| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright 2019 Google LLC |
| 4 | */ |
| 5 | |
| 6 | /* |
| 7 | * Refer to Documentation/block/inline-encryption.rst for detailed explanation. |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "blk-crypto: " fmt |
| 11 | |
| 12 | #include <linux/blk-crypto.h> |
| 13 | #include <linux/blkdev.h> |
| 14 | #include <linux/keyslot-manager.h> |
| 15 | #include <linux/random.h> |
| 16 | #include <linux/siphash.h> |
| 17 | |
| 18 | #include "blk-crypto-internal.h" |
| 19 | |
| 20 | const struct blk_crypto_mode blk_crypto_modes[] = { |
| 21 | [BLK_ENCRYPTION_MODE_AES_256_XTS] = { |
| 22 | .cipher_str = "xts(aes)", |
| 23 | .keysize = 64, |
| 24 | .ivsize = 16, |
| 25 | }, |
| 26 | [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { |
| 27 | .cipher_str = "essiv(cbc(aes),sha256)", |
| 28 | .keysize = 16, |
| 29 | .ivsize = 16, |
| 30 | }, |
| 31 | [BLK_ENCRYPTION_MODE_ADIANTUM] = { |
| 32 | .cipher_str = "adiantum(xchacha12,aes)", |
| 33 | .keysize = 32, |
| 34 | .ivsize = 32, |
| 35 | }, |
| 36 | }; |
| 37 | |
| 38 | /* Check that all I/O segments are data unit aligned */ |
| 39 | static int bio_crypt_check_alignment(struct bio *bio) |
| 40 | { |
| 41 | const unsigned int data_unit_size = |
| 42 | bio->bi_crypt_context->bc_key->data_unit_size; |
| 43 | struct bvec_iter iter; |
| 44 | struct bio_vec bv; |
| 45 | |
| 46 | bio_for_each_segment(bv, bio, iter) { |
| 47 | if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) |
| 48 | return -EIO; |
| 49 | } |
| 50 | return 0; |
| 51 | } |
| 52 | |
| 53 | /** |
| 54 | * blk_crypto_submit_bio - handle submitting bio for inline encryption |
| 55 | * |
| 56 | * @bio_ptr: pointer to original bio pointer |
| 57 | * |
| 58 | * If the bio doesn't have inline encryption enabled or the submitter already |
| 59 | * specified a keyslot for the target device, do nothing. Else, a raw key must |
| 60 | * have been provided, so acquire a device keyslot for it if supported. Else, |
| 61 | * use the crypto API fallback. |
| 62 | * |
| 63 | * When the crypto API fallback is used for encryption, blk-crypto may choose to |
| 64 | * split the bio into 2 - the first one that will continue to be processed and |
| 65 | * the second one that will be resubmitted via generic_make_request. |
| 66 | * A bounce bio will be allocated to encrypt the contents of the aforementioned |
| 67 | * "first one", and *bio_ptr will be updated to this bounce bio. |
| 68 | * |
| 69 | * Return: 0 if bio submission should continue; nonzero if bio_endio() was |
| 70 | * already called so bio submission should abort. |
| 71 | */ |
| 72 | int blk_crypto_submit_bio(struct bio **bio_ptr) |
| 73 | { |
| 74 | struct bio *bio = *bio_ptr; |
| 75 | struct request_queue *q; |
| 76 | struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
| 77 | int err; |
| 78 | |
| 79 | if (!bc || !bio_has_data(bio)) |
| 80 | return 0; |
| 81 | |
| 82 | /* |
| 83 | * When a read bio is marked for fallback decryption, its bi_iter is |
| 84 | * saved so that when we decrypt the bio later, we know what part of it |
| 85 | * was marked for fallback decryption (when the bio is passed down after |
| 86 | * blk_crypto_submit bio, it may be split or advanced so we cannot rely |
| 87 | * on the bi_iter while decrypting in blk_crypto_endio) |
| 88 | */ |
| 89 | if (bio_crypt_fallback_crypted(bc)) |
| 90 | return 0; |
| 91 | |
| 92 | err = bio_crypt_check_alignment(bio); |
| 93 | if (err) { |
| 94 | bio->bi_status = BLK_STS_IOERR; |
| 95 | goto out; |
| 96 | } |
| 97 | |
| 98 | q = bio->bi_disk->queue; |
| 99 | |
| 100 | if (bc->bc_ksm) { |
| 101 | /* Key already programmed into device? */ |
| 102 | if (q->ksm == bc->bc_ksm) |
| 103 | return 0; |
| 104 | |
| 105 | /* Nope, release the existing keyslot. */ |
| 106 | bio_crypt_ctx_release_keyslot(bc); |
| 107 | } |
| 108 | |
| 109 | /* Get device keyslot if supported */ |
| 110 | if (keyslot_manager_crypto_mode_supported(q->ksm, |
| 111 | bc->bc_key->crypto_mode, |
| 112 | bc->bc_key->data_unit_size)) { |
| 113 | err = bio_crypt_ctx_acquire_keyslot(bc, q->ksm); |
| 114 | if (!err) |
| 115 | return 0; |
| 116 | |
| 117 | pr_warn_once("Failed to acquire keyslot for %s (err=%d). Falling back to crypto API.\n", |
| 118 | bio->bi_disk->disk_name, err); |
| 119 | } |
| 120 | |
| 121 | /* Fallback to crypto API */ |
| 122 | err = blk_crypto_fallback_submit_bio(bio_ptr); |
| 123 | if (err) |
| 124 | goto out; |
| 125 | |
| 126 | return 0; |
| 127 | out: |
| 128 | bio_endio(*bio_ptr); |
| 129 | return err; |
| 130 | } |
| 131 | |
| 132 | /** |
| 133 | * blk_crypto_endio - clean up bio w.r.t inline encryption during bio_endio |
| 134 | * |
| 135 | * @bio: the bio to clean up |
| 136 | * |
| 137 | * If blk_crypto_submit_bio decided to fallback to crypto API for this bio, |
| 138 | * we queue the bio for decryption into a workqueue and return false, |
| 139 | * and call bio_endio(bio) at a later time (after the bio has been decrypted). |
| 140 | * |
| 141 | * If the bio is not to be decrypted by the crypto API, this function releases |
| 142 | * the reference to the keyslot that blk_crypto_submit_bio got. |
| 143 | * |
| 144 | * Return: true if bio_endio should continue; false otherwise (bio_endio will |
| 145 | * be called again when bio has been decrypted). |
| 146 | */ |
| 147 | bool blk_crypto_endio(struct bio *bio) |
| 148 | { |
| 149 | struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
| 150 | |
| 151 | if (!bc) |
| 152 | return true; |
| 153 | |
| 154 | if (bio_crypt_fallback_crypted(bc)) { |
| 155 | /* |
| 156 | * The only bios who's crypto is handled by the blk-crypto |
| 157 | * fallback when they reach here are those with |
| 158 | * bio_data_dir(bio) == READ, since WRITE bios that are |
| 159 | * encrypted by the crypto API fallback are handled by |
| 160 | * blk_crypto_encrypt_endio(). |
| 161 | */ |
| 162 | return !blk_crypto_queue_decrypt_bio(bio); |
| 163 | } |
| 164 | |
| 165 | if (bc->bc_keyslot >= 0) |
| 166 | bio_crypt_ctx_release_keyslot(bc); |
| 167 | |
| 168 | return true; |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * blk_crypto_init_key() - Prepare a key for use with blk-crypto |
| 173 | * @blk_key: Pointer to the blk_crypto_key to initialize. |
| 174 | * @raw_key: Pointer to the raw key. |
| 175 | * @raw_key_size: Size of raw key. Must be at least the required size for the |
| 176 | * chosen @crypto_mode; see blk_crypto_modes[]. (It's allowed |
| 177 | * to be longer than the mode's actual key size, in order to |
| 178 | * support inline encryption hardware that accepts wrapped keys.) |
| 179 | * @crypto_mode: identifier for the encryption algorithm to use |
| 180 | * @data_unit_size: the data unit size to use for en/decryption |
| 181 | * |
| 182 | * Return: The blk_crypto_key that was prepared, or an ERR_PTR() on error. When |
| 183 | * done using the key, it must be freed with blk_crypto_free_key(). |
| 184 | */ |
| 185 | int blk_crypto_init_key(struct blk_crypto_key *blk_key, |
| 186 | const u8 *raw_key, unsigned int raw_key_size, |
| 187 | enum blk_crypto_mode_num crypto_mode, |
| 188 | unsigned int data_unit_size) |
| 189 | { |
| 190 | const struct blk_crypto_mode *mode; |
| 191 | static siphash_key_t hash_key; |
| 192 | |
| 193 | memset(blk_key, 0, sizeof(*blk_key)); |
| 194 | |
| 195 | if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) |
| 196 | return -EINVAL; |
| 197 | |
| 198 | BUILD_BUG_ON(BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE < BLK_CRYPTO_MAX_KEY_SIZE); |
| 199 | |
| 200 | mode = &blk_crypto_modes[crypto_mode]; |
| 201 | if (raw_key_size < mode->keysize || |
| 202 | raw_key_size > BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE) |
| 203 | return -EINVAL; |
| 204 | |
| 205 | if (!is_power_of_2(data_unit_size)) |
| 206 | return -EINVAL; |
| 207 | |
| 208 | blk_key->crypto_mode = crypto_mode; |
| 209 | blk_key->data_unit_size = data_unit_size; |
| 210 | blk_key->data_unit_size_bits = ilog2(data_unit_size); |
| 211 | blk_key->size = raw_key_size; |
| 212 | memcpy(blk_key->raw, raw_key, raw_key_size); |
| 213 | |
| 214 | /* |
| 215 | * The keyslot manager uses the SipHash of the key to implement O(1) key |
| 216 | * lookups while avoiding leaking information about the keys. It's |
| 217 | * precomputed here so that it only needs to be computed once per key. |
| 218 | */ |
| 219 | get_random_once(&hash_key, sizeof(hash_key)); |
| 220 | blk_key->hash = siphash(raw_key, raw_key_size, &hash_key); |
| 221 | |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | /** |
| 226 | * blk_crypto_evict_key() - Evict a key from any inline encryption hardware |
| 227 | * it may have been programmed into |
| 228 | * @q: The request queue who's keyslot manager this key might have been |
| 229 | * programmed into |
| 230 | * @key: The key to evict |
| 231 | * |
| 232 | * Upper layers (filesystems) should call this function to ensure that a key |
| 233 | * is evicted from hardware that it might have been programmed into. This |
| 234 | * will call keyslot_manager_evict_key on the queue's keyslot manager, if one |
| 235 | * exists, and supports the crypto algorithm with the specified data unit size. |
| 236 | * Otherwise, it will evict the key from the blk-crypto-fallback's ksm. |
| 237 | * |
| 238 | * Return: 0 on success, -err on error. |
| 239 | */ |
| 240 | int blk_crypto_evict_key(struct request_queue *q, |
| 241 | const struct blk_crypto_key *key) |
| 242 | { |
| 243 | if (q->ksm && |
| 244 | keyslot_manager_crypto_mode_supported(q->ksm, key->crypto_mode, |
| 245 | key->data_unit_size)) |
| 246 | return keyslot_manager_evict_key(q->ksm, key); |
| 247 | |
| 248 | return blk_crypto_fallback_evict_key(key); |
| 249 | } |