| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * zsmalloc memory allocator | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2011  Nitin Gupta | 
|  | 5 | * Copyright (C) 2012, 2013 Minchan Kim | 
|  | 6 | * | 
|  | 7 | * This code is released using a dual license strategy: BSD/GPL | 
|  | 8 | * You can choose the license that better fits your requirements. | 
|  | 9 | * | 
|  | 10 | * Released under the terms of 3-clause BSD License | 
|  | 11 | * Released under the terms of GNU General Public License Version 2.0 | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | /* | 
|  | 15 | * Following is how we use various fields and flags of underlying | 
|  | 16 | * struct page(s) to form a zspage. | 
|  | 17 | * | 
|  | 18 | * Usage of struct page fields: | 
|  | 19 | *	page->private: points to zspage | 
|  | 20 | *	page->freelist(index): links together all component pages of a zspage | 
|  | 21 | *		For the huge page, this is always 0, so we use this field | 
|  | 22 | *		to store handle. | 
|  | 23 | *	page->units: first object offset in a subpage of zspage | 
|  | 24 | * | 
|  | 25 | * Usage of struct page flags: | 
|  | 26 | *	PG_private: identifies the first component page | 
|  | 27 | *	PG_owner_priv_1: identifies the huge component page | 
|  | 28 | * | 
|  | 29 | */ | 
|  | 30 |  | 
|  | 31 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 32 |  | 
|  | 33 | #include <linux/module.h> | 
|  | 34 | #include <linux/kernel.h> | 
|  | 35 | #include <linux/sched.h> | 
|  | 36 | #include <linux/magic.h> | 
|  | 37 | #include <linux/bitops.h> | 
|  | 38 | #include <linux/errno.h> | 
|  | 39 | #include <linux/highmem.h> | 
|  | 40 | #include <linux/string.h> | 
|  | 41 | #include <linux/slab.h> | 
|  | 42 | #include <asm/tlbflush.h> | 
|  | 43 | #include <asm/pgtable.h> | 
|  | 44 | #include <linux/cpumask.h> | 
|  | 45 | #include <linux/cpu.h> | 
|  | 46 | #include <linux/vmalloc.h> | 
|  | 47 | #include <linux/preempt.h> | 
|  | 48 | #include <linux/spinlock.h> | 
|  | 49 | #include <linux/shrinker.h> | 
|  | 50 | #include <linux/types.h> | 
|  | 51 | #include <linux/debugfs.h> | 
|  | 52 | #include <linux/zsmalloc.h> | 
|  | 53 | #include <linux/zpool.h> | 
|  | 54 | #include <linux/mount.h> | 
|  | 55 | #include <linux/migrate.h> | 
|  | 56 | #include <linux/wait.h> | 
|  | 57 | #include <linux/pagemap.h> | 
|  | 58 | #include <linux/fs.h> | 
|  | 59 |  | 
|  | 60 | #define ZSPAGE_MAGIC	0x58 | 
|  | 61 |  | 
|  | 62 | /* | 
|  | 63 | * This must be power of 2 and greater than of equal to sizeof(link_free). | 
|  | 64 | * These two conditions ensure that any 'struct link_free' itself doesn't | 
|  | 65 | * span more than 1 page which avoids complex case of mapping 2 pages simply | 
|  | 66 | * to restore link_free pointer values. | 
|  | 67 | */ | 
|  | 68 | #define ZS_ALIGN		8 | 
|  | 69 |  | 
|  | 70 | /* | 
|  | 71 | * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) | 
|  | 72 | * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. | 
|  | 73 | */ | 
|  | 74 | #define ZS_MAX_ZSPAGE_ORDER 2 | 
|  | 75 | #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) | 
|  | 76 |  | 
|  | 77 | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
|  | 78 |  | 
|  | 79 | /* | 
|  | 80 | * Object location (<PFN>, <obj_idx>) is encoded as | 
|  | 81 | * as single (unsigned long) handle value. | 
|  | 82 | * | 
|  | 83 | * Note that object index <obj_idx> starts from 0. | 
|  | 84 | * | 
|  | 85 | * This is made more complicated by various memory models and PAE. | 
|  | 86 | */ | 
|  | 87 |  | 
|  | 88 | #ifndef MAX_POSSIBLE_PHYSMEM_BITS | 
|  | 89 | #ifdef MAX_PHYSMEM_BITS | 
|  | 90 | #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS | 
|  | 91 | #else | 
|  | 92 | /* | 
|  | 93 | * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
|  | 94 | * be PAGE_SHIFT | 
|  | 95 | */ | 
|  | 96 | #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG | 
|  | 97 | #endif | 
|  | 98 | #endif | 
|  | 99 |  | 
|  | 100 | #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) | 
|  | 101 |  | 
|  | 102 | /* | 
|  | 103 | * Memory for allocating for handle keeps object position by | 
|  | 104 | * encoding <page, obj_idx> and the encoded value has a room | 
|  | 105 | * in least bit(ie, look at obj_to_location). | 
|  | 106 | * We use the bit to synchronize between object access by | 
|  | 107 | * user and migration. | 
|  | 108 | */ | 
|  | 109 | #define HANDLE_PIN_BIT	0 | 
|  | 110 |  | 
|  | 111 | /* | 
|  | 112 | * Head in allocated object should have OBJ_ALLOCATED_TAG | 
|  | 113 | * to identify the object was allocated or not. | 
|  | 114 | * It's okay to add the status bit in the least bit because | 
|  | 115 | * header keeps handle which is 4byte-aligned address so we | 
|  | 116 | * have room for two bit at least. | 
|  | 117 | */ | 
|  | 118 | #define OBJ_ALLOCATED_TAG 1 | 
|  | 119 | #define OBJ_TAG_BITS 1 | 
|  | 120 | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
|  | 121 | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
|  | 122 |  | 
|  | 123 | #define FULLNESS_BITS	2 | 
|  | 124 | #define CLASS_BITS	8 | 
|  | 125 | #define ISOLATED_BITS	3 | 
|  | 126 | #define MAGIC_VAL_BITS	8 | 
|  | 127 |  | 
|  | 128 | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
|  | 129 | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
|  | 130 | #define ZS_MIN_ALLOC_SIZE \ | 
|  | 131 | MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
|  | 132 | /* each chunk includes extra space to keep handle */ | 
|  | 133 | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
|  | 134 |  | 
|  | 135 | /* | 
|  | 136 | * On systems with 4K page size, this gives 255 size classes! There is a | 
|  | 137 | * trader-off here: | 
|  | 138 | *  - Large number of size classes is potentially wasteful as free page are | 
|  | 139 | *    spread across these classes | 
|  | 140 | *  - Small number of size classes causes large internal fragmentation | 
|  | 141 | *  - Probably its better to use specific size classes (empirically | 
|  | 142 | *    determined). NOTE: all those class sizes must be set as multiple of | 
|  | 143 | *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
|  | 144 | * | 
|  | 145 | *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
|  | 146 | *  (reason above) | 
|  | 147 | */ | 
|  | 148 | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS) | 
|  | 149 | #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ | 
|  | 150 | ZS_SIZE_CLASS_DELTA) + 1) | 
|  | 151 |  | 
|  | 152 | enum fullness_group { | 
|  | 153 | ZS_EMPTY, | 
|  | 154 | ZS_ALMOST_EMPTY, | 
|  | 155 | ZS_ALMOST_FULL, | 
|  | 156 | ZS_FULL, | 
|  | 157 | NR_ZS_FULLNESS, | 
|  | 158 | }; | 
|  | 159 |  | 
|  | 160 | enum zs_stat_type { | 
|  | 161 | CLASS_EMPTY, | 
|  | 162 | CLASS_ALMOST_EMPTY, | 
|  | 163 | CLASS_ALMOST_FULL, | 
|  | 164 | CLASS_FULL, | 
|  | 165 | OBJ_ALLOCATED, | 
|  | 166 | OBJ_USED, | 
|  | 167 | NR_ZS_STAT_TYPE, | 
|  | 168 | }; | 
|  | 169 |  | 
|  | 170 | struct zs_size_stat { | 
|  | 171 | unsigned long objs[NR_ZS_STAT_TYPE]; | 
|  | 172 | }; | 
|  | 173 |  | 
|  | 174 | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | 175 | static struct dentry *zs_stat_root; | 
|  | 176 | #endif | 
|  | 177 |  | 
|  | 178 | #ifdef CONFIG_COMPACTION | 
|  | 179 | static struct vfsmount *zsmalloc_mnt; | 
|  | 180 | #endif | 
|  | 181 |  | 
|  | 182 | /* | 
|  | 183 | * We assign a page to ZS_ALMOST_EMPTY fullness group when: | 
|  | 184 | *	n <= N / f, where | 
|  | 185 | * n = number of allocated objects | 
|  | 186 | * N = total number of objects zspage can store | 
|  | 187 | * f = fullness_threshold_frac | 
|  | 188 | * | 
|  | 189 | * Similarly, we assign zspage to: | 
|  | 190 | *	ZS_ALMOST_FULL	when n > N / f | 
|  | 191 | *	ZS_EMPTY	when n == 0 | 
|  | 192 | *	ZS_FULL		when n == N | 
|  | 193 | * | 
|  | 194 | * (see: fix_fullness_group()) | 
|  | 195 | */ | 
|  | 196 | static const int fullness_threshold_frac = 4; | 
|  | 197 | static size_t huge_class_size; | 
|  | 198 |  | 
|  | 199 | struct size_class { | 
|  | 200 | spinlock_t lock; | 
|  | 201 | struct list_head fullness_list[NR_ZS_FULLNESS]; | 
|  | 202 | /* | 
|  | 203 | * Size of objects stored in this class. Must be multiple | 
|  | 204 | * of ZS_ALIGN. | 
|  | 205 | */ | 
|  | 206 | int size; | 
|  | 207 | int objs_per_zspage; | 
|  | 208 | /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
|  | 209 | int pages_per_zspage; | 
|  | 210 |  | 
|  | 211 | unsigned int index; | 
|  | 212 | struct zs_size_stat stats; | 
|  | 213 | }; | 
|  | 214 |  | 
|  | 215 | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
|  | 216 | static void SetPageHugeObject(struct page *page) | 
|  | 217 | { | 
|  | 218 | SetPageOwnerPriv1(page); | 
|  | 219 | } | 
|  | 220 |  | 
|  | 221 | static void ClearPageHugeObject(struct page *page) | 
|  | 222 | { | 
|  | 223 | ClearPageOwnerPriv1(page); | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | static int PageHugeObject(struct page *page) | 
|  | 227 | { | 
|  | 228 | return PageOwnerPriv1(page); | 
|  | 229 | } | 
|  | 230 |  | 
|  | 231 | /* | 
|  | 232 | * Placed within free objects to form a singly linked list. | 
|  | 233 | * For every zspage, zspage->freeobj gives head of this list. | 
|  | 234 | * | 
|  | 235 | * This must be power of 2 and less than or equal to ZS_ALIGN | 
|  | 236 | */ | 
|  | 237 | struct link_free { | 
|  | 238 | union { | 
|  | 239 | /* | 
|  | 240 | * Free object index; | 
|  | 241 | * It's valid for non-allocated object | 
|  | 242 | */ | 
|  | 243 | unsigned long next; | 
|  | 244 | /* | 
|  | 245 | * Handle of allocated object. | 
|  | 246 | */ | 
|  | 247 | unsigned long handle; | 
|  | 248 | }; | 
|  | 249 | }; | 
|  | 250 |  | 
|  | 251 | struct zs_pool { | 
|  | 252 | const char *name; | 
|  | 253 |  | 
|  | 254 | struct size_class *size_class[ZS_SIZE_CLASSES]; | 
|  | 255 | struct kmem_cache *handle_cachep; | 
|  | 256 | struct kmem_cache *zspage_cachep; | 
|  | 257 |  | 
|  | 258 | atomic_long_t pages_allocated; | 
|  | 259 |  | 
|  | 260 | struct zs_pool_stats stats; | 
|  | 261 |  | 
|  | 262 | /* Compact classes */ | 
|  | 263 | struct shrinker shrinker; | 
|  | 264 |  | 
|  | 265 | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | 266 | struct dentry *stat_dentry; | 
|  | 267 | #endif | 
|  | 268 | #ifdef CONFIG_COMPACTION | 
|  | 269 | struct inode *inode; | 
|  | 270 | struct work_struct free_work; | 
|  | 271 | /* A wait queue for when migration races with async_free_zspage() */ | 
|  | 272 | struct wait_queue_head migration_wait; | 
|  | 273 | atomic_long_t isolated_pages; | 
|  | 274 | bool destroying; | 
|  | 275 | #endif | 
|  | 276 | }; | 
|  | 277 |  | 
|  | 278 | struct zspage { | 
|  | 279 | struct { | 
|  | 280 | unsigned int fullness:FULLNESS_BITS; | 
|  | 281 | unsigned int class:CLASS_BITS + 1; | 
|  | 282 | unsigned int isolated:ISOLATED_BITS; | 
|  | 283 | unsigned int magic:MAGIC_VAL_BITS; | 
|  | 284 | }; | 
|  | 285 | unsigned int inuse; | 
|  | 286 | unsigned int freeobj; | 
|  | 287 | struct page *first_page; | 
|  | 288 | struct list_head list; /* fullness list */ | 
|  | 289 | #ifdef CONFIG_COMPACTION | 
|  | 290 | rwlock_t lock; | 
|  | 291 | #endif | 
|  | 292 | }; | 
|  | 293 |  | 
|  | 294 | struct mapping_area { | 
|  | 295 | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | 296 | struct vm_struct *vm; /* vm area for mapping object that span pages */ | 
|  | 297 | #else | 
|  | 298 | char *vm_buf; /* copy buffer for objects that span pages */ | 
|  | 299 | #endif | 
|  | 300 | char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
|  | 301 | enum zs_mapmode vm_mm; /* mapping mode */ | 
|  | 302 | }; | 
|  | 303 |  | 
|  | 304 | #ifdef CONFIG_COMPACTION | 
|  | 305 | static int zs_register_migration(struct zs_pool *pool); | 
|  | 306 | static void zs_unregister_migration(struct zs_pool *pool); | 
|  | 307 | static void migrate_lock_init(struct zspage *zspage); | 
|  | 308 | static void migrate_read_lock(struct zspage *zspage); | 
|  | 309 | static void migrate_read_unlock(struct zspage *zspage); | 
|  | 310 | static void kick_deferred_free(struct zs_pool *pool); | 
|  | 311 | static void init_deferred_free(struct zs_pool *pool); | 
|  | 312 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); | 
|  | 313 | #else | 
|  | 314 | static int zsmalloc_mount(void) { return 0; } | 
|  | 315 | static void zsmalloc_unmount(void) {} | 
|  | 316 | static int zs_register_migration(struct zs_pool *pool) { return 0; } | 
|  | 317 | static void zs_unregister_migration(struct zs_pool *pool) {} | 
|  | 318 | static void migrate_lock_init(struct zspage *zspage) {} | 
|  | 319 | static void migrate_read_lock(struct zspage *zspage) {} | 
|  | 320 | static void migrate_read_unlock(struct zspage *zspage) {} | 
|  | 321 | static void kick_deferred_free(struct zs_pool *pool) {} | 
|  | 322 | static void init_deferred_free(struct zs_pool *pool) {} | 
|  | 323 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} | 
|  | 324 | #endif | 
|  | 325 |  | 
|  | 326 | static int create_cache(struct zs_pool *pool) | 
|  | 327 | { | 
|  | 328 | pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
|  | 329 | 0, 0, NULL); | 
|  | 330 | if (!pool->handle_cachep) | 
|  | 331 | return 1; | 
|  | 332 |  | 
|  | 333 | pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), | 
|  | 334 | 0, 0, NULL); | 
|  | 335 | if (!pool->zspage_cachep) { | 
|  | 336 | kmem_cache_destroy(pool->handle_cachep); | 
|  | 337 | pool->handle_cachep = NULL; | 
|  | 338 | return 1; | 
|  | 339 | } | 
|  | 340 |  | 
|  | 341 | return 0; | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | static void destroy_cache(struct zs_pool *pool) | 
|  | 345 | { | 
|  | 346 | kmem_cache_destroy(pool->handle_cachep); | 
|  | 347 | kmem_cache_destroy(pool->zspage_cachep); | 
|  | 348 | } | 
|  | 349 |  | 
|  | 350 | static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
|  | 351 | { | 
|  | 352 | return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
|  | 353 | gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | static void cache_free_handle(struct zs_pool *pool, unsigned long handle) | 
|  | 357 | { | 
|  | 358 | kmem_cache_free(pool->handle_cachep, (void *)handle); | 
|  | 359 | } | 
|  | 360 |  | 
|  | 361 | static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) | 
|  | 362 | { | 
|  | 363 | return kmem_cache_alloc(pool->zspage_cachep, | 
|  | 364 | flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) | 
|  | 368 | { | 
|  | 369 | kmem_cache_free(pool->zspage_cachep, zspage); | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | static void record_obj(unsigned long handle, unsigned long obj) | 
|  | 373 | { | 
|  | 374 | /* | 
|  | 375 | * lsb of @obj represents handle lock while other bits | 
|  | 376 | * represent object value the handle is pointing so | 
|  | 377 | * updating shouldn't do store tearing. | 
|  | 378 | */ | 
|  | 379 | WRITE_ONCE(*(unsigned long *)handle, obj); | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | /* zpool driver */ | 
|  | 383 |  | 
|  | 384 | #ifdef CONFIG_ZPOOL | 
|  | 385 |  | 
|  | 386 | static void *zs_zpool_create(const char *name, gfp_t gfp, | 
|  | 387 | const struct zpool_ops *zpool_ops, | 
|  | 388 | struct zpool *zpool) | 
|  | 389 | { | 
|  | 390 | /* | 
|  | 391 | * Ignore global gfp flags: zs_malloc() may be invoked from | 
|  | 392 | * different contexts and its caller must provide a valid | 
|  | 393 | * gfp mask. | 
|  | 394 | */ | 
|  | 395 | return zs_create_pool(name); | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | static void zs_zpool_destroy(void *pool) | 
|  | 399 | { | 
|  | 400 | zs_destroy_pool(pool); | 
|  | 401 | } | 
|  | 402 |  | 
|  | 403 | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
|  | 404 | unsigned long *handle) | 
|  | 405 | { | 
|  | 406 | *handle = zs_malloc(pool, size, gfp); | 
|  | 407 | return *handle ? 0 : -1; | 
|  | 408 | } | 
|  | 409 | static void zs_zpool_free(void *pool, unsigned long handle) | 
|  | 410 | { | 
|  | 411 | zs_free(pool, handle); | 
|  | 412 | } | 
|  | 413 |  | 
|  | 414 | static void *zs_zpool_map(void *pool, unsigned long handle, | 
|  | 415 | enum zpool_mapmode mm) | 
|  | 416 | { | 
|  | 417 | enum zs_mapmode zs_mm; | 
|  | 418 |  | 
|  | 419 | switch (mm) { | 
|  | 420 | case ZPOOL_MM_RO: | 
|  | 421 | zs_mm = ZS_MM_RO; | 
|  | 422 | break; | 
|  | 423 | case ZPOOL_MM_WO: | 
|  | 424 | zs_mm = ZS_MM_WO; | 
|  | 425 | break; | 
|  | 426 | case ZPOOL_MM_RW: /* fallthru */ | 
|  | 427 | default: | 
|  | 428 | zs_mm = ZS_MM_RW; | 
|  | 429 | break; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | return zs_map_object(pool, handle, zs_mm); | 
|  | 433 | } | 
|  | 434 | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
|  | 435 | { | 
|  | 436 | zs_unmap_object(pool, handle); | 
|  | 437 | } | 
|  | 438 |  | 
|  | 439 | static u64 zs_zpool_total_size(void *pool) | 
|  | 440 | { | 
|  | 441 | return zs_get_total_pages(pool) << PAGE_SHIFT; | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | static struct zpool_driver zs_zpool_driver = { | 
|  | 445 | .type =		"zsmalloc", | 
|  | 446 | .owner =	THIS_MODULE, | 
|  | 447 | .create =	zs_zpool_create, | 
|  | 448 | .destroy =	zs_zpool_destroy, | 
|  | 449 | .malloc =	zs_zpool_malloc, | 
|  | 450 | .free =		zs_zpool_free, | 
|  | 451 | .map =		zs_zpool_map, | 
|  | 452 | .unmap =	zs_zpool_unmap, | 
|  | 453 | .total_size =	zs_zpool_total_size, | 
|  | 454 | }; | 
|  | 455 |  | 
|  | 456 | MODULE_ALIAS("zpool-zsmalloc"); | 
|  | 457 | #endif /* CONFIG_ZPOOL */ | 
|  | 458 |  | 
|  | 459 | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
|  | 460 | static DEFINE_PER_CPU(struct mapping_area, zs_map_area); | 
|  | 461 |  | 
|  | 462 | static bool is_zspage_isolated(struct zspage *zspage) | 
|  | 463 | { | 
|  | 464 | return zspage->isolated; | 
|  | 465 | } | 
|  | 466 |  | 
|  | 467 | static __maybe_unused int is_first_page(struct page *page) | 
|  | 468 | { | 
|  | 469 | return PagePrivate(page); | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 | /* Protected by class->lock */ | 
|  | 473 | static inline int get_zspage_inuse(struct zspage *zspage) | 
|  | 474 | { | 
|  | 475 | return zspage->inuse; | 
|  | 476 | } | 
|  | 477 |  | 
|  | 478 | static inline void set_zspage_inuse(struct zspage *zspage, int val) | 
|  | 479 | { | 
|  | 480 | zspage->inuse = val; | 
|  | 481 | } | 
|  | 482 |  | 
|  | 483 | static inline void mod_zspage_inuse(struct zspage *zspage, int val) | 
|  | 484 | { | 
|  | 485 | zspage->inuse += val; | 
|  | 486 | } | 
|  | 487 |  | 
|  | 488 | static inline struct page *get_first_page(struct zspage *zspage) | 
|  | 489 | { | 
|  | 490 | struct page *first_page = zspage->first_page; | 
|  | 491 |  | 
|  | 492 | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  | 493 | return first_page; | 
|  | 494 | } | 
|  | 495 |  | 
|  | 496 | static inline int get_first_obj_offset(struct page *page) | 
|  | 497 | { | 
|  | 498 | return page->units; | 
|  | 499 | } | 
|  | 500 |  | 
|  | 501 | static inline void set_first_obj_offset(struct page *page, int offset) | 
|  | 502 | { | 
|  | 503 | page->units = offset; | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | static inline unsigned int get_freeobj(struct zspage *zspage) | 
|  | 507 | { | 
|  | 508 | return zspage->freeobj; | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | static inline void set_freeobj(struct zspage *zspage, unsigned int obj) | 
|  | 512 | { | 
|  | 513 | zspage->freeobj = obj; | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | static void get_zspage_mapping(struct zspage *zspage, | 
|  | 517 | unsigned int *class_idx, | 
|  | 518 | enum fullness_group *fullness) | 
|  | 519 | { | 
|  | 520 | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  | 521 |  | 
|  | 522 | *fullness = zspage->fullness; | 
|  | 523 | *class_idx = zspage->class; | 
|  | 524 | } | 
|  | 525 |  | 
|  | 526 | static void set_zspage_mapping(struct zspage *zspage, | 
|  | 527 | unsigned int class_idx, | 
|  | 528 | enum fullness_group fullness) | 
|  | 529 | { | 
|  | 530 | zspage->class = class_idx; | 
|  | 531 | zspage->fullness = fullness; | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | /* | 
|  | 535 | * zsmalloc divides the pool into various size classes where each | 
|  | 536 | * class maintains a list of zspages where each zspage is divided | 
|  | 537 | * into equal sized chunks. Each allocation falls into one of these | 
|  | 538 | * classes depending on its size. This function returns index of the | 
|  | 539 | * size class which has chunk size big enough to hold the give size. | 
|  | 540 | */ | 
|  | 541 | static int get_size_class_index(int size) | 
|  | 542 | { | 
|  | 543 | int idx = 0; | 
|  | 544 |  | 
|  | 545 | if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
|  | 546 | idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
|  | 547 | ZS_SIZE_CLASS_DELTA); | 
|  | 548 |  | 
|  | 549 | return min_t(int, ZS_SIZE_CLASSES - 1, idx); | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | /* type can be of enum type zs_stat_type or fullness_group */ | 
|  | 553 | static inline void zs_stat_inc(struct size_class *class, | 
|  | 554 | int type, unsigned long cnt) | 
|  | 555 | { | 
|  | 556 | class->stats.objs[type] += cnt; | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | /* type can be of enum type zs_stat_type or fullness_group */ | 
|  | 560 | static inline void zs_stat_dec(struct size_class *class, | 
|  | 561 | int type, unsigned long cnt) | 
|  | 562 | { | 
|  | 563 | class->stats.objs[type] -= cnt; | 
|  | 564 | } | 
|  | 565 |  | 
|  | 566 | /* type can be of enum type zs_stat_type or fullness_group */ | 
|  | 567 | static inline unsigned long zs_stat_get(struct size_class *class, | 
|  | 568 | int type) | 
|  | 569 | { | 
|  | 570 | return class->stats.objs[type]; | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | 574 |  | 
|  | 575 | static void __init zs_stat_init(void) | 
|  | 576 | { | 
|  | 577 | if (!debugfs_initialized()) { | 
|  | 578 | pr_warn("debugfs not available, stat dir not created\n"); | 
|  | 579 | return; | 
|  | 580 | } | 
|  | 581 |  | 
|  | 582 | zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
|  | 583 | if (!zs_stat_root) | 
|  | 584 | pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | static void __exit zs_stat_exit(void) | 
|  | 588 | { | 
|  | 589 | debugfs_remove_recursive(zs_stat_root); | 
|  | 590 | } | 
|  | 591 |  | 
|  | 592 | static unsigned long zs_can_compact(struct size_class *class); | 
|  | 593 |  | 
|  | 594 | static int zs_stats_size_show(struct seq_file *s, void *v) | 
|  | 595 | { | 
|  | 596 | int i; | 
|  | 597 | struct zs_pool *pool = s->private; | 
|  | 598 | struct size_class *class; | 
|  | 599 | int objs_per_zspage; | 
|  | 600 | unsigned long class_almost_full, class_almost_empty; | 
|  | 601 | unsigned long obj_allocated, obj_used, pages_used, freeable; | 
|  | 602 | unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; | 
|  | 603 | unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
|  | 604 | unsigned long total_freeable = 0; | 
|  | 605 |  | 
|  | 606 | seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", | 
|  | 607 | "class", "size", "almost_full", "almost_empty", | 
|  | 608 | "obj_allocated", "obj_used", "pages_used", | 
|  | 609 | "pages_per_zspage", "freeable"); | 
|  | 610 |  | 
|  | 611 | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  | 612 | class = pool->size_class[i]; | 
|  | 613 |  | 
|  | 614 | if (class->index != i) | 
|  | 615 | continue; | 
|  | 616 |  | 
|  | 617 | spin_lock(&class->lock); | 
|  | 618 | class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); | 
|  | 619 | class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); | 
|  | 620 | obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | 621 | obj_used = zs_stat_get(class, OBJ_USED); | 
|  | 622 | freeable = zs_can_compact(class); | 
|  | 623 | spin_unlock(&class->lock); | 
|  | 624 |  | 
|  | 625 | objs_per_zspage = class->objs_per_zspage; | 
|  | 626 | pages_used = obj_allocated / objs_per_zspage * | 
|  | 627 | class->pages_per_zspage; | 
|  | 628 |  | 
|  | 629 | seq_printf(s, " %5u %5u %11lu %12lu %13lu" | 
|  | 630 | " %10lu %10lu %16d %8lu\n", | 
|  | 631 | i, class->size, class_almost_full, class_almost_empty, | 
|  | 632 | obj_allocated, obj_used, pages_used, | 
|  | 633 | class->pages_per_zspage, freeable); | 
|  | 634 |  | 
|  | 635 | total_class_almost_full += class_almost_full; | 
|  | 636 | total_class_almost_empty += class_almost_empty; | 
|  | 637 | total_objs += obj_allocated; | 
|  | 638 | total_used_objs += obj_used; | 
|  | 639 | total_pages += pages_used; | 
|  | 640 | total_freeable += freeable; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | seq_puts(s, "\n"); | 
|  | 644 | seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", | 
|  | 645 | "Total", "", total_class_almost_full, | 
|  | 646 | total_class_almost_empty, total_objs, | 
|  | 647 | total_used_objs, total_pages, "", total_freeable); | 
|  | 648 |  | 
|  | 649 | return 0; | 
|  | 650 | } | 
|  | 651 | DEFINE_SHOW_ATTRIBUTE(zs_stats_size); | 
|  | 652 |  | 
|  | 653 | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | 654 | { | 
|  | 655 | struct dentry *entry; | 
|  | 656 |  | 
|  | 657 | if (!zs_stat_root) { | 
|  | 658 | pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
|  | 659 | return; | 
|  | 660 | } | 
|  | 661 |  | 
|  | 662 | entry = debugfs_create_dir(name, zs_stat_root); | 
|  | 663 | if (!entry) { | 
|  | 664 | pr_warn("debugfs dir <%s> creation failed\n", name); | 
|  | 665 | return; | 
|  | 666 | } | 
|  | 667 | pool->stat_dentry = entry; | 
|  | 668 |  | 
|  | 669 | entry = debugfs_create_file("classes", S_IFREG | 0444, | 
|  | 670 | pool->stat_dentry, pool, | 
|  | 671 | &zs_stats_size_fops); | 
|  | 672 | if (!entry) { | 
|  | 673 | pr_warn("%s: debugfs file entry <%s> creation failed\n", | 
|  | 674 | name, "classes"); | 
|  | 675 | debugfs_remove_recursive(pool->stat_dentry); | 
|  | 676 | pool->stat_dentry = NULL; | 
|  | 677 | } | 
|  | 678 | } | 
|  | 679 |  | 
|  | 680 | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | 681 | { | 
|  | 682 | debugfs_remove_recursive(pool->stat_dentry); | 
|  | 683 | } | 
|  | 684 |  | 
|  | 685 | #else /* CONFIG_ZSMALLOC_STAT */ | 
|  | 686 | static void __init zs_stat_init(void) | 
|  | 687 | { | 
|  | 688 | } | 
|  | 689 |  | 
|  | 690 | static void __exit zs_stat_exit(void) | 
|  | 691 | { | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | 695 | { | 
|  | 696 | } | 
|  | 697 |  | 
|  | 698 | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | 699 | { | 
|  | 700 | } | 
|  | 701 | #endif | 
|  | 702 |  | 
|  | 703 |  | 
|  | 704 | /* | 
|  | 705 | * For each size class, zspages are divided into different groups | 
|  | 706 | * depending on how "full" they are. This was done so that we could | 
|  | 707 | * easily find empty or nearly empty zspages when we try to shrink | 
|  | 708 | * the pool (not yet implemented). This function returns fullness | 
|  | 709 | * status of the given page. | 
|  | 710 | */ | 
|  | 711 | static enum fullness_group get_fullness_group(struct size_class *class, | 
|  | 712 | struct zspage *zspage) | 
|  | 713 | { | 
|  | 714 | int inuse, objs_per_zspage; | 
|  | 715 | enum fullness_group fg; | 
|  | 716 |  | 
|  | 717 | inuse = get_zspage_inuse(zspage); | 
|  | 718 | objs_per_zspage = class->objs_per_zspage; | 
|  | 719 |  | 
|  | 720 | if (inuse == 0) | 
|  | 721 | fg = ZS_EMPTY; | 
|  | 722 | else if (inuse == objs_per_zspage) | 
|  | 723 | fg = ZS_FULL; | 
|  | 724 | else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) | 
|  | 725 | fg = ZS_ALMOST_EMPTY; | 
|  | 726 | else | 
|  | 727 | fg = ZS_ALMOST_FULL; | 
|  | 728 |  | 
|  | 729 | return fg; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | /* | 
|  | 733 | * Each size class maintains various freelists and zspages are assigned | 
|  | 734 | * to one of these freelists based on the number of live objects they | 
|  | 735 | * have. This functions inserts the given zspage into the freelist | 
|  | 736 | * identified by <class, fullness_group>. | 
|  | 737 | */ | 
|  | 738 | static void insert_zspage(struct size_class *class, | 
|  | 739 | struct zspage *zspage, | 
|  | 740 | enum fullness_group fullness) | 
|  | 741 | { | 
|  | 742 | struct zspage *head; | 
|  | 743 |  | 
|  | 744 | zs_stat_inc(class, fullness, 1); | 
|  | 745 | head = list_first_entry_or_null(&class->fullness_list[fullness], | 
|  | 746 | struct zspage, list); | 
|  | 747 | /* | 
|  | 748 | * We want to see more ZS_FULL pages and less almost empty/full. | 
|  | 749 | * Put pages with higher ->inuse first. | 
|  | 750 | */ | 
|  | 751 | if (head) { | 
|  | 752 | if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { | 
|  | 753 | list_add(&zspage->list, &head->list); | 
|  | 754 | return; | 
|  | 755 | } | 
|  | 756 | } | 
|  | 757 | list_add(&zspage->list, &class->fullness_list[fullness]); | 
|  | 758 | } | 
|  | 759 |  | 
|  | 760 | /* | 
|  | 761 | * This function removes the given zspage from the freelist identified | 
|  | 762 | * by <class, fullness_group>. | 
|  | 763 | */ | 
|  | 764 | static void remove_zspage(struct size_class *class, | 
|  | 765 | struct zspage *zspage, | 
|  | 766 | enum fullness_group fullness) | 
|  | 767 | { | 
|  | 768 | VM_BUG_ON(list_empty(&class->fullness_list[fullness])); | 
|  | 769 | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  | 770 |  | 
|  | 771 | list_del_init(&zspage->list); | 
|  | 772 | zs_stat_dec(class, fullness, 1); | 
|  | 773 | } | 
|  | 774 |  | 
|  | 775 | /* | 
|  | 776 | * Each size class maintains zspages in different fullness groups depending | 
|  | 777 | * on the number of live objects they contain. When allocating or freeing | 
|  | 778 | * objects, the fullness status of the page can change, say, from ALMOST_FULL | 
|  | 779 | * to ALMOST_EMPTY when freeing an object. This function checks if such | 
|  | 780 | * a status change has occurred for the given page and accordingly moves the | 
|  | 781 | * page from the freelist of the old fullness group to that of the new | 
|  | 782 | * fullness group. | 
|  | 783 | */ | 
|  | 784 | static enum fullness_group fix_fullness_group(struct size_class *class, | 
|  | 785 | struct zspage *zspage) | 
|  | 786 | { | 
|  | 787 | int class_idx; | 
|  | 788 | enum fullness_group currfg, newfg; | 
|  | 789 |  | 
|  | 790 | get_zspage_mapping(zspage, &class_idx, &currfg); | 
|  | 791 | newfg = get_fullness_group(class, zspage); | 
|  | 792 | if (newfg == currfg) | 
|  | 793 | goto out; | 
|  | 794 |  | 
|  | 795 | if (!is_zspage_isolated(zspage)) { | 
|  | 796 | remove_zspage(class, zspage, currfg); | 
|  | 797 | insert_zspage(class, zspage, newfg); | 
|  | 798 | } | 
|  | 799 |  | 
|  | 800 | set_zspage_mapping(zspage, class_idx, newfg); | 
|  | 801 |  | 
|  | 802 | out: | 
|  | 803 | return newfg; | 
|  | 804 | } | 
|  | 805 |  | 
|  | 806 | /* | 
|  | 807 | * We have to decide on how many pages to link together | 
|  | 808 | * to form a zspage for each size class. This is important | 
|  | 809 | * to reduce wastage due to unusable space left at end of | 
|  | 810 | * each zspage which is given as: | 
|  | 811 | *     wastage = Zp % class_size | 
|  | 812 | *     usage = Zp - wastage | 
|  | 813 | * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... | 
|  | 814 | * | 
|  | 815 | * For example, for size class of 3/8 * PAGE_SIZE, we should | 
|  | 816 | * link together 3 PAGE_SIZE sized pages to form a zspage | 
|  | 817 | * since then we can perfectly fit in 8 such objects. | 
|  | 818 | */ | 
|  | 819 | static int get_pages_per_zspage(int class_size) | 
|  | 820 | { | 
|  | 821 | int i, max_usedpc = 0; | 
|  | 822 | /* zspage order which gives maximum used size per KB */ | 
|  | 823 | int max_usedpc_order = 1; | 
|  | 824 |  | 
|  | 825 | for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
|  | 826 | int zspage_size; | 
|  | 827 | int waste, usedpc; | 
|  | 828 |  | 
|  | 829 | zspage_size = i * PAGE_SIZE; | 
|  | 830 | waste = zspage_size % class_size; | 
|  | 831 | usedpc = (zspage_size - waste) * 100 / zspage_size; | 
|  | 832 |  | 
|  | 833 | if (usedpc > max_usedpc) { | 
|  | 834 | max_usedpc = usedpc; | 
|  | 835 | max_usedpc_order = i; | 
|  | 836 | } | 
|  | 837 | } | 
|  | 838 |  | 
|  | 839 | return max_usedpc_order; | 
|  | 840 | } | 
|  | 841 |  | 
|  | 842 | static struct zspage *get_zspage(struct page *page) | 
|  | 843 | { | 
|  | 844 | struct zspage *zspage = (struct zspage *)page->private; | 
|  | 845 |  | 
|  | 846 | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  | 847 | return zspage; | 
|  | 848 | } | 
|  | 849 |  | 
|  | 850 | static struct page *get_next_page(struct page *page) | 
|  | 851 | { | 
|  | 852 | if (unlikely(PageHugeObject(page))) | 
|  | 853 | return NULL; | 
|  | 854 |  | 
|  | 855 | return page->freelist; | 
|  | 856 | } | 
|  | 857 |  | 
|  | 858 | /** | 
|  | 859 | * obj_to_location - get (<page>, <obj_idx>) from encoded object value | 
|  | 860 | * @obj: the encoded object value | 
|  | 861 | * @page: page object resides in zspage | 
|  | 862 | * @obj_idx: object index | 
|  | 863 | */ | 
|  | 864 | static void obj_to_location(unsigned long obj, struct page **page, | 
|  | 865 | unsigned int *obj_idx) | 
|  | 866 | { | 
|  | 867 | obj >>= OBJ_TAG_BITS; | 
|  | 868 | *page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
|  | 869 | *obj_idx = (obj & OBJ_INDEX_MASK); | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | /** | 
|  | 873 | * location_to_obj - get obj value encoded from (<page>, <obj_idx>) | 
|  | 874 | * @page: page object resides in zspage | 
|  | 875 | * @obj_idx: object index | 
|  | 876 | */ | 
|  | 877 | static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) | 
|  | 878 | { | 
|  | 879 | unsigned long obj; | 
|  | 880 |  | 
|  | 881 | obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
|  | 882 | obj |= obj_idx & OBJ_INDEX_MASK; | 
|  | 883 | obj <<= OBJ_TAG_BITS; | 
|  | 884 |  | 
|  | 885 | return obj; | 
|  | 886 | } | 
|  | 887 |  | 
|  | 888 | static unsigned long handle_to_obj(unsigned long handle) | 
|  | 889 | { | 
|  | 890 | return *(unsigned long *)handle; | 
|  | 891 | } | 
|  | 892 |  | 
|  | 893 | static unsigned long obj_to_head(struct page *page, void *obj) | 
|  | 894 | { | 
|  | 895 | if (unlikely(PageHugeObject(page))) { | 
|  | 896 | VM_BUG_ON_PAGE(!is_first_page(page), page); | 
|  | 897 | return page->index; | 
|  | 898 | } else | 
|  | 899 | return *(unsigned long *)obj; | 
|  | 900 | } | 
|  | 901 |  | 
|  | 902 | static inline int testpin_tag(unsigned long handle) | 
|  | 903 | { | 
|  | 904 | return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | 905 | } | 
|  | 906 |  | 
|  | 907 | static inline int trypin_tag(unsigned long handle) | 
|  | 908 | { | 
|  | 909 | return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | 910 | } | 
|  | 911 |  | 
|  | 912 | static void pin_tag(unsigned long handle) | 
|  | 913 | { | 
|  | 914 | bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | 915 | } | 
|  | 916 |  | 
|  | 917 | static void unpin_tag(unsigned long handle) | 
|  | 918 | { | 
|  | 919 | bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
|  | 920 | } | 
|  | 921 |  | 
|  | 922 | static void reset_page(struct page *page) | 
|  | 923 | { | 
|  | 924 | __ClearPageMovable(page); | 
|  | 925 | ClearPagePrivate(page); | 
|  | 926 | set_page_private(page, 0); | 
|  | 927 | page_mapcount_reset(page); | 
|  | 928 | ClearPageHugeObject(page); | 
|  | 929 | page->freelist = NULL; | 
|  | 930 | } | 
|  | 931 |  | 
|  | 932 | static int trylock_zspage(struct zspage *zspage) | 
|  | 933 | { | 
|  | 934 | struct page *cursor, *fail; | 
|  | 935 |  | 
|  | 936 | for (cursor = get_first_page(zspage); cursor != NULL; cursor = | 
|  | 937 | get_next_page(cursor)) { | 
|  | 938 | if (!trylock_page(cursor)) { | 
|  | 939 | fail = cursor; | 
|  | 940 | goto unlock; | 
|  | 941 | } | 
|  | 942 | } | 
|  | 943 |  | 
|  | 944 | return 1; | 
|  | 945 | unlock: | 
|  | 946 | for (cursor = get_first_page(zspage); cursor != fail; cursor = | 
|  | 947 | get_next_page(cursor)) | 
|  | 948 | unlock_page(cursor); | 
|  | 949 |  | 
|  | 950 | return 0; | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | static void __free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | 954 | struct zspage *zspage) | 
|  | 955 | { | 
|  | 956 | struct page *page, *next; | 
|  | 957 | enum fullness_group fg; | 
|  | 958 | unsigned int class_idx; | 
|  | 959 |  | 
|  | 960 | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | 961 |  | 
|  | 962 | assert_spin_locked(&class->lock); | 
|  | 963 |  | 
|  | 964 | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | 965 | VM_BUG_ON(fg != ZS_EMPTY); | 
|  | 966 |  | 
|  | 967 | next = page = get_first_page(zspage); | 
|  | 968 | do { | 
|  | 969 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 970 | next = get_next_page(page); | 
|  | 971 | reset_page(page); | 
|  | 972 | unlock_page(page); | 
|  | 973 | dec_zone_page_state(page, NR_ZSPAGES); | 
|  | 974 | put_page(page); | 
|  | 975 | page = next; | 
|  | 976 | } while (page != NULL); | 
|  | 977 |  | 
|  | 978 | cache_free_zspage(pool, zspage); | 
|  | 979 |  | 
|  | 980 | zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
|  | 981 | atomic_long_sub(class->pages_per_zspage, | 
|  | 982 | &pool->pages_allocated); | 
|  | 983 | } | 
|  | 984 |  | 
|  | 985 | static void free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | 986 | struct zspage *zspage) | 
|  | 987 | { | 
|  | 988 | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | 989 | VM_BUG_ON(list_empty(&zspage->list)); | 
|  | 990 |  | 
|  | 991 | if (!trylock_zspage(zspage)) { | 
|  | 992 | kick_deferred_free(pool); | 
|  | 993 | return; | 
|  | 994 | } | 
|  | 995 |  | 
|  | 996 | remove_zspage(class, zspage, ZS_EMPTY); | 
|  | 997 | __free_zspage(pool, class, zspage); | 
|  | 998 | } | 
|  | 999 |  | 
|  | 1000 | /* Initialize a newly allocated zspage */ | 
|  | 1001 | static void init_zspage(struct size_class *class, struct zspage *zspage) | 
|  | 1002 | { | 
|  | 1003 | unsigned int freeobj = 1; | 
|  | 1004 | unsigned long off = 0; | 
|  | 1005 | struct page *page = get_first_page(zspage); | 
|  | 1006 |  | 
|  | 1007 | while (page) { | 
|  | 1008 | struct page *next_page; | 
|  | 1009 | struct link_free *link; | 
|  | 1010 | void *vaddr; | 
|  | 1011 |  | 
|  | 1012 | set_first_obj_offset(page, off); | 
|  | 1013 |  | 
|  | 1014 | vaddr = kmap_atomic(page); | 
|  | 1015 | link = (struct link_free *)vaddr + off / sizeof(*link); | 
|  | 1016 |  | 
|  | 1017 | while ((off += class->size) < PAGE_SIZE) { | 
|  | 1018 | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | 1019 | link += class->size / sizeof(*link); | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | /* | 
|  | 1023 | * We now come to the last (full or partial) object on this | 
|  | 1024 | * page, which must point to the first object on the next | 
|  | 1025 | * page (if present) | 
|  | 1026 | */ | 
|  | 1027 | next_page = get_next_page(page); | 
|  | 1028 | if (next_page) { | 
|  | 1029 | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | 1030 | } else { | 
|  | 1031 | /* | 
|  | 1032 | * Reset OBJ_TAG_BITS bit to last link to tell | 
|  | 1033 | * whether it's allocated object or not. | 
|  | 1034 | */ | 
|  | 1035 | link->next = -1UL << OBJ_TAG_BITS; | 
|  | 1036 | } | 
|  | 1037 | kunmap_atomic(vaddr); | 
|  | 1038 | page = next_page; | 
|  | 1039 | off %= PAGE_SIZE; | 
|  | 1040 | } | 
|  | 1041 |  | 
|  | 1042 | set_freeobj(zspage, 0); | 
|  | 1043 | } | 
|  | 1044 |  | 
|  | 1045 | static void create_page_chain(struct size_class *class, struct zspage *zspage, | 
|  | 1046 | struct page *pages[]) | 
|  | 1047 | { | 
|  | 1048 | int i; | 
|  | 1049 | struct page *page; | 
|  | 1050 | struct page *prev_page = NULL; | 
|  | 1051 | int nr_pages = class->pages_per_zspage; | 
|  | 1052 |  | 
|  | 1053 | /* | 
|  | 1054 | * Allocate individual pages and link them together as: | 
|  | 1055 | * 1. all pages are linked together using page->freelist | 
|  | 1056 | * 2. each sub-page point to zspage using page->private | 
|  | 1057 | * | 
|  | 1058 | * we set PG_private to identify the first page (i.e. no other sub-page | 
|  | 1059 | * has this flag set). | 
|  | 1060 | */ | 
|  | 1061 | for (i = 0; i < nr_pages; i++) { | 
|  | 1062 | page = pages[i]; | 
|  | 1063 | set_page_private(page, (unsigned long)zspage); | 
|  | 1064 | page->freelist = NULL; | 
|  | 1065 | if (i == 0) { | 
|  | 1066 | zspage->first_page = page; | 
|  | 1067 | SetPagePrivate(page); | 
|  | 1068 | if (unlikely(class->objs_per_zspage == 1 && | 
|  | 1069 | class->pages_per_zspage == 1)) | 
|  | 1070 | SetPageHugeObject(page); | 
|  | 1071 | } else { | 
|  | 1072 | prev_page->freelist = page; | 
|  | 1073 | } | 
|  | 1074 | prev_page = page; | 
|  | 1075 | } | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | /* | 
|  | 1079 | * Allocate a zspage for the given size class | 
|  | 1080 | */ | 
|  | 1081 | static struct zspage *alloc_zspage(struct zs_pool *pool, | 
|  | 1082 | struct size_class *class, | 
|  | 1083 | gfp_t gfp) | 
|  | 1084 | { | 
|  | 1085 | int i; | 
|  | 1086 | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; | 
|  | 1087 | struct zspage *zspage = cache_alloc_zspage(pool, gfp); | 
|  | 1088 |  | 
|  | 1089 | if (!zspage) | 
|  | 1090 | return NULL; | 
|  | 1091 |  | 
|  | 1092 | memset(zspage, 0, sizeof(struct zspage)); | 
|  | 1093 | zspage->magic = ZSPAGE_MAGIC; | 
|  | 1094 | migrate_lock_init(zspage); | 
|  | 1095 |  | 
|  | 1096 | for (i = 0; i < class->pages_per_zspage; i++) { | 
|  | 1097 | struct page *page; | 
|  | 1098 |  | 
|  | 1099 | page = alloc_page(gfp); | 
|  | 1100 | if (!page) { | 
|  | 1101 | while (--i >= 0) { | 
|  | 1102 | dec_zone_page_state(pages[i], NR_ZSPAGES); | 
|  | 1103 | __free_page(pages[i]); | 
|  | 1104 | } | 
|  | 1105 | cache_free_zspage(pool, zspage); | 
|  | 1106 | return NULL; | 
|  | 1107 | } | 
|  | 1108 |  | 
|  | 1109 | inc_zone_page_state(page, NR_ZSPAGES); | 
|  | 1110 | pages[i] = page; | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | create_page_chain(class, zspage, pages); | 
|  | 1114 | init_zspage(class, zspage); | 
|  | 1115 |  | 
|  | 1116 | return zspage; | 
|  | 1117 | } | 
|  | 1118 |  | 
|  | 1119 | static struct zspage *find_get_zspage(struct size_class *class) | 
|  | 1120 | { | 
|  | 1121 | int i; | 
|  | 1122 | struct zspage *zspage; | 
|  | 1123 |  | 
|  | 1124 | for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { | 
|  | 1125 | zspage = list_first_entry_or_null(&class->fullness_list[i], | 
|  | 1126 | struct zspage, list); | 
|  | 1127 | if (zspage) | 
|  | 1128 | break; | 
|  | 1129 | } | 
|  | 1130 |  | 
|  | 1131 | return zspage; | 
|  | 1132 | } | 
|  | 1133 |  | 
|  | 1134 | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | 1135 | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | 1136 | { | 
|  | 1137 | /* | 
|  | 1138 | * Make sure we don't leak memory if a cpu UP notification | 
|  | 1139 | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | 1140 | */ | 
|  | 1141 | if (area->vm) | 
|  | 1142 | return 0; | 
|  | 1143 | area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); | 
|  | 1144 | if (!area->vm) | 
|  | 1145 | return -ENOMEM; | 
|  | 1146 | return 0; | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | 1150 | { | 
|  | 1151 | if (area->vm) | 
|  | 1152 | free_vm_area(area->vm); | 
|  | 1153 | area->vm = NULL; | 
|  | 1154 | } | 
|  | 1155 |  | 
|  | 1156 | static inline void *__zs_map_object(struct mapping_area *area, | 
|  | 1157 | struct page *pages[2], int off, int size) | 
|  | 1158 | { | 
|  | 1159 | BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); | 
|  | 1160 | area->vm_addr = area->vm->addr; | 
|  | 1161 | return area->vm_addr + off; | 
|  | 1162 | } | 
|  | 1163 |  | 
|  | 1164 | static inline void __zs_unmap_object(struct mapping_area *area, | 
|  | 1165 | struct page *pages[2], int off, int size) | 
|  | 1166 | { | 
|  | 1167 | unsigned long addr = (unsigned long)area->vm_addr; | 
|  | 1168 |  | 
|  | 1169 | unmap_kernel_range(addr, PAGE_SIZE * 2); | 
|  | 1170 | } | 
|  | 1171 |  | 
|  | 1172 | #else /* CONFIG_PGTABLE_MAPPING */ | 
|  | 1173 |  | 
|  | 1174 | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | 1175 | { | 
|  | 1176 | /* | 
|  | 1177 | * Make sure we don't leak memory if a cpu UP notification | 
|  | 1178 | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | 1179 | */ | 
|  | 1180 | if (area->vm_buf) | 
|  | 1181 | return 0; | 
|  | 1182 | area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
|  | 1183 | if (!area->vm_buf) | 
|  | 1184 | return -ENOMEM; | 
|  | 1185 | return 0; | 
|  | 1186 | } | 
|  | 1187 |  | 
|  | 1188 | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | 1189 | { | 
|  | 1190 | kfree(area->vm_buf); | 
|  | 1191 | area->vm_buf = NULL; | 
|  | 1192 | } | 
|  | 1193 |  | 
|  | 1194 | static void *__zs_map_object(struct mapping_area *area, | 
|  | 1195 | struct page *pages[2], int off, int size) | 
|  | 1196 | { | 
|  | 1197 | int sizes[2]; | 
|  | 1198 | void *addr; | 
|  | 1199 | char *buf = area->vm_buf; | 
|  | 1200 |  | 
|  | 1201 | /* disable page faults to match kmap_atomic() return conditions */ | 
|  | 1202 | pagefault_disable(); | 
|  | 1203 |  | 
|  | 1204 | /* no read fastpath */ | 
|  | 1205 | if (area->vm_mm == ZS_MM_WO) | 
|  | 1206 | goto out; | 
|  | 1207 |  | 
|  | 1208 | sizes[0] = PAGE_SIZE - off; | 
|  | 1209 | sizes[1] = size - sizes[0]; | 
|  | 1210 |  | 
|  | 1211 | /* copy object to per-cpu buffer */ | 
|  | 1212 | addr = kmap_atomic(pages[0]); | 
|  | 1213 | memcpy(buf, addr + off, sizes[0]); | 
|  | 1214 | kunmap_atomic(addr); | 
|  | 1215 | addr = kmap_atomic(pages[1]); | 
|  | 1216 | memcpy(buf + sizes[0], addr, sizes[1]); | 
|  | 1217 | kunmap_atomic(addr); | 
|  | 1218 | out: | 
|  | 1219 | return area->vm_buf; | 
|  | 1220 | } | 
|  | 1221 |  | 
|  | 1222 | static void __zs_unmap_object(struct mapping_area *area, | 
|  | 1223 | struct page *pages[2], int off, int size) | 
|  | 1224 | { | 
|  | 1225 | int sizes[2]; | 
|  | 1226 | void *addr; | 
|  | 1227 | char *buf; | 
|  | 1228 |  | 
|  | 1229 | /* no write fastpath */ | 
|  | 1230 | if (area->vm_mm == ZS_MM_RO) | 
|  | 1231 | goto out; | 
|  | 1232 |  | 
|  | 1233 | buf = area->vm_buf; | 
|  | 1234 | buf = buf + ZS_HANDLE_SIZE; | 
|  | 1235 | size -= ZS_HANDLE_SIZE; | 
|  | 1236 | off += ZS_HANDLE_SIZE; | 
|  | 1237 |  | 
|  | 1238 | sizes[0] = PAGE_SIZE - off; | 
|  | 1239 | sizes[1] = size - sizes[0]; | 
|  | 1240 |  | 
|  | 1241 | /* copy per-cpu buffer to object */ | 
|  | 1242 | addr = kmap_atomic(pages[0]); | 
|  | 1243 | memcpy(addr + off, buf, sizes[0]); | 
|  | 1244 | kunmap_atomic(addr); | 
|  | 1245 | addr = kmap_atomic(pages[1]); | 
|  | 1246 | memcpy(addr, buf + sizes[0], sizes[1]); | 
|  | 1247 | kunmap_atomic(addr); | 
|  | 1248 |  | 
|  | 1249 | out: | 
|  | 1250 | /* enable page faults to match kunmap_atomic() return conditions */ | 
|  | 1251 | pagefault_enable(); | 
|  | 1252 | } | 
|  | 1253 |  | 
|  | 1254 | #endif /* CONFIG_PGTABLE_MAPPING */ | 
|  | 1255 |  | 
|  | 1256 | static int zs_cpu_prepare(unsigned int cpu) | 
|  | 1257 | { | 
|  | 1258 | struct mapping_area *area; | 
|  | 1259 |  | 
|  | 1260 | area = &per_cpu(zs_map_area, cpu); | 
|  | 1261 | return __zs_cpu_up(area); | 
|  | 1262 | } | 
|  | 1263 |  | 
|  | 1264 | static int zs_cpu_dead(unsigned int cpu) | 
|  | 1265 | { | 
|  | 1266 | struct mapping_area *area; | 
|  | 1267 |  | 
|  | 1268 | area = &per_cpu(zs_map_area, cpu); | 
|  | 1269 | __zs_cpu_down(area); | 
|  | 1270 | return 0; | 
|  | 1271 | } | 
|  | 1272 |  | 
|  | 1273 | static bool can_merge(struct size_class *prev, int pages_per_zspage, | 
|  | 1274 | int objs_per_zspage) | 
|  | 1275 | { | 
|  | 1276 | if (prev->pages_per_zspage == pages_per_zspage && | 
|  | 1277 | prev->objs_per_zspage == objs_per_zspage) | 
|  | 1278 | return true; | 
|  | 1279 |  | 
|  | 1280 | return false; | 
|  | 1281 | } | 
|  | 1282 |  | 
|  | 1283 | static bool zspage_full(struct size_class *class, struct zspage *zspage) | 
|  | 1284 | { | 
|  | 1285 | return get_zspage_inuse(zspage) == class->objs_per_zspage; | 
|  | 1286 | } | 
|  | 1287 |  | 
|  | 1288 | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
|  | 1289 | { | 
|  | 1290 | return atomic_long_read(&pool->pages_allocated); | 
|  | 1291 | } | 
|  | 1292 | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
|  | 1293 |  | 
|  | 1294 | /** | 
|  | 1295 | * zs_map_object - get address of allocated object from handle. | 
|  | 1296 | * @pool: pool from which the object was allocated | 
|  | 1297 | * @handle: handle returned from zs_malloc | 
|  | 1298 | * @mm: maping mode to use | 
|  | 1299 | * | 
|  | 1300 | * Before using an object allocated from zs_malloc, it must be mapped using | 
|  | 1301 | * this function. When done with the object, it must be unmapped using | 
|  | 1302 | * zs_unmap_object. | 
|  | 1303 | * | 
|  | 1304 | * Only one object can be mapped per cpu at a time. There is no protection | 
|  | 1305 | * against nested mappings. | 
|  | 1306 | * | 
|  | 1307 | * This function returns with preemption and page faults disabled. | 
|  | 1308 | */ | 
|  | 1309 | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
|  | 1310 | enum zs_mapmode mm) | 
|  | 1311 | { | 
|  | 1312 | struct zspage *zspage; | 
|  | 1313 | struct page *page; | 
|  | 1314 | unsigned long obj, off; | 
|  | 1315 | unsigned int obj_idx; | 
|  | 1316 |  | 
|  | 1317 | unsigned int class_idx; | 
|  | 1318 | enum fullness_group fg; | 
|  | 1319 | struct size_class *class; | 
|  | 1320 | struct mapping_area *area; | 
|  | 1321 | struct page *pages[2]; | 
|  | 1322 | void *ret; | 
|  | 1323 |  | 
|  | 1324 | /* | 
|  | 1325 | * Because we use per-cpu mapping areas shared among the | 
|  | 1326 | * pools/users, we can't allow mapping in interrupt context | 
|  | 1327 | * because it can corrupt another users mappings. | 
|  | 1328 | */ | 
|  | 1329 | BUG_ON(in_interrupt()); | 
|  | 1330 |  | 
|  | 1331 | /* From now on, migration cannot move the object */ | 
|  | 1332 | pin_tag(handle); | 
|  | 1333 |  | 
|  | 1334 | obj = handle_to_obj(handle); | 
|  | 1335 | obj_to_location(obj, &page, &obj_idx); | 
|  | 1336 | zspage = get_zspage(page); | 
|  | 1337 |  | 
|  | 1338 | /* migration cannot move any subpage in this zspage */ | 
|  | 1339 | migrate_read_lock(zspage); | 
|  | 1340 |  | 
|  | 1341 | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | 1342 | class = pool->size_class[class_idx]; | 
|  | 1343 | off = (class->size * obj_idx) & ~PAGE_MASK; | 
|  | 1344 |  | 
|  | 1345 | area = &get_cpu_var(zs_map_area); | 
|  | 1346 | area->vm_mm = mm; | 
|  | 1347 | if (off + class->size <= PAGE_SIZE) { | 
|  | 1348 | /* this object is contained entirely within a page */ | 
|  | 1349 | area->vm_addr = kmap_atomic(page); | 
|  | 1350 | ret = area->vm_addr + off; | 
|  | 1351 | goto out; | 
|  | 1352 | } | 
|  | 1353 |  | 
|  | 1354 | /* this object spans two pages */ | 
|  | 1355 | pages[0] = page; | 
|  | 1356 | pages[1] = get_next_page(page); | 
|  | 1357 | BUG_ON(!pages[1]); | 
|  | 1358 |  | 
|  | 1359 | ret = __zs_map_object(area, pages, off, class->size); | 
|  | 1360 | out: | 
|  | 1361 | if (likely(!PageHugeObject(page))) | 
|  | 1362 | ret += ZS_HANDLE_SIZE; | 
|  | 1363 |  | 
|  | 1364 | return ret; | 
|  | 1365 | } | 
|  | 1366 | EXPORT_SYMBOL_GPL(zs_map_object); | 
|  | 1367 |  | 
|  | 1368 | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
|  | 1369 | { | 
|  | 1370 | struct zspage *zspage; | 
|  | 1371 | struct page *page; | 
|  | 1372 | unsigned long obj, off; | 
|  | 1373 | unsigned int obj_idx; | 
|  | 1374 |  | 
|  | 1375 | unsigned int class_idx; | 
|  | 1376 | enum fullness_group fg; | 
|  | 1377 | struct size_class *class; | 
|  | 1378 | struct mapping_area *area; | 
|  | 1379 |  | 
|  | 1380 | obj = handle_to_obj(handle); | 
|  | 1381 | obj_to_location(obj, &page, &obj_idx); | 
|  | 1382 | zspage = get_zspage(page); | 
|  | 1383 | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | 1384 | class = pool->size_class[class_idx]; | 
|  | 1385 | off = (class->size * obj_idx) & ~PAGE_MASK; | 
|  | 1386 |  | 
|  | 1387 | area = this_cpu_ptr(&zs_map_area); | 
|  | 1388 | if (off + class->size <= PAGE_SIZE) | 
|  | 1389 | kunmap_atomic(area->vm_addr); | 
|  | 1390 | else { | 
|  | 1391 | struct page *pages[2]; | 
|  | 1392 |  | 
|  | 1393 | pages[0] = page; | 
|  | 1394 | pages[1] = get_next_page(page); | 
|  | 1395 | BUG_ON(!pages[1]); | 
|  | 1396 |  | 
|  | 1397 | __zs_unmap_object(area, pages, off, class->size); | 
|  | 1398 | } | 
|  | 1399 | put_cpu_var(zs_map_area); | 
|  | 1400 |  | 
|  | 1401 | migrate_read_unlock(zspage); | 
|  | 1402 | unpin_tag(handle); | 
|  | 1403 | } | 
|  | 1404 | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
|  | 1405 |  | 
|  | 1406 | /** | 
|  | 1407 | * zs_huge_class_size() - Returns the size (in bytes) of the first huge | 
|  | 1408 | *                        zsmalloc &size_class. | 
|  | 1409 | * @pool: zsmalloc pool to use | 
|  | 1410 | * | 
|  | 1411 | * The function returns the size of the first huge class - any object of equal | 
|  | 1412 | * or bigger size will be stored in zspage consisting of a single physical | 
|  | 1413 | * page. | 
|  | 1414 | * | 
|  | 1415 | * Context: Any context. | 
|  | 1416 | * | 
|  | 1417 | * Return: the size (in bytes) of the first huge zsmalloc &size_class. | 
|  | 1418 | */ | 
|  | 1419 | size_t zs_huge_class_size(struct zs_pool *pool) | 
|  | 1420 | { | 
|  | 1421 | return huge_class_size; | 
|  | 1422 | } | 
|  | 1423 | EXPORT_SYMBOL_GPL(zs_huge_class_size); | 
|  | 1424 |  | 
|  | 1425 | static unsigned long obj_malloc(struct size_class *class, | 
|  | 1426 | struct zspage *zspage, unsigned long handle) | 
|  | 1427 | { | 
|  | 1428 | int i, nr_page, offset; | 
|  | 1429 | unsigned long obj; | 
|  | 1430 | struct link_free *link; | 
|  | 1431 |  | 
|  | 1432 | struct page *m_page; | 
|  | 1433 | unsigned long m_offset; | 
|  | 1434 | void *vaddr; | 
|  | 1435 |  | 
|  | 1436 | handle |= OBJ_ALLOCATED_TAG; | 
|  | 1437 | obj = get_freeobj(zspage); | 
|  | 1438 |  | 
|  | 1439 | offset = obj * class->size; | 
|  | 1440 | nr_page = offset >> PAGE_SHIFT; | 
|  | 1441 | m_offset = offset & ~PAGE_MASK; | 
|  | 1442 | m_page = get_first_page(zspage); | 
|  | 1443 |  | 
|  | 1444 | for (i = 0; i < nr_page; i++) | 
|  | 1445 | m_page = get_next_page(m_page); | 
|  | 1446 |  | 
|  | 1447 | vaddr = kmap_atomic(m_page); | 
|  | 1448 | link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
|  | 1449 | set_freeobj(zspage, link->next >> OBJ_TAG_BITS); | 
|  | 1450 | if (likely(!PageHugeObject(m_page))) | 
|  | 1451 | /* record handle in the header of allocated chunk */ | 
|  | 1452 | link->handle = handle; | 
|  | 1453 | else | 
|  | 1454 | /* record handle to page->index */ | 
|  | 1455 | zspage->first_page->index = handle; | 
|  | 1456 |  | 
|  | 1457 | kunmap_atomic(vaddr); | 
|  | 1458 | mod_zspage_inuse(zspage, 1); | 
|  | 1459 | zs_stat_inc(class, OBJ_USED, 1); | 
|  | 1460 |  | 
|  | 1461 | obj = location_to_obj(m_page, obj); | 
|  | 1462 |  | 
|  | 1463 | return obj; | 
|  | 1464 | } | 
|  | 1465 |  | 
|  | 1466 |  | 
|  | 1467 | /** | 
|  | 1468 | * zs_malloc - Allocate block of given size from pool. | 
|  | 1469 | * @pool: pool to allocate from | 
|  | 1470 | * @size: size of block to allocate | 
|  | 1471 | * @gfp: gfp flags when allocating object | 
|  | 1472 | * | 
|  | 1473 | * On success, handle to the allocated object is returned, | 
|  | 1474 | * otherwise 0. | 
|  | 1475 | * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
|  | 1476 | */ | 
|  | 1477 | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
|  | 1478 | { | 
|  | 1479 | unsigned long handle, obj; | 
|  | 1480 | struct size_class *class; | 
|  | 1481 | enum fullness_group newfg; | 
|  | 1482 | struct zspage *zspage; | 
|  | 1483 |  | 
|  | 1484 | if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
|  | 1485 | return 0; | 
|  | 1486 |  | 
|  | 1487 | handle = cache_alloc_handle(pool, gfp); | 
|  | 1488 | if (!handle) | 
|  | 1489 | return 0; | 
|  | 1490 |  | 
|  | 1491 | /* extra space in chunk to keep the handle */ | 
|  | 1492 | size += ZS_HANDLE_SIZE; | 
|  | 1493 | class = pool->size_class[get_size_class_index(size)]; | 
|  | 1494 |  | 
|  | 1495 | spin_lock(&class->lock); | 
|  | 1496 | zspage = find_get_zspage(class); | 
|  | 1497 | if (likely(zspage)) { | 
|  | 1498 | obj = obj_malloc(class, zspage, handle); | 
|  | 1499 | /* Now move the zspage to another fullness group, if required */ | 
|  | 1500 | fix_fullness_group(class, zspage); | 
|  | 1501 | record_obj(handle, obj); | 
|  | 1502 | spin_unlock(&class->lock); | 
|  | 1503 |  | 
|  | 1504 | return handle; | 
|  | 1505 | } | 
|  | 1506 |  | 
|  | 1507 | spin_unlock(&class->lock); | 
|  | 1508 |  | 
|  | 1509 | zspage = alloc_zspage(pool, class, gfp); | 
|  | 1510 | if (!zspage) { | 
|  | 1511 | cache_free_handle(pool, handle); | 
|  | 1512 | return 0; | 
|  | 1513 | } | 
|  | 1514 |  | 
|  | 1515 | spin_lock(&class->lock); | 
|  | 1516 | obj = obj_malloc(class, zspage, handle); | 
|  | 1517 | newfg = get_fullness_group(class, zspage); | 
|  | 1518 | insert_zspage(class, zspage, newfg); | 
|  | 1519 | set_zspage_mapping(zspage, class->index, newfg); | 
|  | 1520 | record_obj(handle, obj); | 
|  | 1521 | atomic_long_add(class->pages_per_zspage, | 
|  | 1522 | &pool->pages_allocated); | 
|  | 1523 | zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
|  | 1524 |  | 
|  | 1525 | /* We completely set up zspage so mark them as movable */ | 
|  | 1526 | SetZsPageMovable(pool, zspage); | 
|  | 1527 | spin_unlock(&class->lock); | 
|  | 1528 |  | 
|  | 1529 | return handle; | 
|  | 1530 | } | 
|  | 1531 | EXPORT_SYMBOL_GPL(zs_malloc); | 
|  | 1532 |  | 
|  | 1533 | static void obj_free(struct size_class *class, unsigned long obj) | 
|  | 1534 | { | 
|  | 1535 | struct link_free *link; | 
|  | 1536 | struct zspage *zspage; | 
|  | 1537 | struct page *f_page; | 
|  | 1538 | unsigned long f_offset; | 
|  | 1539 | unsigned int f_objidx; | 
|  | 1540 | void *vaddr; | 
|  | 1541 |  | 
|  | 1542 | obj &= ~OBJ_ALLOCATED_TAG; | 
|  | 1543 | obj_to_location(obj, &f_page, &f_objidx); | 
|  | 1544 | f_offset = (class->size * f_objidx) & ~PAGE_MASK; | 
|  | 1545 | zspage = get_zspage(f_page); | 
|  | 1546 |  | 
|  | 1547 | vaddr = kmap_atomic(f_page); | 
|  | 1548 |  | 
|  | 1549 | /* Insert this object in containing zspage's freelist */ | 
|  | 1550 | link = (struct link_free *)(vaddr + f_offset); | 
|  | 1551 | link->next = get_freeobj(zspage) << OBJ_TAG_BITS; | 
|  | 1552 | kunmap_atomic(vaddr); | 
|  | 1553 | set_freeobj(zspage, f_objidx); | 
|  | 1554 | mod_zspage_inuse(zspage, -1); | 
|  | 1555 | zs_stat_dec(class, OBJ_USED, 1); | 
|  | 1556 | } | 
|  | 1557 |  | 
|  | 1558 | void zs_free(struct zs_pool *pool, unsigned long handle) | 
|  | 1559 | { | 
|  | 1560 | struct zspage *zspage; | 
|  | 1561 | struct page *f_page; | 
|  | 1562 | unsigned long obj; | 
|  | 1563 | unsigned int f_objidx; | 
|  | 1564 | int class_idx; | 
|  | 1565 | struct size_class *class; | 
|  | 1566 | enum fullness_group fullness; | 
|  | 1567 | bool isolated; | 
|  | 1568 |  | 
|  | 1569 | if (unlikely(!handle)) | 
|  | 1570 | return; | 
|  | 1571 |  | 
|  | 1572 | pin_tag(handle); | 
|  | 1573 | obj = handle_to_obj(handle); | 
|  | 1574 | obj_to_location(obj, &f_page, &f_objidx); | 
|  | 1575 | zspage = get_zspage(f_page); | 
|  | 1576 |  | 
|  | 1577 | migrate_read_lock(zspage); | 
|  | 1578 |  | 
|  | 1579 | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | 1580 | class = pool->size_class[class_idx]; | 
|  | 1581 |  | 
|  | 1582 | spin_lock(&class->lock); | 
|  | 1583 | obj_free(class, obj); | 
|  | 1584 | fullness = fix_fullness_group(class, zspage); | 
|  | 1585 | if (fullness != ZS_EMPTY) { | 
|  | 1586 | migrate_read_unlock(zspage); | 
|  | 1587 | goto out; | 
|  | 1588 | } | 
|  | 1589 |  | 
|  | 1590 | isolated = is_zspage_isolated(zspage); | 
|  | 1591 | migrate_read_unlock(zspage); | 
|  | 1592 | /* If zspage is isolated, zs_page_putback will free the zspage */ | 
|  | 1593 | if (likely(!isolated)) | 
|  | 1594 | free_zspage(pool, class, zspage); | 
|  | 1595 | out: | 
|  | 1596 |  | 
|  | 1597 | spin_unlock(&class->lock); | 
|  | 1598 | unpin_tag(handle); | 
|  | 1599 | cache_free_handle(pool, handle); | 
|  | 1600 | } | 
|  | 1601 | EXPORT_SYMBOL_GPL(zs_free); | 
|  | 1602 |  | 
|  | 1603 | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
|  | 1604 | unsigned long src) | 
|  | 1605 | { | 
|  | 1606 | struct page *s_page, *d_page; | 
|  | 1607 | unsigned int s_objidx, d_objidx; | 
|  | 1608 | unsigned long s_off, d_off; | 
|  | 1609 | void *s_addr, *d_addr; | 
|  | 1610 | int s_size, d_size, size; | 
|  | 1611 | int written = 0; | 
|  | 1612 |  | 
|  | 1613 | s_size = d_size = class->size; | 
|  | 1614 |  | 
|  | 1615 | obj_to_location(src, &s_page, &s_objidx); | 
|  | 1616 | obj_to_location(dst, &d_page, &d_objidx); | 
|  | 1617 |  | 
|  | 1618 | s_off = (class->size * s_objidx) & ~PAGE_MASK; | 
|  | 1619 | d_off = (class->size * d_objidx) & ~PAGE_MASK; | 
|  | 1620 |  | 
|  | 1621 | if (s_off + class->size > PAGE_SIZE) | 
|  | 1622 | s_size = PAGE_SIZE - s_off; | 
|  | 1623 |  | 
|  | 1624 | if (d_off + class->size > PAGE_SIZE) | 
|  | 1625 | d_size = PAGE_SIZE - d_off; | 
|  | 1626 |  | 
|  | 1627 | s_addr = kmap_atomic(s_page); | 
|  | 1628 | d_addr = kmap_atomic(d_page); | 
|  | 1629 |  | 
|  | 1630 | while (1) { | 
|  | 1631 | size = min(s_size, d_size); | 
|  | 1632 | memcpy(d_addr + d_off, s_addr + s_off, size); | 
|  | 1633 | written += size; | 
|  | 1634 |  | 
|  | 1635 | if (written == class->size) | 
|  | 1636 | break; | 
|  | 1637 |  | 
|  | 1638 | s_off += size; | 
|  | 1639 | s_size -= size; | 
|  | 1640 | d_off += size; | 
|  | 1641 | d_size -= size; | 
|  | 1642 |  | 
|  | 1643 | if (s_off >= PAGE_SIZE) { | 
|  | 1644 | kunmap_atomic(d_addr); | 
|  | 1645 | kunmap_atomic(s_addr); | 
|  | 1646 | s_page = get_next_page(s_page); | 
|  | 1647 | s_addr = kmap_atomic(s_page); | 
|  | 1648 | d_addr = kmap_atomic(d_page); | 
|  | 1649 | s_size = class->size - written; | 
|  | 1650 | s_off = 0; | 
|  | 1651 | } | 
|  | 1652 |  | 
|  | 1653 | if (d_off >= PAGE_SIZE) { | 
|  | 1654 | kunmap_atomic(d_addr); | 
|  | 1655 | d_page = get_next_page(d_page); | 
|  | 1656 | d_addr = kmap_atomic(d_page); | 
|  | 1657 | d_size = class->size - written; | 
|  | 1658 | d_off = 0; | 
|  | 1659 | } | 
|  | 1660 | } | 
|  | 1661 |  | 
|  | 1662 | kunmap_atomic(d_addr); | 
|  | 1663 | kunmap_atomic(s_addr); | 
|  | 1664 | } | 
|  | 1665 |  | 
|  | 1666 | /* | 
|  | 1667 | * Find alloced object in zspage from index object and | 
|  | 1668 | * return handle. | 
|  | 1669 | */ | 
|  | 1670 | static unsigned long find_alloced_obj(struct size_class *class, | 
|  | 1671 | struct page *page, int *obj_idx) | 
|  | 1672 | { | 
|  | 1673 | unsigned long head; | 
|  | 1674 | int offset = 0; | 
|  | 1675 | int index = *obj_idx; | 
|  | 1676 | unsigned long handle = 0; | 
|  | 1677 | void *addr = kmap_atomic(page); | 
|  | 1678 |  | 
|  | 1679 | offset = get_first_obj_offset(page); | 
|  | 1680 | offset += class->size * index; | 
|  | 1681 |  | 
|  | 1682 | while (offset < PAGE_SIZE) { | 
|  | 1683 | head = obj_to_head(page, addr + offset); | 
|  | 1684 | if (head & OBJ_ALLOCATED_TAG) { | 
|  | 1685 | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | 1686 | if (trypin_tag(handle)) | 
|  | 1687 | break; | 
|  | 1688 | handle = 0; | 
|  | 1689 | } | 
|  | 1690 |  | 
|  | 1691 | offset += class->size; | 
|  | 1692 | index++; | 
|  | 1693 | } | 
|  | 1694 |  | 
|  | 1695 | kunmap_atomic(addr); | 
|  | 1696 |  | 
|  | 1697 | *obj_idx = index; | 
|  | 1698 |  | 
|  | 1699 | return handle; | 
|  | 1700 | } | 
|  | 1701 |  | 
|  | 1702 | struct zs_compact_control { | 
|  | 1703 | /* Source spage for migration which could be a subpage of zspage */ | 
|  | 1704 | struct page *s_page; | 
|  | 1705 | /* Destination page for migration which should be a first page | 
|  | 1706 | * of zspage. */ | 
|  | 1707 | struct page *d_page; | 
|  | 1708 | /* Starting object index within @s_page which used for live object | 
|  | 1709 | * in the subpage. */ | 
|  | 1710 | int obj_idx; | 
|  | 1711 | }; | 
|  | 1712 |  | 
|  | 1713 | static int migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | 1714 | struct zs_compact_control *cc) | 
|  | 1715 | { | 
|  | 1716 | unsigned long used_obj, free_obj; | 
|  | 1717 | unsigned long handle; | 
|  | 1718 | struct page *s_page = cc->s_page; | 
|  | 1719 | struct page *d_page = cc->d_page; | 
|  | 1720 | int obj_idx = cc->obj_idx; | 
|  | 1721 | int ret = 0; | 
|  | 1722 |  | 
|  | 1723 | while (1) { | 
|  | 1724 | handle = find_alloced_obj(class, s_page, &obj_idx); | 
|  | 1725 | if (!handle) { | 
|  | 1726 | s_page = get_next_page(s_page); | 
|  | 1727 | if (!s_page) | 
|  | 1728 | break; | 
|  | 1729 | obj_idx = 0; | 
|  | 1730 | continue; | 
|  | 1731 | } | 
|  | 1732 |  | 
|  | 1733 | /* Stop if there is no more space */ | 
|  | 1734 | if (zspage_full(class, get_zspage(d_page))) { | 
|  | 1735 | unpin_tag(handle); | 
|  | 1736 | ret = -ENOMEM; | 
|  | 1737 | break; | 
|  | 1738 | } | 
|  | 1739 |  | 
|  | 1740 | used_obj = handle_to_obj(handle); | 
|  | 1741 | free_obj = obj_malloc(class, get_zspage(d_page), handle); | 
|  | 1742 | zs_object_copy(class, free_obj, used_obj); | 
|  | 1743 | obj_idx++; | 
|  | 1744 | /* | 
|  | 1745 | * record_obj updates handle's value to free_obj and it will | 
|  | 1746 | * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which | 
|  | 1747 | * breaks synchronization using pin_tag(e,g, zs_free) so | 
|  | 1748 | * let's keep the lock bit. | 
|  | 1749 | */ | 
|  | 1750 | free_obj |= BIT(HANDLE_PIN_BIT); | 
|  | 1751 | record_obj(handle, free_obj); | 
|  | 1752 | unpin_tag(handle); | 
|  | 1753 | obj_free(class, used_obj); | 
|  | 1754 | } | 
|  | 1755 |  | 
|  | 1756 | /* Remember last position in this iteration */ | 
|  | 1757 | cc->s_page = s_page; | 
|  | 1758 | cc->obj_idx = obj_idx; | 
|  | 1759 |  | 
|  | 1760 | return ret; | 
|  | 1761 | } | 
|  | 1762 |  | 
|  | 1763 | static struct zspage *isolate_zspage(struct size_class *class, bool source) | 
|  | 1764 | { | 
|  | 1765 | int i; | 
|  | 1766 | struct zspage *zspage; | 
|  | 1767 | enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; | 
|  | 1768 |  | 
|  | 1769 | if (!source) { | 
|  | 1770 | fg[0] = ZS_ALMOST_FULL; | 
|  | 1771 | fg[1] = ZS_ALMOST_EMPTY; | 
|  | 1772 | } | 
|  | 1773 |  | 
|  | 1774 | for (i = 0; i < 2; i++) { | 
|  | 1775 | zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], | 
|  | 1776 | struct zspage, list); | 
|  | 1777 | if (zspage) { | 
|  | 1778 | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  | 1779 | remove_zspage(class, zspage, fg[i]); | 
|  | 1780 | return zspage; | 
|  | 1781 | } | 
|  | 1782 | } | 
|  | 1783 |  | 
|  | 1784 | return zspage; | 
|  | 1785 | } | 
|  | 1786 |  | 
|  | 1787 | /* | 
|  | 1788 | * putback_zspage - add @zspage into right class's fullness list | 
|  | 1789 | * @class: destination class | 
|  | 1790 | * @zspage: target page | 
|  | 1791 | * | 
|  | 1792 | * Return @zspage's fullness_group | 
|  | 1793 | */ | 
|  | 1794 | static enum fullness_group putback_zspage(struct size_class *class, | 
|  | 1795 | struct zspage *zspage) | 
|  | 1796 | { | 
|  | 1797 | enum fullness_group fullness; | 
|  | 1798 |  | 
|  | 1799 | VM_BUG_ON(is_zspage_isolated(zspage)); | 
|  | 1800 |  | 
|  | 1801 | fullness = get_fullness_group(class, zspage); | 
|  | 1802 | insert_zspage(class, zspage, fullness); | 
|  | 1803 | set_zspage_mapping(zspage, class->index, fullness); | 
|  | 1804 |  | 
|  | 1805 | return fullness; | 
|  | 1806 | } | 
|  | 1807 |  | 
|  | 1808 | #ifdef CONFIG_COMPACTION | 
|  | 1809 | /* | 
|  | 1810 | * To prevent zspage destroy during migration, zspage freeing should | 
|  | 1811 | * hold locks of all pages in the zspage. | 
|  | 1812 | */ | 
|  | 1813 | static void lock_zspage(struct zspage *zspage) | 
|  | 1814 | { | 
|  | 1815 | struct page *page = get_first_page(zspage); | 
|  | 1816 |  | 
|  | 1817 | do { | 
|  | 1818 | lock_page(page); | 
|  | 1819 | } while ((page = get_next_page(page)) != NULL); | 
|  | 1820 | } | 
|  | 1821 |  | 
|  | 1822 | static struct dentry *zs_mount(struct file_system_type *fs_type, | 
|  | 1823 | int flags, const char *dev_name, void *data) | 
|  | 1824 | { | 
|  | 1825 | static const struct dentry_operations ops = { | 
|  | 1826 | .d_dname = simple_dname, | 
|  | 1827 | }; | 
|  | 1828 |  | 
|  | 1829 | return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); | 
|  | 1830 | } | 
|  | 1831 |  | 
|  | 1832 | static struct file_system_type zsmalloc_fs = { | 
|  | 1833 | .name		= "zsmalloc", | 
|  | 1834 | .mount		= zs_mount, | 
|  | 1835 | .kill_sb	= kill_anon_super, | 
|  | 1836 | }; | 
|  | 1837 |  | 
|  | 1838 | static int zsmalloc_mount(void) | 
|  | 1839 | { | 
|  | 1840 | int ret = 0; | 
|  | 1841 |  | 
|  | 1842 | zsmalloc_mnt = kern_mount(&zsmalloc_fs); | 
|  | 1843 | if (IS_ERR(zsmalloc_mnt)) | 
|  | 1844 | ret = PTR_ERR(zsmalloc_mnt); | 
|  | 1845 |  | 
|  | 1846 | return ret; | 
|  | 1847 | } | 
|  | 1848 |  | 
|  | 1849 | static void zsmalloc_unmount(void) | 
|  | 1850 | { | 
|  | 1851 | kern_unmount(zsmalloc_mnt); | 
|  | 1852 | } | 
|  | 1853 |  | 
|  | 1854 | static void migrate_lock_init(struct zspage *zspage) | 
|  | 1855 | { | 
|  | 1856 | rwlock_init(&zspage->lock); | 
|  | 1857 | } | 
|  | 1858 |  | 
|  | 1859 | static void migrate_read_lock(struct zspage *zspage) | 
|  | 1860 | { | 
|  | 1861 | read_lock(&zspage->lock); | 
|  | 1862 | } | 
|  | 1863 |  | 
|  | 1864 | static void migrate_read_unlock(struct zspage *zspage) | 
|  | 1865 | { | 
|  | 1866 | read_unlock(&zspage->lock); | 
|  | 1867 | } | 
|  | 1868 |  | 
|  | 1869 | static void migrate_write_lock(struct zspage *zspage) | 
|  | 1870 | { | 
|  | 1871 | write_lock(&zspage->lock); | 
|  | 1872 | } | 
|  | 1873 |  | 
|  | 1874 | static void migrate_write_unlock(struct zspage *zspage) | 
|  | 1875 | { | 
|  | 1876 | write_unlock(&zspage->lock); | 
|  | 1877 | } | 
|  | 1878 |  | 
|  | 1879 | /* Number of isolated subpage for *page migration* in this zspage */ | 
|  | 1880 | static void inc_zspage_isolation(struct zspage *zspage) | 
|  | 1881 | { | 
|  | 1882 | zspage->isolated++; | 
|  | 1883 | } | 
|  | 1884 |  | 
|  | 1885 | static void dec_zspage_isolation(struct zspage *zspage) | 
|  | 1886 | { | 
|  | 1887 | zspage->isolated--; | 
|  | 1888 | } | 
|  | 1889 |  | 
|  | 1890 | static void putback_zspage_deferred(struct zs_pool *pool, | 
|  | 1891 | struct size_class *class, | 
|  | 1892 | struct zspage *zspage) | 
|  | 1893 | { | 
|  | 1894 | enum fullness_group fg; | 
|  | 1895 |  | 
|  | 1896 | fg = putback_zspage(class, zspage); | 
|  | 1897 | if (fg == ZS_EMPTY) | 
|  | 1898 | schedule_work(&pool->free_work); | 
|  | 1899 |  | 
|  | 1900 | } | 
|  | 1901 |  | 
|  | 1902 | static inline void zs_pool_dec_isolated(struct zs_pool *pool) | 
|  | 1903 | { | 
|  | 1904 | VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); | 
|  | 1905 | atomic_long_dec(&pool->isolated_pages); | 
|  | 1906 | /* | 
|  | 1907 | * There's no possibility of racing, since wait_for_isolated_drain() | 
|  | 1908 | * checks the isolated count under &class->lock after enqueuing | 
|  | 1909 | * on migration_wait. | 
|  | 1910 | */ | 
|  | 1911 | if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) | 
|  | 1912 | wake_up_all(&pool->migration_wait); | 
|  | 1913 | } | 
|  | 1914 |  | 
|  | 1915 | static void replace_sub_page(struct size_class *class, struct zspage *zspage, | 
|  | 1916 | struct page *newpage, struct page *oldpage) | 
|  | 1917 | { | 
|  | 1918 | struct page *page; | 
|  | 1919 | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; | 
|  | 1920 | int idx = 0; | 
|  | 1921 |  | 
|  | 1922 | page = get_first_page(zspage); | 
|  | 1923 | do { | 
|  | 1924 | if (page == oldpage) | 
|  | 1925 | pages[idx] = newpage; | 
|  | 1926 | else | 
|  | 1927 | pages[idx] = page; | 
|  | 1928 | idx++; | 
|  | 1929 | } while ((page = get_next_page(page)) != NULL); | 
|  | 1930 |  | 
|  | 1931 | create_page_chain(class, zspage, pages); | 
|  | 1932 | set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); | 
|  | 1933 | if (unlikely(PageHugeObject(oldpage))) | 
|  | 1934 | newpage->index = oldpage->index; | 
|  | 1935 | __SetPageMovable(newpage, page_mapping(oldpage)); | 
|  | 1936 | } | 
|  | 1937 |  | 
|  | 1938 | static bool zs_page_isolate(struct page *page, isolate_mode_t mode) | 
|  | 1939 | { | 
|  | 1940 | struct zs_pool *pool; | 
|  | 1941 | struct size_class *class; | 
|  | 1942 | int class_idx; | 
|  | 1943 | enum fullness_group fullness; | 
|  | 1944 | struct zspage *zspage; | 
|  | 1945 | struct address_space *mapping; | 
|  | 1946 |  | 
|  | 1947 | /* | 
|  | 1948 | * Page is locked so zspage couldn't be destroyed. For detail, look at | 
|  | 1949 | * lock_zspage in free_zspage. | 
|  | 1950 | */ | 
|  | 1951 | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | 1952 | VM_BUG_ON_PAGE(PageIsolated(page), page); | 
|  | 1953 |  | 
|  | 1954 | zspage = get_zspage(page); | 
|  | 1955 |  | 
|  | 1956 | /* | 
|  | 1957 | * Without class lock, fullness could be stale while class_idx is okay | 
|  | 1958 | * because class_idx is constant unless page is freed so we should get | 
|  | 1959 | * fullness again under class lock. | 
|  | 1960 | */ | 
|  | 1961 | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | 1962 | mapping = page_mapping(page); | 
|  | 1963 | pool = mapping->private_data; | 
|  | 1964 | class = pool->size_class[class_idx]; | 
|  | 1965 |  | 
|  | 1966 | spin_lock(&class->lock); | 
|  | 1967 | if (get_zspage_inuse(zspage) == 0) { | 
|  | 1968 | spin_unlock(&class->lock); | 
|  | 1969 | return false; | 
|  | 1970 | } | 
|  | 1971 |  | 
|  | 1972 | /* zspage is isolated for object migration */ | 
|  | 1973 | if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
|  | 1974 | spin_unlock(&class->lock); | 
|  | 1975 | return false; | 
|  | 1976 | } | 
|  | 1977 |  | 
|  | 1978 | /* | 
|  | 1979 | * If this is first time isolation for the zspage, isolate zspage from | 
|  | 1980 | * size_class to prevent further object allocation from the zspage. | 
|  | 1981 | */ | 
|  | 1982 | if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
|  | 1983 | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | 1984 | atomic_long_inc(&pool->isolated_pages); | 
|  | 1985 | remove_zspage(class, zspage, fullness); | 
|  | 1986 | } | 
|  | 1987 |  | 
|  | 1988 | inc_zspage_isolation(zspage); | 
|  | 1989 | spin_unlock(&class->lock); | 
|  | 1990 |  | 
|  | 1991 | return true; | 
|  | 1992 | } | 
|  | 1993 |  | 
|  | 1994 | static int zs_page_migrate(struct address_space *mapping, struct page *newpage, | 
|  | 1995 | struct page *page, enum migrate_mode mode) | 
|  | 1996 | { | 
|  | 1997 | struct zs_pool *pool; | 
|  | 1998 | struct size_class *class; | 
|  | 1999 | int class_idx; | 
|  | 2000 | enum fullness_group fullness; | 
|  | 2001 | struct zspage *zspage; | 
|  | 2002 | struct page *dummy; | 
|  | 2003 | void *s_addr, *d_addr, *addr; | 
|  | 2004 | int offset, pos; | 
|  | 2005 | unsigned long handle, head; | 
|  | 2006 | unsigned long old_obj, new_obj; | 
|  | 2007 | unsigned int obj_idx; | 
|  | 2008 | int ret = -EAGAIN; | 
|  | 2009 |  | 
|  | 2010 | /* | 
|  | 2011 | * We cannot support the _NO_COPY case here, because copy needs to | 
|  | 2012 | * happen under the zs lock, which does not work with | 
|  | 2013 | * MIGRATE_SYNC_NO_COPY workflow. | 
|  | 2014 | */ | 
|  | 2015 | if (mode == MIGRATE_SYNC_NO_COPY) | 
|  | 2016 | return -EINVAL; | 
|  | 2017 |  | 
|  | 2018 | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | 2019 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  | 2020 |  | 
|  | 2021 | zspage = get_zspage(page); | 
|  | 2022 |  | 
|  | 2023 | /* Concurrent compactor cannot migrate any subpage in zspage */ | 
|  | 2024 | migrate_write_lock(zspage); | 
|  | 2025 | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | 2026 | pool = mapping->private_data; | 
|  | 2027 | class = pool->size_class[class_idx]; | 
|  | 2028 | offset = get_first_obj_offset(page); | 
|  | 2029 |  | 
|  | 2030 | spin_lock(&class->lock); | 
|  | 2031 | if (!get_zspage_inuse(zspage)) { | 
|  | 2032 | /* | 
|  | 2033 | * Set "offset" to end of the page so that every loops | 
|  | 2034 | * skips unnecessary object scanning. | 
|  | 2035 | */ | 
|  | 2036 | offset = PAGE_SIZE; | 
|  | 2037 | } | 
|  | 2038 |  | 
|  | 2039 | pos = offset; | 
|  | 2040 | s_addr = kmap_atomic(page); | 
|  | 2041 | while (pos < PAGE_SIZE) { | 
|  | 2042 | head = obj_to_head(page, s_addr + pos); | 
|  | 2043 | if (head & OBJ_ALLOCATED_TAG) { | 
|  | 2044 | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | 2045 | if (!trypin_tag(handle)) | 
|  | 2046 | goto unpin_objects; | 
|  | 2047 | } | 
|  | 2048 | pos += class->size; | 
|  | 2049 | } | 
|  | 2050 |  | 
|  | 2051 | /* | 
|  | 2052 | * Here, any user cannot access all objects in the zspage so let's move. | 
|  | 2053 | */ | 
|  | 2054 | d_addr = kmap_atomic(newpage); | 
|  | 2055 | memcpy(d_addr, s_addr, PAGE_SIZE); | 
|  | 2056 | kunmap_atomic(d_addr); | 
|  | 2057 |  | 
|  | 2058 | for (addr = s_addr + offset; addr < s_addr + pos; | 
|  | 2059 | addr += class->size) { | 
|  | 2060 | head = obj_to_head(page, addr); | 
|  | 2061 | if (head & OBJ_ALLOCATED_TAG) { | 
|  | 2062 | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | 2063 | if (!testpin_tag(handle)) | 
|  | 2064 | BUG(); | 
|  | 2065 |  | 
|  | 2066 | old_obj = handle_to_obj(handle); | 
|  | 2067 | obj_to_location(old_obj, &dummy, &obj_idx); | 
|  | 2068 | new_obj = (unsigned long)location_to_obj(newpage, | 
|  | 2069 | obj_idx); | 
|  | 2070 | new_obj |= BIT(HANDLE_PIN_BIT); | 
|  | 2071 | record_obj(handle, new_obj); | 
|  | 2072 | } | 
|  | 2073 | } | 
|  | 2074 |  | 
|  | 2075 | replace_sub_page(class, zspage, newpage, page); | 
|  | 2076 | get_page(newpage); | 
|  | 2077 |  | 
|  | 2078 | dec_zspage_isolation(zspage); | 
|  | 2079 |  | 
|  | 2080 | /* | 
|  | 2081 | * Page migration is done so let's putback isolated zspage to | 
|  | 2082 | * the list if @page is final isolated subpage in the zspage. | 
|  | 2083 | */ | 
|  | 2084 | if (!is_zspage_isolated(zspage)) { | 
|  | 2085 | /* | 
|  | 2086 | * We cannot race with zs_destroy_pool() here because we wait | 
|  | 2087 | * for isolation to hit zero before we start destroying. | 
|  | 2088 | * Also, we ensure that everyone can see pool->destroying before | 
|  | 2089 | * we start waiting. | 
|  | 2090 | */ | 
|  | 2091 | putback_zspage_deferred(pool, class, zspage); | 
|  | 2092 | zs_pool_dec_isolated(pool); | 
|  | 2093 | } | 
|  | 2094 |  | 
|  | 2095 | if (page_zone(newpage) != page_zone(page)) { | 
|  | 2096 | dec_zone_page_state(page, NR_ZSPAGES); | 
|  | 2097 | inc_zone_page_state(newpage, NR_ZSPAGES); | 
|  | 2098 | } | 
|  | 2099 |  | 
|  | 2100 | reset_page(page); | 
|  | 2101 | put_page(page); | 
|  | 2102 | page = newpage; | 
|  | 2103 |  | 
|  | 2104 | ret = MIGRATEPAGE_SUCCESS; | 
|  | 2105 | unpin_objects: | 
|  | 2106 | for (addr = s_addr + offset; addr < s_addr + pos; | 
|  | 2107 | addr += class->size) { | 
|  | 2108 | head = obj_to_head(page, addr); | 
|  | 2109 | if (head & OBJ_ALLOCATED_TAG) { | 
|  | 2110 | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | 2111 | if (!testpin_tag(handle)) | 
|  | 2112 | BUG(); | 
|  | 2113 | unpin_tag(handle); | 
|  | 2114 | } | 
|  | 2115 | } | 
|  | 2116 | kunmap_atomic(s_addr); | 
|  | 2117 | spin_unlock(&class->lock); | 
|  | 2118 | migrate_write_unlock(zspage); | 
|  | 2119 |  | 
|  | 2120 | return ret; | 
|  | 2121 | } | 
|  | 2122 |  | 
|  | 2123 | static void zs_page_putback(struct page *page) | 
|  | 2124 | { | 
|  | 2125 | struct zs_pool *pool; | 
|  | 2126 | struct size_class *class; | 
|  | 2127 | int class_idx; | 
|  | 2128 | enum fullness_group fg; | 
|  | 2129 | struct address_space *mapping; | 
|  | 2130 | struct zspage *zspage; | 
|  | 2131 |  | 
|  | 2132 | VM_BUG_ON_PAGE(!PageMovable(page), page); | 
|  | 2133 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  | 2134 |  | 
|  | 2135 | zspage = get_zspage(page); | 
|  | 2136 | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  | 2137 | mapping = page_mapping(page); | 
|  | 2138 | pool = mapping->private_data; | 
|  | 2139 | class = pool->size_class[class_idx]; | 
|  | 2140 |  | 
|  | 2141 | spin_lock(&class->lock); | 
|  | 2142 | dec_zspage_isolation(zspage); | 
|  | 2143 | if (!is_zspage_isolated(zspage)) { | 
|  | 2144 | /* | 
|  | 2145 | * Due to page_lock, we cannot free zspage immediately | 
|  | 2146 | * so let's defer. | 
|  | 2147 | */ | 
|  | 2148 | putback_zspage_deferred(pool, class, zspage); | 
|  | 2149 | zs_pool_dec_isolated(pool); | 
|  | 2150 | } | 
|  | 2151 | spin_unlock(&class->lock); | 
|  | 2152 | } | 
|  | 2153 |  | 
|  | 2154 | static const struct address_space_operations zsmalloc_aops = { | 
|  | 2155 | .isolate_page = zs_page_isolate, | 
|  | 2156 | .migratepage = zs_page_migrate, | 
|  | 2157 | .putback_page = zs_page_putback, | 
|  | 2158 | }; | 
|  | 2159 |  | 
|  | 2160 | static int zs_register_migration(struct zs_pool *pool) | 
|  | 2161 | { | 
|  | 2162 | pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); | 
|  | 2163 | if (IS_ERR(pool->inode)) { | 
|  | 2164 | pool->inode = NULL; | 
|  | 2165 | return 1; | 
|  | 2166 | } | 
|  | 2167 |  | 
|  | 2168 | pool->inode->i_mapping->private_data = pool; | 
|  | 2169 | pool->inode->i_mapping->a_ops = &zsmalloc_aops; | 
|  | 2170 | return 0; | 
|  | 2171 | } | 
|  | 2172 |  | 
|  | 2173 | static bool pool_isolated_are_drained(struct zs_pool *pool) | 
|  | 2174 | { | 
|  | 2175 | return atomic_long_read(&pool->isolated_pages) == 0; | 
|  | 2176 | } | 
|  | 2177 |  | 
|  | 2178 | /* Function for resolving migration */ | 
|  | 2179 | static void wait_for_isolated_drain(struct zs_pool *pool) | 
|  | 2180 | { | 
|  | 2181 |  | 
|  | 2182 | /* | 
|  | 2183 | * We're in the process of destroying the pool, so there are no | 
|  | 2184 | * active allocations. zs_page_isolate() fails for completely free | 
|  | 2185 | * zspages, so we need only wait for the zs_pool's isolated | 
|  | 2186 | * count to hit zero. | 
|  | 2187 | */ | 
|  | 2188 | wait_event(pool->migration_wait, | 
|  | 2189 | pool_isolated_are_drained(pool)); | 
|  | 2190 | } | 
|  | 2191 |  | 
|  | 2192 | static void zs_unregister_migration(struct zs_pool *pool) | 
|  | 2193 | { | 
|  | 2194 | pool->destroying = true; | 
|  | 2195 | /* | 
|  | 2196 | * We need a memory barrier here to ensure global visibility of | 
|  | 2197 | * pool->destroying. Thus pool->isolated pages will either be 0 in which | 
|  | 2198 | * case we don't care, or it will be > 0 and pool->destroying will | 
|  | 2199 | * ensure that we wake up once isolation hits 0. | 
|  | 2200 | */ | 
|  | 2201 | smp_mb(); | 
|  | 2202 | wait_for_isolated_drain(pool); /* This can block */ | 
|  | 2203 | flush_work(&pool->free_work); | 
|  | 2204 | iput(pool->inode); | 
|  | 2205 | } | 
|  | 2206 |  | 
|  | 2207 | /* | 
|  | 2208 | * Caller should hold page_lock of all pages in the zspage | 
|  | 2209 | * In here, we cannot use zspage meta data. | 
|  | 2210 | */ | 
|  | 2211 | static void async_free_zspage(struct work_struct *work) | 
|  | 2212 | { | 
|  | 2213 | int i; | 
|  | 2214 | struct size_class *class; | 
|  | 2215 | unsigned int class_idx; | 
|  | 2216 | enum fullness_group fullness; | 
|  | 2217 | struct zspage *zspage, *tmp; | 
|  | 2218 | LIST_HEAD(free_pages); | 
|  | 2219 | struct zs_pool *pool = container_of(work, struct zs_pool, | 
|  | 2220 | free_work); | 
|  | 2221 |  | 
|  | 2222 | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  | 2223 | class = pool->size_class[i]; | 
|  | 2224 | if (class->index != i) | 
|  | 2225 | continue; | 
|  | 2226 |  | 
|  | 2227 | spin_lock(&class->lock); | 
|  | 2228 | list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); | 
|  | 2229 | spin_unlock(&class->lock); | 
|  | 2230 | } | 
|  | 2231 |  | 
|  | 2232 |  | 
|  | 2233 | list_for_each_entry_safe(zspage, tmp, &free_pages, list) { | 
|  | 2234 | list_del(&zspage->list); | 
|  | 2235 | lock_zspage(zspage); | 
|  | 2236 |  | 
|  | 2237 | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | 2238 | VM_BUG_ON(fullness != ZS_EMPTY); | 
|  | 2239 | class = pool->size_class[class_idx]; | 
|  | 2240 | spin_lock(&class->lock); | 
|  | 2241 | __free_zspage(pool, pool->size_class[class_idx], zspage); | 
|  | 2242 | spin_unlock(&class->lock); | 
|  | 2243 | } | 
|  | 2244 | }; | 
|  | 2245 |  | 
|  | 2246 | static void kick_deferred_free(struct zs_pool *pool) | 
|  | 2247 | { | 
|  | 2248 | schedule_work(&pool->free_work); | 
|  | 2249 | } | 
|  | 2250 |  | 
|  | 2251 | static void init_deferred_free(struct zs_pool *pool) | 
|  | 2252 | { | 
|  | 2253 | INIT_WORK(&pool->free_work, async_free_zspage); | 
|  | 2254 | } | 
|  | 2255 |  | 
|  | 2256 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) | 
|  | 2257 | { | 
|  | 2258 | struct page *page = get_first_page(zspage); | 
|  | 2259 |  | 
|  | 2260 | do { | 
|  | 2261 | WARN_ON(!trylock_page(page)); | 
|  | 2262 | __SetPageMovable(page, pool->inode->i_mapping); | 
|  | 2263 | unlock_page(page); | 
|  | 2264 | } while ((page = get_next_page(page)) != NULL); | 
|  | 2265 | } | 
|  | 2266 | #endif | 
|  | 2267 |  | 
|  | 2268 | /* | 
|  | 2269 | * | 
|  | 2270 | * Based on the number of unused allocated objects calculate | 
|  | 2271 | * and return the number of pages that we can free. | 
|  | 2272 | */ | 
|  | 2273 | static unsigned long zs_can_compact(struct size_class *class) | 
|  | 2274 | { | 
|  | 2275 | unsigned long obj_wasted; | 
|  | 2276 | unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | 2277 | unsigned long obj_used = zs_stat_get(class, OBJ_USED); | 
|  | 2278 |  | 
|  | 2279 | if (obj_allocated <= obj_used) | 
|  | 2280 | return 0; | 
|  | 2281 |  | 
|  | 2282 | obj_wasted = obj_allocated - obj_used; | 
|  | 2283 | obj_wasted /= class->objs_per_zspage; | 
|  | 2284 |  | 
|  | 2285 | return obj_wasted * class->pages_per_zspage; | 
|  | 2286 | } | 
|  | 2287 |  | 
|  | 2288 | static void __zs_compact(struct zs_pool *pool, struct size_class *class) | 
|  | 2289 | { | 
|  | 2290 | struct zs_compact_control cc; | 
|  | 2291 | struct zspage *src_zspage; | 
|  | 2292 | struct zspage *dst_zspage = NULL; | 
|  | 2293 |  | 
|  | 2294 | spin_lock(&class->lock); | 
|  | 2295 | while ((src_zspage = isolate_zspage(class, true))) { | 
|  | 2296 |  | 
|  | 2297 | if (!zs_can_compact(class)) | 
|  | 2298 | break; | 
|  | 2299 |  | 
|  | 2300 | cc.obj_idx = 0; | 
|  | 2301 | cc.s_page = get_first_page(src_zspage); | 
|  | 2302 |  | 
|  | 2303 | while ((dst_zspage = isolate_zspage(class, false))) { | 
|  | 2304 | cc.d_page = get_first_page(dst_zspage); | 
|  | 2305 | /* | 
|  | 2306 | * If there is no more space in dst_page, resched | 
|  | 2307 | * and see if anyone had allocated another zspage. | 
|  | 2308 | */ | 
|  | 2309 | if (!migrate_zspage(pool, class, &cc)) | 
|  | 2310 | break; | 
|  | 2311 |  | 
|  | 2312 | putback_zspage(class, dst_zspage); | 
|  | 2313 | } | 
|  | 2314 |  | 
|  | 2315 | /* Stop if we couldn't find slot */ | 
|  | 2316 | if (dst_zspage == NULL) | 
|  | 2317 | break; | 
|  | 2318 |  | 
|  | 2319 | putback_zspage(class, dst_zspage); | 
|  | 2320 | if (putback_zspage(class, src_zspage) == ZS_EMPTY) { | 
|  | 2321 | free_zspage(pool, class, src_zspage); | 
|  | 2322 | pool->stats.pages_compacted += class->pages_per_zspage; | 
|  | 2323 | } | 
|  | 2324 | spin_unlock(&class->lock); | 
|  | 2325 | cond_resched(); | 
|  | 2326 | spin_lock(&class->lock); | 
|  | 2327 | } | 
|  | 2328 |  | 
|  | 2329 | if (src_zspage) | 
|  | 2330 | putback_zspage(class, src_zspage); | 
|  | 2331 |  | 
|  | 2332 | spin_unlock(&class->lock); | 
|  | 2333 | } | 
|  | 2334 |  | 
|  | 2335 | unsigned long zs_compact(struct zs_pool *pool) | 
|  | 2336 | { | 
|  | 2337 | int i; | 
|  | 2338 | struct size_class *class; | 
|  | 2339 |  | 
|  | 2340 | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | 2341 | class = pool->size_class[i]; | 
|  | 2342 | if (!class) | 
|  | 2343 | continue; | 
|  | 2344 | if (class->index != i) | 
|  | 2345 | continue; | 
|  | 2346 | __zs_compact(pool, class); | 
|  | 2347 | } | 
|  | 2348 |  | 
|  | 2349 | return pool->stats.pages_compacted; | 
|  | 2350 | } | 
|  | 2351 | EXPORT_SYMBOL_GPL(zs_compact); | 
|  | 2352 |  | 
|  | 2353 | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
|  | 2354 | { | 
|  | 2355 | memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
|  | 2356 | } | 
|  | 2357 | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
|  | 2358 |  | 
|  | 2359 | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
|  | 2360 | struct shrink_control *sc) | 
|  | 2361 | { | 
|  | 2362 | unsigned long pages_freed; | 
|  | 2363 | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | 2364 | shrinker); | 
|  | 2365 |  | 
|  | 2366 | pages_freed = pool->stats.pages_compacted; | 
|  | 2367 | /* | 
|  | 2368 | * Compact classes and calculate compaction delta. | 
|  | 2369 | * Can run concurrently with a manually triggered | 
|  | 2370 | * (by user) compaction. | 
|  | 2371 | */ | 
|  | 2372 | pages_freed = zs_compact(pool) - pages_freed; | 
|  | 2373 |  | 
|  | 2374 | return pages_freed ? pages_freed : SHRINK_STOP; | 
|  | 2375 | } | 
|  | 2376 |  | 
|  | 2377 | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
|  | 2378 | struct shrink_control *sc) | 
|  | 2379 | { | 
|  | 2380 | int i; | 
|  | 2381 | struct size_class *class; | 
|  | 2382 | unsigned long pages_to_free = 0; | 
|  | 2383 | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | 2384 | shrinker); | 
|  | 2385 |  | 
|  | 2386 | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | 2387 | class = pool->size_class[i]; | 
|  | 2388 | if (!class) | 
|  | 2389 | continue; | 
|  | 2390 | if (class->index != i) | 
|  | 2391 | continue; | 
|  | 2392 |  | 
|  | 2393 | pages_to_free += zs_can_compact(class); | 
|  | 2394 | } | 
|  | 2395 |  | 
|  | 2396 | return pages_to_free; | 
|  | 2397 | } | 
|  | 2398 |  | 
|  | 2399 | static void zs_unregister_shrinker(struct zs_pool *pool) | 
|  | 2400 | { | 
|  | 2401 | unregister_shrinker(&pool->shrinker); | 
|  | 2402 | } | 
|  | 2403 |  | 
|  | 2404 | static int zs_register_shrinker(struct zs_pool *pool) | 
|  | 2405 | { | 
|  | 2406 | pool->shrinker.scan_objects = zs_shrinker_scan; | 
|  | 2407 | pool->shrinker.count_objects = zs_shrinker_count; | 
|  | 2408 | pool->shrinker.batch = 0; | 
|  | 2409 | pool->shrinker.seeks = DEFAULT_SEEKS; | 
|  | 2410 |  | 
|  | 2411 | return register_shrinker(&pool->shrinker); | 
|  | 2412 | } | 
|  | 2413 |  | 
|  | 2414 | /** | 
|  | 2415 | * zs_create_pool - Creates an allocation pool to work from. | 
|  | 2416 | * @name: pool name to be created | 
|  | 2417 | * | 
|  | 2418 | * This function must be called before anything when using | 
|  | 2419 | * the zsmalloc allocator. | 
|  | 2420 | * | 
|  | 2421 | * On success, a pointer to the newly created pool is returned, | 
|  | 2422 | * otherwise NULL. | 
|  | 2423 | */ | 
|  | 2424 | struct zs_pool *zs_create_pool(const char *name) | 
|  | 2425 | { | 
|  | 2426 | int i; | 
|  | 2427 | struct zs_pool *pool; | 
|  | 2428 | struct size_class *prev_class = NULL; | 
|  | 2429 |  | 
|  | 2430 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | 2431 | if (!pool) | 
|  | 2432 | return NULL; | 
|  | 2433 |  | 
|  | 2434 | init_deferred_free(pool); | 
|  | 2435 |  | 
|  | 2436 | pool->name = kstrdup(name, GFP_KERNEL); | 
|  | 2437 | if (!pool->name) | 
|  | 2438 | goto err; | 
|  | 2439 |  | 
|  | 2440 | #ifdef CONFIG_COMPACTION | 
|  | 2441 | init_waitqueue_head(&pool->migration_wait); | 
|  | 2442 | #endif | 
|  | 2443 |  | 
|  | 2444 | if (create_cache(pool)) | 
|  | 2445 | goto err; | 
|  | 2446 |  | 
|  | 2447 | /* | 
|  | 2448 | * Iterate reversely, because, size of size_class that we want to use | 
|  | 2449 | * for merging should be larger or equal to current size. | 
|  | 2450 | */ | 
|  | 2451 | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | 2452 | int size; | 
|  | 2453 | int pages_per_zspage; | 
|  | 2454 | int objs_per_zspage; | 
|  | 2455 | struct size_class *class; | 
|  | 2456 | int fullness = 0; | 
|  | 2457 |  | 
|  | 2458 | size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
|  | 2459 | if (size > ZS_MAX_ALLOC_SIZE) | 
|  | 2460 | size = ZS_MAX_ALLOC_SIZE; | 
|  | 2461 | pages_per_zspage = get_pages_per_zspage(size); | 
|  | 2462 | objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; | 
|  | 2463 |  | 
|  | 2464 | /* | 
|  | 2465 | * We iterate from biggest down to smallest classes, | 
|  | 2466 | * so huge_class_size holds the size of the first huge | 
|  | 2467 | * class. Any object bigger than or equal to that will | 
|  | 2468 | * endup in the huge class. | 
|  | 2469 | */ | 
|  | 2470 | if (pages_per_zspage != 1 && objs_per_zspage != 1 && | 
|  | 2471 | !huge_class_size) { | 
|  | 2472 | huge_class_size = size; | 
|  | 2473 | /* | 
|  | 2474 | * The object uses ZS_HANDLE_SIZE bytes to store the | 
|  | 2475 | * handle. We need to subtract it, because zs_malloc() | 
|  | 2476 | * unconditionally adds handle size before it performs | 
|  | 2477 | * size class search - so object may be smaller than | 
|  | 2478 | * huge class size, yet it still can end up in the huge | 
|  | 2479 | * class because it grows by ZS_HANDLE_SIZE extra bytes | 
|  | 2480 | * right before class lookup. | 
|  | 2481 | */ | 
|  | 2482 | huge_class_size -= (ZS_HANDLE_SIZE - 1); | 
|  | 2483 | } | 
|  | 2484 |  | 
|  | 2485 | /* | 
|  | 2486 | * size_class is used for normal zsmalloc operation such | 
|  | 2487 | * as alloc/free for that size. Although it is natural that we | 
|  | 2488 | * have one size_class for each size, there is a chance that we | 
|  | 2489 | * can get more memory utilization if we use one size_class for | 
|  | 2490 | * many different sizes whose size_class have same | 
|  | 2491 | * characteristics. So, we makes size_class point to | 
|  | 2492 | * previous size_class if possible. | 
|  | 2493 | */ | 
|  | 2494 | if (prev_class) { | 
|  | 2495 | if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { | 
|  | 2496 | pool->size_class[i] = prev_class; | 
|  | 2497 | continue; | 
|  | 2498 | } | 
|  | 2499 | } | 
|  | 2500 |  | 
|  | 2501 | class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
|  | 2502 | if (!class) | 
|  | 2503 | goto err; | 
|  | 2504 |  | 
|  | 2505 | class->size = size; | 
|  | 2506 | class->index = i; | 
|  | 2507 | class->pages_per_zspage = pages_per_zspage; | 
|  | 2508 | class->objs_per_zspage = objs_per_zspage; | 
|  | 2509 | spin_lock_init(&class->lock); | 
|  | 2510 | pool->size_class[i] = class; | 
|  | 2511 | for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; | 
|  | 2512 | fullness++) | 
|  | 2513 | INIT_LIST_HEAD(&class->fullness_list[fullness]); | 
|  | 2514 |  | 
|  | 2515 | prev_class = class; | 
|  | 2516 | } | 
|  | 2517 |  | 
|  | 2518 | /* debug only, don't abort if it fails */ | 
|  | 2519 | zs_pool_stat_create(pool, name); | 
|  | 2520 |  | 
|  | 2521 | if (zs_register_migration(pool)) | 
|  | 2522 | goto err; | 
|  | 2523 |  | 
|  | 2524 | /* | 
|  | 2525 | * Not critical since shrinker is only used to trigger internal | 
|  | 2526 | * defragmentation of the pool which is pretty optional thing.  If | 
|  | 2527 | * registration fails we still can use the pool normally and user can | 
|  | 2528 | * trigger compaction manually. Thus, ignore return code. | 
|  | 2529 | */ | 
|  | 2530 | zs_register_shrinker(pool); | 
|  | 2531 |  | 
|  | 2532 | return pool; | 
|  | 2533 |  | 
|  | 2534 | err: | 
|  | 2535 | zs_destroy_pool(pool); | 
|  | 2536 | return NULL; | 
|  | 2537 | } | 
|  | 2538 | EXPORT_SYMBOL_GPL(zs_create_pool); | 
|  | 2539 |  | 
|  | 2540 | void zs_destroy_pool(struct zs_pool *pool) | 
|  | 2541 | { | 
|  | 2542 | int i; | 
|  | 2543 |  | 
|  | 2544 | zs_unregister_shrinker(pool); | 
|  | 2545 | zs_unregister_migration(pool); | 
|  | 2546 | zs_pool_stat_destroy(pool); | 
|  | 2547 |  | 
|  | 2548 | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  | 2549 | int fg; | 
|  | 2550 | struct size_class *class = pool->size_class[i]; | 
|  | 2551 |  | 
|  | 2552 | if (!class) | 
|  | 2553 | continue; | 
|  | 2554 |  | 
|  | 2555 | if (class->index != i) | 
|  | 2556 | continue; | 
|  | 2557 |  | 
|  | 2558 | for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { | 
|  | 2559 | if (!list_empty(&class->fullness_list[fg])) { | 
|  | 2560 | pr_info("Freeing non-empty class with size %db, fullness group %d\n", | 
|  | 2561 | class->size, fg); | 
|  | 2562 | } | 
|  | 2563 | } | 
|  | 2564 | kfree(class); | 
|  | 2565 | } | 
|  | 2566 |  | 
|  | 2567 | destroy_cache(pool); | 
|  | 2568 | kfree(pool->name); | 
|  | 2569 | kfree(pool); | 
|  | 2570 | } | 
|  | 2571 | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
|  | 2572 |  | 
|  | 2573 | static int __init zs_init(void) | 
|  | 2574 | { | 
|  | 2575 | int ret; | 
|  | 2576 |  | 
|  | 2577 | ret = zsmalloc_mount(); | 
|  | 2578 | if (ret) | 
|  | 2579 | goto out; | 
|  | 2580 |  | 
|  | 2581 | ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", | 
|  | 2582 | zs_cpu_prepare, zs_cpu_dead); | 
|  | 2583 | if (ret) | 
|  | 2584 | goto hp_setup_fail; | 
|  | 2585 |  | 
|  | 2586 | #ifdef CONFIG_ZPOOL | 
|  | 2587 | zpool_register_driver(&zs_zpool_driver); | 
|  | 2588 | #endif | 
|  | 2589 |  | 
|  | 2590 | zs_stat_init(); | 
|  | 2591 |  | 
|  | 2592 | return 0; | 
|  | 2593 |  | 
|  | 2594 | hp_setup_fail: | 
|  | 2595 | zsmalloc_unmount(); | 
|  | 2596 | out: | 
|  | 2597 | return ret; | 
|  | 2598 | } | 
|  | 2599 |  | 
|  | 2600 | static void __exit zs_exit(void) | 
|  | 2601 | { | 
|  | 2602 | #ifdef CONFIG_ZPOOL | 
|  | 2603 | zpool_unregister_driver(&zs_zpool_driver); | 
|  | 2604 | #endif | 
|  | 2605 | zsmalloc_unmount(); | 
|  | 2606 | cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); | 
|  | 2607 |  | 
|  | 2608 | zs_stat_exit(); | 
|  | 2609 | } | 
|  | 2610 |  | 
|  | 2611 | module_init(zs_init); | 
|  | 2612 | module_exit(zs_exit); | 
|  | 2613 |  | 
|  | 2614 | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | 2615 | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |