| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * mm/readahead.c - address_space-level file readahead. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2002, Linus Torvalds | 
|  | 5 | * | 
|  | 6 | * 09Apr2002	Andrew Morton | 
|  | 7 | *		Initial version. | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <linux/kernel.h> | 
|  | 11 | #include <linux/dax.h> | 
|  | 12 | #include <linux/gfp.h> | 
|  | 13 | #include <linux/export.h> | 
|  | 14 | #include <linux/blkdev.h> | 
|  | 15 | #include <linux/backing-dev.h> | 
|  | 16 | #include <linux/task_io_accounting_ops.h> | 
|  | 17 | #include <linux/pagevec.h> | 
|  | 18 | #include <linux/pagemap.h> | 
|  | 19 | #include <linux/syscalls.h> | 
|  | 20 | #include <linux/file.h> | 
|  | 21 | #include <linux/mm_inline.h> | 
|  | 22 | #include <linux/blk-cgroup.h> | 
|  | 23 | #include <linux/fadvise.h> | 
|  | 24 |  | 
|  | 25 | #include "internal.h" | 
|  | 26 |  | 
|  | 27 | /* | 
|  | 28 | * Initialise a struct file's readahead state.  Assumes that the caller has | 
|  | 29 | * memset *ra to zero. | 
|  | 30 | */ | 
|  | 31 | void | 
|  | 32 | file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) | 
|  | 33 | { | 
|  | 34 | ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; | 
|  | 35 | ra->prev_pos = -1; | 
|  | 36 | } | 
|  | 37 | EXPORT_SYMBOL_GPL(file_ra_state_init); | 
|  | 38 |  | 
|  | 39 | /* | 
|  | 40 | * see if a page needs releasing upon read_cache_pages() failure | 
|  | 41 | * - the caller of read_cache_pages() may have set PG_private or PG_fscache | 
|  | 42 | *   before calling, such as the NFS fs marking pages that are cached locally | 
|  | 43 | *   on disk, thus we need to give the fs a chance to clean up in the event of | 
|  | 44 | *   an error | 
|  | 45 | */ | 
|  | 46 | static void read_cache_pages_invalidate_page(struct address_space *mapping, | 
|  | 47 | struct page *page) | 
|  | 48 | { | 
|  | 49 | if (page_has_private(page)) { | 
|  | 50 | if (!trylock_page(page)) | 
|  | 51 | BUG(); | 
|  | 52 | page->mapping = mapping; | 
|  | 53 | do_invalidatepage(page, 0, PAGE_SIZE); | 
|  | 54 | page->mapping = NULL; | 
|  | 55 | unlock_page(page); | 
|  | 56 | } | 
|  | 57 | put_page(page); | 
|  | 58 | } | 
|  | 59 |  | 
|  | 60 | /* | 
|  | 61 | * release a list of pages, invalidating them first if need be | 
|  | 62 | */ | 
|  | 63 | static void read_cache_pages_invalidate_pages(struct address_space *mapping, | 
|  | 64 | struct list_head *pages) | 
|  | 65 | { | 
|  | 66 | struct page *victim; | 
|  | 67 |  | 
|  | 68 | while (!list_empty(pages)) { | 
|  | 69 | victim = lru_to_page(pages); | 
|  | 70 | list_del(&victim->lru); | 
|  | 71 | read_cache_pages_invalidate_page(mapping, victim); | 
|  | 72 | } | 
|  | 73 | } | 
|  | 74 |  | 
|  | 75 | /** | 
|  | 76 | * read_cache_pages - populate an address space with some pages & start reads against them | 
|  | 77 | * @mapping: the address_space | 
|  | 78 | * @pages: The address of a list_head which contains the target pages.  These | 
|  | 79 | *   pages have their ->index populated and are otherwise uninitialised. | 
|  | 80 | * @filler: callback routine for filling a single page. | 
|  | 81 | * @data: private data for the callback routine. | 
|  | 82 | * | 
|  | 83 | * Hides the details of the LRU cache etc from the filesystems. | 
|  | 84 | */ | 
|  | 85 | int read_cache_pages(struct address_space *mapping, struct list_head *pages, | 
|  | 86 | int (*filler)(void *, struct page *), void *data) | 
|  | 87 | { | 
|  | 88 | struct page *page; | 
|  | 89 | int ret = 0; | 
|  | 90 |  | 
|  | 91 | while (!list_empty(pages)) { | 
|  | 92 | page = lru_to_page(pages); | 
|  | 93 | list_del(&page->lru); | 
|  | 94 | if (add_to_page_cache_lru(page, mapping, page->index, | 
|  | 95 | readahead_gfp_mask(mapping))) { | 
|  | 96 | read_cache_pages_invalidate_page(mapping, page); | 
|  | 97 | continue; | 
|  | 98 | } | 
|  | 99 | put_page(page); | 
|  | 100 |  | 
|  | 101 | ret = filler(data, page); | 
|  | 102 | if (unlikely(ret)) { | 
|  | 103 | read_cache_pages_invalidate_pages(mapping, pages); | 
|  | 104 | break; | 
|  | 105 | } | 
|  | 106 | task_io_account_read(PAGE_SIZE); | 
|  | 107 | } | 
|  | 108 | return ret; | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | EXPORT_SYMBOL(read_cache_pages); | 
|  | 112 |  | 
|  | 113 | static int read_pages(struct address_space *mapping, struct file *filp, | 
|  | 114 | struct list_head *pages, unsigned int nr_pages, gfp_t gfp) | 
|  | 115 | { | 
|  | 116 | struct blk_plug plug; | 
|  | 117 | unsigned page_idx; | 
|  | 118 | int ret; | 
|  | 119 |  | 
|  | 120 | blk_start_plug(&plug); | 
|  | 121 |  | 
|  | 122 | if (mapping->a_ops->readpages) { | 
|  | 123 | ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); | 
|  | 124 | /* Clean up the remaining pages */ | 
|  | 125 | put_pages_list(pages); | 
|  | 126 | goto out; | 
|  | 127 | } | 
|  | 128 |  | 
|  | 129 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { | 
|  | 130 | struct page *page = lru_to_page(pages); | 
|  | 131 | list_del(&page->lru); | 
|  | 132 | if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) | 
|  | 133 | mapping->a_ops->readpage(filp, page); | 
|  | 134 | put_page(page); | 
|  | 135 | } | 
|  | 136 | ret = 0; | 
|  | 137 |  | 
|  | 138 | out: | 
|  | 139 | blk_finish_plug(&plug); | 
|  | 140 |  | 
|  | 141 | return ret; | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | /* | 
|  | 145 | * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates | 
|  | 146 | * the pages first, then submits them for I/O. This avoids the very bad | 
|  | 147 | * behaviour which would occur if page allocations are causing VM writeback. | 
|  | 148 | * We really don't want to intermingle reads and writes like that. | 
|  | 149 | * | 
|  | 150 | * Returns the number of pages requested, or the maximum amount of I/O allowed. | 
|  | 151 | */ | 
|  | 152 | unsigned int __do_page_cache_readahead(struct address_space *mapping, | 
|  | 153 | struct file *filp, pgoff_t offset, unsigned long nr_to_read, | 
|  | 154 | unsigned long lookahead_size) | 
|  | 155 | { | 
|  | 156 | struct inode *inode = mapping->host; | 
|  | 157 | struct page *page; | 
|  | 158 | unsigned long end_index;	/* The last page we want to read */ | 
|  | 159 | LIST_HEAD(page_pool); | 
|  | 160 | int page_idx; | 
|  | 161 | unsigned int nr_pages = 0; | 
|  | 162 | loff_t isize = i_size_read(inode); | 
|  | 163 | gfp_t gfp_mask = readahead_gfp_mask(mapping); | 
|  | 164 |  | 
|  | 165 | if (isize == 0) | 
|  | 166 | goto out; | 
|  | 167 |  | 
|  | 168 | end_index = ((isize - 1) >> PAGE_SHIFT); | 
|  | 169 |  | 
|  | 170 | /* | 
|  | 171 | * Preallocate as many pages as we will need. | 
|  | 172 | */ | 
|  | 173 | for (page_idx = 0; page_idx < nr_to_read; page_idx++) { | 
|  | 174 | pgoff_t page_offset = offset + page_idx; | 
|  | 175 |  | 
|  | 176 | if (page_offset > end_index) | 
|  | 177 | break; | 
|  | 178 |  | 
|  | 179 | rcu_read_lock(); | 
|  | 180 | page = radix_tree_lookup(&mapping->i_pages, page_offset); | 
|  | 181 | rcu_read_unlock(); | 
|  | 182 | if (page && !radix_tree_exceptional_entry(page)) { | 
|  | 183 | /* | 
|  | 184 | * Page already present?  Kick off the current batch of | 
|  | 185 | * contiguous pages before continuing with the next | 
|  | 186 | * batch. | 
|  | 187 | */ | 
|  | 188 | if (nr_pages) | 
|  | 189 | read_pages(mapping, filp, &page_pool, nr_pages, | 
|  | 190 | gfp_mask); | 
|  | 191 | nr_pages = 0; | 
|  | 192 | continue; | 
|  | 193 | } | 
|  | 194 |  | 
|  | 195 | page = __page_cache_alloc(gfp_mask); | 
|  | 196 | if (!page) | 
|  | 197 | break; | 
|  | 198 | page->index = page_offset; | 
|  | 199 | list_add(&page->lru, &page_pool); | 
|  | 200 | if (page_idx == nr_to_read - lookahead_size) | 
|  | 201 | SetPageReadahead(page); | 
|  | 202 | nr_pages++; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | /* | 
|  | 206 | * Now start the IO.  We ignore I/O errors - if the page is not | 
|  | 207 | * uptodate then the caller will launch readpage again, and | 
|  | 208 | * will then handle the error. | 
|  | 209 | */ | 
|  | 210 | if (nr_pages) | 
|  | 211 | read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); | 
|  | 212 | BUG_ON(!list_empty(&page_pool)); | 
|  | 213 | out: | 
|  | 214 | return nr_pages; | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | /* | 
|  | 218 | * Chunk the readahead into 2 megabyte units, so that we don't pin too much | 
|  | 219 | * memory at once. | 
|  | 220 | */ | 
|  | 221 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
|  | 222 | pgoff_t offset, unsigned long nr_to_read) | 
|  | 223 | { | 
|  | 224 | struct backing_dev_info *bdi = inode_to_bdi(mapping->host); | 
|  | 225 | struct file_ra_state *ra = &filp->f_ra; | 
|  | 226 | unsigned long max_pages; | 
|  | 227 |  | 
|  | 228 | if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) | 
|  | 229 | return -EINVAL; | 
|  | 230 |  | 
|  | 231 | /* | 
|  | 232 | * If the request exceeds the readahead window, allow the read to | 
|  | 233 | * be up to the optimal hardware IO size | 
|  | 234 | */ | 
|  | 235 | max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); | 
|  | 236 | nr_to_read = min(nr_to_read, max_pages); | 
|  | 237 | while (nr_to_read) { | 
|  | 238 | unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; | 
|  | 239 |  | 
|  | 240 | if (this_chunk > nr_to_read) | 
|  | 241 | this_chunk = nr_to_read; | 
|  | 242 | __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); | 
|  | 243 |  | 
|  | 244 | offset += this_chunk; | 
|  | 245 | nr_to_read -= this_chunk; | 
|  | 246 | } | 
|  | 247 | return 0; | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | /* | 
|  | 251 | * Set the initial window size, round to next power of 2 and square | 
|  | 252 | * for small size, x 4 for medium, and x 2 for large | 
|  | 253 | * for 128k (32 page) max ra | 
|  | 254 | * 1-8 page = 32k initial, > 8 page = 128k initial | 
|  | 255 | */ | 
|  | 256 | static unsigned long get_init_ra_size(unsigned long size, unsigned long max) | 
|  | 257 | { | 
|  | 258 | unsigned long newsize = roundup_pow_of_two(size); | 
|  | 259 |  | 
|  | 260 | if (newsize <= max / 32) | 
|  | 261 | newsize = newsize * 4; | 
|  | 262 | else if (newsize <= max / 4) | 
|  | 263 | newsize = newsize * 2; | 
|  | 264 | else | 
|  | 265 | newsize = max; | 
|  | 266 |  | 
|  | 267 | return newsize; | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | /* | 
|  | 271 | *  Get the previous window size, ramp it up, and | 
|  | 272 | *  return it as the new window size. | 
|  | 273 | */ | 
|  | 274 | static unsigned long get_next_ra_size(struct file_ra_state *ra, | 
|  | 275 | unsigned long max) | 
|  | 276 | { | 
|  | 277 | unsigned long cur = ra->size; | 
|  | 278 | unsigned long newsize; | 
|  | 279 |  | 
|  | 280 | if (cur < max / 16) | 
|  | 281 | newsize = 4 * cur; | 
|  | 282 | else | 
|  | 283 | newsize = 2 * cur; | 
|  | 284 |  | 
|  | 285 | return min(newsize, max); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* | 
|  | 289 | * On-demand readahead design. | 
|  | 290 | * | 
|  | 291 | * The fields in struct file_ra_state represent the most-recently-executed | 
|  | 292 | * readahead attempt: | 
|  | 293 | * | 
|  | 294 | *                        |<----- async_size ---------| | 
|  | 295 | *     |------------------- size -------------------->| | 
|  | 296 | *     |==================#===========================| | 
|  | 297 | *     ^start             ^page marked with PG_readahead | 
|  | 298 | * | 
|  | 299 | * To overlap application thinking time and disk I/O time, we do | 
|  | 300 | * `readahead pipelining': Do not wait until the application consumed all | 
|  | 301 | * readahead pages and stalled on the missing page at readahead_index; | 
|  | 302 | * Instead, submit an asynchronous readahead I/O as soon as there are | 
|  | 303 | * only async_size pages left in the readahead window. Normally async_size | 
|  | 304 | * will be equal to size, for maximum pipelining. | 
|  | 305 | * | 
|  | 306 | * In interleaved sequential reads, concurrent streams on the same fd can | 
|  | 307 | * be invalidating each other's readahead state. So we flag the new readahead | 
|  | 308 | * page at (start+size-async_size) with PG_readahead, and use it as readahead | 
|  | 309 | * indicator. The flag won't be set on already cached pages, to avoid the | 
|  | 310 | * readahead-for-nothing fuss, saving pointless page cache lookups. | 
|  | 311 | * | 
|  | 312 | * prev_pos tracks the last visited byte in the _previous_ read request. | 
|  | 313 | * It should be maintained by the caller, and will be used for detecting | 
|  | 314 | * small random reads. Note that the readahead algorithm checks loosely | 
|  | 315 | * for sequential patterns. Hence interleaved reads might be served as | 
|  | 316 | * sequential ones. | 
|  | 317 | * | 
|  | 318 | * There is a special-case: if the first page which the application tries to | 
|  | 319 | * read happens to be the first page of the file, it is assumed that a linear | 
|  | 320 | * read is about to happen and the window is immediately set to the initial size | 
|  | 321 | * based on I/O request size and the max_readahead. | 
|  | 322 | * | 
|  | 323 | * The code ramps up the readahead size aggressively at first, but slow down as | 
|  | 324 | * it approaches max_readhead. | 
|  | 325 | */ | 
|  | 326 |  | 
|  | 327 | /* | 
|  | 328 | * Count contiguously cached pages from @offset-1 to @offset-@max, | 
|  | 329 | * this count is a conservative estimation of | 
|  | 330 | * 	- length of the sequential read sequence, or | 
|  | 331 | * 	- thrashing threshold in memory tight systems | 
|  | 332 | */ | 
|  | 333 | static pgoff_t count_history_pages(struct address_space *mapping, | 
|  | 334 | pgoff_t offset, unsigned long max) | 
|  | 335 | { | 
|  | 336 | pgoff_t head; | 
|  | 337 |  | 
|  | 338 | rcu_read_lock(); | 
|  | 339 | head = page_cache_prev_hole(mapping, offset - 1, max); | 
|  | 340 | rcu_read_unlock(); | 
|  | 341 |  | 
|  | 342 | return offset - 1 - head; | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | /* | 
|  | 346 | * page cache context based read-ahead | 
|  | 347 | */ | 
|  | 348 | static int try_context_readahead(struct address_space *mapping, | 
|  | 349 | struct file_ra_state *ra, | 
|  | 350 | pgoff_t offset, | 
|  | 351 | unsigned long req_size, | 
|  | 352 | unsigned long max) | 
|  | 353 | { | 
|  | 354 | pgoff_t size; | 
|  | 355 |  | 
|  | 356 | size = count_history_pages(mapping, offset, max); | 
|  | 357 |  | 
|  | 358 | /* | 
|  | 359 | * not enough history pages: | 
|  | 360 | * it could be a random read | 
|  | 361 | */ | 
|  | 362 | if (size <= req_size) | 
|  | 363 | return 0; | 
|  | 364 |  | 
|  | 365 | /* | 
|  | 366 | * starts from beginning of file: | 
|  | 367 | * it is a strong indication of long-run stream (or whole-file-read) | 
|  | 368 | */ | 
|  | 369 | if (size >= offset) | 
|  | 370 | size *= 2; | 
|  | 371 |  | 
|  | 372 | ra->start = offset; | 
|  | 373 | ra->size = min(size + req_size, max); | 
|  | 374 | ra->async_size = 1; | 
|  | 375 |  | 
|  | 376 | return 1; | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | /* | 
|  | 380 | * A minimal readahead algorithm for trivial sequential/random reads. | 
|  | 381 | */ | 
|  | 382 | static unsigned long | 
|  | 383 | ondemand_readahead(struct address_space *mapping, | 
|  | 384 | struct file_ra_state *ra, struct file *filp, | 
|  | 385 | bool hit_readahead_marker, pgoff_t offset, | 
|  | 386 | unsigned long req_size) | 
|  | 387 | { | 
|  | 388 | struct backing_dev_info *bdi = inode_to_bdi(mapping->host); | 
|  | 389 | unsigned long max_pages = ra->ra_pages; | 
|  | 390 | unsigned long add_pages; | 
|  | 391 | pgoff_t prev_offset; | 
|  | 392 |  | 
|  | 393 | /* | 
|  | 394 | * If the request exceeds the readahead window, allow the read to | 
|  | 395 | * be up to the optimal hardware IO size | 
|  | 396 | */ | 
|  | 397 | if (req_size > max_pages && bdi->io_pages > max_pages) | 
|  | 398 | max_pages = min(req_size, bdi->io_pages); | 
|  | 399 |  | 
|  | 400 | /* | 
|  | 401 | * start of file | 
|  | 402 | */ | 
|  | 403 | if (!offset) | 
|  | 404 | goto initial_readahead; | 
|  | 405 |  | 
|  | 406 | /* | 
|  | 407 | * It's the expected callback offset, assume sequential access. | 
|  | 408 | * Ramp up sizes, and push forward the readahead window. | 
|  | 409 | */ | 
|  | 410 | if ((offset == (ra->start + ra->size - ra->async_size) || | 
|  | 411 | offset == (ra->start + ra->size))) { | 
|  | 412 | ra->start += ra->size; | 
|  | 413 | ra->size = get_next_ra_size(ra, max_pages); | 
|  | 414 | ra->async_size = ra->size; | 
|  | 415 | goto readit; | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | /* | 
|  | 419 | * Hit a marked page without valid readahead state. | 
|  | 420 | * E.g. interleaved reads. | 
|  | 421 | * Query the pagecache for async_size, which normally equals to | 
|  | 422 | * readahead size. Ramp it up and use it as the new readahead size. | 
|  | 423 | */ | 
|  | 424 | if (hit_readahead_marker) { | 
|  | 425 | pgoff_t start; | 
|  | 426 |  | 
|  | 427 | rcu_read_lock(); | 
|  | 428 | start = page_cache_next_hole(mapping, offset + 1, max_pages); | 
|  | 429 | rcu_read_unlock(); | 
|  | 430 |  | 
|  | 431 | if (!start || start - offset > max_pages) | 
|  | 432 | return 0; | 
|  | 433 |  | 
|  | 434 | ra->start = start; | 
|  | 435 | ra->size = start - offset;	/* old async_size */ | 
|  | 436 | ra->size += req_size; | 
|  | 437 | ra->size = get_next_ra_size(ra, max_pages); | 
|  | 438 | ra->async_size = ra->size; | 
|  | 439 | goto readit; | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | /* | 
|  | 443 | * oversize read | 
|  | 444 | */ | 
|  | 445 | if (req_size > max_pages) | 
|  | 446 | goto initial_readahead; | 
|  | 447 |  | 
|  | 448 | /* | 
|  | 449 | * sequential cache miss | 
|  | 450 | * trivial case: (offset - prev_offset) == 1 | 
|  | 451 | * unaligned reads: (offset - prev_offset) == 0 | 
|  | 452 | */ | 
|  | 453 | prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; | 
|  | 454 | if (offset - prev_offset <= 1UL) | 
|  | 455 | goto initial_readahead; | 
|  | 456 |  | 
|  | 457 | /* | 
|  | 458 | * Query the page cache and look for the traces(cached history pages) | 
|  | 459 | * that a sequential stream would leave behind. | 
|  | 460 | */ | 
|  | 461 | if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) | 
|  | 462 | goto readit; | 
|  | 463 |  | 
|  | 464 | /* | 
|  | 465 | * standalone, small random read | 
|  | 466 | * Read as is, and do not pollute the readahead state. | 
|  | 467 | */ | 
|  | 468 | return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); | 
|  | 469 |  | 
|  | 470 | initial_readahead: | 
|  | 471 | ra->start = offset; | 
|  | 472 | ra->size = get_init_ra_size(req_size, max_pages); | 
|  | 473 | ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; | 
|  | 474 |  | 
|  | 475 | readit: | 
|  | 476 | /* | 
|  | 477 | * Will this read hit the readahead marker made by itself? | 
|  | 478 | * If so, trigger the readahead marker hit now, and merge | 
|  | 479 | * the resulted next readahead window into the current one. | 
|  | 480 | * Take care of maximum IO pages as above. | 
|  | 481 | */ | 
|  | 482 | if (offset == ra->start && ra->size == ra->async_size) { | 
|  | 483 | add_pages = get_next_ra_size(ra, max_pages); | 
|  | 484 | if (ra->size + add_pages <= max_pages) { | 
|  | 485 | ra->async_size = add_pages; | 
|  | 486 | ra->size += add_pages; | 
|  | 487 | } else { | 
|  | 488 | ra->size = max_pages; | 
|  | 489 | ra->async_size = max_pages >> 1; | 
|  | 490 | } | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | return ra_submit(ra, mapping, filp); | 
|  | 494 | } | 
|  | 495 |  | 
|  | 496 | /** | 
|  | 497 | * page_cache_sync_readahead - generic file readahead | 
|  | 498 | * @mapping: address_space which holds the pagecache and I/O vectors | 
|  | 499 | * @ra: file_ra_state which holds the readahead state | 
|  | 500 | * @filp: passed on to ->readpage() and ->readpages() | 
|  | 501 | * @offset: start offset into @mapping, in pagecache page-sized units | 
|  | 502 | * @req_size: hint: total size of the read which the caller is performing in | 
|  | 503 | *            pagecache pages | 
|  | 504 | * | 
|  | 505 | * page_cache_sync_readahead() should be called when a cache miss happened: | 
|  | 506 | * it will submit the read.  The readahead logic may decide to piggyback more | 
|  | 507 | * pages onto the read request if access patterns suggest it will improve | 
|  | 508 | * performance. | 
|  | 509 | */ | 
|  | 510 | void page_cache_sync_readahead(struct address_space *mapping, | 
|  | 511 | struct file_ra_state *ra, struct file *filp, | 
|  | 512 | pgoff_t offset, unsigned long req_size) | 
|  | 513 | { | 
|  | 514 | /* no read-ahead */ | 
|  | 515 | if (!ra->ra_pages) | 
|  | 516 | return; | 
|  | 517 |  | 
|  | 518 | if (blk_cgroup_congested()) | 
|  | 519 | return; | 
|  | 520 |  | 
|  | 521 | /* be dumb */ | 
|  | 522 | if (filp && (filp->f_mode & FMODE_RANDOM)) { | 
|  | 523 | force_page_cache_readahead(mapping, filp, offset, req_size); | 
|  | 524 | return; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | /* do read-ahead */ | 
|  | 528 | ondemand_readahead(mapping, ra, filp, false, offset, req_size); | 
|  | 529 | } | 
|  | 530 | EXPORT_SYMBOL_GPL(page_cache_sync_readahead); | 
|  | 531 |  | 
|  | 532 | /** | 
|  | 533 | * page_cache_async_readahead - file readahead for marked pages | 
|  | 534 | * @mapping: address_space which holds the pagecache and I/O vectors | 
|  | 535 | * @ra: file_ra_state which holds the readahead state | 
|  | 536 | * @filp: passed on to ->readpage() and ->readpages() | 
|  | 537 | * @page: the page at @offset which has the PG_readahead flag set | 
|  | 538 | * @offset: start offset into @mapping, in pagecache page-sized units | 
|  | 539 | * @req_size: hint: total size of the read which the caller is performing in | 
|  | 540 | *            pagecache pages | 
|  | 541 | * | 
|  | 542 | * page_cache_async_readahead() should be called when a page is used which | 
|  | 543 | * has the PG_readahead flag; this is a marker to suggest that the application | 
|  | 544 | * has used up enough of the readahead window that we should start pulling in | 
|  | 545 | * more pages. | 
|  | 546 | */ | 
|  | 547 | void | 
|  | 548 | page_cache_async_readahead(struct address_space *mapping, | 
|  | 549 | struct file_ra_state *ra, struct file *filp, | 
|  | 550 | struct page *page, pgoff_t offset, | 
|  | 551 | unsigned long req_size) | 
|  | 552 | { | 
|  | 553 | /* no read-ahead */ | 
|  | 554 | if (!ra->ra_pages) | 
|  | 555 | return; | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * Same bit is used for PG_readahead and PG_reclaim. | 
|  | 559 | */ | 
|  | 560 | if (PageWriteback(page)) | 
|  | 561 | return; | 
|  | 562 |  | 
|  | 563 | ClearPageReadahead(page); | 
|  | 564 |  | 
|  | 565 | /* | 
|  | 566 | * Defer asynchronous read-ahead on IO congestion. | 
|  | 567 | */ | 
|  | 568 | if (inode_read_congested(mapping->host)) | 
|  | 569 | return; | 
|  | 570 |  | 
|  | 571 | if (blk_cgroup_congested()) | 
|  | 572 | return; | 
|  | 573 |  | 
|  | 574 | /* do read-ahead */ | 
|  | 575 | ondemand_readahead(mapping, ra, filp, true, offset, req_size); | 
|  | 576 | } | 
|  | 577 | EXPORT_SYMBOL_GPL(page_cache_async_readahead); | 
|  | 578 |  | 
|  | 579 | ssize_t ksys_readahead(int fd, loff_t offset, size_t count) | 
|  | 580 | { | 
|  | 581 | ssize_t ret; | 
|  | 582 | struct fd f; | 
|  | 583 |  | 
|  | 584 | ret = -EBADF; | 
|  | 585 | f = fdget(fd); | 
|  | 586 | if (!f.file || !(f.file->f_mode & FMODE_READ)) | 
|  | 587 | goto out; | 
|  | 588 |  | 
|  | 589 | /* | 
|  | 590 | * The readahead() syscall is intended to run only on files | 
|  | 591 | * that can execute readahead. If readahead is not possible | 
|  | 592 | * on this file, then we must return -EINVAL. | 
|  | 593 | */ | 
|  | 594 | ret = -EINVAL; | 
|  | 595 | if (!f.file->f_mapping || !f.file->f_mapping->a_ops || | 
|  | 596 | !S_ISREG(file_inode(f.file)->i_mode)) | 
|  | 597 | goto out; | 
|  | 598 |  | 
|  | 599 | ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); | 
|  | 600 | out: | 
|  | 601 | fdput(f); | 
|  | 602 | return ret; | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) | 
|  | 606 | { | 
|  | 607 | return ksys_readahead(fd, offset, count); | 
|  | 608 | } |