905
2906static struct protection_domain *protection_domain_alloc(void)
2907{
2908 struct protection_domain *domain;
2909
2910 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2911 if (!domain)
2912 return NULL;
2913
2914 if (protection_domain_init(domain))
2915 goto out_err;
2916
2917 add_domain_to_list(domain);
2918
2919 return domain;
2920
2921out_err:
2922 kfree(domain);
2923
2924 return NULL;
2925}
2926
2927static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2928{
2929 struct protection_domain *pdomain;
2930 struct dma_ops_domain *dma_domain;
2931
2932 switch (type) {
2933 case IOMMU_DOMAIN_UNMANAGED:
2934 pdomain = protection_domain_alloc();
2935 if (!pdomain)
2936 return NULL;
2937
2938 pdomain->mode = PAGE_MODE_3_LEVEL;
2939 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2940 if (!pdomain->pt_root) {
2941 protection_domain_free(pdomain);
2942 return NULL;
2943 }
2944
2945 pdomain->domain.geometry.aperture_start = 0;
2946 pdomain->domain.geometry.aperture_end = ~0ULL;
2947 pdomain->domain.geometry.force_aperture = true;
2948
2949 break;
2950 case IOMMU_DOMAIN_DMA:
2951 dma_domain = dma_ops_domain_alloc();
2952 if (!dma_domain) {
2953 pr_err("AMD-Vi: Failed to allocate\n");
2954 return NULL;
2955 }
2956 pdomain = &dma_domain->domain;
2957 break;
2958 case IOMMU_DOMAIN_IDENTITY:
2959 pdomain = protection_domain_alloc();
2960 if (!pdomain)
2961 return NULL;
2962
2963 pdomain->mode = PAGE_MODE_NONE;
2964 break;
2965 default:
2966 return NULL;
2967 }
2968
2969 return &pdomain->domain;
2970}
2971
2972static void amd_iommu_domain_free(struct iommu_domain *dom)
2973{
2974 struct protection_domain *domain;
2975 struct dma_ops_domain *dma_dom;
2976
2977 domain = to_pdomain(dom);
2978
2979 if (domain->dev_cnt > 0)
2980 cleanup_domain(domain);
2981
2982 BUG_ON(domain->dev_cnt != 0);
2983
2984 if (!dom)
2985 return;
2986
2987 switch (dom->type) {
2988 case IOMMU_DOMAIN_DMA:
2989 /* Now release the domain */
2990 dma_dom = to_dma_ops_domain(domain);
2991 dma_ops_domain_free(dma_dom);
2992 break;
2993 default:
2994 if (domain->mode != PAGE_MODE_NONE)
2995 free_pagetable(domain);
2996
2997 if (domain->flags & PD_IOMMUV2_MASK)
2998 free_gcr3_table(domain);
2999
3000 protection_domain_free(domain);
3001 break;
3002 }
3003}
3004
3005static void amd_iommu_detach_device(struct iommu_domain *dom,
3006 struct device *dev)
3007{
3008 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3009 struct amd_iommu *iommu;
3010 int devid;
3011
3012 if (!check_device(dev))
3013 return;
3014
3015 devid = get_device_id(dev);
3016 if (devid < 0)
3017 return;
3018
3019 if (dev_data->domain != NULL)
3020 detach_device(dev);
3021
3022 iommu = amd_iommu_rlookup_table[devid];
3023 if (!iommu)
3024 return;
3025
3026#ifdef CONFIG_IRQ_REMAP
3027 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3028 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3029 dev_data->use_vapic = 0;
3030#endif
3031
3032 iommu_completion_wait(iommu);
3033}
3034
3035static int amd_iommu_attach_device(struct iommu_domain *dom,
3036 struct device *dev)
3037{
3038 struct protection_domain *domain = to_pdomain(dom);
3039 struct iommu_dev_data *dev_data;
3040 struct amd_iommu *iommu;
3041 int ret;
3042
3043 if (!check_device(dev))
3044 return -EINVAL;
3045
3046 dev_data = dev->archdata.iommu;
3047
3048 iommu = amd_iommu_rlookup_table[dev_data->devid];
3049 if (!iommu)
3050 return -EINVAL;
3051
3052 if (dev_data->domain)
3053 detach_device(dev);
3054
3055 ret = attach_device(dev, domain);
3056
3057#ifdef CONFIG_IRQ_REMAP
3058 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3059 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3060 dev_data->use_vapic = 1;
3061 else
3062 dev_data->use_vapic = 0;
3063 }
3064#endif
3065
3066 iommu_completion_wait(iommu);
3067
3068 return ret;
3069}
3070
3071static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3072 phys_addr_t paddr, size_t page_size, int iommu_prot)
3073{
3074 struct protection_domain *domain = to_pdomain(dom);
3075 int prot = 0;
3076 int ret;
3077
3078 if (domain->mode == PAGE_MODE_NONE)
3079 return -EINVAL;
3080
3081 if (iommu_prot & IOMMU_READ)
3082 prot |= IOMMU_PROT_IR;
3083 if (iommu_prot & IOMMU_WRITE)
3084 prot |= IOMMU_PROT_IW;
3085
3086 mutex_lock(&domain->api_lock);
3087 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3088 mutex_unlock(&domain->api_lock);
3089
3090 return ret;
3091}
3092
3093static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3094 size_t page_size)
3095{
3096 struct protection_domain *domain = to_pdomain(dom);
3097 size_t unmap_size;
3098
3099 if (domain->mode == PAGE_MODE_NONE)
3100 return 0;
3101
3102 mutex_lock(&domain->api_lock);
3103 unmap_size = iommu_unmap_page(domain, iova, page_size);
3104 mutex_unlock(&domain->api_lock);
3105
3106 return unmap_size;
3107}
3108
3109static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3110 dma_addr_t iova)
3111{
3112 struct protection_domain *domain = to_pdomain(dom);
3113 unsigned long offset_mask, pte_pgsize;
3114 u64 *pte, __pte;
3115
3116 if (domain->mode == PAGE_MODE_NONE)
3117 return iova;
3118
3119 pte = fetch_pte(domain, iova, &pte_pgsize);
3120
3121 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3122 return 0;
3123
3124 offset_mask = pte_pgsize - 1;
3125 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3126
3127 return (__pte & ~offset_mask) | (iova & offset_mask);
3128}
3129
3130static bool amd_iommu_capable(enum iommu_cap cap)
3131{
3132 switch (cap) {
3133 case IOMMU_CAP_CACHE_COHERENCY:
3134 return true;
3135 case IOMMU_CAP_INTR_REMAP:
3136 return (irq_remapping_enabled == 1);
3137 case IOMMU_CAP_NOEXEC:
3138 return false;
3139 }
3140
3141 return false;
3142}
3143
3144static void amd_iommu_get_resv_regions(struct device *dev,
3145 struct list_head *head)
3146{
3147 struct iommu_resv_region *region;
3148 struct unity_map_entry *entry;
3149 int devid;
3150
3151 devid = get_device_id(dev);
3152 if (devid < 0)
3153 return;
3154
3155 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3156 int type, prot = 0;
3157 size_t length;
3158
3159 if (devid < entry->devid_start || devid > entry->devid_end)
3160 continue;
3161
3162 type = IOMMU_RESV_DIRECT;
3163 length = entry->address_end - entry->address_start;
3164 if (entry->prot & IOMMU_PROT_IR)
3165 prot |= IOMMU_READ;
3166 if (entry->prot & IOMMU_PROT_IW)
3167 prot |= IOMMU_WRITE;
3168 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3169 /* Exclusion range */
3170 type = IOMMU_RESV_RESERVED;
3171
3172 region = iommu_alloc_resv_region(entry->address_start,
3173 length, prot, type);
3174 if (!region) {
3175 pr_err("Out of memory allocating dm-regions for %s\n",
3176 dev_name(dev));
3177 return;
3178 }
3179 list_add_tail(&region->list, head);
3180 }
3181
3182 region = iommu_alloc_resv_region(MSI_RANGE_START,
3183 MSI_RANGE_END - MSI_RANGE_START + 1,
3184 0, IOMMU_RESV_MSI);
3185 if (!region)
3186 return;
3187 list_add_tail(&region->list, head);
3188
3189 region = iommu_alloc_resv_region(HT_RANGE_START,
3190 HT_RANGE_END - HT_RANGE_START + 1,
3191 0, IOMMU_RESV_RESERVED);
3192 if (!region)
3193 return;
3194 list_add_tail(&region->list, head);
3195}
3196
3197static void amd_iommu_put_resv_regions(struct device *dev,
3198 struct list_head *head)
3199{
3200 struct iommu_resv_region *entry, *next;
3201
3202 list_for_each_entry_safe(entry, next, head, list)
3203 kfree(entry);
3204}
3205
3206static void amd_iommu_apply_resv_region(struct device *dev,
3207 struct iommu_domain *domain,
3208 struct iommu_resv_region *region)
3209{
3210 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3211 unsigned long start, end;
3212
3213 start = IOVA_PFN(region->start);
3214 end = IOVA_PFN(region->start + region->length - 1);
3215
3216 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3217}
3218
3219static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3220 struct device *dev)
3221{
3222 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3223 return dev_data->defer_attach;
3224}
3225
3226static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3227{
3228 struct protection_domain *dom = to_pdomain(domain);
3229
3230 domain_flush_tlb_pde(dom);
3231 domain_flush_complete(dom);
3232}
3233
3234static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3235 unsigned long iova, size_t size)
3236{
3237}
3238
3239const struct iommu_ops amd_iommu_ops = {
3240 .capable = amd_iommu_capable,
3241 .domain_alloc = amd_iommu_domain_alloc,
3242 .domain_free = amd_iommu_domain_free,
3243 .attach_dev = amd_iommu_attach_device,
3244 .detach_dev = amd_iommu_detach_device,
3245 .map = amd_iommu_map,
3246 .unmap = amd_iommu_unmap,
3247 .iova_to_phys = amd_iommu_iova_to_phys,
3248 .add_device = amd_iommu_add_device,
3249 .remove_device = amd_iommu_remove_device,
3250 .device_group = amd_iommu_device_group,
3251 .get_resv_regions = amd_iommu_get_resv_regions,
3252 .put_resv_regions = amd_iommu_put_resv_regions,
3253 .apply_resv_region = amd_iommu_apply_resv_region,
3254 .is_attach_deferred = amd_iommu_is_attach_deferred,
3255 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3256 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3257 .iotlb_range_add = amd_iommu_iotlb_range_add,
3258 .iotlb_sync = amd_iommu_flush_iotlb_all,
3259};
3260
3261/*****************************************************************************
3262 *
3263 * The next functions do a basic initialization of IOMMU for pass through
3264 * mode
3265 *
3266 * In passthrough mode the IOMMU is initialized and enabled but not used for
3267 * DMA-API translation.
3268 *
3269 *****************************************************************************/
3270
3271/* IOMMUv2 specific functions */
3272int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3273{
3274 return atomic_notifier_chain_register(&ppr_notifier, nb);
3275}
3276EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3277
3278int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3279{
3280 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3281}
3282EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3283
3284void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3285{
3286 struct protection_domain *domain = to_pdomain(dom);
3287 unsigned long flags;
3288
3289 spin_lock_irqsave(&domain->lock, flags);
3290
3291 /* Update data structure */
3292 domain->mode = PAGE_MODE_NONE;
3293 domain->updated = true;
3294
3295 /* Make changes visible to IOMMUs */
3296 update_domain(domain);
3297
3298 /* Page-table is not visible to IOMMU anymore, so free it */
3299 free_pagetable(domain);
3300
3301 spin_unlock_irqrestore(&domain->lock, flags);
3302}
3303EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3304
3305int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3306{
3307 struct protection_domain *domain = to_pdomain(dom);
3308 unsigned long flags;
3309 int levels, ret;
3310
3311 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3312 return -EINVAL;
3313
3314 /* Number of GCR3 table levels required */
3315 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3316 levels += 1;
3317
3318 if (levels > amd_iommu_max_glx_val)
3319 return -EINVAL;
3320
3321 spin_lock_irqsave(&domain->lock, flags);
3322
3323 /*
3324 * Save us all sanity checks whether devices already in the
3325 * domain support IOMMUv2. Just force that the domain has no
3326 * devices attached when it is switched into IOMMUv2 mode.
3327 */
3328 ret = -EBUSY;
3329 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3330 goto out;
3331
3332 ret = -ENOMEM;
3333 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3334 if (domain->gcr3_tbl == NULL)
3335 goto out;
3336
3337 domain->glx = levels;
3338 domain->flags |= PD_IOMMUV2_MASK;
3339 domain->updated = true;
3340
3341 update_domain(domain);
3342
3343 ret = 0;
3344
3345out:
3346 spin_unlock_irqrestore(&domain->lock, flags);
3347
3348 return ret;
3349}
3350EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3351
3352static int __flush_pasid(struct protection_domain *domain, int pasid,
3353 u64 address, bool size)
3354{
3355 struct iommu_dev_data *dev_data;
3356 struct iommu_cmd cmd;
3357 int i, ret;
3358
3359 if (!(domain->flags & PD_IOMMUV2_MASK))
3360 return -EINVAL;
3361
3362 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3363
3364 /*
3365 * IOMMU TLB needs to be flushed before Device TLB to
3366 * prevent device TLB refill from IOMMU TLB
3367 */
3368 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3369 if (domain->dev_iommu[i] == 0)
3370 continue;
3371
3372 ret = iommu_queue_command(amd_iommus[i], &cmd);
3373 if (ret != 0)
3374 goto out;
3375 }
3376
3377 /* Wait until IOMMU TLB flushes are complete */
3378 domain_flush_complete(domain);
3379
3380 /* Now flush device TLBs */
3381 list_for_each_entry(dev_data, &domain->dev_list, list) {
3382 struct amd_iommu *iommu;
3383 int qdep;
3384
3385 /*
3386 There might be non-IOMMUv2 capable devices in an IOMMUv2
3387 * domain.
3388 */
3389 if (!dev_data->ats.enabled)
3390 continue;
3391
3392 qdep = dev_data->ats.qdep;
3393 iommu = amd_iommu_rlookup_table[dev_data->devid];
3394
3395 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3396 qdep, address, size);
3397
3398 ret = iommu_queue_command(iommu, &cmd);
3399 if (ret != 0)
3400 goto out;
3401 }
3402
3403 /* Wait until all device TLBs are flushed */
3404 domain_flush_complete(domain);
3405
3406 ret = 0;
3407
3408out:
3409
3410 return ret;
3411}
3412
3413static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3414 u64 address)
3415{
3416 return __flush_pasid(domain, pasid, address, false);
3417}
3418
3419int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3420 u64 address)
3421{
3422 struct protection_domain *domain = to_pdomain(dom);
3423 unsigned long flags;
3424 int ret;
3425
3426 spin_lock_irqsave(&domain->lock, flags);
3427 ret = __amd_iommu_flush_page(domain, pasid, address);
3428 spin_unlock_irqrestore(&domain->lock, flags);
3429
3430 return ret;
3431}
3432EXPORT_SYMBOL(amd_iommu_flush_page);
3433
3434static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3435{
3436 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3437 true);
3438}
3439
3440int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3441{
3442 struct protection_domain *domain = to_pdomain(dom);
3443 unsigned long flags;
3444 int ret;
3445
3446 spin_lock_irqsave(&domain->lock, flags);
3447 ret = __amd_iommu_flush_tlb(domain, pasid);
3448 spin_unlock_irqrestore(&domain->lock, flags);
3449
3450 return ret;
3451}
3452EXPORT_SYMBOL(amd_iommu_flush_tlb);
3453
3454static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3455{
3456 int index;
3457 u64 *pte;
3458
3459 while (true) {
3460
3461 index = (pasid >> (9 * level)) & 0x1ff;
3462 pte = &root[index];
3463
3464 if (level == 0)
3465 break;
3466
3467 if (!(*pte & GCR3_VALID)) {
3468 if (!alloc)
3469 return NULL;
3470
3471 root = (void *)get_zeroed_page(GFP_ATOMIC);
3472 if (root == NULL)
3473 return NULL;
3474
3475 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3476 }
3477
3478 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3479
3480 level -= 1;
3481 }
3482
3483 return pte;
3484}
3485
3486static int __set_gcr3(struct protection_domain *domain, int pasid,
3487 unsigned long cr3)
3488{
3489 u64 *pte;
3490
3491 if (domain->mode != PAGE_MODE_NONE)
3492 return -EINVAL;
3493
3494 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3495 if (pte == NULL)
3496 return -ENOMEM;
3497
3498 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3499
3500 return __amd_iommu_flush_tlb(domain, pasid);
3501}
3502
3503static int __clear_gcr3(struct protection_domain *domain, int pasid)
3504{
3505 u64 *pte;
3506
3507 if (domain->mode != PAGE_MODE_NONE)
3508 return -EINVAL;
3509
3510 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3511 if (pte == NULL)
3512 return 0;
3513
3514 *pte = 0;
3515
3516 return __amd_iommu_flush_tlb(domain, pasid);
3517}
3518
3519int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3520 unsigned long cr3)
3521{
3522 struct protection_domain *domain = to_pdomain(dom);
3523 unsigned long flags;
3524 int ret;
3525
3526 spin_lock_irqsave(&domain->lock, flags);
3527 ret = __set_gcr3(domain, pasid, cr3);
3528 spin_unlock_irqrestore(&domain->lock, flags);
3529
3530 return ret;
3531}
3532EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3533
3534int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3535{
3536 struct protection_domain *domain = to_pdomain(dom);
3537 unsigned long flags;
3538 int ret;
3539
3540 spin_lock_irqsave(&domain->lock, flags);
3541 ret = __clear_gcr3(domain, pasid);
3542 spin_unlock_irqrestore(&domain->lock, flags);
3543
3544 return ret;
3545}
3546EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3547
3548int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3549 int status, int tag)
3550{
3551 struct iommu_dev_data *dev_data;
3552 struct amd_iommu *iommu;
3553 struct iommu_cmd cmd;
3554
3555 dev_data = get_dev_data(&pdev->dev);
3556 iommu = amd_iommu_rlookup_table[dev_data->devid];
3557
3558 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3559 tag, dev_data->pri_tlp);
3560
3561 return iommu_queue_command(iommu, &cmd);
3562}
3563EXPORT_SYMBOL(amd_iommu_complete_ppr);
3564
3565struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3566{
3567 struct protection_domain *pdomain;
3568
3569 pdomain = get_domain(&pdev->dev);
3570 if (IS_ERR(pdomain))
3571 return NULL;
3572
3573 /* Only return IOMMUv2 domains */
3574 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3575 return NULL;
3576
3577 return &pdomain->domain;
3578}
3579EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3580
3581void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3582{
3583 struct iommu_dev_data *dev_data;
3584
3585 if (!amd_iommu_v2_supported())
3586 return;
3587
3588 dev_data = get_dev_data(&pdev->dev);
3589 dev_data->errata |= (1 << erratum);
3590}
3591EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3592
3593int amd_iommu_device_info(struct pci_dev *pdev,
3594 struct amd_iommu_device_info *info)
3595{
3596 int max_pasids;
3597 int pos;
3598
3599 if (pdev == NULL || info == NULL)
3600 return -EINVAL;
3601
3602 if (!amd_iommu_v2_supported())
3603 return -EINVAL;
3604
3605 memset(info, 0, sizeof(*info));
3606
3607 if (!pci_ats_disabled()) {
3608 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3609 if (pos)
3610 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3611 }
3612
3613 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3614 if (pos)
3615 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3616
3617 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3618 if (pos) {
3619 int features;
3620
3621 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3622 max_pasids = min(max_pasids, (1 << 20));
3623
3624 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3625 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3626
3627 features = pci_pasid_features(pdev);
3628 if (features & PCI_PASID_CAP_EXEC)
3629 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3630 if (features & PCI_PASID_CAP_PRIV)
3631 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3632 }
3633
3634 return 0;
3635}
3636EXPORT_SYMBOL(amd_iommu_device_info);
3637
3638#ifdef CONFIG_IRQ_REMAP
3639
3640/*****************************************************************************
3641 *
3642 * Interrupt Remapping Implementation
3643 *
3644 *****************************************************************************/
3645
3646static struct irq_chip amd_ir_chip;
3647static DEFINE_SPINLOCK(iommu_table_lock);
3648
3649static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3650{
3651 u64 dte;
3652
3653 dte = amd_iommu_dev_table[devid].data[2];
3654 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3655 dte |= iommu_virt_to_phys(table->table);
3656 dte |= DTE_IRQ_REMAP_INTCTL;
3657 dte |= DTE_IRQ_TABLE_LEN;
3658 dte |= DTE_IRQ_REMAP_ENABLE;
3659
3660 amd_iommu_dev_table[devid].data[2] = dte;
3661}
3662
3663static struct irq_remap_table *get_irq_table(u16 devid)
3664{
3665 struct irq_remap_table *table;
3666
3667 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3668 "%s: no iommu for devid %x\n", __func__, devid))
3669 return NULL;
3670
3671 table = irq_lookup_table[devid];
3672 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3673 return NULL;
3674
3675 return table;
3676}
3677
3678static struct irq_remap_table *__alloc_irq_table(void)
3679{
3680 struct irq_remap_table *table;
3681
3682 table = kzalloc(sizeof(*table), GFP_KERNEL);
3683 if (!table)
3684 return NULL;
3685
3686 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3687 if (!table->table) {
3688 kfree(table);
3689 return NULL;
3690 }
3691 raw_spin_lock_init(&table->lock);
3692
3693 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3694 memset(table->table, 0,
3695 MAX_IRQS_PER_TABLE * sizeof(u32));
3696 else
3697 memset(table->table, 0,
3698 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3699 return table;
3700}
3701
3702static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3703 struct irq_remap_table *table)
3704{
3705 irq_lookup_table[devid] = table;
3706 set_dte_irq_entry(devid, table);
3707 iommu_flush_dte(iommu, devid);
3708}
3709
3710static struct irq_remap_table *alloc_irq_table(u16 devid)
3711{
3712 struct irq_remap_table *table = NULL;
3713 struct irq_remap_table *new_table = NULL;
3714 struct amd_iommu *iommu;
3715 unsigned long flags;
3716 u16 alias;
3717
3718 spin_lock_irqsave(&iommu_table_lock, flags);
3719
3720 iommu = amd_iommu_rlookup_table[devid];
3721 if (!iommu)
3722 goto out_unlock;
3723
3724 table = irq_lookup_table[devid];
3725 if (table)
3726 goto out_unlock;
3727
3728 alias = amd_iommu_alias_table[devid];
3729 table = irq_lookup_table[alias];
3730 if (table) {
3731 set_remap_table_entry(iommu, devid, table);
3732 goto out_wait;
3733 }
3734 spin_unlock_irqrestore(&iommu_table_lock, flags);
3735
3736 /* Nothing there yet, allocate new irq remapping table */
3737 new_table = __alloc_irq_table();
3738 if (!new_table)
3739 return NULL;
3740
3741 spin_lock_irqsave(&iommu_table_lock, flags);
3742
3743 table = irq_lookup_table[devid];
3744 if (table)
3745 goto out_unlock;
3746
3747 table = irq_lookup_table[alias];
3748 if (table) {
3749 set_remap_table_entry(iommu, devid, table);
3750 goto out_wait;
3751 }
3752
3753 table = new_table;
3754 new_table = NULL;
3755
3756 set_remap_table_entry(iommu, devid, table);
3757 if (devid != alias)
3758 set_remap_table_entry(iommu, alias, table);
3759
3760out_wait:
3761 iommu_completion_wait(iommu);
3762
3763out_unlock:
3764 spin_unlock_irqrestore(&iommu_table_lock, flags);
3765
3766 if (new_table) {
3767 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3768 kfree(new_table);
3769 }
3770 return table;
3771}
3772
3773static int alloc_irq_index(u16 devid, int count, bool align)
3774{
3775 struct irq_remap_table *table;
3776 int index, c, alignment = 1;
3777 unsigned long flags;
3778 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3779
3780 if (!iommu)
3781 return -ENODEV;
3782
3783 table = alloc_irq_table(devid);
3784 if (!table)
3785 return -ENODEV;
3786
3787 if (align)
3788 alignment = roundup_pow_of_two(count);
3789
3790 raw_spin_lock_irqsave(&table->lock, flags);
3791
3792 /* Scan table for free entries */
3793 for (index = ALIGN(table->min_index, alignment), c = 0;
3794 index < MAX_IRQS_PER_TABLE;) {
3795 if (!iommu->irte_ops->is_allocated(table, index)) {
3796 c += 1;
3797 } else {
3798 c = 0;
3799 index = ALIGN(index + 1, alignment);
3800 continue;
3801 }
3802
3803 if (c == count) {
3804 for (; c != 0; --c)
3805 iommu->irte_ops->set_allocated(table, index - c + 1);
3806
3807 index -= count - 1;
3808 goto out;
3809 }
3810
3811 index++;
3812 }
3813
3814 index = -ENOSPC;
3815
3816out:
3817 raw_spin_unlock_irqrestore(&table->lock, flags);
3818
3819 return index;
3820}
3821
3822static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3823 struct amd_ir_data *data)
3824{
3825 struct irq_remap_table *table;
3826 struct amd_iommu *iommu;
3827 unsigned long flags;
3828 struct irte_ga *entry;
3829
3830 iommu = amd_iommu_rlookup_table[devid];
3831 if (iommu == NULL)
3832 return -EINVAL;
3833
3834 table = get_irq_table(devid);
3835 if (!table)
3836 return -ENOMEM;
3837
3838 raw_spin_lock_irqsave(&table->lock, flags);
3839
3840 entry = (struct irte_ga *)table->table;
3841 entry = &entry[index];
3842 entry->lo.fields_remap.valid = 0;
3843 entry->hi.val = irte->hi.val;
3844 entry->lo.val = irte->lo.val;
3845 entry->lo.fields_remap.valid = 1;
3846 if (data)
3847 data->ref = entry;
3848
3849 raw_spin_unlock_irqrestore(&table->lock, flags);
3850
3851 iommu_flush_irt(iommu, devid);
3852 iommu_completion_wait(iommu);
3853
3854 return 0;
3855}
3856
3857static int modify_irte(u16 devid, int index, union irte *irte)
3858{
3859 struct irq_remap_table *table;
3860 struct amd_iommu *iommu;
3861 unsigned long flags;
3862
3863 iommu = amd_iommu_rlookup_table[devid];
3864 if (iommu == NULL)
3865 return -EINVAL;
3866
3867 table = get_irq_table(devid);
3868 if (!table)
3869 return -ENOMEM;
3870
3871 raw_spin_lock_irqsave(&table->lock, flags);
3872 table->table[index] = irte->val;
3873 raw_spin_unlock_irqrestore(&table->lock, flags);
3874
3875 iommu_flush_irt(iommu, devid);
3876 iommu_completion_wait(iommu);
3877
3878 return 0;
3879}
3880
3881static void free_irte(u16 devid, int index)
3882{
3883 struct irq_remap_table *table;
3884 struct amd_iommu *iommu;
3885 unsigned long flags;
3886
3887 iommu = amd_iommu_rlookup_table[devid];
3888 if (iommu == NULL)
3889 return;
3890
3891 table = get_irq_table(devid);
3892 if (!table)
3893 return;
3894
3895 raw_spin_lock_irqsave(&table->lock, flags);
3896 iommu->irte_ops->clear_allocated(table, index);
3897 raw_spin_unlock_irqrestore(&table->lock, flags);
3898
3899 iommu_flush_irt(iommu, devid);
3900 iommu_completion_wait(iommu);
3901}
3902
3903static void irte_prepare(void *entry,
3904 u32 delivery_mode, u32 dest_mode,
3905 u8 vector, u32 dest_apicid, int devid)
3906{
3907 union irte *irte = (union irte *) entry;
3908
3909 irte->val = 0;
3910 irte->fields.vector = vector;
3911 irte->fields.int_type = delivery_mode;
3912 irte->fields.destination = dest_apicid;
3913 irte->fields.dm = dest_mode;
3914 irte->fields.valid = 1;
3915}
3916
3917static void irte_ga_prepare(void *entry,
3918 u32 delivery_mode, u32 dest_mode,
3919 u8 vector, u32 dest_apicid, int devid)
3920{
3921 struct irte_ga *irte = (struct irte_ga *) entry;
3922
3923 irte->lo.val = 0;
3924 irte->hi.val = 0;
3925 irte->lo.fields_remap.int_type = delivery_mode;
3926 irte->lo.fields_remap.dm = dest_mode;
3927 irte->hi.fields.vector = vector;
3928 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3929 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3930 irte->lo.fields_remap.valid = 1;
3931}
3932
3933static void irte_activate(void *entry, u16 devid, u16 index)
3934{
3935 union irte *irte = (union irte *) entry;
3936
3937 irte->fields.valid = 1;
3938 modify_irte(devid, index, irte);
3939}
3940
3941static void irte_ga_activate(void *entry, u16 devid, u16 index)
3942{
3943 struct irte_ga *irte = (struct irte_ga *) entry;
3944
3945 irte->lo.fields_remap.valid = 1;
3946 modify_irte_ga(devid, index, irte, NULL);
3947}
3948
3949static void irte_deactivate(void *entry, u16 devid, u16 index)
3950{
3951 union irte *irte = (union irte *) entry;
3952
3953 irte->fields.valid = 0;
3954 modify_irte(devid, index, irte);
3955}
3956
3957static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3958{
3959 struct irte_ga *irte = (struct irte_ga *) entry;
3960
3961 irte->lo.fields_remap.valid = 0;
3962 modify_irte_ga(devid, index, irte, NULL);
3963}
3964
3965static void irte_set_affinity(void *entry, u16 devid, u16 index,
3966 u8 vector, u32 dest_apicid)
3967{
3968 union irte *irte = (union irte *) entry;
3969
3970 irte->fields.vector = vector;
3971 irte->fields.destination = dest_apicid;
3972 modify_irte(devid, index, irte);
3973}
3974
3975static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3976 u8 vector, u32 dest_apicid)
3977{
3978 struct irte_ga *irte = (struct irte_ga *) entry;
3979
3980 if (!irte->lo.fields_remap.guest_mode) {
3981 irte->hi.fields.vector = vector;
3982 irte->lo.fields_remap.destination =
3983 APICID_TO_IRTE_DEST_LO(dest_apicid);
3984 irte->hi.fields.destination =
3985 APICID_TO_IRTE_DEST_HI(dest_apicid);
3986 modify_irte_ga(devid, index, irte, NULL);
3987 }
3988}
3989
3990#define IRTE_ALLOCATED (~1U)
3991static void irte_set_allocated(struct irq_remap_table *table, int index)
3992{
3993 table->table[index] = IRTE_ALLOCATED;
3994}
3995
3996static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3997{
3998 struct irte_ga *ptr = (struct irte_ga *)table->table;
3999 struct irte_ga *irte = &ptr[index];
4000
4001 memset(&irte->lo.val, 0, sizeof(u64));
4002 memset(&irte->hi.val, 0, sizeof(u64));
4003 irte->hi.fields.vector = 0xff;
4004}
4005
4006static bool irte_is_allocated(struct irq_remap_table *table, int index)
4007{
4008 union irte *ptr = (union irte *)table->table;
4009 union irte *irte = &ptr[index];
4010
4011 return irte->val != 0;
4012}
4013
4014static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4015{
4016 struct irte_ga *ptr = (struct irte_ga *)table->table;
4017 struct irte_ga *irte = &ptr[index];
4018
4019 return irte->hi.fields.vector != 0;
4020}
4021
4022static void irte_clear_allocated(struct irq_remap_table *table, int index)
4023{
4024 table->table[index] = 0;
4025}
4026
4027static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4028{
4029 struct irte_ga *ptr = (struct irte_ga *)table->table;
4030 struct irte_ga *irte = &ptr[index];
4031
4032 memset(&irte->lo.val, 0, sizeof(u64));
4033 memset(&irte->hi.val, 0, sizeof(u64));
4034}
4035
4036static int get_devid(struct irq_alloc_info *info)
4037{
4038 int devid = -1;
4039
4040 switch (info->type) {
4041 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4042 devid = get_ioapic_devid(info->ioapic_id);
4043 break;
4044 case X86_IRQ_ALLOC_TYPE_HPET:
4045 devid = get_hpet_devid(info->hpet_id);
4046 break;
4047 case X86_IRQ_ALLOC_TYPE_MSI:
4048 case X86_IRQ_ALLOC_TYPE_MSIX:
4049 devid = get_device_id(&info->msi_dev->dev);
4050 break;
4051 default:
4052 BUG_ON(1);
4053 break;
4054 }
4055
4056 return devid;
4057}
4058
4059static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4060{
4061 struct amd_iommu *iommu;
4062 int devid;
4063
4064 if (!info)
4065 return NULL;
4066
4067 devid = get_devid(info);
4068 if (devid >= 0) {
4069 iommu = amd_iommu_rlookup_table[devid];
4070 if (iommu)
4071 return iommu->ir_domain;
4072 }
4073
4074 return NULL;
4075}
4076
4077static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4078{
4079 struct amd_iommu *iommu;
4080 int devid;
4081
4082 if (!info)
4083 return NULL;
4084
4085 switch (info->type) {
4086 case X86_IRQ_ALLOC_TYPE_MSI:
4087 case X86_IRQ_ALLOC_TYPE_MSIX:
4088 devid = get_device_id(&info->msi_dev->dev);
4089 if (devid < 0)
4090 return NULL;
4091
4092 iommu = amd_iommu_rlookup_table[devid];
4093 if (iommu)
4094 return iommu->msi_domain;
4095 break;
4096 default:
4097 break;
4098 }
4099
4100 return NULL;
4101}
4102
4103struct irq_remap_ops amd_iommu_irq_ops = {
4104 .prepare = amd_iommu_prepare,
4105 .enable = amd_iommu_enable,
4106 .disable = amd_iommu_disable,
4107 .reenable = amd_iommu_reenable,
4108 .enable_faulting = amd_iommu_enable_faulting,
4109 .get_ir_irq_domain = get_ir_irq_domain,
4110 .get_irq_domain = get_irq_domain,
4111};
4112
4113static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4114 struct irq_cfg *irq_cfg,
4115 struct irq_alloc_info *info,
4116 int devid, int index, int sub_handle)
4117{
4118 struct irq_2_irte *irte_info = &data->irq_2_irte;
4119 struct msi_msg *msg = &data->msi_entry;
4120 struct IO_APIC_route_entry *entry;
4121 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4122
4123 if (!iommu)
4124 return;
4125
4126 data->irq_2_irte.devid = devid;
4127 data->irq_2_irte.index = index + sub_handle;
4128 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4129 apic->irq_dest_mode, irq_cfg->vector,
4130 irq_cfg->dest_apicid, devid);
4131
4132 switch (info->type) {
4133 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4134 /* Setup IOAPIC entry */
4135 entry = info->ioapic_entry;
4136 info->ioapic_entry = NULL;
4137 memset(entry, 0, sizeof(*entry));
4138 entry->vector = index;
4139 entry->mask = 0;
4140 entry->trigger = info->ioapic_trigger;
4141 entry->polarity = info->ioapic_polarity;
4142 /* Mask level triggered irqs. */
4143 if (info->ioapic_trigger)
4144 entry->mask = 1;
4145 break;
4146
4147 case X86_IRQ_ALLOC_TYPE_HPET:
4148 case X86_IRQ_ALLOC_TYPE_MSI:
4149 case X86_IRQ_ALLOC_TYPE_MSIX:
4150 msg->address_hi = MSI_ADDR_BASE_HI;
4151 msg->address_lo = MSI_ADDR_BASE_LO;
4152 msg->data = irte_info->index;
4153 break;
4154
4155 default:
4156 BUG_ON(1);
4157 break;
4158 }
4159}
4160
4161struct amd_irte_ops irte_32_ops = {
4162 .prepare = irte_prepare,
4163 .activate = irte_activate,
4164 .deactivate = irte_deactivate,
4165 .set_affinity = irte_set_affinity,
4166 .set_allocated = irte_set_allocated,
4167 .is_allocated = irte_is_allocated,
4168 .clear_allocated = irte_clear_allocated,
4169};
4170
4171struct amd_irte_ops irte_128_ops = {
4172 .prepare = irte_ga_prepare,
4173 .activate = irte_ga_activate,
4174 .deactivate = irte_ga_deactivate,
4175 .set_affinity = irte_ga_set_affinity,
4176 .set_allocated = irte_ga_set_allocated,
4177 .is_allocated = irte_ga_is_allocated,
4178 .clear_allocated = irte_ga_clear_allocated,
4179};
4180
4181static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4182 unsigned int nr_irqs, void *arg)
4183{
4184 struct irq_alloc_info *info = arg;
4185 struct irq_data *irq_data;
4186 struct amd_ir_data *data = NULL;
4187 struct irq_cfg *cfg;
4188 int i, ret, devid;
4189 int index;
4190
4191 if (!info)
4192 return -EINVAL;
4193 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4194 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4195 return -EINVAL;
4196
4197 /*
4198 * With IRQ remapping enabled, don't need contiguous CPU vectors
4199 * to support multiple MSI interrupts.
4200 */
4201 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4202 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4203
4204 devid = get_devid(info);
4205 if (devid < 0)
4206 return -EINVAL;
4207
4208 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4209 if (ret < 0)
4210 return ret;
4211
4212 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4213 struct irq_remap_table *table;
4214 struct amd_iommu *iommu;
4215
4216 table = alloc_irq_table(devid);
4217 if (table) {
4218 if (!table->min_index) {
4219 /*
4220 * Keep the first 32 indexes free for IOAPIC
4221 * interrupts.
4222 */
4223 table->min_index = 32;
4224 iommu = amd_iommu_rlookup_table[devid];
4225 for (i = 0; i < 32; ++i)
4226 iommu->irte_ops->set_allocated(table, i);
4227 }
4228 WARN_ON(table->min_index != 32);
4229 index = info->ioapic_pin;
4230 } else {
4231 index = -ENOMEM;
4232 }
4233 } else {
4234 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4235
4236 index = alloc_irq_index(devid, nr_irqs, align);
4237 }
4238 if (index < 0) {
4239 pr_warn("Failed to allocate IRTE\n");
4240 ret = index;
4241 goto out_free_parent;
4242 }
4243
4244 for (i = 0; i < nr_irqs; i++) {
4245 irq_data = irq_domain_get_irq_data(domain, virq + i);
4246 cfg = irqd_cfg(irq_data);
4247 if (!irq_data || !cfg) {
4248 ret = -EINVAL;
4249 goto out_free_data;
4250 }
4251
4252 ret = -ENOMEM;
4253 data = kzalloc(sizeof(*data), GFP_KERNEL);
4254 if (!data)
4255 goto out_free_data;
4256
4257 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4258 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4259 else
4260 data->entry = kzalloc(sizeof(struct irte_ga),
4261 GFP_KERNEL);
4262 if (!data->entry) {
4263 kfree(data);
4264 goto out_free_data;
4265 }
4266
4267 irq_data->hwirq = (devid << 16) + i;
4268 irq_data->chip_data = data;
4269 irq_data->chip = &amd_ir_chip;
4270 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4271 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4272 }
4273
4274 return 0;
4275
4276out_free_data:
4277 for (i--; i >= 0; i--) {
4278 irq_data = irq_domain_get_irq_data(domain, virq + i);
4279 if (irq_data)
4280 kfree(irq_data->chip_data);
4281 }
4282 for (i = 0; i < nr_irqs; i++)
4283 free_irte(devid, index + i);
4284out_free_parent:
4285 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4286 return ret;
4287}
4288
4289static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4290 unsigned int nr_irqs)
4291{
4292 struct irq_2_irte *irte_info;
4293 struct irq_data *irq_data;
4294 struct amd_ir_data *data;
4295 int i;
4296
4297 for (i = 0; i < nr_irqs; i++) {
4298 irq_data = irq_domain_get_irq_data(domain, virq + i);
4299 if (irq_data && irq_data->chip_data) {
4300 data = irq_data->chip_data;
4301 irte_info = &data->irq_2_irte;
4302 free_irte(irte_info->devid, irte_info->index);
4303 kfree(data->entry);
4304 kfree(data);
4305 }
4306 }
4307 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4308}
4309
4310static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4311 struct amd_ir_data *ir_data,
4312 struct irq_2_irte *irte_info,
4313 struct irq_cfg *cfg);
4314
4315static int irq_remapping_activate(struct irq_domain *domain,
4316 struct irq_data *irq_data, bool reserve)
4317{
4318 struct amd_ir_data *data = irq_data->chip_data;
4319 struct irq_2_irte *irte_info = &data->irq_2_irte;
4320 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4321 struct irq_cfg *cfg = irqd_cfg(irq_data);
4322
4323 if (!iommu)
4324 return 0;
4325
4326 iommu->irte_ops->activate(data->entry, irte_info->devid,
4327 irte_info->index);
4328 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4329 return 0;
4330}
4331
4332static void irq_remapping_deactivate(struct irq_domain *domain,
4333 struct irq_data *irq_data)
4334{
4335 struct amd_ir_data *data = irq_data->chip_data;
4336 struct irq_2_irte *irte_info = &data->irq_2_irte;
4337 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4338
4339 if (iommu)
4340 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4341 irte_info->index);
4342}
4343
4344static const struct irq_domain_ops amd_ir_domain_ops = {
4345 .alloc = irq_remapping_alloc,
4346 .free = irq_remapping_free,
4347 .activate = irq_remapping_activate,
4348 .deactivate = irq_remapping_deactivate,
4349};
4350
4351static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4352{
4353 struct amd_iommu *iommu;
4354 struct amd_iommu_pi_data *pi_data = vcpu_info;
4355 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4356 struct amd_ir_data *ir_data = data->chip_data;
4357 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4358 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4359 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4360
4361 /* Note:
4362 * This device has never been set up for guest mode.
4363 * we should not modify the IRTE
4364 */
4365 if (!dev_data || !dev_data->use_vapic)
4366 return 0;
4367
4368 pi_data->ir_data = ir_data;
4369
4370 /* Note:
4371 * SVM tries to set up for VAPIC mode, but we are in
4372 * legacy mode. So, we force legacy mode instead.
4373 */
4374 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4375 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4376 __func__);
4377 pi_data->is_guest_mode = false;
4378 }
4379
4380 iommu = amd_iommu_rlookup_table[irte_info->devid];
4381 if (iommu == NULL)
4382 return -EINVAL;
4383
4384 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4385 if (pi_data->is_guest_mode) {
4386 /* Setting */
4387 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4388 irte->hi.fields.vector = vcpu_pi_info->vector;
4389 irte->lo.fields_vapic.ga_log_intr = 1;
4390 irte->lo.fields_vapic.guest_mode = 1;
4391 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4392
4393 ir_data->cached_ga_tag = pi_data->ga_tag;
4394 } else {
4395 /* Un-Setting */
4396 struct irq_cfg *cfg = irqd_cfg(data);
4397
4398 irte->hi.val = 0;
4399 irte->lo.val = 0;
4400 irte->hi.fields.vector = cfg->vector;
4401 irte->lo.fields_remap.guest_mode = 0;
4402 irte->lo.fields_remap.destination =
4403 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4404 irte->hi.fields.destination =
4405 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4406 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4407 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4408
4409 /*
4410 * This communicates the ga_tag back to the caller
4411 * so that it can do all the necessary clean up.
4412 */
4413 ir_data->cached_ga_tag = 0;
4414 }
4415
4416 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4417}
4418
4419
4420static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4421 struct amd_ir_data *ir_data,
4422 struct irq_2_irte *irte_info,
4423 struct irq_cfg *cfg)
4424{
4425
4426 /*
4427 * Atomically updates the IRTE with the new destination, vector
4428 * and flushes the interrupt entry cache.
4429 */
4430 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4431 irte_info->index, cfg->vector,
4432 cfg->dest_apicid);
4433}
4434
4435static int amd_ir_set_affinity(struct irq_data *data,
4436 const struct cpumask *mask, bool force)
4437{
4438 struct amd_ir_data *ir_data = data->chip_data;
4439 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4440 struct irq_cfg *cfg = irqd_cfg(data);
4441 struct irq_data *parent = data->parent_data;
4442 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4443 int ret;
4444
4445 if (!iommu)
4446 return -ENODEV;
4447
4448 ret = parent->chip->irq_set_affinity(parent, mask, force);
4449 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4450 return ret;
4451
4452 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4453 /*
4454 * After this point, all the interrupts will start arriving
4455 * at the new destination. So, time to cleanup the previous
4456 * vector allocation.
4457 */
4458 send_cleanup_vector(cfg);
4459
4460 return IRQ_SET_MASK_OK_DONE;
4461}
4462
4463static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4464{
4465 struct amd_ir_data *ir_data = irq_data->chip_data;
4466
4467 *msg = ir_data->msi_entry;
4468}
4469
4470static struct irq_chip amd_ir_chip = {
4471 .name = "AMD-IR",
4472 .irq_ack = apic_ack_irq,
4473 .irq_set_affinity = amd_ir_set_affinity,
4474 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4475 .irq_compose_msi_msg = ir_compose_msi_msg,
4476};
4477
4478int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4479{
4480 struct fwnode_handle *fn;
4481
4482 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4483 if (!fn)
4484 return -ENOMEM;
4485 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4486 irq_domain_free_fwnode(fn);
4487 if (!iommu->ir_domain)
4488 return -ENOMEM;
4489
4490 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4491 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4492 "AMD-IR-MSI",
4493 iommu->index);
4494 return 0;
4495}
4496
4497int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4498{
4499 unsigned long flags;
4500 struct amd_iommu *iommu;
4501 struct irq_remap_table *table;
4502 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4503 int devid = ir_data->irq_2_irte.devid;
4504 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4505 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4506
4507 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4508 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4509 return 0;
4510
4511 iommu = amd_iommu_rlookup_table[devid];
4512 if (!iommu)
4513 return -ENODEV;
4514
4515 table = get_irq_table(devid);
4516 if (!table)
4517 return -ENODEV;
4518
4519 raw_spin_lock_irqsave(&table->lock, flags);
4520
4521 if (ref->lo.fields_vapic.guest_mode) {
4522 if (cpu >= 0) {
4523 ref->lo.fields_vapic.destination =
4524 APICID_TO_IRTE_DEST_LO(cpu);
4525 ref->hi.fields.destination =
4526 APICID_TO_IRTE_DEST_HI(cpu);
4527 }
4528 ref->lo.fields_vapic.is_run = is_run;
4529 barrier();
4530 }
4531
4532 raw_spin_unlock_irqrestore(&table->lock, flags);
4533
4534 iommu_flush_irt(iommu, devid);
4535 iommu_completion_wait(iommu);
4536 return 0;
4537}
4538EXPORT_SYMBOL(amd_iommu_update_ga);
4539#endif