blob: d5a81c62e61f6ad6c6f375aeb85c7d56bb38aa3e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#define pr_fmt(fmt) "iommu: " fmt
20
21#include <linux/device.h>
22#include <linux/kernel.h>
23#include <linux/bug.h>
24#include <linux/types.h>
25#include <linux/module.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/iommu.h>
29#include <linux/idr.h>
30#include <linux/notifier.h>
31#include <linux/err.h>
32#include <linux/pci.h>
33#include <linux/bitops.h>
34#include <linux/property.h>
35#include <trace/events/iommu.h>
36
37static struct kset *iommu_group_kset;
38static DEFINE_IDA(iommu_group_ida);
39#ifdef CONFIG_IOMMU_DEFAULT_PASSTHROUGH
40static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
41#else
42static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
43#endif
44
45struct iommu_callback_data {
46 const struct iommu_ops *ops;
47};
48
49struct iommu_group {
50 struct kobject kobj;
51 struct kobject *devices_kobj;
52 struct list_head devices;
53 struct mutex mutex;
54 struct blocking_notifier_head notifier;
55 void *iommu_data;
56 void (*iommu_data_release)(void *iommu_data);
57 char *name;
58 int id;
59 struct iommu_domain *default_domain;
60 struct iommu_domain *domain;
61};
62
63struct group_device {
64 struct list_head list;
65 struct device *dev;
66 char *name;
67};
68
69struct iommu_group_attribute {
70 struct attribute attr;
71 ssize_t (*show)(struct iommu_group *group, char *buf);
72 ssize_t (*store)(struct iommu_group *group,
73 const char *buf, size_t count);
74};
75
76static const char * const iommu_group_resv_type_string[] = {
77 [IOMMU_RESV_DIRECT] = "direct",
78 [IOMMU_RESV_RESERVED] = "reserved",
79 [IOMMU_RESV_MSI] = "msi",
80 [IOMMU_RESV_SW_MSI] = "msi",
81};
82
83#define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
84struct iommu_group_attribute iommu_group_attr_##_name = \
85 __ATTR(_name, _mode, _show, _store)
86
87#define to_iommu_group_attr(_attr) \
88 container_of(_attr, struct iommu_group_attribute, attr)
89#define to_iommu_group(_kobj) \
90 container_of(_kobj, struct iommu_group, kobj)
91
92static LIST_HEAD(iommu_device_list);
93static DEFINE_SPINLOCK(iommu_device_lock);
94
95int iommu_device_register(struct iommu_device *iommu)
96{
97 spin_lock(&iommu_device_lock);
98 list_add_tail(&iommu->list, &iommu_device_list);
99 spin_unlock(&iommu_device_lock);
100
101 return 0;
102}
103
104void iommu_device_unregister(struct iommu_device *iommu)
105{
106 spin_lock(&iommu_device_lock);
107 list_del(&iommu->list);
108 spin_unlock(&iommu_device_lock);
109}
110
111static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
112 unsigned type);
113static int __iommu_attach_device(struct iommu_domain *domain,
114 struct device *dev);
115static int __iommu_attach_group(struct iommu_domain *domain,
116 struct iommu_group *group);
117static void __iommu_detach_group(struct iommu_domain *domain,
118 struct iommu_group *group);
119
120static int __init iommu_set_def_domain_type(char *str)
121{
122 bool pt;
123 int ret;
124
125 ret = kstrtobool(str, &pt);
126 if (ret)
127 return ret;
128
129 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
130 return 0;
131}
132early_param("iommu.passthrough", iommu_set_def_domain_type);
133
134static ssize_t iommu_group_attr_show(struct kobject *kobj,
135 struct attribute *__attr, char *buf)
136{
137 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
138 struct iommu_group *group = to_iommu_group(kobj);
139 ssize_t ret = -EIO;
140
141 if (attr->show)
142 ret = attr->show(group, buf);
143 return ret;
144}
145
146static ssize_t iommu_group_attr_store(struct kobject *kobj,
147 struct attribute *__attr,
148 const char *buf, size_t count)
149{
150 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
151 struct iommu_group *group = to_iommu_group(kobj);
152 ssize_t ret = -EIO;
153
154 if (attr->store)
155 ret = attr->store(group, buf, count);
156 return ret;
157}
158
159static const struct sysfs_ops iommu_group_sysfs_ops = {
160 .show = iommu_group_attr_show,
161 .store = iommu_group_attr_store,
162};
163
164static int iommu_group_create_file(struct iommu_group *group,
165 struct iommu_group_attribute *attr)
166{
167 return sysfs_create_file(&group->kobj, &attr->attr);
168}
169
170static void iommu_group_remove_file(struct iommu_group *group,
171 struct iommu_group_attribute *attr)
172{
173 sysfs_remove_file(&group->kobj, &attr->attr);
174}
175
176static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
177{
178 return sprintf(buf, "%s\n", group->name);
179}
180
181/**
182 * iommu_insert_resv_region - Insert a new region in the
183 * list of reserved regions.
184 * @new: new region to insert
185 * @regions: list of regions
186 *
187 * The new element is sorted by address with respect to the other
188 * regions of the same type. In case it overlaps with another
189 * region of the same type, regions are merged. In case it
190 * overlaps with another region of different type, regions are
191 * not merged.
192 */
193static int iommu_insert_resv_region(struct iommu_resv_region *new,
194 struct list_head *regions)
195{
196 struct iommu_resv_region *region;
197 phys_addr_t start = new->start;
198 phys_addr_t end = new->start + new->length - 1;
199 struct list_head *pos = regions->next;
200
201 while (pos != regions) {
202 struct iommu_resv_region *entry =
203 list_entry(pos, struct iommu_resv_region, list);
204 phys_addr_t a = entry->start;
205 phys_addr_t b = entry->start + entry->length - 1;
206 int type = entry->type;
207
208 if (end < a) {
209 goto insert;
210 } else if (start > b) {
211 pos = pos->next;
212 } else if ((start >= a) && (end <= b)) {
213 if (new->type == type)
214 return 0;
215 else
216 pos = pos->next;
217 } else {
218 if (new->type == type) {
219 phys_addr_t new_start = min(a, start);
220 phys_addr_t new_end = max(b, end);
221 int ret;
222
223 list_del(&entry->list);
224 entry->start = new_start;
225 entry->length = new_end - new_start + 1;
226 ret = iommu_insert_resv_region(entry, regions);
227 kfree(entry);
228 return ret;
229 } else {
230 pos = pos->next;
231 }
232 }
233 }
234insert:
235 region = iommu_alloc_resv_region(new->start, new->length,
236 new->prot, new->type);
237 if (!region)
238 return -ENOMEM;
239
240 list_add_tail(&region->list, pos);
241 return 0;
242}
243
244static int
245iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
246 struct list_head *group_resv_regions)
247{
248 struct iommu_resv_region *entry;
249 int ret = 0;
250
251 list_for_each_entry(entry, dev_resv_regions, list) {
252 ret = iommu_insert_resv_region(entry, group_resv_regions);
253 if (ret)
254 break;
255 }
256 return ret;
257}
258
259int iommu_get_group_resv_regions(struct iommu_group *group,
260 struct list_head *head)
261{
262 struct group_device *device;
263 int ret = 0;
264
265 mutex_lock(&group->mutex);
266 list_for_each_entry(device, &group->devices, list) {
267 struct list_head dev_resv_regions;
268
269 INIT_LIST_HEAD(&dev_resv_regions);
270 iommu_get_resv_regions(device->dev, &dev_resv_regions);
271 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
272 iommu_put_resv_regions(device->dev, &dev_resv_regions);
273 if (ret)
274 break;
275 }
276 mutex_unlock(&group->mutex);
277 return ret;
278}
279EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
280
281static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
282 char *buf)
283{
284 struct iommu_resv_region *region, *next;
285 struct list_head group_resv_regions;
286 char *str = buf;
287
288 INIT_LIST_HEAD(&group_resv_regions);
289 iommu_get_group_resv_regions(group, &group_resv_regions);
290
291 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
292 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
293 (long long int)region->start,
294 (long long int)(region->start +
295 region->length - 1),
296 iommu_group_resv_type_string[region->type]);
297 kfree(region);
298 }
299
300 return (str - buf);
301}
302
303static ssize_t iommu_group_show_type(struct iommu_group *group,
304 char *buf)
305{
306 char *type = "unknown\n";
307
308 if (group->default_domain) {
309 switch (group->default_domain->type) {
310 case IOMMU_DOMAIN_BLOCKED:
311 type = "blocked\n";
312 break;
313 case IOMMU_DOMAIN_IDENTITY:
314 type = "identity\n";
315 break;
316 case IOMMU_DOMAIN_UNMANAGED:
317 type = "unmanaged\n";
318 break;
319 case IOMMU_DOMAIN_DMA:
320 type = "DMA";
321 break;
322 }
323 }
324 strcpy(buf, type);
325
326 return strlen(type);
327}
328
329static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
330
331static IOMMU_GROUP_ATTR(reserved_regions, 0444,
332 iommu_group_show_resv_regions, NULL);
333
334static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
335
336static void iommu_group_release(struct kobject *kobj)
337{
338 struct iommu_group *group = to_iommu_group(kobj);
339
340 pr_debug("Releasing group %d\n", group->id);
341
342 if (group->iommu_data_release)
343 group->iommu_data_release(group->iommu_data);
344
345 ida_simple_remove(&iommu_group_ida, group->id);
346
347 if (group->default_domain)
348 iommu_domain_free(group->default_domain);
349
350 kfree(group->name);
351 kfree(group);
352}
353
354static struct kobj_type iommu_group_ktype = {
355 .sysfs_ops = &iommu_group_sysfs_ops,
356 .release = iommu_group_release,
357};
358
359/**
360 * iommu_group_alloc - Allocate a new group
361 *
362 * This function is called by an iommu driver to allocate a new iommu
363 * group. The iommu group represents the minimum granularity of the iommu.
364 * Upon successful return, the caller holds a reference to the supplied
365 * group in order to hold the group until devices are added. Use
366 * iommu_group_put() to release this extra reference count, allowing the
367 * group to be automatically reclaimed once it has no devices or external
368 * references.
369 */
370struct iommu_group *iommu_group_alloc(void)
371{
372 struct iommu_group *group;
373 int ret;
374
375 group = kzalloc(sizeof(*group), GFP_KERNEL);
376 if (!group)
377 return ERR_PTR(-ENOMEM);
378
379 group->kobj.kset = iommu_group_kset;
380 mutex_init(&group->mutex);
381 INIT_LIST_HEAD(&group->devices);
382 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
383
384 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
385 if (ret < 0) {
386 kfree(group);
387 return ERR_PTR(ret);
388 }
389 group->id = ret;
390
391 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
392 NULL, "%d", group->id);
393 if (ret) {
394 ida_simple_remove(&iommu_group_ida, group->id);
395 kfree(group);
396 return ERR_PTR(ret);
397 }
398
399 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
400 if (!group->devices_kobj) {
401 kobject_put(&group->kobj); /* triggers .release & free */
402 return ERR_PTR(-ENOMEM);
403 }
404
405 /*
406 * The devices_kobj holds a reference on the group kobject, so
407 * as long as that exists so will the group. We can therefore
408 * use the devices_kobj for reference counting.
409 */
410 kobject_put(&group->kobj);
411
412 ret = iommu_group_create_file(group,
413 &iommu_group_attr_reserved_regions);
414 if (ret)
415 return ERR_PTR(ret);
416
417 ret = iommu_group_create_file(group, &iommu_group_attr_type);
418 if (ret)
419 return ERR_PTR(ret);
420
421 pr_debug("Allocated group %d\n", group->id);
422
423 return group;
424}
425EXPORT_SYMBOL_GPL(iommu_group_alloc);
426
427struct iommu_group *iommu_group_get_by_id(int id)
428{
429 struct kobject *group_kobj;
430 struct iommu_group *group;
431 const char *name;
432
433 if (!iommu_group_kset)
434 return NULL;
435
436 name = kasprintf(GFP_KERNEL, "%d", id);
437 if (!name)
438 return NULL;
439
440 group_kobj = kset_find_obj(iommu_group_kset, name);
441 kfree(name);
442
443 if (!group_kobj)
444 return NULL;
445
446 group = container_of(group_kobj, struct iommu_group, kobj);
447 BUG_ON(group->id != id);
448
449 kobject_get(group->devices_kobj);
450 kobject_put(&group->kobj);
451
452 return group;
453}
454EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
455
456/**
457 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
458 * @group: the group
459 *
460 * iommu drivers can store data in the group for use when doing iommu
461 * operations. This function provides a way to retrieve it. Caller
462 * should hold a group reference.
463 */
464void *iommu_group_get_iommudata(struct iommu_group *group)
465{
466 return group->iommu_data;
467}
468EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
469
470/**
471 * iommu_group_set_iommudata - set iommu_data for a group
472 * @group: the group
473 * @iommu_data: new data
474 * @release: release function for iommu_data
475 *
476 * iommu drivers can store data in the group for use when doing iommu
477 * operations. This function provides a way to set the data after
478 * the group has been allocated. Caller should hold a group reference.
479 */
480void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
481 void (*release)(void *iommu_data))
482{
483 group->iommu_data = iommu_data;
484 group->iommu_data_release = release;
485}
486EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
487
488/**
489 * iommu_group_set_name - set name for a group
490 * @group: the group
491 * @name: name
492 *
493 * Allow iommu driver to set a name for a group. When set it will
494 * appear in a name attribute file under the group in sysfs.
495 */
496int iommu_group_set_name(struct iommu_group *group, const char *name)
497{
498 int ret;
499
500 if (group->name) {
501 iommu_group_remove_file(group, &iommu_group_attr_name);
502 kfree(group->name);
503 group->name = NULL;
504 if (!name)
505 return 0;
506 }
507
508 group->name = kstrdup(name, GFP_KERNEL);
509 if (!group->name)
510 return -ENOMEM;
511
512 ret = iommu_group_create_file(group, &iommu_group_attr_name);
513 if (ret) {
514 kfree(group->name);
515 group->name = NULL;
516 return ret;
517 }
518
519 return 0;
520}
521EXPORT_SYMBOL_GPL(iommu_group_set_name);
522
523static int iommu_group_create_direct_mappings(struct iommu_group *group,
524 struct device *dev)
525{
526 struct iommu_domain *domain = group->default_domain;
527 struct iommu_resv_region *entry;
528 struct list_head mappings;
529 unsigned long pg_size;
530 int ret = 0;
531
532 if (!domain || domain->type != IOMMU_DOMAIN_DMA)
533 return 0;
534
535 BUG_ON(!domain->pgsize_bitmap);
536
537 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
538 INIT_LIST_HEAD(&mappings);
539
540 iommu_get_resv_regions(dev, &mappings);
541
542 /* We need to consider overlapping regions for different devices */
543 list_for_each_entry(entry, &mappings, list) {
544 dma_addr_t start, end, addr;
545
546 if (domain->ops->apply_resv_region)
547 domain->ops->apply_resv_region(dev, domain, entry);
548
549 start = ALIGN(entry->start, pg_size);
550 end = ALIGN(entry->start + entry->length, pg_size);
551
552 if (entry->type != IOMMU_RESV_DIRECT)
553 continue;
554
555 for (addr = start; addr < end; addr += pg_size) {
556 phys_addr_t phys_addr;
557
558 phys_addr = iommu_iova_to_phys(domain, addr);
559 if (phys_addr)
560 continue;
561
562 ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
563 if (ret)
564 goto out;
565 }
566
567 }
568
569 iommu_flush_tlb_all(domain);
570
571out:
572 iommu_put_resv_regions(dev, &mappings);
573
574 return ret;
575}
576
577/**
578 * iommu_group_add_device - add a device to an iommu group
579 * @group: the group into which to add the device (reference should be held)
580 * @dev: the device
581 *
582 * This function is called by an iommu driver to add a device into a
583 * group. Adding a device increments the group reference count.
584 */
585int iommu_group_add_device(struct iommu_group *group, struct device *dev)
586{
587 int ret, i = 0;
588 struct group_device *device;
589
590 device = kzalloc(sizeof(*device), GFP_KERNEL);
591 if (!device)
592 return -ENOMEM;
593
594 device->dev = dev;
595
596 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
597 if (ret)
598 goto err_free_device;
599
600 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
601rename:
602 if (!device->name) {
603 ret = -ENOMEM;
604 goto err_remove_link;
605 }
606
607 ret = sysfs_create_link_nowarn(group->devices_kobj,
608 &dev->kobj, device->name);
609 if (ret) {
610 if (ret == -EEXIST && i >= 0) {
611 /*
612 * Account for the slim chance of collision
613 * and append an instance to the name.
614 */
615 kfree(device->name);
616 device->name = kasprintf(GFP_KERNEL, "%s.%d",
617 kobject_name(&dev->kobj), i++);
618 goto rename;
619 }
620 goto err_free_name;
621 }
622
623 kobject_get(group->devices_kobj);
624
625 dev->iommu_group = group;
626
627 iommu_group_create_direct_mappings(group, dev);
628
629 mutex_lock(&group->mutex);
630 list_add_tail(&device->list, &group->devices);
631 if (group->domain)
632 ret = __iommu_attach_device(group->domain, dev);
633 mutex_unlock(&group->mutex);
634 if (ret)
635 goto err_put_group;
636
637 /* Notify any listeners about change to group. */
638 blocking_notifier_call_chain(&group->notifier,
639 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
640
641 trace_add_device_to_group(group->id, dev);
642
643 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
644
645 return 0;
646
647err_put_group:
648 mutex_lock(&group->mutex);
649 list_del(&device->list);
650 mutex_unlock(&group->mutex);
651 dev->iommu_group = NULL;
652 kobject_put(group->devices_kobj);
653 sysfs_remove_link(group->devices_kobj, device->name);
654err_free_name:
655 kfree(device->name);
656err_remove_link:
657 sysfs_remove_link(&dev->kobj, "iommu_group");
658err_free_device:
659 kfree(device);
660 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret);
661 return ret;
662}
663EXPORT_SYMBOL_GPL(iommu_group_add_device);
664
665/**
666 * iommu_group_remove_device - remove a device from it's current group
667 * @dev: device to be removed
668 *
669 * This function is called by an iommu driver to remove the device from
670 * it's current group. This decrements the iommu group reference count.
671 */
672void iommu_group_remove_device(struct device *dev)
673{
674 struct iommu_group *group = dev->iommu_group;
675 struct group_device *tmp_device, *device = NULL;
676
677 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
678
679 /* Pre-notify listeners that a device is being removed. */
680 blocking_notifier_call_chain(&group->notifier,
681 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
682
683 mutex_lock(&group->mutex);
684 list_for_each_entry(tmp_device, &group->devices, list) {
685 if (tmp_device->dev == dev) {
686 device = tmp_device;
687 list_del(&device->list);
688 break;
689 }
690 }
691 mutex_unlock(&group->mutex);
692
693 if (!device)
694 return;
695
696 sysfs_remove_link(group->devices_kobj, device->name);
697 sysfs_remove_link(&dev->kobj, "iommu_group");
698
699 trace_remove_device_from_group(group->id, dev);
700
701 kfree(device->name);
702 kfree(device);
703 dev->iommu_group = NULL;
704 kobject_put(group->devices_kobj);
705}
706EXPORT_SYMBOL_GPL(iommu_group_remove_device);
707
708static int iommu_group_device_count(struct iommu_group *group)
709{
710 struct group_device *entry;
711 int ret = 0;
712
713 list_for_each_entry(entry, &group->devices, list)
714 ret++;
715
716 return ret;
717}
718
719/**
720 * iommu_group_for_each_dev - iterate over each device in the group
721 * @group: the group
722 * @data: caller opaque data to be passed to callback function
723 * @fn: caller supplied callback function
724 *
725 * This function is called by group users to iterate over group devices.
726 * Callers should hold a reference count to the group during callback.
727 * The group->mutex is held across callbacks, which will block calls to
728 * iommu_group_add/remove_device.
729 */
730static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
731 int (*fn)(struct device *, void *))
732{
733 struct group_device *device;
734 int ret = 0;
735
736 list_for_each_entry(device, &group->devices, list) {
737 ret = fn(device->dev, data);
738 if (ret)
739 break;
740 }
741 return ret;
742}
743
744
745int iommu_group_for_each_dev(struct iommu_group *group, void *data,
746 int (*fn)(struct device *, void *))
747{
748 int ret;
749
750 mutex_lock(&group->mutex);
751 ret = __iommu_group_for_each_dev(group, data, fn);
752 mutex_unlock(&group->mutex);
753
754 return ret;
755}
756EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
757
758/**
759 * iommu_group_get - Return the group for a device and increment reference
760 * @dev: get the group that this device belongs to
761 *
762 * This function is called by iommu drivers and users to get the group
763 * for the specified device. If found, the group is returned and the group
764 * reference in incremented, else NULL.
765 */
766struct iommu_group *iommu_group_get(struct device *dev)
767{
768 struct iommu_group *group = dev->iommu_group;
769
770 if (group)
771 kobject_get(group->devices_kobj);
772
773 return group;
774}
775EXPORT_SYMBOL_GPL(iommu_group_get);
776
777/**
778 * iommu_group_ref_get - Increment reference on a group
779 * @group: the group to use, must not be NULL
780 *
781 * This function is called by iommu drivers to take additional references on an
782 * existing group. Returns the given group for convenience.
783 */
784struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
785{
786 kobject_get(group->devices_kobj);
787 return group;
788}
789
790/**
791 * iommu_group_put - Decrement group reference
792 * @group: the group to use
793 *
794 * This function is called by iommu drivers and users to release the
795 * iommu group. Once the reference count is zero, the group is released.
796 */
797void iommu_group_put(struct iommu_group *group)
798{
799 if (group)
800 kobject_put(group->devices_kobj);
801}
802EXPORT_SYMBOL_GPL(iommu_group_put);
803
804/**
805 * iommu_group_register_notifier - Register a notifier for group changes
806 * @group: the group to watch
807 * @nb: notifier block to signal
808 *
809 * This function allows iommu group users to track changes in a group.
810 * See include/linux/iommu.h for actions sent via this notifier. Caller
811 * should hold a reference to the group throughout notifier registration.
812 */
813int iommu_group_register_notifier(struct iommu_group *group,
814 struct notifier_block *nb)
815{
816 return blocking_notifier_chain_register(&group->notifier, nb);
817}
818EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
819
820/**
821 * iommu_group_unregister_notifier - Unregister a notifier
822 * @group: the group to watch
823 * @nb: notifier block to signal
824 *
825 * Unregister a previously registered group notifier block.
826 */
827int iommu_group_unregister_notifier(struct iommu_group *group,
828 struct notifier_block *nb)
829{
830 return blocking_notifier_chain_unregister(&group->notifier, nb);
831}
832EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
833
834/**
835 * iommu_group_id - Return ID for a group
836 * @group: the group to ID
837 *
838 * Return the unique ID for the group matching the sysfs group number.
839 */
840int iommu_group_id(struct iommu_group *group)
841{
842 return group->id;
843}
844EXPORT_SYMBOL_GPL(iommu_group_id);
845
846static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
847 unsigned long *devfns);
848
849/*
850 * To consider a PCI device isolated, we require ACS to support Source
851 * Validation, Request Redirection, Completer Redirection, and Upstream
852 * Forwarding. This effectively means that devices cannot spoof their
853 * requester ID, requests and completions cannot be redirected, and all
854 * transactions are forwarded upstream, even as it passes through a
855 * bridge where the target device is downstream.
856 */
857#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
858
859/*
860 * For multifunction devices which are not isolated from each other, find
861 * all the other non-isolated functions and look for existing groups. For
862 * each function, we also need to look for aliases to or from other devices
863 * that may already have a group.
864 */
865static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
866 unsigned long *devfns)
867{
868 struct pci_dev *tmp = NULL;
869 struct iommu_group *group;
870
871 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
872 return NULL;
873
874 for_each_pci_dev(tmp) {
875 if (tmp == pdev || tmp->bus != pdev->bus ||
876 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
877 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
878 continue;
879
880 group = get_pci_alias_group(tmp, devfns);
881 if (group) {
882 pci_dev_put(tmp);
883 return group;
884 }
885 }
886
887 return NULL;
888}
889
890/*
891 * Look for aliases to or from the given device for existing groups. DMA
892 * aliases are only supported on the same bus, therefore the search
893 * space is quite small (especially since we're really only looking at pcie
894 * device, and therefore only expect multiple slots on the root complex or
895 * downstream switch ports). It's conceivable though that a pair of
896 * multifunction devices could have aliases between them that would cause a
897 * loop. To prevent this, we use a bitmap to track where we've been.
898 */
899static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
900 unsigned long *devfns)
901{
902 struct pci_dev *tmp = NULL;
903 struct iommu_group *group;
904
905 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
906 return NULL;
907
908 group = iommu_group_get(&pdev->dev);
909 if (group)
910 return group;
911
912 for_each_pci_dev(tmp) {
913 if (tmp == pdev || tmp->bus != pdev->bus)
914 continue;
915
916 /* We alias them or they alias us */
917 if (pci_devs_are_dma_aliases(pdev, tmp)) {
918 group = get_pci_alias_group(tmp, devfns);
919 if (group) {
920 pci_dev_put(tmp);
921 return group;
922 }
923
924 group = get_pci_function_alias_group(tmp, devfns);
925 if (group) {
926 pci_dev_put(tmp);
927 return group;
928 }
929 }
930 }
931
932 return NULL;
933}
934
935struct group_for_pci_data {
936 struct pci_dev *pdev;
937 struct iommu_group *group;
938};
939
940/*
941 * DMA alias iterator callback, return the last seen device. Stop and return
942 * the IOMMU group if we find one along the way.
943 */
944static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
945{
946 struct group_for_pci_data *data = opaque;
947
948 data->pdev = pdev;
949 data->group = iommu_group_get(&pdev->dev);
950
951 return data->group != NULL;
952}
953
954/*
955 * Generic device_group call-back function. It just allocates one
956 * iommu-group per device.
957 */
958struct iommu_group *generic_device_group(struct device *dev)
959{
960 return iommu_group_alloc();
961}
962
963/*
964 * Use standard PCI bus topology, isolation features, and DMA alias quirks
965 * to find or create an IOMMU group for a device.
966 */
967struct iommu_group *pci_device_group(struct device *dev)
968{
969 struct pci_dev *pdev = to_pci_dev(dev);
970 struct group_for_pci_data data;
971 struct pci_bus *bus;
972 struct iommu_group *group = NULL;
973 u64 devfns[4] = { 0 };
974
975 if (WARN_ON(!dev_is_pci(dev)))
976 return ERR_PTR(-EINVAL);
977
978 /*
979 * Find the upstream DMA alias for the device. A device must not
980 * be aliased due to topology in order to have its own IOMMU group.
981 * If we find an alias along the way that already belongs to a
982 * group, use it.
983 */
984 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
985 return data.group;
986
987 pdev = data.pdev;
988
989 /*
990 * Continue upstream from the point of minimum IOMMU granularity
991 * due to aliases to the point where devices are protected from
992 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
993 * group, use it.
994 */
995 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
996 if (!bus->self)
997 continue;
998
999 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1000 break;
1001
1002 pdev = bus->self;
1003
1004 group = iommu_group_get(&pdev->dev);
1005 if (group)
1006 return group;
1007 }
1008
1009 /*
1010 * Look for existing groups on device aliases. If we alias another
1011 * device or another device aliases us, use the same group.
1012 */
1013 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1014 if (group)
1015 return group;
1016
1017 /*
1018 * Look for existing groups on non-isolated functions on the same
1019 * slot and aliases of those funcions, if any. No need to clear
1020 * the search bitmap, the tested devfns are still valid.
1021 */
1022 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1023 if (group)
1024 return group;
1025
1026 /* No shared group found, allocate new */
1027 return iommu_group_alloc();
1028}
1029
1030/**
1031 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1032 * @dev: target device
1033 *
1034 * This function is intended to be called by IOMMU drivers and extended to
1035 * support common, bus-defined algorithms when determining or creating the
1036 * IOMMU group for a device. On success, the caller will hold a reference
1037 * to the returned IOMMU group, which will already include the provided
1038 * device. The reference should be released with iommu_group_put().
1039 */
1040struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1041{
1042 const struct iommu_ops *ops = dev->bus->iommu_ops;
1043 struct iommu_group *group;
1044 int ret;
1045
1046 group = iommu_group_get(dev);
1047 if (group)
1048 return group;
1049
1050 if (!ops)
1051 return ERR_PTR(-EINVAL);
1052
1053 group = ops->device_group(dev);
1054 if (WARN_ON_ONCE(group == NULL))
1055 return ERR_PTR(-EINVAL);
1056
1057 if (IS_ERR(group))
1058 return group;
1059
1060 /*
1061 * Try to allocate a default domain - needs support from the
1062 * IOMMU driver.
1063 */
1064 if (!group->default_domain) {
1065 struct iommu_domain *dom;
1066
1067 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1068 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1069 dev_warn(dev,
1070 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1071 iommu_def_domain_type);
1072 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1073 }
1074
1075 group->default_domain = dom;
1076 if (!group->domain)
1077 group->domain = dom;
1078 }
1079
1080 ret = iommu_group_add_device(group, dev);
1081 if (ret) {
1082 iommu_group_put(group);
1083 return ERR_PTR(ret);
1084 }
1085
1086 return group;
1087}
1088
1089struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1090{
1091 return group->default_domain;
1092}
1093
1094static int add_iommu_group(struct device *dev, void *data)
1095{
1096 struct iommu_callback_data *cb = data;
1097 const struct iommu_ops *ops = cb->ops;
1098 int ret;
1099
1100 if (!ops->add_device)
1101 return 0;
1102
1103 WARN_ON(dev->iommu_group);
1104
1105 ret = ops->add_device(dev);
1106
1107 /*
1108 * We ignore -ENODEV errors for now, as they just mean that the
1109 * device is not translated by an IOMMU. We still care about
1110 * other errors and fail to initialize when they happen.
1111 */
1112 if (ret == -ENODEV)
1113 ret = 0;
1114
1115 return ret;
1116}
1117
1118static int remove_iommu_group(struct device *dev, void *data)
1119{
1120 struct iommu_callback_data *cb = data;
1121 const struct iommu_ops *ops = cb->ops;
1122
1123 if (ops->remove_device && dev->iommu_group)
1124 ops->remove_device(dev);
1125
1126 return 0;
1127}
1128
1129static int iommu_bus_notifier(struct notifier_block *nb,
1130 unsigned long action, void *data)
1131{
1132 struct device *dev = data;
1133 const struct iommu_ops *ops = dev->bus->iommu_ops;
1134 struct iommu_group *group;
1135 unsigned long group_action = 0;
1136
1137 /*
1138 * ADD/DEL call into iommu driver ops if provided, which may
1139 * result in ADD/DEL notifiers to group->notifier
1140 */
1141 if (action == BUS_NOTIFY_ADD_DEVICE) {
1142 if (ops->add_device) {
1143 int ret;
1144
1145 ret = ops->add_device(dev);
1146 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1147 }
1148 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1149 if (ops->remove_device && dev->iommu_group) {
1150 ops->remove_device(dev);
1151 return 0;
1152 }
1153 }
1154
1155 /*
1156 * Remaining BUS_NOTIFYs get filtered and republished to the
1157 * group, if anyone is listening
1158 */
1159 group = iommu_group_get(dev);
1160 if (!group)
1161 return 0;
1162
1163 switch (action) {
1164 case BUS_NOTIFY_BIND_DRIVER:
1165 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1166 break;
1167 case BUS_NOTIFY_BOUND_DRIVER:
1168 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1169 break;
1170 case BUS_NOTIFY_UNBIND_DRIVER:
1171 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1172 break;
1173 case BUS_NOTIFY_UNBOUND_DRIVER:
1174 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1175 break;
1176 }
1177
1178 if (group_action)
1179 blocking_notifier_call_chain(&group->notifier,
1180 group_action, dev);
1181
1182 iommu_group_put(group);
1183 return 0;
1184}
1185
1186static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1187{
1188 int err;
1189 struct notifier_block *nb;
1190 struct iommu_callback_data cb = {
1191 .ops = ops,
1192 };
1193
1194 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1195 if (!nb)
1196 return -ENOMEM;
1197
1198 nb->notifier_call = iommu_bus_notifier;
1199
1200 err = bus_register_notifier(bus, nb);
1201 if (err)
1202 goto out_free;
1203
1204 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1205 if (err)
1206 goto out_err;
1207
1208
1209 return 0;
1210
1211out_err:
1212 /* Clean up */
1213 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1214 bus_unregister_notifier(bus, nb);
1215
1216out_free:
1217 kfree(nb);
1218
1219 return err;
1220}
1221
1222/**
1223 * bus_set_iommu - set iommu-callbacks for the bus
1224 * @bus: bus.
1225 * @ops: the callbacks provided by the iommu-driver
1226 *
1227 * This function is called by an iommu driver to set the iommu methods
1228 * used for a particular bus. Drivers for devices on that bus can use
1229 * the iommu-api after these ops are registered.
1230 * This special function is needed because IOMMUs are usually devices on
1231 * the bus itself, so the iommu drivers are not initialized when the bus
1232 * is set up. With this function the iommu-driver can set the iommu-ops
1233 * afterwards.
1234 */
1235int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1236{
1237 int err;
1238
1239 if (bus->iommu_ops != NULL)
1240 return -EBUSY;
1241
1242 bus->iommu_ops = ops;
1243
1244 /* Do IOMMU specific setup for this bus-type */
1245 err = iommu_bus_init(bus, ops);
1246 if (err)
1247 bus->iommu_ops = NULL;
1248
1249 return err;
1250}
1251EXPORT_SYMBOL_GPL(bus_set_iommu);
1252
1253bool iommu_present(struct bus_type *bus)
1254{
1255 return bus->iommu_ops != NULL;
1256}
1257EXPORT_SYMBOL_GPL(iommu_present);
1258
1259bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1260{
1261 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1262 return false;
1263
1264 return bus->iommu_ops->capable(cap);
1265}
1266EXPORT_SYMBOL_GPL(iommu_capable);
1267
1268/**
1269 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1270 * @domain: iommu domain
1271 * @handler: fault handler
1272 * @token: user data, will be passed back to the fault handler
1273 *
1274 * This function should be used by IOMMU users which want to be notified
1275 * whenever an IOMMU fault happens.
1276 *
1277 * The fault handler itself should return 0 on success, and an appropriate
1278 * error code otherwise.
1279 */
1280void iommu_set_fault_handler(struct iommu_domain *domain,
1281 iommu_fault_handler_t handler,
1282 void *token)
1283{
1284 BUG_ON(!domain);
1285
1286 domain->handler = handler;
1287 domain->handler_token = token;
1288}
1289EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1290
1291static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1292 unsigned type)
1293{
1294 struct iommu_domain *domain;
1295
1296 if (bus == NULL || bus->iommu_ops == NULL)
1297 return NULL;
1298
1299 domain = bus->iommu_ops->domain_alloc(type);
1300 if (!domain)
1301 return NULL;
1302
1303 domain->ops = bus->iommu_ops;
1304 domain->type = type;
1305 /* Assume all sizes by default; the driver may override this later */
1306 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1307
1308 return domain;
1309}
1310
1311struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1312{
1313 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1314}
1315EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1316
1317void iommu_domain_free(struct iommu_domain *domain)
1318{
1319 domain->ops->domain_free(domain);
1320}
1321EXPORT_SYMBOL_GPL(iommu_domain_free);
1322
1323static int __iommu_attach_device(struct iommu_domain *domain,
1324 struct device *dev)
1325{
1326 int ret;
1327 if ((domain->ops->is_attach_deferred != NULL) &&
1328 domain->ops->is_attach_deferred(domain, dev))
1329 return 0;
1330
1331 if (unlikely(domain->ops->attach_dev == NULL))
1332 return -ENODEV;
1333
1334 ret = domain->ops->attach_dev(domain, dev);
1335 if (!ret)
1336 trace_attach_device_to_domain(dev);
1337 return ret;
1338}
1339
1340int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1341{
1342 struct iommu_group *group;
1343 int ret;
1344
1345 group = iommu_group_get(dev);
1346 if (!group)
1347 return -ENODEV;
1348
1349 /*
1350 * Lock the group to make sure the device-count doesn't
1351 * change while we are attaching
1352 */
1353 mutex_lock(&group->mutex);
1354 ret = -EINVAL;
1355 if (iommu_group_device_count(group) != 1)
1356 goto out_unlock;
1357
1358 ret = __iommu_attach_group(domain, group);
1359
1360out_unlock:
1361 mutex_unlock(&group->mutex);
1362 iommu_group_put(group);
1363
1364 return ret;
1365}
1366EXPORT_SYMBOL_GPL(iommu_attach_device);
1367
1368static void __iommu_detach_device(struct iommu_domain *domain,
1369 struct device *dev)
1370{
1371 if ((domain->ops->is_attach_deferred != NULL) &&
1372 domain->ops->is_attach_deferred(domain, dev))
1373 return;
1374
1375 if (unlikely(domain->ops->detach_dev == NULL))
1376 return;
1377
1378 domain->ops->detach_dev(domain, dev);
1379 trace_detach_device_from_domain(dev);
1380}
1381
1382void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1383{
1384 struct iommu_group *group;
1385
1386 group = iommu_group_get(dev);
1387 if (!group)
1388 return;
1389
1390 mutex_lock(&group->mutex);
1391 if (iommu_group_device_count(group) != 1) {
1392 WARN_ON(1);
1393 goto out_unlock;
1394 }
1395
1396 __iommu_detach_group(domain, group);
1397
1398out_unlock:
1399 mutex_unlock(&group->mutex);
1400 iommu_group_put(group);
1401}
1402EXPORT_SYMBOL_GPL(iommu_detach_device);
1403
1404struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1405{
1406 struct iommu_domain *domain;
1407 struct iommu_group *group;
1408
1409 group = iommu_group_get(dev);
1410 if (!group)
1411 return NULL;
1412
1413 domain = group->domain;
1414
1415 iommu_group_put(group);
1416
1417 return domain;
1418}
1419EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1420
1421/*
1422 * IOMMU groups are really the natrual working unit of the IOMMU, but
1423 * the IOMMU API works on domains and devices. Bridge that gap by
1424 * iterating over the devices in a group. Ideally we'd have a single
1425 * device which represents the requestor ID of the group, but we also
1426 * allow IOMMU drivers to create policy defined minimum sets, where
1427 * the physical hardware may be able to distiguish members, but we
1428 * wish to group them at a higher level (ex. untrusted multi-function
1429 * PCI devices). Thus we attach each device.
1430 */
1431static int iommu_group_do_attach_device(struct device *dev, void *data)
1432{
1433 struct iommu_domain *domain = data;
1434
1435 return __iommu_attach_device(domain, dev);
1436}
1437
1438static int __iommu_attach_group(struct iommu_domain *domain,
1439 struct iommu_group *group)
1440{
1441 int ret;
1442
1443 if (group->default_domain && group->domain != group->default_domain)
1444 return -EBUSY;
1445
1446 ret = __iommu_group_for_each_dev(group, domain,
1447 iommu_group_do_attach_device);
1448 if (ret == 0)
1449 group->domain = domain;
1450
1451 return ret;
1452}
1453
1454int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1455{
1456 int ret;
1457
1458 mutex_lock(&group->mutex);
1459 ret = __iommu_attach_group(domain, group);
1460 mutex_unlock(&group->mutex);
1461
1462 return ret;
1463}
1464EXPORT_SYMBOL_GPL(iommu_attach_group);
1465
1466static int iommu_group_do_detach_device(struct device *dev, void *data)
1467{
1468 struct iommu_domain *domain = data;
1469
1470 __iommu_detach_device(domain, dev);
1471
1472 return 0;
1473}
1474
1475static void __iommu_detach_group(struct iommu_domain *domain,
1476 struct iommu_group *group)
1477{
1478 int ret;
1479
1480 if (!group->default_domain) {
1481 __iommu_group_for_each_dev(group, domain,
1482 iommu_group_do_detach_device);
1483 group->domain = NULL;
1484 return;
1485 }
1486
1487 if (group->domain == group->default_domain)
1488 return;
1489
1490 /* Detach by re-attaching to the default domain */
1491 ret = __iommu_group_for_each_dev(group, group->default_domain,
1492 iommu_group_do_attach_device);
1493 if (ret != 0)
1494 WARN_ON(1);
1495 else
1496 group->domain = group->default_domain;
1497}
1498
1499void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1500{
1501 mutex_lock(&group->mutex);
1502 __iommu_detach_group(domain, group);
1503 mutex_unlock(&group->mutex);
1504}
1505EXPORT_SYMBOL_GPL(iommu_detach_group);
1506
1507phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1508{
1509 if (unlikely(domain->ops->iova_to_phys == NULL))
1510 return 0;
1511
1512 return domain->ops->iova_to_phys(domain, iova);
1513}
1514EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1515
1516static size_t iommu_pgsize(struct iommu_domain *domain,
1517 unsigned long addr_merge, size_t size)
1518{
1519 unsigned int pgsize_idx;
1520 size_t pgsize;
1521
1522 /* Max page size that still fits into 'size' */
1523 pgsize_idx = __fls(size);
1524
1525 /* need to consider alignment requirements ? */
1526 if (likely(addr_merge)) {
1527 /* Max page size allowed by address */
1528 unsigned int align_pgsize_idx = __ffs(addr_merge);
1529 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1530 }
1531
1532 /* build a mask of acceptable page sizes */
1533 pgsize = (1UL << (pgsize_idx + 1)) - 1;
1534
1535 /* throw away page sizes not supported by the hardware */
1536 pgsize &= domain->pgsize_bitmap;
1537
1538 /* make sure we're still sane */
1539 BUG_ON(!pgsize);
1540
1541 /* pick the biggest page */
1542 pgsize_idx = __fls(pgsize);
1543 pgsize = 1UL << pgsize_idx;
1544
1545 return pgsize;
1546}
1547
1548int iommu_map(struct iommu_domain *domain, unsigned long iova,
1549 phys_addr_t paddr, size_t size, int prot)
1550{
1551 unsigned long orig_iova = iova;
1552 unsigned int min_pagesz;
1553 size_t orig_size = size;
1554 phys_addr_t orig_paddr = paddr;
1555 int ret = 0;
1556
1557 if (unlikely(domain->ops->map == NULL ||
1558 domain->pgsize_bitmap == 0UL))
1559 return -ENODEV;
1560
1561 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1562 return -EINVAL;
1563
1564 /* find out the minimum page size supported */
1565 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1566
1567 /*
1568 * both the virtual address and the physical one, as well as
1569 * the size of the mapping, must be aligned (at least) to the
1570 * size of the smallest page supported by the hardware
1571 */
1572 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1573 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1574 iova, &paddr, size, min_pagesz);
1575 return -EINVAL;
1576 }
1577
1578 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1579
1580 while (size) {
1581 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1582
1583 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1584 iova, &paddr, pgsize);
1585
1586 ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1587 if (ret)
1588 break;
1589
1590 iova += pgsize;
1591 paddr += pgsize;
1592 size -= pgsize;
1593 }
1594
1595 /* unroll mapping in case something went wrong */
1596 if (ret)
1597 iommu_unmap(domain, orig_iova, orig_size - size);
1598 else
1599 trace_map(orig_iova, orig_paddr, orig_size);
1600
1601 return ret;
1602}
1603EXPORT_SYMBOL_GPL(iommu_map);
1604
1605static size_t __iommu_unmap(struct iommu_domain *domain,
1606 unsigned long iova, size_t size,
1607 bool sync)
1608{
1609 const struct iommu_ops *ops = domain->ops;
1610 size_t unmapped_page, unmapped = 0;
1611 unsigned long orig_iova = iova;
1612 unsigned int min_pagesz;
1613
1614 if (unlikely(ops->unmap == NULL ||
1615 domain->pgsize_bitmap == 0UL))
1616 return 0;
1617
1618 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1619 return 0;
1620
1621 /* find out the minimum page size supported */
1622 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1623
1624 /*
1625 * The virtual address, as well as the size of the mapping, must be
1626 * aligned (at least) to the size of the smallest page supported
1627 * by the hardware
1628 */
1629 if (!IS_ALIGNED(iova | size, min_pagesz)) {
1630 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1631 iova, size, min_pagesz);
1632 return 0;
1633 }
1634
1635 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1636
1637 /*
1638 * Keep iterating until we either unmap 'size' bytes (or more)
1639 * or we hit an area that isn't mapped.
1640 */
1641 while (unmapped < size) {
1642 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1643
1644 unmapped_page = ops->unmap(domain, iova, pgsize);
1645 if (!unmapped_page)
1646 break;
1647
1648 if (sync && ops->iotlb_range_add)
1649 ops->iotlb_range_add(domain, iova, pgsize);
1650
1651 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1652 iova, unmapped_page);
1653
1654 iova += unmapped_page;
1655 unmapped += unmapped_page;
1656 }
1657
1658 if (sync && ops->iotlb_sync)
1659 ops->iotlb_sync(domain);
1660
1661 trace_unmap(orig_iova, size, unmapped);
1662 return unmapped;
1663}
1664
1665size_t iommu_unmap(struct iommu_domain *domain,
1666 unsigned long iova, size_t size)
1667{
1668 return __iommu_unmap(domain, iova, size, true);
1669}
1670EXPORT_SYMBOL_GPL(iommu_unmap);
1671
1672size_t iommu_unmap_fast(struct iommu_domain *domain,
1673 unsigned long iova, size_t size)
1674{
1675 return __iommu_unmap(domain, iova, size, false);
1676}
1677EXPORT_SYMBOL_GPL(iommu_unmap_fast);
1678
1679size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1680 struct scatterlist *sg, unsigned int nents, int prot)
1681{
1682 struct scatterlist *s;
1683 size_t mapped = 0;
1684 unsigned int i, min_pagesz;
1685 int ret;
1686
1687 if (unlikely(domain->pgsize_bitmap == 0UL))
1688 return 0;
1689
1690 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1691
1692 for_each_sg(sg, s, nents, i) {
1693 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1694
1695 /*
1696 * We are mapping on IOMMU page boundaries, so offset within
1697 * the page must be 0. However, the IOMMU may support pages
1698 * smaller than PAGE_SIZE, so s->offset may still represent
1699 * an offset of that boundary within the CPU page.
1700 */
1701 if (!IS_ALIGNED(s->offset, min_pagesz))
1702 goto out_err;
1703
1704 ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1705 if (ret)
1706 goto out_err;
1707
1708 mapped += s->length;
1709 }
1710
1711 return mapped;
1712
1713out_err:
1714 /* undo mappings already done */
1715 iommu_unmap(domain, iova, mapped);
1716
1717 return 0;
1718
1719}
1720EXPORT_SYMBOL_GPL(iommu_map_sg);
1721
1722int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1723 phys_addr_t paddr, u64 size, int prot)
1724{
1725 if (unlikely(domain->ops->domain_window_enable == NULL))
1726 return -ENODEV;
1727
1728 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1729 prot);
1730}
1731EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1732
1733void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1734{
1735 if (unlikely(domain->ops->domain_window_disable == NULL))
1736 return;
1737
1738 return domain->ops->domain_window_disable(domain, wnd_nr);
1739}
1740EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1741
1742/**
1743 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
1744 * @domain: the iommu domain where the fault has happened
1745 * @dev: the device where the fault has happened
1746 * @iova: the faulting address
1747 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
1748 *
1749 * This function should be called by the low-level IOMMU implementations
1750 * whenever IOMMU faults happen, to allow high-level users, that are
1751 * interested in such events, to know about them.
1752 *
1753 * This event may be useful for several possible use cases:
1754 * - mere logging of the event
1755 * - dynamic TLB/PTE loading
1756 * - if restarting of the faulting device is required
1757 *
1758 * Returns 0 on success and an appropriate error code otherwise (if dynamic
1759 * PTE/TLB loading will one day be supported, implementations will be able
1760 * to tell whether it succeeded or not according to this return value).
1761 *
1762 * Specifically, -ENOSYS is returned if a fault handler isn't installed
1763 * (though fault handlers can also return -ENOSYS, in case they want to
1764 * elicit the default behavior of the IOMMU drivers).
1765 */
1766int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
1767 unsigned long iova, int flags)
1768{
1769 int ret = -ENOSYS;
1770
1771 /*
1772 * if upper layers showed interest and installed a fault handler,
1773 * invoke it.
1774 */
1775 if (domain->handler)
1776 ret = domain->handler(domain, dev, iova, flags,
1777 domain->handler_token);
1778
1779 trace_io_page_fault(dev, iova, flags);
1780 return ret;
1781}
1782EXPORT_SYMBOL_GPL(report_iommu_fault);
1783
1784static int __init iommu_init(void)
1785{
1786 iommu_group_kset = kset_create_and_add("iommu_groups",
1787 NULL, kernel_kobj);
1788 BUG_ON(!iommu_group_kset);
1789
1790 iommu_debugfs_setup();
1791
1792 return 0;
1793}
1794core_initcall(iommu_init);
1795
1796int iommu_domain_get_attr(struct iommu_domain *domain,
1797 enum iommu_attr attr, void *data)
1798{
1799 struct iommu_domain_geometry *geometry;
1800 bool *paging;
1801 int ret = 0;
1802 u32 *count;
1803
1804 switch (attr) {
1805 case DOMAIN_ATTR_GEOMETRY:
1806 geometry = data;
1807 *geometry = domain->geometry;
1808
1809 break;
1810 case DOMAIN_ATTR_PAGING:
1811 paging = data;
1812 *paging = (domain->pgsize_bitmap != 0UL);
1813 break;
1814 case DOMAIN_ATTR_WINDOWS:
1815 count = data;
1816
1817 if (domain->ops->domain_get_windows != NULL)
1818 *count = domain->ops->domain_get_windows(domain);
1819 else
1820 ret = -ENODEV;
1821
1822 break;
1823 default:
1824 if (!domain->ops->domain_get_attr)
1825 return -EINVAL;
1826
1827 ret = domain->ops->domain_get_attr(domain, attr, data);
1828 }
1829
1830 return ret;
1831}
1832EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1833
1834int iommu_domain_set_attr(struct iommu_domain *domain,
1835 enum iommu_attr attr, void *data)
1836{
1837 int ret = 0;
1838 u32 *count;
1839
1840 switch (attr) {
1841 case DOMAIN_ATTR_WINDOWS:
1842 count = data;
1843
1844 if (domain->ops->domain_set_windows != NULL)
1845 ret = domain->ops->domain_set_windows(domain, *count);
1846 else
1847 ret = -ENODEV;
1848
1849 break;
1850 default:
1851 if (domain->ops->domain_set_attr == NULL)
1852 return -EINVAL;
1853
1854 ret = domain->ops->domain_set_attr(domain, attr, data);
1855 }
1856
1857 return ret;
1858}
1859EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1860
1861void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1862{
1863 const struct iommu_ops *ops = dev->bus->iommu_ops;
1864
1865 if (ops && ops->get_resv_regions)
1866 ops->get_resv_regions(dev, list);
1867}
1868
1869void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1870{
1871 const struct iommu_ops *ops = dev->bus->iommu_ops;
1872
1873 if (ops && ops->put_resv_regions)
1874 ops->put_resv_regions(dev, list);
1875}
1876
1877struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1878 size_t length, int prot,
1879 enum iommu_resv_type type)
1880{
1881 struct iommu_resv_region *region;
1882
1883 region = kzalloc(sizeof(*region), GFP_KERNEL);
1884 if (!region)
1885 return NULL;
1886
1887 INIT_LIST_HEAD(&region->list);
1888 region->start = start;
1889 region->length = length;
1890 region->prot = prot;
1891 region->type = type;
1892 return region;
1893}
1894
1895/* Request that a device is direct mapped by the IOMMU */
1896int iommu_request_dm_for_dev(struct device *dev)
1897{
1898 struct iommu_domain *dm_domain;
1899 struct iommu_group *group;
1900 int ret;
1901
1902 /* Device must already be in a group before calling this function */
1903 group = iommu_group_get_for_dev(dev);
1904 if (IS_ERR(group))
1905 return PTR_ERR(group);
1906
1907 mutex_lock(&group->mutex);
1908
1909 /* Check if the default domain is already direct mapped */
1910 ret = 0;
1911 if (group->default_domain &&
1912 group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1913 goto out;
1914
1915 /* Don't change mappings of existing devices */
1916 ret = -EBUSY;
1917 if (iommu_group_device_count(group) != 1)
1918 goto out;
1919
1920 /* Allocate a direct mapped domain */
1921 ret = -ENOMEM;
1922 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1923 if (!dm_domain)
1924 goto out;
1925
1926 /* Attach the device to the domain */
1927 ret = __iommu_attach_group(dm_domain, group);
1928 if (ret) {
1929 iommu_domain_free(dm_domain);
1930 goto out;
1931 }
1932
1933 /* Make the direct mapped domain the default for this group */
1934 if (group->default_domain)
1935 iommu_domain_free(group->default_domain);
1936 group->default_domain = dm_domain;
1937
1938 pr_info("Using direct mapping for device %s\n", dev_name(dev));
1939
1940 ret = 0;
1941out:
1942 mutex_unlock(&group->mutex);
1943 iommu_group_put(group);
1944
1945 return ret;
1946}
1947
1948const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1949{
1950 const struct iommu_ops *ops = NULL;
1951 struct iommu_device *iommu;
1952
1953 spin_lock(&iommu_device_lock);
1954 list_for_each_entry(iommu, &iommu_device_list, list)
1955 if (iommu->fwnode == fwnode) {
1956 ops = iommu->ops;
1957 break;
1958 }
1959 spin_unlock(&iommu_device_lock);
1960 return ops;
1961}
1962
1963int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1964 const struct iommu_ops *ops)
1965{
1966 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1967
1968 if (fwspec)
1969 return ops == fwspec->ops ? 0 : -EINVAL;
1970
1971 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1972 if (!fwspec)
1973 return -ENOMEM;
1974
1975 of_node_get(to_of_node(iommu_fwnode));
1976 fwspec->iommu_fwnode = iommu_fwnode;
1977 fwspec->ops = ops;
1978 dev_iommu_fwspec_set(dev, fwspec);
1979 return 0;
1980}
1981EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1982
1983void iommu_fwspec_free(struct device *dev)
1984{
1985 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1986
1987 if (fwspec) {
1988 fwnode_handle_put(fwspec->iommu_fwnode);
1989 kfree(fwspec);
1990 dev_iommu_fwspec_set(dev, NULL);
1991 }
1992}
1993EXPORT_SYMBOL_GPL(iommu_fwspec_free);
1994
1995int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
1996{
1997 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1998 size_t size;
1999 int i;
2000
2001 if (!fwspec)
2002 return -EINVAL;
2003
2004 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2005 if (size > sizeof(*fwspec)) {
2006 fwspec = krealloc(fwspec, size, GFP_KERNEL);
2007 if (!fwspec)
2008 return -ENOMEM;
2009
2010 dev_iommu_fwspec_set(dev, fwspec);
2011 }
2012
2013 for (i = 0; i < num_ids; i++)
2014 fwspec->ids[fwspec->num_ids + i] = ids[i];
2015
2016 fwspec->num_ids += num_ids;
2017 return 0;
2018}
2019EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);