| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * zsmalloc memory allocator | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2011  Nitin Gupta | 
 | 5 |  * Copyright (C) 2012, 2013 Minchan Kim | 
 | 6 |  * | 
 | 7 |  * This code is released using a dual license strategy: BSD/GPL | 
 | 8 |  * You can choose the license that better fits your requirements. | 
 | 9 |  * | 
 | 10 |  * Released under the terms of 3-clause BSD License | 
 | 11 |  * Released under the terms of GNU General Public License Version 2.0 | 
 | 12 |  */ | 
 | 13 |  | 
 | 14 | /* | 
 | 15 |  * Following is how we use various fields and flags of underlying | 
 | 16 |  * struct page(s) to form a zspage. | 
 | 17 |  * | 
 | 18 |  * Usage of struct page fields: | 
 | 19 |  *	page->private: points to zspage | 
 | 20 |  *	page->freelist(index): links together all component pages of a zspage | 
 | 21 |  *		For the huge page, this is always 0, so we use this field | 
 | 22 |  *		to store handle. | 
 | 23 |  *	page->units: first object offset in a subpage of zspage | 
 | 24 |  * | 
 | 25 |  * Usage of struct page flags: | 
 | 26 |  *	PG_private: identifies the first component page | 
 | 27 |  *	PG_owner_priv_1: identifies the huge component page | 
 | 28 |  * | 
 | 29 |  */ | 
 | 30 |  | 
 | 31 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | 32 |  | 
 | 33 | #include <linux/module.h> | 
 | 34 | #include <linux/kernel.h> | 
 | 35 | #include <linux/sched.h> | 
 | 36 | #include <linux/magic.h> | 
 | 37 | #include <linux/bitops.h> | 
 | 38 | #include <linux/errno.h> | 
 | 39 | #include <linux/highmem.h> | 
 | 40 | #include <linux/string.h> | 
 | 41 | #include <linux/slab.h> | 
 | 42 | #include <asm/tlbflush.h> | 
 | 43 | #include <asm/pgtable.h> | 
 | 44 | #include <linux/cpumask.h> | 
 | 45 | #include <linux/cpu.h> | 
 | 46 | #include <linux/vmalloc.h> | 
 | 47 | #include <linux/preempt.h> | 
 | 48 | #include <linux/spinlock.h> | 
 | 49 | #include <linux/shrinker.h> | 
 | 50 | #include <linux/types.h> | 
 | 51 | #include <linux/debugfs.h> | 
 | 52 | #include <linux/zsmalloc.h> | 
 | 53 | #include <linux/zpool.h> | 
 | 54 | #include <linux/mount.h> | 
 | 55 | #include <linux/migrate.h> | 
 | 56 | #include <linux/wait.h> | 
 | 57 | #include <linux/pagemap.h> | 
 | 58 | #include <linux/fs.h> | 
 | 59 |  | 
 | 60 | #define ZSPAGE_MAGIC	0x58 | 
 | 61 |  | 
 | 62 | /* | 
 | 63 |  * This must be power of 2 and greater than of equal to sizeof(link_free). | 
 | 64 |  * These two conditions ensure that any 'struct link_free' itself doesn't | 
 | 65 |  * span more than 1 page which avoids complex case of mapping 2 pages simply | 
 | 66 |  * to restore link_free pointer values. | 
 | 67 |  */ | 
 | 68 | #define ZS_ALIGN		8 | 
 | 69 |  | 
 | 70 | /* | 
 | 71 |  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) | 
 | 72 |  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. | 
 | 73 |  */ | 
 | 74 | #define ZS_MAX_ZSPAGE_ORDER 2 | 
 | 75 | #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) | 
 | 76 |  | 
 | 77 | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * Object location (<PFN>, <obj_idx>) is encoded as | 
 | 81 |  * as single (unsigned long) handle value. | 
 | 82 |  * | 
 | 83 |  * Note that object index <obj_idx> starts from 0. | 
 | 84 |  * | 
 | 85 |  * This is made more complicated by various memory models and PAE. | 
 | 86 |  */ | 
 | 87 |  | 
 | 88 | #ifndef MAX_POSSIBLE_PHYSMEM_BITS | 
 | 89 | #ifdef MAX_PHYSMEM_BITS | 
 | 90 | #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS | 
 | 91 | #else | 
 | 92 | /* | 
 | 93 |  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
 | 94 |  * be PAGE_SHIFT | 
 | 95 |  */ | 
 | 96 | #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG | 
 | 97 | #endif | 
 | 98 | #endif | 
 | 99 |  | 
 | 100 | #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) | 
 | 101 |  | 
 | 102 | /* | 
 | 103 |  * Memory for allocating for handle keeps object position by | 
 | 104 |  * encoding <page, obj_idx> and the encoded value has a room | 
 | 105 |  * in least bit(ie, look at obj_to_location). | 
 | 106 |  * We use the bit to synchronize between object access by | 
 | 107 |  * user and migration. | 
 | 108 |  */ | 
 | 109 | #define HANDLE_PIN_BIT	0 | 
 | 110 |  | 
 | 111 | /* | 
 | 112 |  * Head in allocated object should have OBJ_ALLOCATED_TAG | 
 | 113 |  * to identify the object was allocated or not. | 
 | 114 |  * It's okay to add the status bit in the least bit because | 
 | 115 |  * header keeps handle which is 4byte-aligned address so we | 
 | 116 |  * have room for two bit at least. | 
 | 117 |  */ | 
 | 118 | #define OBJ_ALLOCATED_TAG 1 | 
 | 119 | #define OBJ_TAG_BITS 1 | 
 | 120 | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
 | 121 | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
 | 122 |  | 
 | 123 | #define FULLNESS_BITS	2 | 
 | 124 | #define CLASS_BITS	8 | 
 | 125 | #define ISOLATED_BITS	3 | 
 | 126 | #define MAGIC_VAL_BITS	8 | 
 | 127 |  | 
 | 128 | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
 | 129 | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
 | 130 | #define ZS_MIN_ALLOC_SIZE \ | 
 | 131 | 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
 | 132 | /* each chunk includes extra space to keep handle */ | 
 | 133 | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
 | 134 |  | 
 | 135 | /* | 
 | 136 |  * On systems with 4K page size, this gives 255 size classes! There is a | 
 | 137 |  * trader-off here: | 
 | 138 |  *  - Large number of size classes is potentially wasteful as free page are | 
 | 139 |  *    spread across these classes | 
 | 140 |  *  - Small number of size classes causes large internal fragmentation | 
 | 141 |  *  - Probably its better to use specific size classes (empirically | 
 | 142 |  *    determined). NOTE: all those class sizes must be set as multiple of | 
 | 143 |  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
 | 144 |  * | 
 | 145 |  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
 | 146 |  *  (reason above) | 
 | 147 |  */ | 
 | 148 | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS) | 
 | 149 | #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ | 
 | 150 | 				      ZS_SIZE_CLASS_DELTA) + 1) | 
 | 151 |  | 
 | 152 | enum fullness_group { | 
 | 153 | 	ZS_EMPTY, | 
 | 154 | 	ZS_ALMOST_EMPTY, | 
 | 155 | 	ZS_ALMOST_FULL, | 
 | 156 | 	ZS_FULL, | 
 | 157 | 	NR_ZS_FULLNESS, | 
 | 158 | }; | 
 | 159 |  | 
 | 160 | enum zs_stat_type { | 
 | 161 | 	CLASS_EMPTY, | 
 | 162 | 	CLASS_ALMOST_EMPTY, | 
 | 163 | 	CLASS_ALMOST_FULL, | 
 | 164 | 	CLASS_FULL, | 
 | 165 | 	OBJ_ALLOCATED, | 
 | 166 | 	OBJ_USED, | 
 | 167 | 	NR_ZS_STAT_TYPE, | 
 | 168 | }; | 
 | 169 |  | 
 | 170 | struct zs_size_stat { | 
 | 171 | 	unsigned long objs[NR_ZS_STAT_TYPE]; | 
 | 172 | }; | 
 | 173 |  | 
 | 174 | #ifdef CONFIG_ZSMALLOC_STAT | 
 | 175 | static struct dentry *zs_stat_root; | 
 | 176 | #endif | 
 | 177 |  | 
 | 178 | #ifdef CONFIG_COMPACTION | 
 | 179 | static struct vfsmount *zsmalloc_mnt; | 
 | 180 | #endif | 
 | 181 |  | 
 | 182 | /* | 
 | 183 |  * We assign a page to ZS_ALMOST_EMPTY fullness group when: | 
 | 184 |  *	n <= N / f, where | 
 | 185 |  * n = number of allocated objects | 
 | 186 |  * N = total number of objects zspage can store | 
 | 187 |  * f = fullness_threshold_frac | 
 | 188 |  * | 
 | 189 |  * Similarly, we assign zspage to: | 
 | 190 |  *	ZS_ALMOST_FULL	when n > N / f | 
 | 191 |  *	ZS_EMPTY	when n == 0 | 
 | 192 |  *	ZS_FULL		when n == N | 
 | 193 |  * | 
 | 194 |  * (see: fix_fullness_group()) | 
 | 195 |  */ | 
 | 196 | static const int fullness_threshold_frac = 4; | 
 | 197 | static size_t huge_class_size; | 
 | 198 |  | 
 | 199 | struct size_class { | 
 | 200 | 	spinlock_t lock; | 
 | 201 | 	struct list_head fullness_list[NR_ZS_FULLNESS]; | 
 | 202 | 	/* | 
 | 203 | 	 * Size of objects stored in this class. Must be multiple | 
 | 204 | 	 * of ZS_ALIGN. | 
 | 205 | 	 */ | 
 | 206 | 	int size; | 
 | 207 | 	int objs_per_zspage; | 
 | 208 | 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
 | 209 | 	int pages_per_zspage; | 
 | 210 |  | 
 | 211 | 	unsigned int index; | 
 | 212 | 	struct zs_size_stat stats; | 
 | 213 | }; | 
 | 214 |  | 
 | 215 | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
 | 216 | static void SetPageHugeObject(struct page *page) | 
 | 217 | { | 
 | 218 | 	SetPageOwnerPriv1(page); | 
 | 219 | } | 
 | 220 |  | 
 | 221 | static void ClearPageHugeObject(struct page *page) | 
 | 222 | { | 
 | 223 | 	ClearPageOwnerPriv1(page); | 
 | 224 | } | 
 | 225 |  | 
 | 226 | static int PageHugeObject(struct page *page) | 
 | 227 | { | 
 | 228 | 	return PageOwnerPriv1(page); | 
 | 229 | } | 
 | 230 |  | 
 | 231 | /* | 
 | 232 |  * Placed within free objects to form a singly linked list. | 
 | 233 |  * For every zspage, zspage->freeobj gives head of this list. | 
 | 234 |  * | 
 | 235 |  * This must be power of 2 and less than or equal to ZS_ALIGN | 
 | 236 |  */ | 
 | 237 | struct link_free { | 
 | 238 | 	union { | 
 | 239 | 		/* | 
 | 240 | 		 * Free object index; | 
 | 241 | 		 * It's valid for non-allocated object | 
 | 242 | 		 */ | 
 | 243 | 		unsigned long next; | 
 | 244 | 		/* | 
 | 245 | 		 * Handle of allocated object. | 
 | 246 | 		 */ | 
 | 247 | 		unsigned long handle; | 
 | 248 | 	}; | 
 | 249 | }; | 
 | 250 |  | 
 | 251 | struct zs_pool { | 
 | 252 | 	const char *name; | 
 | 253 |  | 
 | 254 | 	struct size_class *size_class[ZS_SIZE_CLASSES]; | 
 | 255 | 	struct kmem_cache *handle_cachep; | 
 | 256 | 	struct kmem_cache *zspage_cachep; | 
 | 257 |  | 
 | 258 | 	atomic_long_t pages_allocated; | 
 | 259 |  | 
 | 260 | 	struct zs_pool_stats stats; | 
 | 261 |  | 
 | 262 | 	/* Compact classes */ | 
 | 263 | 	struct shrinker shrinker; | 
 | 264 |  | 
 | 265 | #ifdef CONFIG_ZSMALLOC_STAT | 
 | 266 | 	struct dentry *stat_dentry; | 
 | 267 | #endif | 
 | 268 | #ifdef CONFIG_COMPACTION | 
 | 269 | 	struct inode *inode; | 
 | 270 | 	struct work_struct free_work; | 
 | 271 | 	/* A wait queue for when migration races with async_free_zspage() */ | 
 | 272 | 	struct wait_queue_head migration_wait; | 
 | 273 | 	atomic_long_t isolated_pages; | 
 | 274 | 	bool destroying; | 
 | 275 | #endif | 
 | 276 | }; | 
 | 277 |  | 
 | 278 | struct zspage { | 
 | 279 | 	struct { | 
 | 280 | 		unsigned int fullness:FULLNESS_BITS; | 
 | 281 | 		unsigned int class:CLASS_BITS + 1; | 
 | 282 | 		unsigned int isolated:ISOLATED_BITS; | 
 | 283 | 		unsigned int magic:MAGIC_VAL_BITS; | 
 | 284 | 	}; | 
 | 285 | 	unsigned int inuse; | 
 | 286 | 	unsigned int freeobj; | 
 | 287 | 	struct page *first_page; | 
 | 288 | 	struct list_head list; /* fullness list */ | 
 | 289 | #ifdef CONFIG_COMPACTION | 
 | 290 | 	rwlock_t lock; | 
 | 291 | #endif | 
 | 292 | }; | 
 | 293 |  | 
 | 294 | struct mapping_area { | 
 | 295 | #ifdef CONFIG_PGTABLE_MAPPING | 
 | 296 | 	struct vm_struct *vm; /* vm area for mapping object that span pages */ | 
 | 297 | #else | 
 | 298 | 	char *vm_buf; /* copy buffer for objects that span pages */ | 
 | 299 | #endif | 
 | 300 | 	char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
 | 301 | 	enum zs_mapmode vm_mm; /* mapping mode */ | 
 | 302 | }; | 
 | 303 |  | 
 | 304 | #ifdef CONFIG_COMPACTION | 
 | 305 | static int zs_register_migration(struct zs_pool *pool); | 
 | 306 | static void zs_unregister_migration(struct zs_pool *pool); | 
 | 307 | static void migrate_lock_init(struct zspage *zspage); | 
 | 308 | static void migrate_read_lock(struct zspage *zspage); | 
 | 309 | static void migrate_read_unlock(struct zspage *zspage); | 
 | 310 | static void kick_deferred_free(struct zs_pool *pool); | 
 | 311 | static void init_deferred_free(struct zs_pool *pool); | 
 | 312 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); | 
 | 313 | #else | 
 | 314 | static int zsmalloc_mount(void) { return 0; } | 
 | 315 | static void zsmalloc_unmount(void) {} | 
 | 316 | static int zs_register_migration(struct zs_pool *pool) { return 0; } | 
 | 317 | static void zs_unregister_migration(struct zs_pool *pool) {} | 
 | 318 | static void migrate_lock_init(struct zspage *zspage) {} | 
 | 319 | static void migrate_read_lock(struct zspage *zspage) {} | 
 | 320 | static void migrate_read_unlock(struct zspage *zspage) {} | 
 | 321 | static void kick_deferred_free(struct zs_pool *pool) {} | 
 | 322 | static void init_deferred_free(struct zs_pool *pool) {} | 
 | 323 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} | 
 | 324 | #endif | 
 | 325 |  | 
 | 326 | static int create_cache(struct zs_pool *pool) | 
 | 327 | { | 
 | 328 | 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
 | 329 | 					0, 0, NULL); | 
 | 330 | 	if (!pool->handle_cachep) | 
 | 331 | 		return 1; | 
 | 332 |  | 
 | 333 | 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), | 
 | 334 | 					0, 0, NULL); | 
 | 335 | 	if (!pool->zspage_cachep) { | 
 | 336 | 		kmem_cache_destroy(pool->handle_cachep); | 
 | 337 | 		pool->handle_cachep = NULL; | 
 | 338 | 		return 1; | 
 | 339 | 	} | 
 | 340 |  | 
 | 341 | 	return 0; | 
 | 342 | } | 
 | 343 |  | 
 | 344 | static void destroy_cache(struct zs_pool *pool) | 
 | 345 | { | 
 | 346 | 	kmem_cache_destroy(pool->handle_cachep); | 
 | 347 | 	kmem_cache_destroy(pool->zspage_cachep); | 
 | 348 | } | 
 | 349 |  | 
 | 350 | static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
 | 351 | { | 
 | 352 | 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
 | 353 | 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
 | 354 | } | 
 | 355 |  | 
 | 356 | static void cache_free_handle(struct zs_pool *pool, unsigned long handle) | 
 | 357 | { | 
 | 358 | 	kmem_cache_free(pool->handle_cachep, (void *)handle); | 
 | 359 | } | 
 | 360 |  | 
 | 361 | static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) | 
 | 362 | { | 
 | 363 | 	return kmem_cache_alloc(pool->zspage_cachep, | 
 | 364 | 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
 | 365 | } | 
 | 366 |  | 
 | 367 | static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) | 
 | 368 | { | 
 | 369 | 	kmem_cache_free(pool->zspage_cachep, zspage); | 
 | 370 | } | 
 | 371 |  | 
 | 372 | static void record_obj(unsigned long handle, unsigned long obj) | 
 | 373 | { | 
 | 374 | 	/* | 
 | 375 | 	 * lsb of @obj represents handle lock while other bits | 
 | 376 | 	 * represent object value the handle is pointing so | 
 | 377 | 	 * updating shouldn't do store tearing. | 
 | 378 | 	 */ | 
 | 379 | 	WRITE_ONCE(*(unsigned long *)handle, obj); | 
 | 380 | } | 
 | 381 |  | 
 | 382 | /* zpool driver */ | 
 | 383 |  | 
 | 384 | #ifdef CONFIG_ZPOOL | 
 | 385 |  | 
 | 386 | static void *zs_zpool_create(const char *name, gfp_t gfp, | 
 | 387 | 			     const struct zpool_ops *zpool_ops, | 
 | 388 | 			     struct zpool *zpool) | 
 | 389 | { | 
 | 390 | 	/* | 
 | 391 | 	 * Ignore global gfp flags: zs_malloc() may be invoked from | 
 | 392 | 	 * different contexts and its caller must provide a valid | 
 | 393 | 	 * gfp mask. | 
 | 394 | 	 */ | 
 | 395 | 	return zs_create_pool(name); | 
 | 396 | } | 
 | 397 |  | 
 | 398 | static void zs_zpool_destroy(void *pool) | 
 | 399 | { | 
 | 400 | 	zs_destroy_pool(pool); | 
 | 401 | } | 
 | 402 |  | 
 | 403 | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
 | 404 | 			unsigned long *handle) | 
 | 405 | { | 
 | 406 | 	*handle = zs_malloc(pool, size, gfp); | 
 | 407 | 	return *handle ? 0 : -1; | 
 | 408 | } | 
 | 409 | static void zs_zpool_free(void *pool, unsigned long handle) | 
 | 410 | { | 
 | 411 | 	zs_free(pool, handle); | 
 | 412 | } | 
 | 413 |  | 
 | 414 | static void *zs_zpool_map(void *pool, unsigned long handle, | 
 | 415 | 			enum zpool_mapmode mm) | 
 | 416 | { | 
 | 417 | 	enum zs_mapmode zs_mm; | 
 | 418 |  | 
 | 419 | 	switch (mm) { | 
 | 420 | 	case ZPOOL_MM_RO: | 
 | 421 | 		zs_mm = ZS_MM_RO; | 
 | 422 | 		break; | 
 | 423 | 	case ZPOOL_MM_WO: | 
 | 424 | 		zs_mm = ZS_MM_WO; | 
 | 425 | 		break; | 
 | 426 | 	case ZPOOL_MM_RW: /* fallthru */ | 
 | 427 | 	default: | 
 | 428 | 		zs_mm = ZS_MM_RW; | 
 | 429 | 		break; | 
 | 430 | 	} | 
 | 431 |  | 
 | 432 | 	return zs_map_object(pool, handle, zs_mm); | 
 | 433 | } | 
 | 434 | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
 | 435 | { | 
 | 436 | 	zs_unmap_object(pool, handle); | 
 | 437 | } | 
 | 438 |  | 
 | 439 | static u64 zs_zpool_total_size(void *pool) | 
 | 440 | { | 
 | 441 | 	return zs_get_total_pages(pool) << PAGE_SHIFT; | 
 | 442 | } | 
 | 443 |  | 
 | 444 | static struct zpool_driver zs_zpool_driver = { | 
 | 445 | 	.type =		"zsmalloc", | 
 | 446 | 	.owner =	THIS_MODULE, | 
 | 447 | 	.create =	zs_zpool_create, | 
 | 448 | 	.destroy =	zs_zpool_destroy, | 
 | 449 | 	.malloc =	zs_zpool_malloc, | 
 | 450 | 	.free =		zs_zpool_free, | 
 | 451 | 	.map =		zs_zpool_map, | 
 | 452 | 	.unmap =	zs_zpool_unmap, | 
 | 453 | 	.total_size =	zs_zpool_total_size, | 
 | 454 | }; | 
 | 455 |  | 
 | 456 | MODULE_ALIAS("zpool-zsmalloc"); | 
 | 457 | #endif /* CONFIG_ZPOOL */ | 
 | 458 |  | 
 | 459 | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
 | 460 | static DEFINE_PER_CPU(struct mapping_area, zs_map_area); | 
 | 461 |  | 
 | 462 | static bool is_zspage_isolated(struct zspage *zspage) | 
 | 463 | { | 
 | 464 | 	return zspage->isolated; | 
 | 465 | } | 
 | 466 |  | 
 | 467 | static __maybe_unused int is_first_page(struct page *page) | 
 | 468 | { | 
 | 469 | 	return PagePrivate(page); | 
 | 470 | } | 
 | 471 |  | 
 | 472 | /* Protected by class->lock */ | 
 | 473 | static inline int get_zspage_inuse(struct zspage *zspage) | 
 | 474 | { | 
 | 475 | 	return zspage->inuse; | 
 | 476 | } | 
 | 477 |  | 
 | 478 | static inline void set_zspage_inuse(struct zspage *zspage, int val) | 
 | 479 | { | 
 | 480 | 	zspage->inuse = val; | 
 | 481 | } | 
 | 482 |  | 
 | 483 | static inline void mod_zspage_inuse(struct zspage *zspage, int val) | 
 | 484 | { | 
 | 485 | 	zspage->inuse += val; | 
 | 486 | } | 
 | 487 |  | 
 | 488 | static inline struct page *get_first_page(struct zspage *zspage) | 
 | 489 | { | 
 | 490 | 	struct page *first_page = zspage->first_page; | 
 | 491 |  | 
 | 492 | 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
 | 493 | 	return first_page; | 
 | 494 | } | 
 | 495 |  | 
 | 496 | static inline int get_first_obj_offset(struct page *page) | 
 | 497 | { | 
 | 498 | 	return page->units; | 
 | 499 | } | 
 | 500 |  | 
 | 501 | static inline void set_first_obj_offset(struct page *page, int offset) | 
 | 502 | { | 
 | 503 | 	page->units = offset; | 
 | 504 | } | 
 | 505 |  | 
 | 506 | static inline unsigned int get_freeobj(struct zspage *zspage) | 
 | 507 | { | 
 | 508 | 	return zspage->freeobj; | 
 | 509 | } | 
 | 510 |  | 
 | 511 | static inline void set_freeobj(struct zspage *zspage, unsigned int obj) | 
 | 512 | { | 
 | 513 | 	zspage->freeobj = obj; | 
 | 514 | } | 
 | 515 |  | 
 | 516 | static void get_zspage_mapping(struct zspage *zspage, | 
 | 517 | 				unsigned int *class_idx, | 
 | 518 | 				enum fullness_group *fullness) | 
 | 519 | { | 
 | 520 | 	BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
 | 521 |  | 
 | 522 | 	*fullness = zspage->fullness; | 
 | 523 | 	*class_idx = zspage->class; | 
 | 524 | } | 
 | 525 |  | 
 | 526 | static void set_zspage_mapping(struct zspage *zspage, | 
 | 527 | 				unsigned int class_idx, | 
 | 528 | 				enum fullness_group fullness) | 
 | 529 | { | 
 | 530 | 	zspage->class = class_idx; | 
 | 531 | 	zspage->fullness = fullness; | 
 | 532 | } | 
 | 533 |  | 
 | 534 | /* | 
 | 535 |  * zsmalloc divides the pool into various size classes where each | 
 | 536 |  * class maintains a list of zspages where each zspage is divided | 
 | 537 |  * into equal sized chunks. Each allocation falls into one of these | 
 | 538 |  * classes depending on its size. This function returns index of the | 
 | 539 |  * size class which has chunk size big enough to hold the give size. | 
 | 540 |  */ | 
 | 541 | static int get_size_class_index(int size) | 
 | 542 | { | 
 | 543 | 	int idx = 0; | 
 | 544 |  | 
 | 545 | 	if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
 | 546 | 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
 | 547 | 				ZS_SIZE_CLASS_DELTA); | 
 | 548 |  | 
 | 549 | 	return min_t(int, ZS_SIZE_CLASSES - 1, idx); | 
 | 550 | } | 
 | 551 |  | 
 | 552 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | 553 | static inline void zs_stat_inc(struct size_class *class, | 
 | 554 | 				int type, unsigned long cnt) | 
 | 555 | { | 
 | 556 | 	class->stats.objs[type] += cnt; | 
 | 557 | } | 
 | 558 |  | 
 | 559 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | 560 | static inline void zs_stat_dec(struct size_class *class, | 
 | 561 | 				int type, unsigned long cnt) | 
 | 562 | { | 
 | 563 | 	class->stats.objs[type] -= cnt; | 
 | 564 | } | 
 | 565 |  | 
 | 566 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | 567 | static inline unsigned long zs_stat_get(struct size_class *class, | 
 | 568 | 				int type) | 
 | 569 | { | 
 | 570 | 	return class->stats.objs[type]; | 
 | 571 | } | 
 | 572 |  | 
 | 573 | #ifdef CONFIG_ZSMALLOC_STAT | 
 | 574 |  | 
 | 575 | static void __init zs_stat_init(void) | 
 | 576 | { | 
 | 577 | 	if (!debugfs_initialized()) { | 
 | 578 | 		pr_warn("debugfs not available, stat dir not created\n"); | 
 | 579 | 		return; | 
 | 580 | 	} | 
 | 581 |  | 
 | 582 | 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
 | 583 | 	if (!zs_stat_root) | 
 | 584 | 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); | 
 | 585 | } | 
 | 586 |  | 
 | 587 | static void __exit zs_stat_exit(void) | 
 | 588 | { | 
 | 589 | 	debugfs_remove_recursive(zs_stat_root); | 
 | 590 | } | 
 | 591 |  | 
 | 592 | static unsigned long zs_can_compact(struct size_class *class); | 
 | 593 |  | 
 | 594 | static int zs_stats_size_show(struct seq_file *s, void *v) | 
 | 595 | { | 
 | 596 | 	int i; | 
 | 597 | 	struct zs_pool *pool = s->private; | 
 | 598 | 	struct size_class *class; | 
 | 599 | 	int objs_per_zspage; | 
 | 600 | 	unsigned long class_almost_full, class_almost_empty; | 
 | 601 | 	unsigned long obj_allocated, obj_used, pages_used, freeable; | 
 | 602 | 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; | 
 | 603 | 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
 | 604 | 	unsigned long total_freeable = 0; | 
 | 605 |  | 
 | 606 | 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", | 
 | 607 | 			"class", "size", "almost_full", "almost_empty", | 
 | 608 | 			"obj_allocated", "obj_used", "pages_used", | 
 | 609 | 			"pages_per_zspage", "freeable"); | 
 | 610 |  | 
 | 611 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 612 | 		class = pool->size_class[i]; | 
 | 613 |  | 
 | 614 | 		if (class->index != i) | 
 | 615 | 			continue; | 
 | 616 |  | 
 | 617 | 		spin_lock(&class->lock); | 
 | 618 | 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); | 
 | 619 | 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); | 
 | 620 | 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
 | 621 | 		obj_used = zs_stat_get(class, OBJ_USED); | 
 | 622 | 		freeable = zs_can_compact(class); | 
 | 623 | 		spin_unlock(&class->lock); | 
 | 624 |  | 
 | 625 | 		objs_per_zspage = class->objs_per_zspage; | 
 | 626 | 		pages_used = obj_allocated / objs_per_zspage * | 
 | 627 | 				class->pages_per_zspage; | 
 | 628 |  | 
 | 629 | 		seq_printf(s, " %5u %5u %11lu %12lu %13lu" | 
 | 630 | 				" %10lu %10lu %16d %8lu\n", | 
 | 631 | 			i, class->size, class_almost_full, class_almost_empty, | 
 | 632 | 			obj_allocated, obj_used, pages_used, | 
 | 633 | 			class->pages_per_zspage, freeable); | 
 | 634 |  | 
 | 635 | 		total_class_almost_full += class_almost_full; | 
 | 636 | 		total_class_almost_empty += class_almost_empty; | 
 | 637 | 		total_objs += obj_allocated; | 
 | 638 | 		total_used_objs += obj_used; | 
 | 639 | 		total_pages += pages_used; | 
 | 640 | 		total_freeable += freeable; | 
 | 641 | 	} | 
 | 642 |  | 
 | 643 | 	seq_puts(s, "\n"); | 
 | 644 | 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", | 
 | 645 | 			"Total", "", total_class_almost_full, | 
 | 646 | 			total_class_almost_empty, total_objs, | 
 | 647 | 			total_used_objs, total_pages, "", total_freeable); | 
 | 648 |  | 
 | 649 | 	return 0; | 
 | 650 | } | 
 | 651 | DEFINE_SHOW_ATTRIBUTE(zs_stats_size); | 
 | 652 |  | 
 | 653 | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
 | 654 | { | 
 | 655 | 	struct dentry *entry; | 
 | 656 |  | 
 | 657 | 	if (!zs_stat_root) { | 
 | 658 | 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
 | 659 | 		return; | 
 | 660 | 	} | 
 | 661 |  | 
 | 662 | 	entry = debugfs_create_dir(name, zs_stat_root); | 
 | 663 | 	if (!entry) { | 
 | 664 | 		pr_warn("debugfs dir <%s> creation failed\n", name); | 
 | 665 | 		return; | 
 | 666 | 	} | 
 | 667 | 	pool->stat_dentry = entry; | 
 | 668 |  | 
 | 669 | 	entry = debugfs_create_file("classes", S_IFREG | 0444, | 
 | 670 | 				    pool->stat_dentry, pool, | 
 | 671 | 				    &zs_stats_size_fops); | 
 | 672 | 	if (!entry) { | 
 | 673 | 		pr_warn("%s: debugfs file entry <%s> creation failed\n", | 
 | 674 | 				name, "classes"); | 
 | 675 | 		debugfs_remove_recursive(pool->stat_dentry); | 
 | 676 | 		pool->stat_dentry = NULL; | 
 | 677 | 	} | 
 | 678 | } | 
 | 679 |  | 
 | 680 | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
 | 681 | { | 
 | 682 | 	debugfs_remove_recursive(pool->stat_dentry); | 
 | 683 | } | 
 | 684 |  | 
 | 685 | #else /* CONFIG_ZSMALLOC_STAT */ | 
 | 686 | static void __init zs_stat_init(void) | 
 | 687 | { | 
 | 688 | } | 
 | 689 |  | 
 | 690 | static void __exit zs_stat_exit(void) | 
 | 691 | { | 
 | 692 | } | 
 | 693 |  | 
 | 694 | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
 | 695 | { | 
 | 696 | } | 
 | 697 |  | 
 | 698 | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
 | 699 | { | 
 | 700 | } | 
 | 701 | #endif | 
 | 702 |  | 
 | 703 |  | 
 | 704 | /* | 
 | 705 |  * For each size class, zspages are divided into different groups | 
 | 706 |  * depending on how "full" they are. This was done so that we could | 
 | 707 |  * easily find empty or nearly empty zspages when we try to shrink | 
 | 708 |  * the pool (not yet implemented). This function returns fullness | 
 | 709 |  * status of the given page. | 
 | 710 |  */ | 
 | 711 | static enum fullness_group get_fullness_group(struct size_class *class, | 
 | 712 | 						struct zspage *zspage) | 
 | 713 | { | 
 | 714 | 	int inuse, objs_per_zspage; | 
 | 715 | 	enum fullness_group fg; | 
 | 716 |  | 
 | 717 | 	inuse = get_zspage_inuse(zspage); | 
 | 718 | 	objs_per_zspage = class->objs_per_zspage; | 
 | 719 |  | 
 | 720 | 	if (inuse == 0) | 
 | 721 | 		fg = ZS_EMPTY; | 
 | 722 | 	else if (inuse == objs_per_zspage) | 
 | 723 | 		fg = ZS_FULL; | 
 | 724 | 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) | 
 | 725 | 		fg = ZS_ALMOST_EMPTY; | 
 | 726 | 	else | 
 | 727 | 		fg = ZS_ALMOST_FULL; | 
 | 728 |  | 
 | 729 | 	return fg; | 
 | 730 | } | 
 | 731 |  | 
 | 732 | /* | 
 | 733 |  * Each size class maintains various freelists and zspages are assigned | 
 | 734 |  * to one of these freelists based on the number of live objects they | 
 | 735 |  * have. This functions inserts the given zspage into the freelist | 
 | 736 |  * identified by <class, fullness_group>. | 
 | 737 |  */ | 
 | 738 | static void insert_zspage(struct size_class *class, | 
 | 739 | 				struct zspage *zspage, | 
 | 740 | 				enum fullness_group fullness) | 
 | 741 | { | 
 | 742 | 	struct zspage *head; | 
 | 743 |  | 
 | 744 | 	zs_stat_inc(class, fullness, 1); | 
 | 745 | 	head = list_first_entry_or_null(&class->fullness_list[fullness], | 
 | 746 | 					struct zspage, list); | 
 | 747 | 	/* | 
 | 748 | 	 * We want to see more ZS_FULL pages and less almost empty/full. | 
 | 749 | 	 * Put pages with higher ->inuse first. | 
 | 750 | 	 */ | 
 | 751 | 	if (head) { | 
 | 752 | 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { | 
 | 753 | 			list_add(&zspage->list, &head->list); | 
 | 754 | 			return; | 
 | 755 | 		} | 
 | 756 | 	} | 
 | 757 | 	list_add(&zspage->list, &class->fullness_list[fullness]); | 
 | 758 | } | 
 | 759 |  | 
 | 760 | /* | 
 | 761 |  * This function removes the given zspage from the freelist identified | 
 | 762 |  * by <class, fullness_group>. | 
 | 763 |  */ | 
 | 764 | static void remove_zspage(struct size_class *class, | 
 | 765 | 				struct zspage *zspage, | 
 | 766 | 				enum fullness_group fullness) | 
 | 767 | { | 
 | 768 | 	VM_BUG_ON(list_empty(&class->fullness_list[fullness])); | 
 | 769 | 	VM_BUG_ON(is_zspage_isolated(zspage)); | 
 | 770 |  | 
 | 771 | 	list_del_init(&zspage->list); | 
 | 772 | 	zs_stat_dec(class, fullness, 1); | 
 | 773 | } | 
 | 774 |  | 
 | 775 | /* | 
 | 776 |  * Each size class maintains zspages in different fullness groups depending | 
 | 777 |  * on the number of live objects they contain. When allocating or freeing | 
 | 778 |  * objects, the fullness status of the page can change, say, from ALMOST_FULL | 
 | 779 |  * to ALMOST_EMPTY when freeing an object. This function checks if such | 
 | 780 |  * a status change has occurred for the given page and accordingly moves the | 
 | 781 |  * page from the freelist of the old fullness group to that of the new | 
 | 782 |  * fullness group. | 
 | 783 |  */ | 
 | 784 | static enum fullness_group fix_fullness_group(struct size_class *class, | 
 | 785 | 						struct zspage *zspage) | 
 | 786 | { | 
 | 787 | 	int class_idx; | 
 | 788 | 	enum fullness_group currfg, newfg; | 
 | 789 |  | 
 | 790 | 	get_zspage_mapping(zspage, &class_idx, &currfg); | 
 | 791 | 	newfg = get_fullness_group(class, zspage); | 
 | 792 | 	if (newfg == currfg) | 
 | 793 | 		goto out; | 
 | 794 |  | 
 | 795 | 	if (!is_zspage_isolated(zspage)) { | 
 | 796 | 		remove_zspage(class, zspage, currfg); | 
 | 797 | 		insert_zspage(class, zspage, newfg); | 
 | 798 | 	} | 
 | 799 |  | 
 | 800 | 	set_zspage_mapping(zspage, class_idx, newfg); | 
 | 801 |  | 
 | 802 | out: | 
 | 803 | 	return newfg; | 
 | 804 | } | 
 | 805 |  | 
 | 806 | /* | 
 | 807 |  * We have to decide on how many pages to link together | 
 | 808 |  * to form a zspage for each size class. This is important | 
 | 809 |  * to reduce wastage due to unusable space left at end of | 
 | 810 |  * each zspage which is given as: | 
 | 811 |  *     wastage = Zp % class_size | 
 | 812 |  *     usage = Zp - wastage | 
 | 813 |  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... | 
 | 814 |  * | 
 | 815 |  * For example, for size class of 3/8 * PAGE_SIZE, we should | 
 | 816 |  * link together 3 PAGE_SIZE sized pages to form a zspage | 
 | 817 |  * since then we can perfectly fit in 8 such objects. | 
 | 818 |  */ | 
 | 819 | static int get_pages_per_zspage(int class_size) | 
 | 820 | { | 
 | 821 | 	int i, max_usedpc = 0; | 
 | 822 | 	/* zspage order which gives maximum used size per KB */ | 
 | 823 | 	int max_usedpc_order = 1; | 
 | 824 |  | 
 | 825 | 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
 | 826 | 		int zspage_size; | 
 | 827 | 		int waste, usedpc; | 
 | 828 |  | 
 | 829 | 		zspage_size = i * PAGE_SIZE; | 
 | 830 | 		waste = zspage_size % class_size; | 
 | 831 | 		usedpc = (zspage_size - waste) * 100 / zspage_size; | 
 | 832 |  | 
 | 833 | 		if (usedpc > max_usedpc) { | 
 | 834 | 			max_usedpc = usedpc; | 
 | 835 | 			max_usedpc_order = i; | 
 | 836 | 		} | 
 | 837 | 	} | 
 | 838 |  | 
 | 839 | 	return max_usedpc_order; | 
 | 840 | } | 
 | 841 |  | 
 | 842 | static struct zspage *get_zspage(struct page *page) | 
 | 843 | { | 
 | 844 | 	struct zspage *zspage = (struct zspage *)page->private; | 
 | 845 |  | 
 | 846 | 	BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
 | 847 | 	return zspage; | 
 | 848 | } | 
 | 849 |  | 
 | 850 | static struct page *get_next_page(struct page *page) | 
 | 851 | { | 
 | 852 | 	if (unlikely(PageHugeObject(page))) | 
 | 853 | 		return NULL; | 
 | 854 |  | 
 | 855 | 	return page->freelist; | 
 | 856 | } | 
 | 857 |  | 
 | 858 | /** | 
 | 859 |  * obj_to_location - get (<page>, <obj_idx>) from encoded object value | 
 | 860 |  * @obj: the encoded object value | 
 | 861 |  * @page: page object resides in zspage | 
 | 862 |  * @obj_idx: object index | 
 | 863 |  */ | 
 | 864 | static void obj_to_location(unsigned long obj, struct page **page, | 
 | 865 | 				unsigned int *obj_idx) | 
 | 866 | { | 
 | 867 | 	obj >>= OBJ_TAG_BITS; | 
 | 868 | 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
 | 869 | 	*obj_idx = (obj & OBJ_INDEX_MASK); | 
 | 870 | } | 
 | 871 |  | 
 | 872 | /** | 
 | 873 |  * location_to_obj - get obj value encoded from (<page>, <obj_idx>) | 
 | 874 |  * @page: page object resides in zspage | 
 | 875 |  * @obj_idx: object index | 
 | 876 |  */ | 
 | 877 | static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) | 
 | 878 | { | 
 | 879 | 	unsigned long obj; | 
 | 880 |  | 
 | 881 | 	obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
 | 882 | 	obj |= obj_idx & OBJ_INDEX_MASK; | 
 | 883 | 	obj <<= OBJ_TAG_BITS; | 
 | 884 |  | 
 | 885 | 	return obj; | 
 | 886 | } | 
 | 887 |  | 
 | 888 | static unsigned long handle_to_obj(unsigned long handle) | 
 | 889 | { | 
 | 890 | 	return *(unsigned long *)handle; | 
 | 891 | } | 
 | 892 |  | 
 | 893 | static unsigned long obj_to_head(struct page *page, void *obj) | 
 | 894 | { | 
 | 895 | 	if (unlikely(PageHugeObject(page))) { | 
 | 896 | 		VM_BUG_ON_PAGE(!is_first_page(page), page); | 
 | 897 | 		return page->index; | 
 | 898 | 	} else | 
 | 899 | 		return *(unsigned long *)obj; | 
 | 900 | } | 
 | 901 |  | 
 | 902 | static inline int testpin_tag(unsigned long handle) | 
 | 903 | { | 
 | 904 | 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | 905 | } | 
 | 906 |  | 
 | 907 | static inline int trypin_tag(unsigned long handle) | 
 | 908 | { | 
 | 909 | 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | 910 | } | 
 | 911 |  | 
 | 912 | static void pin_tag(unsigned long handle) | 
 | 913 | { | 
 | 914 | 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | 915 | } | 
 | 916 |  | 
 | 917 | static void unpin_tag(unsigned long handle) | 
 | 918 | { | 
 | 919 | 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | 920 | } | 
 | 921 |  | 
 | 922 | static void reset_page(struct page *page) | 
 | 923 | { | 
 | 924 | 	__ClearPageMovable(page); | 
 | 925 | 	ClearPagePrivate(page); | 
 | 926 | 	set_page_private(page, 0); | 
 | 927 | 	page_mapcount_reset(page); | 
 | 928 | 	ClearPageHugeObject(page); | 
 | 929 | 	page->freelist = NULL; | 
 | 930 | } | 
 | 931 |  | 
 | 932 | static int trylock_zspage(struct zspage *zspage) | 
 | 933 | { | 
 | 934 | 	struct page *cursor, *fail; | 
 | 935 |  | 
 | 936 | 	for (cursor = get_first_page(zspage); cursor != NULL; cursor = | 
 | 937 | 					get_next_page(cursor)) { | 
 | 938 | 		if (!trylock_page(cursor)) { | 
 | 939 | 			fail = cursor; | 
 | 940 | 			goto unlock; | 
 | 941 | 		} | 
 | 942 | 	} | 
 | 943 |  | 
 | 944 | 	return 1; | 
 | 945 | unlock: | 
 | 946 | 	for (cursor = get_first_page(zspage); cursor != fail; cursor = | 
 | 947 | 					get_next_page(cursor)) | 
 | 948 | 		unlock_page(cursor); | 
 | 949 |  | 
 | 950 | 	return 0; | 
 | 951 | } | 
 | 952 |  | 
 | 953 | static void __free_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 954 | 				struct zspage *zspage) | 
 | 955 | { | 
 | 956 | 	struct page *page, *next; | 
 | 957 | 	enum fullness_group fg; | 
 | 958 | 	unsigned int class_idx; | 
 | 959 |  | 
 | 960 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 961 |  | 
 | 962 | 	assert_spin_locked(&class->lock); | 
 | 963 |  | 
 | 964 | 	VM_BUG_ON(get_zspage_inuse(zspage)); | 
 | 965 | 	VM_BUG_ON(fg != ZS_EMPTY); | 
 | 966 |  | 
 | 967 | 	next = page = get_first_page(zspage); | 
 | 968 | 	do { | 
 | 969 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 970 | 		next = get_next_page(page); | 
 | 971 | 		reset_page(page); | 
 | 972 | 		unlock_page(page); | 
 | 973 | 		dec_zone_page_state(page, NR_ZSPAGES); | 
 | 974 | 		put_page(page); | 
 | 975 | 		page = next; | 
 | 976 | 	} while (page != NULL); | 
 | 977 |  | 
 | 978 | 	cache_free_zspage(pool, zspage); | 
 | 979 |  | 
 | 980 | 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
 | 981 | 	atomic_long_sub(class->pages_per_zspage, | 
 | 982 | 					&pool->pages_allocated); | 
 | 983 | } | 
 | 984 |  | 
 | 985 | static void free_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 986 | 				struct zspage *zspage) | 
 | 987 | { | 
 | 988 | 	VM_BUG_ON(get_zspage_inuse(zspage)); | 
 | 989 | 	VM_BUG_ON(list_empty(&zspage->list)); | 
 | 990 |  | 
 | 991 | 	if (!trylock_zspage(zspage)) { | 
 | 992 | 		kick_deferred_free(pool); | 
 | 993 | 		return; | 
 | 994 | 	} | 
 | 995 |  | 
 | 996 | 	remove_zspage(class, zspage, ZS_EMPTY); | 
 | 997 | 	__free_zspage(pool, class, zspage); | 
 | 998 | } | 
 | 999 |  | 
 | 1000 | /* Initialize a newly allocated zspage */ | 
 | 1001 | static void init_zspage(struct size_class *class, struct zspage *zspage) | 
 | 1002 | { | 
 | 1003 | 	unsigned int freeobj = 1; | 
 | 1004 | 	unsigned long off = 0; | 
 | 1005 | 	struct page *page = get_first_page(zspage); | 
 | 1006 |  | 
 | 1007 | 	while (page) { | 
 | 1008 | 		struct page *next_page; | 
 | 1009 | 		struct link_free *link; | 
 | 1010 | 		void *vaddr; | 
 | 1011 |  | 
 | 1012 | 		set_first_obj_offset(page, off); | 
 | 1013 |  | 
 | 1014 | 		vaddr = kmap_atomic(page); | 
 | 1015 | 		link = (struct link_free *)vaddr + off / sizeof(*link); | 
 | 1016 |  | 
 | 1017 | 		while ((off += class->size) < PAGE_SIZE) { | 
 | 1018 | 			link->next = freeobj++ << OBJ_TAG_BITS; | 
 | 1019 | 			link += class->size / sizeof(*link); | 
 | 1020 | 		} | 
 | 1021 |  | 
 | 1022 | 		/* | 
 | 1023 | 		 * We now come to the last (full or partial) object on this | 
 | 1024 | 		 * page, which must point to the first object on the next | 
 | 1025 | 		 * page (if present) | 
 | 1026 | 		 */ | 
 | 1027 | 		next_page = get_next_page(page); | 
 | 1028 | 		if (next_page) { | 
 | 1029 | 			link->next = freeobj++ << OBJ_TAG_BITS; | 
 | 1030 | 		} else { | 
 | 1031 | 			/* | 
 | 1032 | 			 * Reset OBJ_TAG_BITS bit to last link to tell | 
 | 1033 | 			 * whether it's allocated object or not. | 
 | 1034 | 			 */ | 
 | 1035 | 			link->next = -1UL << OBJ_TAG_BITS; | 
 | 1036 | 		} | 
 | 1037 | 		kunmap_atomic(vaddr); | 
 | 1038 | 		page = next_page; | 
 | 1039 | 		off %= PAGE_SIZE; | 
 | 1040 | 	} | 
 | 1041 |  | 
 | 1042 | 	set_freeobj(zspage, 0); | 
 | 1043 | } | 
 | 1044 |  | 
 | 1045 | static void create_page_chain(struct size_class *class, struct zspage *zspage, | 
 | 1046 | 				struct page *pages[]) | 
 | 1047 | { | 
 | 1048 | 	int i; | 
 | 1049 | 	struct page *page; | 
 | 1050 | 	struct page *prev_page = NULL; | 
 | 1051 | 	int nr_pages = class->pages_per_zspage; | 
 | 1052 |  | 
 | 1053 | 	/* | 
 | 1054 | 	 * Allocate individual pages and link them together as: | 
 | 1055 | 	 * 1. all pages are linked together using page->freelist | 
 | 1056 | 	 * 2. each sub-page point to zspage using page->private | 
 | 1057 | 	 * | 
 | 1058 | 	 * we set PG_private to identify the first page (i.e. no other sub-page | 
 | 1059 | 	 * has this flag set). | 
 | 1060 | 	 */ | 
 | 1061 | 	for (i = 0; i < nr_pages; i++) { | 
 | 1062 | 		page = pages[i]; | 
 | 1063 | 		set_page_private(page, (unsigned long)zspage); | 
 | 1064 | 		page->freelist = NULL; | 
 | 1065 | 		if (i == 0) { | 
 | 1066 | 			zspage->first_page = page; | 
 | 1067 | 			SetPagePrivate(page); | 
 | 1068 | 			if (unlikely(class->objs_per_zspage == 1 && | 
 | 1069 | 					class->pages_per_zspage == 1)) | 
 | 1070 | 				SetPageHugeObject(page); | 
 | 1071 | 		} else { | 
 | 1072 | 			prev_page->freelist = page; | 
 | 1073 | 		} | 
 | 1074 | 		prev_page = page; | 
 | 1075 | 	} | 
 | 1076 | } | 
 | 1077 |  | 
 | 1078 | /* | 
 | 1079 |  * Allocate a zspage for the given size class | 
 | 1080 |  */ | 
 | 1081 | static struct zspage *alloc_zspage(struct zs_pool *pool, | 
 | 1082 | 					struct size_class *class, | 
 | 1083 | 					gfp_t gfp) | 
 | 1084 | { | 
 | 1085 | 	int i; | 
 | 1086 | 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; | 
 | 1087 | 	struct zspage *zspage = cache_alloc_zspage(pool, gfp); | 
 | 1088 |  | 
 | 1089 | 	if (!zspage) | 
 | 1090 | 		return NULL; | 
 | 1091 |  | 
 | 1092 | 	memset(zspage, 0, sizeof(struct zspage)); | 
 | 1093 | 	zspage->magic = ZSPAGE_MAGIC; | 
 | 1094 | 	migrate_lock_init(zspage); | 
 | 1095 |  | 
 | 1096 | 	for (i = 0; i < class->pages_per_zspage; i++) { | 
 | 1097 | 		struct page *page; | 
 | 1098 |  | 
 | 1099 | 		page = alloc_page(gfp); | 
 | 1100 | 		if (!page) { | 
 | 1101 | 			while (--i >= 0) { | 
 | 1102 | 				dec_zone_page_state(pages[i], NR_ZSPAGES); | 
 | 1103 | 				__free_page(pages[i]); | 
 | 1104 | 			} | 
 | 1105 | 			cache_free_zspage(pool, zspage); | 
 | 1106 | 			return NULL; | 
 | 1107 | 		} | 
 | 1108 |  | 
 | 1109 | 		inc_zone_page_state(page, NR_ZSPAGES); | 
 | 1110 | 		pages[i] = page; | 
 | 1111 | 	} | 
 | 1112 |  | 
 | 1113 | 	create_page_chain(class, zspage, pages); | 
 | 1114 | 	init_zspage(class, zspage); | 
 | 1115 |  | 
 | 1116 | 	return zspage; | 
 | 1117 | } | 
 | 1118 |  | 
 | 1119 | static struct zspage *find_get_zspage(struct size_class *class) | 
 | 1120 | { | 
 | 1121 | 	int i; | 
 | 1122 | 	struct zspage *zspage; | 
 | 1123 |  | 
 | 1124 | 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { | 
 | 1125 | 		zspage = list_first_entry_or_null(&class->fullness_list[i], | 
 | 1126 | 				struct zspage, list); | 
 | 1127 | 		if (zspage) | 
 | 1128 | 			break; | 
 | 1129 | 	} | 
 | 1130 |  | 
 | 1131 | 	return zspage; | 
 | 1132 | } | 
 | 1133 |  | 
 | 1134 | #ifdef CONFIG_PGTABLE_MAPPING | 
 | 1135 | static inline int __zs_cpu_up(struct mapping_area *area) | 
 | 1136 | { | 
 | 1137 | 	/* | 
 | 1138 | 	 * Make sure we don't leak memory if a cpu UP notification | 
 | 1139 | 	 * and zs_init() race and both call zs_cpu_up() on the same cpu | 
 | 1140 | 	 */ | 
 | 1141 | 	if (area->vm) | 
 | 1142 | 		return 0; | 
 | 1143 | 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); | 
 | 1144 | 	if (!area->vm) | 
 | 1145 | 		return -ENOMEM; | 
 | 1146 | 	return 0; | 
 | 1147 | } | 
 | 1148 |  | 
 | 1149 | static inline void __zs_cpu_down(struct mapping_area *area) | 
 | 1150 | { | 
 | 1151 | 	if (area->vm) | 
 | 1152 | 		free_vm_area(area->vm); | 
 | 1153 | 	area->vm = NULL; | 
 | 1154 | } | 
 | 1155 |  | 
 | 1156 | static inline void *__zs_map_object(struct mapping_area *area, | 
 | 1157 | 				struct page *pages[2], int off, int size) | 
 | 1158 | { | 
 | 1159 | 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); | 
 | 1160 | 	area->vm_addr = area->vm->addr; | 
 | 1161 | 	return area->vm_addr + off; | 
 | 1162 | } | 
 | 1163 |  | 
 | 1164 | static inline void __zs_unmap_object(struct mapping_area *area, | 
 | 1165 | 				struct page *pages[2], int off, int size) | 
 | 1166 | { | 
 | 1167 | 	unsigned long addr = (unsigned long)area->vm_addr; | 
 | 1168 |  | 
 | 1169 | 	unmap_kernel_range(addr, PAGE_SIZE * 2); | 
 | 1170 | } | 
 | 1171 |  | 
 | 1172 | #else /* CONFIG_PGTABLE_MAPPING */ | 
 | 1173 |  | 
 | 1174 | static inline int __zs_cpu_up(struct mapping_area *area) | 
 | 1175 | { | 
 | 1176 | 	/* | 
 | 1177 | 	 * Make sure we don't leak memory if a cpu UP notification | 
 | 1178 | 	 * and zs_init() race and both call zs_cpu_up() on the same cpu | 
 | 1179 | 	 */ | 
 | 1180 | 	if (area->vm_buf) | 
 | 1181 | 		return 0; | 
 | 1182 | 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
 | 1183 | 	if (!area->vm_buf) | 
 | 1184 | 		return -ENOMEM; | 
 | 1185 | 	return 0; | 
 | 1186 | } | 
 | 1187 |  | 
 | 1188 | static inline void __zs_cpu_down(struct mapping_area *area) | 
 | 1189 | { | 
 | 1190 | 	kfree(area->vm_buf); | 
 | 1191 | 	area->vm_buf = NULL; | 
 | 1192 | } | 
 | 1193 |  | 
 | 1194 | static void *__zs_map_object(struct mapping_area *area, | 
 | 1195 | 			struct page *pages[2], int off, int size) | 
 | 1196 | { | 
 | 1197 | 	int sizes[2]; | 
 | 1198 | 	void *addr; | 
 | 1199 | 	char *buf = area->vm_buf; | 
 | 1200 |  | 
 | 1201 | 	/* disable page faults to match kmap_atomic() return conditions */ | 
 | 1202 | 	pagefault_disable(); | 
 | 1203 |  | 
 | 1204 | 	/* no read fastpath */ | 
 | 1205 | 	if (area->vm_mm == ZS_MM_WO) | 
 | 1206 | 		goto out; | 
 | 1207 |  | 
 | 1208 | 	sizes[0] = PAGE_SIZE - off; | 
 | 1209 | 	sizes[1] = size - sizes[0]; | 
 | 1210 |  | 
 | 1211 | 	/* copy object to per-cpu buffer */ | 
 | 1212 | 	addr = kmap_atomic(pages[0]); | 
 | 1213 | 	memcpy(buf, addr + off, sizes[0]); | 
 | 1214 | 	kunmap_atomic(addr); | 
 | 1215 | 	addr = kmap_atomic(pages[1]); | 
 | 1216 | 	memcpy(buf + sizes[0], addr, sizes[1]); | 
 | 1217 | 	kunmap_atomic(addr); | 
 | 1218 | out: | 
 | 1219 | 	return area->vm_buf; | 
 | 1220 | } | 
 | 1221 |  | 
 | 1222 | static void __zs_unmap_object(struct mapping_area *area, | 
 | 1223 | 			struct page *pages[2], int off, int size) | 
 | 1224 | { | 
 | 1225 | 	int sizes[2]; | 
 | 1226 | 	void *addr; | 
 | 1227 | 	char *buf; | 
 | 1228 |  | 
 | 1229 | 	/* no write fastpath */ | 
 | 1230 | 	if (area->vm_mm == ZS_MM_RO) | 
 | 1231 | 		goto out; | 
 | 1232 |  | 
 | 1233 | 	buf = area->vm_buf; | 
 | 1234 | 	buf = buf + ZS_HANDLE_SIZE; | 
 | 1235 | 	size -= ZS_HANDLE_SIZE; | 
 | 1236 | 	off += ZS_HANDLE_SIZE; | 
 | 1237 |  | 
 | 1238 | 	sizes[0] = PAGE_SIZE - off; | 
 | 1239 | 	sizes[1] = size - sizes[0]; | 
 | 1240 |  | 
 | 1241 | 	/* copy per-cpu buffer to object */ | 
 | 1242 | 	addr = kmap_atomic(pages[0]); | 
 | 1243 | 	memcpy(addr + off, buf, sizes[0]); | 
 | 1244 | 	kunmap_atomic(addr); | 
 | 1245 | 	addr = kmap_atomic(pages[1]); | 
 | 1246 | 	memcpy(addr, buf + sizes[0], sizes[1]); | 
 | 1247 | 	kunmap_atomic(addr); | 
 | 1248 |  | 
 | 1249 | out: | 
 | 1250 | 	/* enable page faults to match kunmap_atomic() return conditions */ | 
 | 1251 | 	pagefault_enable(); | 
 | 1252 | } | 
 | 1253 |  | 
 | 1254 | #endif /* CONFIG_PGTABLE_MAPPING */ | 
 | 1255 |  | 
 | 1256 | static int zs_cpu_prepare(unsigned int cpu) | 
 | 1257 | { | 
 | 1258 | 	struct mapping_area *area; | 
 | 1259 |  | 
 | 1260 | 	area = &per_cpu(zs_map_area, cpu); | 
 | 1261 | 	return __zs_cpu_up(area); | 
 | 1262 | } | 
 | 1263 |  | 
 | 1264 | static int zs_cpu_dead(unsigned int cpu) | 
 | 1265 | { | 
 | 1266 | 	struct mapping_area *area; | 
 | 1267 |  | 
 | 1268 | 	area = &per_cpu(zs_map_area, cpu); | 
 | 1269 | 	__zs_cpu_down(area); | 
 | 1270 | 	return 0; | 
 | 1271 | } | 
 | 1272 |  | 
 | 1273 | static bool can_merge(struct size_class *prev, int pages_per_zspage, | 
 | 1274 | 					int objs_per_zspage) | 
 | 1275 | { | 
 | 1276 | 	if (prev->pages_per_zspage == pages_per_zspage && | 
 | 1277 | 		prev->objs_per_zspage == objs_per_zspage) | 
 | 1278 | 		return true; | 
 | 1279 |  | 
 | 1280 | 	return false; | 
 | 1281 | } | 
 | 1282 |  | 
 | 1283 | static bool zspage_full(struct size_class *class, struct zspage *zspage) | 
 | 1284 | { | 
 | 1285 | 	return get_zspage_inuse(zspage) == class->objs_per_zspage; | 
 | 1286 | } | 
 | 1287 |  | 
 | 1288 | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
 | 1289 | { | 
 | 1290 | 	return atomic_long_read(&pool->pages_allocated); | 
 | 1291 | } | 
 | 1292 | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
 | 1293 |  | 
 | 1294 | /** | 
 | 1295 |  * zs_map_object - get address of allocated object from handle. | 
 | 1296 |  * @pool: pool from which the object was allocated | 
 | 1297 |  * @handle: handle returned from zs_malloc | 
 | 1298 |  * @mm: maping mode to use | 
 | 1299 |  * | 
 | 1300 |  * Before using an object allocated from zs_malloc, it must be mapped using | 
 | 1301 |  * this function. When done with the object, it must be unmapped using | 
 | 1302 |  * zs_unmap_object. | 
 | 1303 |  * | 
 | 1304 |  * Only one object can be mapped per cpu at a time. There is no protection | 
 | 1305 |  * against nested mappings. | 
 | 1306 |  * | 
 | 1307 |  * This function returns with preemption and page faults disabled. | 
 | 1308 |  */ | 
 | 1309 | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
 | 1310 | 			enum zs_mapmode mm) | 
 | 1311 | { | 
 | 1312 | 	struct zspage *zspage; | 
 | 1313 | 	struct page *page; | 
 | 1314 | 	unsigned long obj, off; | 
 | 1315 | 	unsigned int obj_idx; | 
 | 1316 |  | 
 | 1317 | 	unsigned int class_idx; | 
 | 1318 | 	enum fullness_group fg; | 
 | 1319 | 	struct size_class *class; | 
 | 1320 | 	struct mapping_area *area; | 
 | 1321 | 	struct page *pages[2]; | 
 | 1322 | 	void *ret; | 
 | 1323 |  | 
 | 1324 | 	/* | 
 | 1325 | 	 * Because we use per-cpu mapping areas shared among the | 
 | 1326 | 	 * pools/users, we can't allow mapping in interrupt context | 
 | 1327 | 	 * because it can corrupt another users mappings. | 
 | 1328 | 	 */ | 
 | 1329 | 	BUG_ON(in_interrupt()); | 
 | 1330 |  | 
 | 1331 | 	/* From now on, migration cannot move the object */ | 
 | 1332 | 	pin_tag(handle); | 
 | 1333 |  | 
 | 1334 | 	obj = handle_to_obj(handle); | 
 | 1335 | 	obj_to_location(obj, &page, &obj_idx); | 
 | 1336 | 	zspage = get_zspage(page); | 
 | 1337 |  | 
 | 1338 | 	/* migration cannot move any subpage in this zspage */ | 
 | 1339 | 	migrate_read_lock(zspage); | 
 | 1340 |  | 
 | 1341 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 1342 | 	class = pool->size_class[class_idx]; | 
 | 1343 | 	off = (class->size * obj_idx) & ~PAGE_MASK; | 
 | 1344 |  | 
 | 1345 | 	area = &get_cpu_var(zs_map_area); | 
 | 1346 | 	area->vm_mm = mm; | 
 | 1347 | 	if (off + class->size <= PAGE_SIZE) { | 
 | 1348 | 		/* this object is contained entirely within a page */ | 
 | 1349 | 		area->vm_addr = kmap_atomic(page); | 
 | 1350 | 		ret = area->vm_addr + off; | 
 | 1351 | 		goto out; | 
 | 1352 | 	} | 
 | 1353 |  | 
 | 1354 | 	/* this object spans two pages */ | 
 | 1355 | 	pages[0] = page; | 
 | 1356 | 	pages[1] = get_next_page(page); | 
 | 1357 | 	BUG_ON(!pages[1]); | 
 | 1358 |  | 
 | 1359 | 	ret = __zs_map_object(area, pages, off, class->size); | 
 | 1360 | out: | 
 | 1361 | 	if (likely(!PageHugeObject(page))) | 
 | 1362 | 		ret += ZS_HANDLE_SIZE; | 
 | 1363 |  | 
 | 1364 | 	return ret; | 
 | 1365 | } | 
 | 1366 | EXPORT_SYMBOL_GPL(zs_map_object); | 
 | 1367 |  | 
 | 1368 | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
 | 1369 | { | 
 | 1370 | 	struct zspage *zspage; | 
 | 1371 | 	struct page *page; | 
 | 1372 | 	unsigned long obj, off; | 
 | 1373 | 	unsigned int obj_idx; | 
 | 1374 |  | 
 | 1375 | 	unsigned int class_idx; | 
 | 1376 | 	enum fullness_group fg; | 
 | 1377 | 	struct size_class *class; | 
 | 1378 | 	struct mapping_area *area; | 
 | 1379 |  | 
 | 1380 | 	obj = handle_to_obj(handle); | 
 | 1381 | 	obj_to_location(obj, &page, &obj_idx); | 
 | 1382 | 	zspage = get_zspage(page); | 
 | 1383 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 1384 | 	class = pool->size_class[class_idx]; | 
 | 1385 | 	off = (class->size * obj_idx) & ~PAGE_MASK; | 
 | 1386 |  | 
 | 1387 | 	area = this_cpu_ptr(&zs_map_area); | 
 | 1388 | 	if (off + class->size <= PAGE_SIZE) | 
 | 1389 | 		kunmap_atomic(area->vm_addr); | 
 | 1390 | 	else { | 
 | 1391 | 		struct page *pages[2]; | 
 | 1392 |  | 
 | 1393 | 		pages[0] = page; | 
 | 1394 | 		pages[1] = get_next_page(page); | 
 | 1395 | 		BUG_ON(!pages[1]); | 
 | 1396 |  | 
 | 1397 | 		__zs_unmap_object(area, pages, off, class->size); | 
 | 1398 | 	} | 
 | 1399 | 	put_cpu_var(zs_map_area); | 
 | 1400 |  | 
 | 1401 | 	migrate_read_unlock(zspage); | 
 | 1402 | 	unpin_tag(handle); | 
 | 1403 | } | 
 | 1404 | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
 | 1405 |  | 
 | 1406 | /** | 
 | 1407 |  * zs_huge_class_size() - Returns the size (in bytes) of the first huge | 
 | 1408 |  *                        zsmalloc &size_class. | 
 | 1409 |  * @pool: zsmalloc pool to use | 
 | 1410 |  * | 
 | 1411 |  * The function returns the size of the first huge class - any object of equal | 
 | 1412 |  * or bigger size will be stored in zspage consisting of a single physical | 
 | 1413 |  * page. | 
 | 1414 |  * | 
 | 1415 |  * Context: Any context. | 
 | 1416 |  * | 
 | 1417 |  * Return: the size (in bytes) of the first huge zsmalloc &size_class. | 
 | 1418 |  */ | 
 | 1419 | size_t zs_huge_class_size(struct zs_pool *pool) | 
 | 1420 | { | 
 | 1421 | 	return huge_class_size; | 
 | 1422 | } | 
 | 1423 | EXPORT_SYMBOL_GPL(zs_huge_class_size); | 
 | 1424 |  | 
 | 1425 | static unsigned long obj_malloc(struct size_class *class, | 
 | 1426 | 				struct zspage *zspage, unsigned long handle) | 
 | 1427 | { | 
 | 1428 | 	int i, nr_page, offset; | 
 | 1429 | 	unsigned long obj; | 
 | 1430 | 	struct link_free *link; | 
 | 1431 |  | 
 | 1432 | 	struct page *m_page; | 
 | 1433 | 	unsigned long m_offset; | 
 | 1434 | 	void *vaddr; | 
 | 1435 |  | 
 | 1436 | 	handle |= OBJ_ALLOCATED_TAG; | 
 | 1437 | 	obj = get_freeobj(zspage); | 
 | 1438 |  | 
 | 1439 | 	offset = obj * class->size; | 
 | 1440 | 	nr_page = offset >> PAGE_SHIFT; | 
 | 1441 | 	m_offset = offset & ~PAGE_MASK; | 
 | 1442 | 	m_page = get_first_page(zspage); | 
 | 1443 |  | 
 | 1444 | 	for (i = 0; i < nr_page; i++) | 
 | 1445 | 		m_page = get_next_page(m_page); | 
 | 1446 |  | 
 | 1447 | 	vaddr = kmap_atomic(m_page); | 
 | 1448 | 	link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
 | 1449 | 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS); | 
 | 1450 | 	if (likely(!PageHugeObject(m_page))) | 
 | 1451 | 		/* record handle in the header of allocated chunk */ | 
 | 1452 | 		link->handle = handle; | 
 | 1453 | 	else | 
 | 1454 | 		/* record handle to page->index */ | 
 | 1455 | 		zspage->first_page->index = handle; | 
 | 1456 |  | 
 | 1457 | 	kunmap_atomic(vaddr); | 
 | 1458 | 	mod_zspage_inuse(zspage, 1); | 
 | 1459 | 	zs_stat_inc(class, OBJ_USED, 1); | 
 | 1460 |  | 
 | 1461 | 	obj = location_to_obj(m_page, obj); | 
 | 1462 |  | 
 | 1463 | 	return obj; | 
 | 1464 | } | 
 | 1465 |  | 
 | 1466 |  | 
 | 1467 | /** | 
 | 1468 |  * zs_malloc - Allocate block of given size from pool. | 
 | 1469 |  * @pool: pool to allocate from | 
 | 1470 |  * @size: size of block to allocate | 
 | 1471 |  * @gfp: gfp flags when allocating object | 
 | 1472 |  * | 
 | 1473 |  * On success, handle to the allocated object is returned, | 
 | 1474 |  * otherwise 0. | 
 | 1475 |  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
 | 1476 |  */ | 
 | 1477 | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
 | 1478 | { | 
 | 1479 | 	unsigned long handle, obj; | 
 | 1480 | 	struct size_class *class; | 
 | 1481 | 	enum fullness_group newfg; | 
 | 1482 | 	struct zspage *zspage; | 
 | 1483 |  | 
 | 1484 | 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
 | 1485 | 		return 0; | 
 | 1486 |  | 
 | 1487 | 	handle = cache_alloc_handle(pool, gfp); | 
 | 1488 | 	if (!handle) | 
 | 1489 | 		return 0; | 
 | 1490 |  | 
 | 1491 | 	/* extra space in chunk to keep the handle */ | 
 | 1492 | 	size += ZS_HANDLE_SIZE; | 
 | 1493 | 	class = pool->size_class[get_size_class_index(size)]; | 
 | 1494 |  | 
 | 1495 | 	spin_lock(&class->lock); | 
 | 1496 | 	zspage = find_get_zspage(class); | 
 | 1497 | 	if (likely(zspage)) { | 
 | 1498 | 		obj = obj_malloc(class, zspage, handle); | 
 | 1499 | 		/* Now move the zspage to another fullness group, if required */ | 
 | 1500 | 		fix_fullness_group(class, zspage); | 
 | 1501 | 		record_obj(handle, obj); | 
 | 1502 | 		spin_unlock(&class->lock); | 
 | 1503 |  | 
 | 1504 | 		return handle; | 
 | 1505 | 	} | 
 | 1506 |  | 
 | 1507 | 	spin_unlock(&class->lock); | 
 | 1508 |  | 
 | 1509 | 	zspage = alloc_zspage(pool, class, gfp); | 
 | 1510 | 	if (!zspage) { | 
 | 1511 | 		cache_free_handle(pool, handle); | 
 | 1512 | 		return 0; | 
 | 1513 | 	} | 
 | 1514 |  | 
 | 1515 | 	spin_lock(&class->lock); | 
 | 1516 | 	obj = obj_malloc(class, zspage, handle); | 
 | 1517 | 	newfg = get_fullness_group(class, zspage); | 
 | 1518 | 	insert_zspage(class, zspage, newfg); | 
 | 1519 | 	set_zspage_mapping(zspage, class->index, newfg); | 
 | 1520 | 	record_obj(handle, obj); | 
 | 1521 | 	atomic_long_add(class->pages_per_zspage, | 
 | 1522 | 				&pool->pages_allocated); | 
 | 1523 | 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
 | 1524 |  | 
 | 1525 | 	/* We completely set up zspage so mark them as movable */ | 
 | 1526 | 	SetZsPageMovable(pool, zspage); | 
 | 1527 | 	spin_unlock(&class->lock); | 
 | 1528 |  | 
 | 1529 | 	return handle; | 
 | 1530 | } | 
 | 1531 | EXPORT_SYMBOL_GPL(zs_malloc); | 
 | 1532 |  | 
 | 1533 | static void obj_free(struct size_class *class, unsigned long obj) | 
 | 1534 | { | 
 | 1535 | 	struct link_free *link; | 
 | 1536 | 	struct zspage *zspage; | 
 | 1537 | 	struct page *f_page; | 
 | 1538 | 	unsigned long f_offset; | 
 | 1539 | 	unsigned int f_objidx; | 
 | 1540 | 	void *vaddr; | 
 | 1541 |  | 
 | 1542 | 	obj &= ~OBJ_ALLOCATED_TAG; | 
 | 1543 | 	obj_to_location(obj, &f_page, &f_objidx); | 
 | 1544 | 	f_offset = (class->size * f_objidx) & ~PAGE_MASK; | 
 | 1545 | 	zspage = get_zspage(f_page); | 
 | 1546 |  | 
 | 1547 | 	vaddr = kmap_atomic(f_page); | 
 | 1548 |  | 
 | 1549 | 	/* Insert this object in containing zspage's freelist */ | 
 | 1550 | 	link = (struct link_free *)(vaddr + f_offset); | 
 | 1551 | 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS; | 
 | 1552 | 	kunmap_atomic(vaddr); | 
 | 1553 | 	set_freeobj(zspage, f_objidx); | 
 | 1554 | 	mod_zspage_inuse(zspage, -1); | 
 | 1555 | 	zs_stat_dec(class, OBJ_USED, 1); | 
 | 1556 | } | 
 | 1557 |  | 
 | 1558 | void zs_free(struct zs_pool *pool, unsigned long handle) | 
 | 1559 | { | 
 | 1560 | 	struct zspage *zspage; | 
 | 1561 | 	struct page *f_page; | 
 | 1562 | 	unsigned long obj; | 
 | 1563 | 	unsigned int f_objidx; | 
 | 1564 | 	int class_idx; | 
 | 1565 | 	struct size_class *class; | 
 | 1566 | 	enum fullness_group fullness; | 
 | 1567 | 	bool isolated; | 
 | 1568 |  | 
 | 1569 | 	if (unlikely(!handle)) | 
 | 1570 | 		return; | 
 | 1571 |  | 
 | 1572 | 	pin_tag(handle); | 
 | 1573 | 	obj = handle_to_obj(handle); | 
 | 1574 | 	obj_to_location(obj, &f_page, &f_objidx); | 
 | 1575 | 	zspage = get_zspage(f_page); | 
 | 1576 |  | 
 | 1577 | 	migrate_read_lock(zspage); | 
 | 1578 |  | 
 | 1579 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 1580 | 	class = pool->size_class[class_idx]; | 
 | 1581 |  | 
 | 1582 | 	spin_lock(&class->lock); | 
 | 1583 | 	obj_free(class, obj); | 
 | 1584 | 	fullness = fix_fullness_group(class, zspage); | 
 | 1585 | 	if (fullness != ZS_EMPTY) { | 
 | 1586 | 		migrate_read_unlock(zspage); | 
 | 1587 | 		goto out; | 
 | 1588 | 	} | 
 | 1589 |  | 
 | 1590 | 	isolated = is_zspage_isolated(zspage); | 
 | 1591 | 	migrate_read_unlock(zspage); | 
 | 1592 | 	/* If zspage is isolated, zs_page_putback will free the zspage */ | 
 | 1593 | 	if (likely(!isolated)) | 
 | 1594 | 		free_zspage(pool, class, zspage); | 
 | 1595 | out: | 
 | 1596 |  | 
 | 1597 | 	spin_unlock(&class->lock); | 
 | 1598 | 	unpin_tag(handle); | 
 | 1599 | 	cache_free_handle(pool, handle); | 
 | 1600 | } | 
 | 1601 | EXPORT_SYMBOL_GPL(zs_free); | 
 | 1602 |  | 
 | 1603 | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
 | 1604 | 				unsigned long src) | 
 | 1605 | { | 
 | 1606 | 	struct page *s_page, *d_page; | 
 | 1607 | 	unsigned int s_objidx, d_objidx; | 
 | 1608 | 	unsigned long s_off, d_off; | 
 | 1609 | 	void *s_addr, *d_addr; | 
 | 1610 | 	int s_size, d_size, size; | 
 | 1611 | 	int written = 0; | 
 | 1612 |  | 
 | 1613 | 	s_size = d_size = class->size; | 
 | 1614 |  | 
 | 1615 | 	obj_to_location(src, &s_page, &s_objidx); | 
 | 1616 | 	obj_to_location(dst, &d_page, &d_objidx); | 
 | 1617 |  | 
 | 1618 | 	s_off = (class->size * s_objidx) & ~PAGE_MASK; | 
 | 1619 | 	d_off = (class->size * d_objidx) & ~PAGE_MASK; | 
 | 1620 |  | 
 | 1621 | 	if (s_off + class->size > PAGE_SIZE) | 
 | 1622 | 		s_size = PAGE_SIZE - s_off; | 
 | 1623 |  | 
 | 1624 | 	if (d_off + class->size > PAGE_SIZE) | 
 | 1625 | 		d_size = PAGE_SIZE - d_off; | 
 | 1626 |  | 
 | 1627 | 	s_addr = kmap_atomic(s_page); | 
 | 1628 | 	d_addr = kmap_atomic(d_page); | 
 | 1629 |  | 
 | 1630 | 	while (1) { | 
 | 1631 | 		size = min(s_size, d_size); | 
 | 1632 | 		memcpy(d_addr + d_off, s_addr + s_off, size); | 
 | 1633 | 		written += size; | 
 | 1634 |  | 
 | 1635 | 		if (written == class->size) | 
 | 1636 | 			break; | 
 | 1637 |  | 
 | 1638 | 		s_off += size; | 
 | 1639 | 		s_size -= size; | 
 | 1640 | 		d_off += size; | 
 | 1641 | 		d_size -= size; | 
 | 1642 |  | 
 | 1643 | 		if (s_off >= PAGE_SIZE) { | 
 | 1644 | 			kunmap_atomic(d_addr); | 
 | 1645 | 			kunmap_atomic(s_addr); | 
 | 1646 | 			s_page = get_next_page(s_page); | 
 | 1647 | 			s_addr = kmap_atomic(s_page); | 
 | 1648 | 			d_addr = kmap_atomic(d_page); | 
 | 1649 | 			s_size = class->size - written; | 
 | 1650 | 			s_off = 0; | 
 | 1651 | 		} | 
 | 1652 |  | 
 | 1653 | 		if (d_off >= PAGE_SIZE) { | 
 | 1654 | 			kunmap_atomic(d_addr); | 
 | 1655 | 			d_page = get_next_page(d_page); | 
 | 1656 | 			d_addr = kmap_atomic(d_page); | 
 | 1657 | 			d_size = class->size - written; | 
 | 1658 | 			d_off = 0; | 
 | 1659 | 		} | 
 | 1660 | 	} | 
 | 1661 |  | 
 | 1662 | 	kunmap_atomic(d_addr); | 
 | 1663 | 	kunmap_atomic(s_addr); | 
 | 1664 | } | 
 | 1665 |  | 
 | 1666 | /* | 
 | 1667 |  * Find alloced object in zspage from index object and | 
 | 1668 |  * return handle. | 
 | 1669 |  */ | 
 | 1670 | static unsigned long find_alloced_obj(struct size_class *class, | 
 | 1671 | 					struct page *page, int *obj_idx) | 
 | 1672 | { | 
 | 1673 | 	unsigned long head; | 
 | 1674 | 	int offset = 0; | 
 | 1675 | 	int index = *obj_idx; | 
 | 1676 | 	unsigned long handle = 0; | 
 | 1677 | 	void *addr = kmap_atomic(page); | 
 | 1678 |  | 
 | 1679 | 	offset = get_first_obj_offset(page); | 
 | 1680 | 	offset += class->size * index; | 
 | 1681 |  | 
 | 1682 | 	while (offset < PAGE_SIZE) { | 
 | 1683 | 		head = obj_to_head(page, addr + offset); | 
 | 1684 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 1685 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 1686 | 			if (trypin_tag(handle)) | 
 | 1687 | 				break; | 
 | 1688 | 			handle = 0; | 
 | 1689 | 		} | 
 | 1690 |  | 
 | 1691 | 		offset += class->size; | 
 | 1692 | 		index++; | 
 | 1693 | 	} | 
 | 1694 |  | 
 | 1695 | 	kunmap_atomic(addr); | 
 | 1696 |  | 
 | 1697 | 	*obj_idx = index; | 
 | 1698 |  | 
 | 1699 | 	return handle; | 
 | 1700 | } | 
 | 1701 |  | 
 | 1702 | struct zs_compact_control { | 
 | 1703 | 	/* Source spage for migration which could be a subpage of zspage */ | 
 | 1704 | 	struct page *s_page; | 
 | 1705 | 	/* Destination page for migration which should be a first page | 
 | 1706 | 	 * of zspage. */ | 
 | 1707 | 	struct page *d_page; | 
 | 1708 | 	 /* Starting object index within @s_page which used for live object | 
 | 1709 | 	  * in the subpage. */ | 
 | 1710 | 	int obj_idx; | 
 | 1711 | }; | 
 | 1712 |  | 
 | 1713 | static int migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 1714 | 				struct zs_compact_control *cc) | 
 | 1715 | { | 
 | 1716 | 	unsigned long used_obj, free_obj; | 
 | 1717 | 	unsigned long handle; | 
 | 1718 | 	struct page *s_page = cc->s_page; | 
 | 1719 | 	struct page *d_page = cc->d_page; | 
 | 1720 | 	int obj_idx = cc->obj_idx; | 
 | 1721 | 	int ret = 0; | 
 | 1722 |  | 
 | 1723 | 	while (1) { | 
 | 1724 | 		handle = find_alloced_obj(class, s_page, &obj_idx); | 
 | 1725 | 		if (!handle) { | 
 | 1726 | 			s_page = get_next_page(s_page); | 
 | 1727 | 			if (!s_page) | 
 | 1728 | 				break; | 
 | 1729 | 			obj_idx = 0; | 
 | 1730 | 			continue; | 
 | 1731 | 		} | 
 | 1732 |  | 
 | 1733 | 		/* Stop if there is no more space */ | 
 | 1734 | 		if (zspage_full(class, get_zspage(d_page))) { | 
 | 1735 | 			unpin_tag(handle); | 
 | 1736 | 			ret = -ENOMEM; | 
 | 1737 | 			break; | 
 | 1738 | 		} | 
 | 1739 |  | 
 | 1740 | 		used_obj = handle_to_obj(handle); | 
 | 1741 | 		free_obj = obj_malloc(class, get_zspage(d_page), handle); | 
 | 1742 | 		zs_object_copy(class, free_obj, used_obj); | 
 | 1743 | 		obj_idx++; | 
 | 1744 | 		/* | 
 | 1745 | 		 * record_obj updates handle's value to free_obj and it will | 
 | 1746 | 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which | 
 | 1747 | 		 * breaks synchronization using pin_tag(e,g, zs_free) so | 
 | 1748 | 		 * let's keep the lock bit. | 
 | 1749 | 		 */ | 
 | 1750 | 		free_obj |= BIT(HANDLE_PIN_BIT); | 
 | 1751 | 		record_obj(handle, free_obj); | 
 | 1752 | 		unpin_tag(handle); | 
 | 1753 | 		obj_free(class, used_obj); | 
 | 1754 | 	} | 
 | 1755 |  | 
 | 1756 | 	/* Remember last position in this iteration */ | 
 | 1757 | 	cc->s_page = s_page; | 
 | 1758 | 	cc->obj_idx = obj_idx; | 
 | 1759 |  | 
 | 1760 | 	return ret; | 
 | 1761 | } | 
 | 1762 |  | 
 | 1763 | static struct zspage *isolate_zspage(struct size_class *class, bool source) | 
 | 1764 | { | 
 | 1765 | 	int i; | 
 | 1766 | 	struct zspage *zspage; | 
 | 1767 | 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; | 
 | 1768 |  | 
 | 1769 | 	if (!source) { | 
 | 1770 | 		fg[0] = ZS_ALMOST_FULL; | 
 | 1771 | 		fg[1] = ZS_ALMOST_EMPTY; | 
 | 1772 | 	} | 
 | 1773 |  | 
 | 1774 | 	for (i = 0; i < 2; i++) { | 
 | 1775 | 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], | 
 | 1776 | 							struct zspage, list); | 
 | 1777 | 		if (zspage) { | 
 | 1778 | 			VM_BUG_ON(is_zspage_isolated(zspage)); | 
 | 1779 | 			remove_zspage(class, zspage, fg[i]); | 
 | 1780 | 			return zspage; | 
 | 1781 | 		} | 
 | 1782 | 	} | 
 | 1783 |  | 
 | 1784 | 	return zspage; | 
 | 1785 | } | 
 | 1786 |  | 
 | 1787 | /* | 
 | 1788 |  * putback_zspage - add @zspage into right class's fullness list | 
 | 1789 |  * @class: destination class | 
 | 1790 |  * @zspage: target page | 
 | 1791 |  * | 
 | 1792 |  * Return @zspage's fullness_group | 
 | 1793 |  */ | 
 | 1794 | static enum fullness_group putback_zspage(struct size_class *class, | 
 | 1795 | 			struct zspage *zspage) | 
 | 1796 | { | 
 | 1797 | 	enum fullness_group fullness; | 
 | 1798 |  | 
 | 1799 | 	VM_BUG_ON(is_zspage_isolated(zspage)); | 
 | 1800 |  | 
 | 1801 | 	fullness = get_fullness_group(class, zspage); | 
 | 1802 | 	insert_zspage(class, zspage, fullness); | 
 | 1803 | 	set_zspage_mapping(zspage, class->index, fullness); | 
 | 1804 |  | 
 | 1805 | 	return fullness; | 
 | 1806 | } | 
 | 1807 |  | 
 | 1808 | #ifdef CONFIG_COMPACTION | 
 | 1809 | /* | 
 | 1810 |  * To prevent zspage destroy during migration, zspage freeing should | 
 | 1811 |  * hold locks of all pages in the zspage. | 
 | 1812 |  */ | 
 | 1813 | static void lock_zspage(struct zspage *zspage) | 
 | 1814 | { | 
 | 1815 | 	struct page *page = get_first_page(zspage); | 
 | 1816 |  | 
 | 1817 | 	do { | 
 | 1818 | 		lock_page(page); | 
 | 1819 | 	} while ((page = get_next_page(page)) != NULL); | 
 | 1820 | } | 
 | 1821 |  | 
 | 1822 | static struct dentry *zs_mount(struct file_system_type *fs_type, | 
 | 1823 | 				int flags, const char *dev_name, void *data) | 
 | 1824 | { | 
 | 1825 | 	static const struct dentry_operations ops = { | 
 | 1826 | 		.d_dname = simple_dname, | 
 | 1827 | 	}; | 
 | 1828 |  | 
 | 1829 | 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); | 
 | 1830 | } | 
 | 1831 |  | 
 | 1832 | static struct file_system_type zsmalloc_fs = { | 
 | 1833 | 	.name		= "zsmalloc", | 
 | 1834 | 	.mount		= zs_mount, | 
 | 1835 | 	.kill_sb	= kill_anon_super, | 
 | 1836 | }; | 
 | 1837 |  | 
 | 1838 | static int zsmalloc_mount(void) | 
 | 1839 | { | 
 | 1840 | 	int ret = 0; | 
 | 1841 |  | 
 | 1842 | 	zsmalloc_mnt = kern_mount(&zsmalloc_fs); | 
 | 1843 | 	if (IS_ERR(zsmalloc_mnt)) | 
 | 1844 | 		ret = PTR_ERR(zsmalloc_mnt); | 
 | 1845 |  | 
 | 1846 | 	return ret; | 
 | 1847 | } | 
 | 1848 |  | 
 | 1849 | static void zsmalloc_unmount(void) | 
 | 1850 | { | 
 | 1851 | 	kern_unmount(zsmalloc_mnt); | 
 | 1852 | } | 
 | 1853 |  | 
 | 1854 | static void migrate_lock_init(struct zspage *zspage) | 
 | 1855 | { | 
 | 1856 | 	rwlock_init(&zspage->lock); | 
 | 1857 | } | 
 | 1858 |  | 
 | 1859 | static void migrate_read_lock(struct zspage *zspage) | 
 | 1860 | { | 
 | 1861 | 	read_lock(&zspage->lock); | 
 | 1862 | } | 
 | 1863 |  | 
 | 1864 | static void migrate_read_unlock(struct zspage *zspage) | 
 | 1865 | { | 
 | 1866 | 	read_unlock(&zspage->lock); | 
 | 1867 | } | 
 | 1868 |  | 
 | 1869 | static void migrate_write_lock(struct zspage *zspage) | 
 | 1870 | { | 
 | 1871 | 	write_lock(&zspage->lock); | 
 | 1872 | } | 
 | 1873 |  | 
 | 1874 | static void migrate_write_unlock(struct zspage *zspage) | 
 | 1875 | { | 
 | 1876 | 	write_unlock(&zspage->lock); | 
 | 1877 | } | 
 | 1878 |  | 
 | 1879 | /* Number of isolated subpage for *page migration* in this zspage */ | 
 | 1880 | static void inc_zspage_isolation(struct zspage *zspage) | 
 | 1881 | { | 
 | 1882 | 	zspage->isolated++; | 
 | 1883 | } | 
 | 1884 |  | 
 | 1885 | static void dec_zspage_isolation(struct zspage *zspage) | 
 | 1886 | { | 
 | 1887 | 	zspage->isolated--; | 
 | 1888 | } | 
 | 1889 |  | 
 | 1890 | static void putback_zspage_deferred(struct zs_pool *pool, | 
 | 1891 | 				    struct size_class *class, | 
 | 1892 | 				    struct zspage *zspage) | 
 | 1893 | { | 
 | 1894 | 	enum fullness_group fg; | 
 | 1895 |  | 
 | 1896 | 	fg = putback_zspage(class, zspage); | 
 | 1897 | 	if (fg == ZS_EMPTY) | 
 | 1898 | 		schedule_work(&pool->free_work); | 
 | 1899 |  | 
 | 1900 | } | 
 | 1901 |  | 
 | 1902 | static inline void zs_pool_dec_isolated(struct zs_pool *pool) | 
 | 1903 | { | 
 | 1904 | 	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); | 
 | 1905 | 	atomic_long_dec(&pool->isolated_pages); | 
 | 1906 | 	/* | 
 | 1907 | 	 * There's no possibility of racing, since wait_for_isolated_drain() | 
 | 1908 | 	 * checks the isolated count under &class->lock after enqueuing | 
 | 1909 | 	 * on migration_wait. | 
 | 1910 | 	 */ | 
 | 1911 | 	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) | 
 | 1912 | 		wake_up_all(&pool->migration_wait); | 
 | 1913 | } | 
 | 1914 |  | 
 | 1915 | static void replace_sub_page(struct size_class *class, struct zspage *zspage, | 
 | 1916 | 				struct page *newpage, struct page *oldpage) | 
 | 1917 | { | 
 | 1918 | 	struct page *page; | 
 | 1919 | 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; | 
 | 1920 | 	int idx = 0; | 
 | 1921 |  | 
 | 1922 | 	page = get_first_page(zspage); | 
 | 1923 | 	do { | 
 | 1924 | 		if (page == oldpage) | 
 | 1925 | 			pages[idx] = newpage; | 
 | 1926 | 		else | 
 | 1927 | 			pages[idx] = page; | 
 | 1928 | 		idx++; | 
 | 1929 | 	} while ((page = get_next_page(page)) != NULL); | 
 | 1930 |  | 
 | 1931 | 	create_page_chain(class, zspage, pages); | 
 | 1932 | 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); | 
 | 1933 | 	if (unlikely(PageHugeObject(oldpage))) | 
 | 1934 | 		newpage->index = oldpage->index; | 
 | 1935 | 	__SetPageMovable(newpage, page_mapping(oldpage)); | 
 | 1936 | } | 
 | 1937 |  | 
 | 1938 | static bool zs_page_isolate(struct page *page, isolate_mode_t mode) | 
 | 1939 | { | 
 | 1940 | 	struct zs_pool *pool; | 
 | 1941 | 	struct size_class *class; | 
 | 1942 | 	int class_idx; | 
 | 1943 | 	enum fullness_group fullness; | 
 | 1944 | 	struct zspage *zspage; | 
 | 1945 | 	struct address_space *mapping; | 
 | 1946 |  | 
 | 1947 | 	/* | 
 | 1948 | 	 * Page is locked so zspage couldn't be destroyed. For detail, look at | 
 | 1949 | 	 * lock_zspage in free_zspage. | 
 | 1950 | 	 */ | 
 | 1951 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 1952 | 	VM_BUG_ON_PAGE(PageIsolated(page), page); | 
 | 1953 |  | 
 | 1954 | 	zspage = get_zspage(page); | 
 | 1955 |  | 
 | 1956 | 	/* | 
 | 1957 | 	 * Without class lock, fullness could be stale while class_idx is okay | 
 | 1958 | 	 * because class_idx is constant unless page is freed so we should get | 
 | 1959 | 	 * fullness again under class lock. | 
 | 1960 | 	 */ | 
 | 1961 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 1962 | 	mapping = page_mapping(page); | 
 | 1963 | 	pool = mapping->private_data; | 
 | 1964 | 	class = pool->size_class[class_idx]; | 
 | 1965 |  | 
 | 1966 | 	spin_lock(&class->lock); | 
 | 1967 | 	if (get_zspage_inuse(zspage) == 0) { | 
 | 1968 | 		spin_unlock(&class->lock); | 
 | 1969 | 		return false; | 
 | 1970 | 	} | 
 | 1971 |  | 
 | 1972 | 	/* zspage is isolated for object migration */ | 
 | 1973 | 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
 | 1974 | 		spin_unlock(&class->lock); | 
 | 1975 | 		return false; | 
 | 1976 | 	} | 
 | 1977 |  | 
 | 1978 | 	/* | 
 | 1979 | 	 * If this is first time isolation for the zspage, isolate zspage from | 
 | 1980 | 	 * size_class to prevent further object allocation from the zspage. | 
 | 1981 | 	 */ | 
 | 1982 | 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
 | 1983 | 		get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 1984 | 		atomic_long_inc(&pool->isolated_pages); | 
 | 1985 | 		remove_zspage(class, zspage, fullness); | 
 | 1986 | 	} | 
 | 1987 |  | 
 | 1988 | 	inc_zspage_isolation(zspage); | 
 | 1989 | 	spin_unlock(&class->lock); | 
 | 1990 |  | 
 | 1991 | 	return true; | 
 | 1992 | } | 
 | 1993 |  | 
 | 1994 | static int zs_page_migrate(struct address_space *mapping, struct page *newpage, | 
 | 1995 | 		struct page *page, enum migrate_mode mode) | 
 | 1996 | { | 
 | 1997 | 	struct zs_pool *pool; | 
 | 1998 | 	struct size_class *class; | 
 | 1999 | 	int class_idx; | 
 | 2000 | 	enum fullness_group fullness; | 
 | 2001 | 	struct zspage *zspage; | 
 | 2002 | 	struct page *dummy; | 
 | 2003 | 	void *s_addr, *d_addr, *addr; | 
 | 2004 | 	int offset, pos; | 
 | 2005 | 	unsigned long handle, head; | 
 | 2006 | 	unsigned long old_obj, new_obj; | 
 | 2007 | 	unsigned int obj_idx; | 
 | 2008 | 	int ret = -EAGAIN; | 
 | 2009 |  | 
 | 2010 | 	/* | 
 | 2011 | 	 * We cannot support the _NO_COPY case here, because copy needs to | 
 | 2012 | 	 * happen under the zs lock, which does not work with | 
 | 2013 | 	 * MIGRATE_SYNC_NO_COPY workflow. | 
 | 2014 | 	 */ | 
 | 2015 | 	if (mode == MIGRATE_SYNC_NO_COPY) | 
 | 2016 | 		return -EINVAL; | 
 | 2017 |  | 
 | 2018 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 2019 | 	VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
 | 2020 |  | 
 | 2021 | 	zspage = get_zspage(page); | 
 | 2022 |  | 
 | 2023 | 	/* Concurrent compactor cannot migrate any subpage in zspage */ | 
 | 2024 | 	migrate_write_lock(zspage); | 
 | 2025 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 2026 | 	pool = mapping->private_data; | 
 | 2027 | 	class = pool->size_class[class_idx]; | 
 | 2028 | 	offset = get_first_obj_offset(page); | 
 | 2029 |  | 
 | 2030 | 	spin_lock(&class->lock); | 
 | 2031 | 	if (!get_zspage_inuse(zspage)) { | 
 | 2032 | 		/* | 
 | 2033 | 		 * Set "offset" to end of the page so that every loops | 
 | 2034 | 		 * skips unnecessary object scanning. | 
 | 2035 | 		 */ | 
 | 2036 | 		offset = PAGE_SIZE; | 
 | 2037 | 	} | 
 | 2038 |  | 
 | 2039 | 	pos = offset; | 
 | 2040 | 	s_addr = kmap_atomic(page); | 
 | 2041 | 	while (pos < PAGE_SIZE) { | 
 | 2042 | 		head = obj_to_head(page, s_addr + pos); | 
 | 2043 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 2044 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 2045 | 			if (!trypin_tag(handle)) | 
 | 2046 | 				goto unpin_objects; | 
 | 2047 | 		} | 
 | 2048 | 		pos += class->size; | 
 | 2049 | 	} | 
 | 2050 |  | 
 | 2051 | 	/* | 
 | 2052 | 	 * Here, any user cannot access all objects in the zspage so let's move. | 
 | 2053 | 	 */ | 
 | 2054 | 	d_addr = kmap_atomic(newpage); | 
 | 2055 | 	memcpy(d_addr, s_addr, PAGE_SIZE); | 
 | 2056 | 	kunmap_atomic(d_addr); | 
 | 2057 |  | 
 | 2058 | 	for (addr = s_addr + offset; addr < s_addr + pos; | 
 | 2059 | 					addr += class->size) { | 
 | 2060 | 		head = obj_to_head(page, addr); | 
 | 2061 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 2062 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 2063 | 			if (!testpin_tag(handle)) | 
 | 2064 | 				BUG(); | 
 | 2065 |  | 
 | 2066 | 			old_obj = handle_to_obj(handle); | 
 | 2067 | 			obj_to_location(old_obj, &dummy, &obj_idx); | 
 | 2068 | 			new_obj = (unsigned long)location_to_obj(newpage, | 
 | 2069 | 								obj_idx); | 
 | 2070 | 			new_obj |= BIT(HANDLE_PIN_BIT); | 
 | 2071 | 			record_obj(handle, new_obj); | 
 | 2072 | 		} | 
 | 2073 | 	} | 
 | 2074 |  | 
 | 2075 | 	replace_sub_page(class, zspage, newpage, page); | 
 | 2076 | 	get_page(newpage); | 
 | 2077 |  | 
 | 2078 | 	dec_zspage_isolation(zspage); | 
 | 2079 |  | 
 | 2080 | 	/* | 
 | 2081 | 	 * Page migration is done so let's putback isolated zspage to | 
 | 2082 | 	 * the list if @page is final isolated subpage in the zspage. | 
 | 2083 | 	 */ | 
 | 2084 | 	if (!is_zspage_isolated(zspage)) { | 
 | 2085 | 		/* | 
 | 2086 | 		 * We cannot race with zs_destroy_pool() here because we wait | 
 | 2087 | 		 * for isolation to hit zero before we start destroying. | 
 | 2088 | 		 * Also, we ensure that everyone can see pool->destroying before | 
 | 2089 | 		 * we start waiting. | 
 | 2090 | 		 */ | 
 | 2091 | 		putback_zspage_deferred(pool, class, zspage); | 
 | 2092 | 		zs_pool_dec_isolated(pool); | 
 | 2093 | 	} | 
 | 2094 |  | 
 | 2095 | 	if (page_zone(newpage) != page_zone(page)) { | 
 | 2096 | 		dec_zone_page_state(page, NR_ZSPAGES); | 
 | 2097 | 		inc_zone_page_state(newpage, NR_ZSPAGES); | 
 | 2098 | 	} | 
 | 2099 |  | 
 | 2100 | 	reset_page(page); | 
 | 2101 | 	put_page(page); | 
 | 2102 | 	page = newpage; | 
 | 2103 |  | 
 | 2104 | 	ret = MIGRATEPAGE_SUCCESS; | 
 | 2105 | unpin_objects: | 
 | 2106 | 	for (addr = s_addr + offset; addr < s_addr + pos; | 
 | 2107 | 						addr += class->size) { | 
 | 2108 | 		head = obj_to_head(page, addr); | 
 | 2109 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 2110 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 2111 | 			if (!testpin_tag(handle)) | 
 | 2112 | 				BUG(); | 
 | 2113 | 			unpin_tag(handle); | 
 | 2114 | 		} | 
 | 2115 | 	} | 
 | 2116 | 	kunmap_atomic(s_addr); | 
 | 2117 | 	spin_unlock(&class->lock); | 
 | 2118 | 	migrate_write_unlock(zspage); | 
 | 2119 |  | 
 | 2120 | 	return ret; | 
 | 2121 | } | 
 | 2122 |  | 
 | 2123 | static void zs_page_putback(struct page *page) | 
 | 2124 | { | 
 | 2125 | 	struct zs_pool *pool; | 
 | 2126 | 	struct size_class *class; | 
 | 2127 | 	int class_idx; | 
 | 2128 | 	enum fullness_group fg; | 
 | 2129 | 	struct address_space *mapping; | 
 | 2130 | 	struct zspage *zspage; | 
 | 2131 |  | 
 | 2132 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 2133 | 	VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
 | 2134 |  | 
 | 2135 | 	zspage = get_zspage(page); | 
 | 2136 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 2137 | 	mapping = page_mapping(page); | 
 | 2138 | 	pool = mapping->private_data; | 
 | 2139 | 	class = pool->size_class[class_idx]; | 
 | 2140 |  | 
 | 2141 | 	spin_lock(&class->lock); | 
 | 2142 | 	dec_zspage_isolation(zspage); | 
 | 2143 | 	if (!is_zspage_isolated(zspage)) { | 
 | 2144 | 		/* | 
 | 2145 | 		 * Due to page_lock, we cannot free zspage immediately | 
 | 2146 | 		 * so let's defer. | 
 | 2147 | 		 */ | 
 | 2148 | 		putback_zspage_deferred(pool, class, zspage); | 
 | 2149 | 		zs_pool_dec_isolated(pool); | 
 | 2150 | 	} | 
 | 2151 | 	spin_unlock(&class->lock); | 
 | 2152 | } | 
 | 2153 |  | 
 | 2154 | static const struct address_space_operations zsmalloc_aops = { | 
 | 2155 | 	.isolate_page = zs_page_isolate, | 
 | 2156 | 	.migratepage = zs_page_migrate, | 
 | 2157 | 	.putback_page = zs_page_putback, | 
 | 2158 | }; | 
 | 2159 |  | 
 | 2160 | static int zs_register_migration(struct zs_pool *pool) | 
 | 2161 | { | 
 | 2162 | 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); | 
 | 2163 | 	if (IS_ERR(pool->inode)) { | 
 | 2164 | 		pool->inode = NULL; | 
 | 2165 | 		return 1; | 
 | 2166 | 	} | 
 | 2167 |  | 
 | 2168 | 	pool->inode->i_mapping->private_data = pool; | 
 | 2169 | 	pool->inode->i_mapping->a_ops = &zsmalloc_aops; | 
 | 2170 | 	return 0; | 
 | 2171 | } | 
 | 2172 |  | 
 | 2173 | static bool pool_isolated_are_drained(struct zs_pool *pool) | 
 | 2174 | { | 
 | 2175 | 	return atomic_long_read(&pool->isolated_pages) == 0; | 
 | 2176 | } | 
 | 2177 |  | 
 | 2178 | /* Function for resolving migration */ | 
 | 2179 | static void wait_for_isolated_drain(struct zs_pool *pool) | 
 | 2180 | { | 
 | 2181 |  | 
 | 2182 | 	/* | 
 | 2183 | 	 * We're in the process of destroying the pool, so there are no | 
 | 2184 | 	 * active allocations. zs_page_isolate() fails for completely free | 
 | 2185 | 	 * zspages, so we need only wait for the zs_pool's isolated | 
 | 2186 | 	 * count to hit zero. | 
 | 2187 | 	 */ | 
 | 2188 | 	wait_event(pool->migration_wait, | 
 | 2189 | 		   pool_isolated_are_drained(pool)); | 
 | 2190 | } | 
 | 2191 |  | 
 | 2192 | static void zs_unregister_migration(struct zs_pool *pool) | 
 | 2193 | { | 
 | 2194 | 	pool->destroying = true; | 
 | 2195 | 	/* | 
 | 2196 | 	 * We need a memory barrier here to ensure global visibility of | 
 | 2197 | 	 * pool->destroying. Thus pool->isolated pages will either be 0 in which | 
 | 2198 | 	 * case we don't care, or it will be > 0 and pool->destroying will | 
 | 2199 | 	 * ensure that we wake up once isolation hits 0. | 
 | 2200 | 	 */ | 
 | 2201 | 	smp_mb(); | 
 | 2202 | 	wait_for_isolated_drain(pool); /* This can block */ | 
 | 2203 | 	flush_work(&pool->free_work); | 
 | 2204 | 	iput(pool->inode); | 
 | 2205 | } | 
 | 2206 |  | 
 | 2207 | /* | 
 | 2208 |  * Caller should hold page_lock of all pages in the zspage | 
 | 2209 |  * In here, we cannot use zspage meta data. | 
 | 2210 |  */ | 
 | 2211 | static void async_free_zspage(struct work_struct *work) | 
 | 2212 | { | 
 | 2213 | 	int i; | 
 | 2214 | 	struct size_class *class; | 
 | 2215 | 	unsigned int class_idx; | 
 | 2216 | 	enum fullness_group fullness; | 
 | 2217 | 	struct zspage *zspage, *tmp; | 
 | 2218 | 	LIST_HEAD(free_pages); | 
 | 2219 | 	struct zs_pool *pool = container_of(work, struct zs_pool, | 
 | 2220 | 					free_work); | 
 | 2221 |  | 
 | 2222 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 2223 | 		class = pool->size_class[i]; | 
 | 2224 | 		if (class->index != i) | 
 | 2225 | 			continue; | 
 | 2226 |  | 
 | 2227 | 		spin_lock(&class->lock); | 
 | 2228 | 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); | 
 | 2229 | 		spin_unlock(&class->lock); | 
 | 2230 | 	} | 
 | 2231 |  | 
 | 2232 |  | 
 | 2233 | 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) { | 
 | 2234 | 		list_del(&zspage->list); | 
 | 2235 | 		lock_zspage(zspage); | 
 | 2236 |  | 
 | 2237 | 		get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 2238 | 		VM_BUG_ON(fullness != ZS_EMPTY); | 
 | 2239 | 		class = pool->size_class[class_idx]; | 
 | 2240 | 		spin_lock(&class->lock); | 
 | 2241 | 		__free_zspage(pool, pool->size_class[class_idx], zspage); | 
 | 2242 | 		spin_unlock(&class->lock); | 
 | 2243 | 	} | 
 | 2244 | }; | 
 | 2245 |  | 
 | 2246 | static void kick_deferred_free(struct zs_pool *pool) | 
 | 2247 | { | 
 | 2248 | 	schedule_work(&pool->free_work); | 
 | 2249 | } | 
 | 2250 |  | 
 | 2251 | static void init_deferred_free(struct zs_pool *pool) | 
 | 2252 | { | 
 | 2253 | 	INIT_WORK(&pool->free_work, async_free_zspage); | 
 | 2254 | } | 
 | 2255 |  | 
 | 2256 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) | 
 | 2257 | { | 
 | 2258 | 	struct page *page = get_first_page(zspage); | 
 | 2259 |  | 
 | 2260 | 	do { | 
 | 2261 | 		WARN_ON(!trylock_page(page)); | 
 | 2262 | 		__SetPageMovable(page, pool->inode->i_mapping); | 
 | 2263 | 		unlock_page(page); | 
 | 2264 | 	} while ((page = get_next_page(page)) != NULL); | 
 | 2265 | } | 
 | 2266 | #endif | 
 | 2267 |  | 
 | 2268 | /* | 
 | 2269 |  * | 
 | 2270 |  * Based on the number of unused allocated objects calculate | 
 | 2271 |  * and return the number of pages that we can free. | 
 | 2272 |  */ | 
 | 2273 | static unsigned long zs_can_compact(struct size_class *class) | 
 | 2274 | { | 
 | 2275 | 	unsigned long obj_wasted; | 
 | 2276 | 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
 | 2277 | 	unsigned long obj_used = zs_stat_get(class, OBJ_USED); | 
 | 2278 |  | 
 | 2279 | 	if (obj_allocated <= obj_used) | 
 | 2280 | 		return 0; | 
 | 2281 |  | 
 | 2282 | 	obj_wasted = obj_allocated - obj_used; | 
 | 2283 | 	obj_wasted /= class->objs_per_zspage; | 
 | 2284 |  | 
 | 2285 | 	return obj_wasted * class->pages_per_zspage; | 
 | 2286 | } | 
 | 2287 |  | 
 | 2288 | static void __zs_compact(struct zs_pool *pool, struct size_class *class) | 
 | 2289 | { | 
 | 2290 | 	struct zs_compact_control cc; | 
 | 2291 | 	struct zspage *src_zspage; | 
 | 2292 | 	struct zspage *dst_zspage = NULL; | 
 | 2293 |  | 
 | 2294 | 	spin_lock(&class->lock); | 
 | 2295 | 	while ((src_zspage = isolate_zspage(class, true))) { | 
 | 2296 |  | 
 | 2297 | 		if (!zs_can_compact(class)) | 
 | 2298 | 			break; | 
 | 2299 |  | 
 | 2300 | 		cc.obj_idx = 0; | 
 | 2301 | 		cc.s_page = get_first_page(src_zspage); | 
 | 2302 |  | 
 | 2303 | 		while ((dst_zspage = isolate_zspage(class, false))) { | 
 | 2304 | 			cc.d_page = get_first_page(dst_zspage); | 
 | 2305 | 			/* | 
 | 2306 | 			 * If there is no more space in dst_page, resched | 
 | 2307 | 			 * and see if anyone had allocated another zspage. | 
 | 2308 | 			 */ | 
 | 2309 | 			if (!migrate_zspage(pool, class, &cc)) | 
 | 2310 | 				break; | 
 | 2311 |  | 
 | 2312 | 			putback_zspage(class, dst_zspage); | 
 | 2313 | 		} | 
 | 2314 |  | 
 | 2315 | 		/* Stop if we couldn't find slot */ | 
 | 2316 | 		if (dst_zspage == NULL) | 
 | 2317 | 			break; | 
 | 2318 |  | 
 | 2319 | 		putback_zspage(class, dst_zspage); | 
 | 2320 | 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) { | 
 | 2321 | 			free_zspage(pool, class, src_zspage); | 
 | 2322 | 			pool->stats.pages_compacted += class->pages_per_zspage; | 
 | 2323 | 		} | 
 | 2324 | 		spin_unlock(&class->lock); | 
 | 2325 | 		cond_resched(); | 
 | 2326 | 		spin_lock(&class->lock); | 
 | 2327 | 	} | 
 | 2328 |  | 
 | 2329 | 	if (src_zspage) | 
 | 2330 | 		putback_zspage(class, src_zspage); | 
 | 2331 |  | 
 | 2332 | 	spin_unlock(&class->lock); | 
 | 2333 | } | 
 | 2334 |  | 
 | 2335 | unsigned long zs_compact(struct zs_pool *pool) | 
 | 2336 | { | 
 | 2337 | 	int i; | 
 | 2338 | 	struct size_class *class; | 
 | 2339 |  | 
 | 2340 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 2341 | 		class = pool->size_class[i]; | 
 | 2342 | 		if (!class) | 
 | 2343 | 			continue; | 
 | 2344 | 		if (class->index != i) | 
 | 2345 | 			continue; | 
 | 2346 | 		__zs_compact(pool, class); | 
 | 2347 | 	} | 
 | 2348 |  | 
 | 2349 | 	return pool->stats.pages_compacted; | 
 | 2350 | } | 
 | 2351 | EXPORT_SYMBOL_GPL(zs_compact); | 
 | 2352 |  | 
 | 2353 | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
 | 2354 | { | 
 | 2355 | 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
 | 2356 | } | 
 | 2357 | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
 | 2358 |  | 
 | 2359 | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
 | 2360 | 		struct shrink_control *sc) | 
 | 2361 | { | 
 | 2362 | 	unsigned long pages_freed; | 
 | 2363 | 	struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
 | 2364 | 			shrinker); | 
 | 2365 |  | 
 | 2366 | 	pages_freed = pool->stats.pages_compacted; | 
 | 2367 | 	/* | 
 | 2368 | 	 * Compact classes and calculate compaction delta. | 
 | 2369 | 	 * Can run concurrently with a manually triggered | 
 | 2370 | 	 * (by user) compaction. | 
 | 2371 | 	 */ | 
 | 2372 | 	pages_freed = zs_compact(pool) - pages_freed; | 
 | 2373 |  | 
 | 2374 | 	return pages_freed ? pages_freed : SHRINK_STOP; | 
 | 2375 | } | 
 | 2376 |  | 
 | 2377 | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
 | 2378 | 		struct shrink_control *sc) | 
 | 2379 | { | 
 | 2380 | 	int i; | 
 | 2381 | 	struct size_class *class; | 
 | 2382 | 	unsigned long pages_to_free = 0; | 
 | 2383 | 	struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
 | 2384 | 			shrinker); | 
 | 2385 |  | 
 | 2386 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 2387 | 		class = pool->size_class[i]; | 
 | 2388 | 		if (!class) | 
 | 2389 | 			continue; | 
 | 2390 | 		if (class->index != i) | 
 | 2391 | 			continue; | 
 | 2392 |  | 
 | 2393 | 		pages_to_free += zs_can_compact(class); | 
 | 2394 | 	} | 
 | 2395 |  | 
 | 2396 | 	return pages_to_free; | 
 | 2397 | } | 
 | 2398 |  | 
 | 2399 | static void zs_unregister_shrinker(struct zs_pool *pool) | 
 | 2400 | { | 
 | 2401 | 	unregister_shrinker(&pool->shrinker); | 
 | 2402 | } | 
 | 2403 |  | 
 | 2404 | static int zs_register_shrinker(struct zs_pool *pool) | 
 | 2405 | { | 
 | 2406 | 	pool->shrinker.scan_objects = zs_shrinker_scan; | 
 | 2407 | 	pool->shrinker.count_objects = zs_shrinker_count; | 
 | 2408 | 	pool->shrinker.batch = 0; | 
 | 2409 | 	pool->shrinker.seeks = DEFAULT_SEEKS; | 
 | 2410 |  | 
 | 2411 | 	return register_shrinker(&pool->shrinker); | 
 | 2412 | } | 
 | 2413 |  | 
 | 2414 | /** | 
 | 2415 |  * zs_create_pool - Creates an allocation pool to work from. | 
 | 2416 |  * @name: pool name to be created | 
 | 2417 |  * | 
 | 2418 |  * This function must be called before anything when using | 
 | 2419 |  * the zsmalloc allocator. | 
 | 2420 |  * | 
 | 2421 |  * On success, a pointer to the newly created pool is returned, | 
 | 2422 |  * otherwise NULL. | 
 | 2423 |  */ | 
 | 2424 | struct zs_pool *zs_create_pool(const char *name) | 
 | 2425 | { | 
 | 2426 | 	int i; | 
 | 2427 | 	struct zs_pool *pool; | 
 | 2428 | 	struct size_class *prev_class = NULL; | 
 | 2429 |  | 
 | 2430 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 2431 | 	if (!pool) | 
 | 2432 | 		return NULL; | 
 | 2433 |  | 
 | 2434 | 	init_deferred_free(pool); | 
 | 2435 |  | 
 | 2436 | 	pool->name = kstrdup(name, GFP_KERNEL); | 
 | 2437 | 	if (!pool->name) | 
 | 2438 | 		goto err; | 
 | 2439 |  | 
 | 2440 | #ifdef CONFIG_COMPACTION | 
 | 2441 | 	init_waitqueue_head(&pool->migration_wait); | 
 | 2442 | #endif | 
 | 2443 |  | 
 | 2444 | 	if (create_cache(pool)) | 
 | 2445 | 		goto err; | 
 | 2446 |  | 
 | 2447 | 	/* | 
 | 2448 | 	 * Iterate reversely, because, size of size_class that we want to use | 
 | 2449 | 	 * for merging should be larger or equal to current size. | 
 | 2450 | 	 */ | 
 | 2451 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 2452 | 		int size; | 
 | 2453 | 		int pages_per_zspage; | 
 | 2454 | 		int objs_per_zspage; | 
 | 2455 | 		struct size_class *class; | 
 | 2456 | 		int fullness = 0; | 
 | 2457 |  | 
 | 2458 | 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
 | 2459 | 		if (size > ZS_MAX_ALLOC_SIZE) | 
 | 2460 | 			size = ZS_MAX_ALLOC_SIZE; | 
 | 2461 | 		pages_per_zspage = get_pages_per_zspage(size); | 
 | 2462 | 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; | 
 | 2463 |  | 
 | 2464 | 		/* | 
 | 2465 | 		 * We iterate from biggest down to smallest classes, | 
 | 2466 | 		 * so huge_class_size holds the size of the first huge | 
 | 2467 | 		 * class. Any object bigger than or equal to that will | 
 | 2468 | 		 * endup in the huge class. | 
 | 2469 | 		 */ | 
 | 2470 | 		if (pages_per_zspage != 1 && objs_per_zspage != 1 && | 
 | 2471 | 				!huge_class_size) { | 
 | 2472 | 			huge_class_size = size; | 
 | 2473 | 			/* | 
 | 2474 | 			 * The object uses ZS_HANDLE_SIZE bytes to store the | 
 | 2475 | 			 * handle. We need to subtract it, because zs_malloc() | 
 | 2476 | 			 * unconditionally adds handle size before it performs | 
 | 2477 | 			 * size class search - so object may be smaller than | 
 | 2478 | 			 * huge class size, yet it still can end up in the huge | 
 | 2479 | 			 * class because it grows by ZS_HANDLE_SIZE extra bytes | 
 | 2480 | 			 * right before class lookup. | 
 | 2481 | 			 */ | 
 | 2482 | 			huge_class_size -= (ZS_HANDLE_SIZE - 1); | 
 | 2483 | 		} | 
 | 2484 |  | 
 | 2485 | 		/* | 
 | 2486 | 		 * size_class is used for normal zsmalloc operation such | 
 | 2487 | 		 * as alloc/free for that size. Although it is natural that we | 
 | 2488 | 		 * have one size_class for each size, there is a chance that we | 
 | 2489 | 		 * can get more memory utilization if we use one size_class for | 
 | 2490 | 		 * many different sizes whose size_class have same | 
 | 2491 | 		 * characteristics. So, we makes size_class point to | 
 | 2492 | 		 * previous size_class if possible. | 
 | 2493 | 		 */ | 
 | 2494 | 		if (prev_class) { | 
 | 2495 | 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { | 
 | 2496 | 				pool->size_class[i] = prev_class; | 
 | 2497 | 				continue; | 
 | 2498 | 			} | 
 | 2499 | 		} | 
 | 2500 |  | 
 | 2501 | 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
 | 2502 | 		if (!class) | 
 | 2503 | 			goto err; | 
 | 2504 |  | 
 | 2505 | 		class->size = size; | 
 | 2506 | 		class->index = i; | 
 | 2507 | 		class->pages_per_zspage = pages_per_zspage; | 
 | 2508 | 		class->objs_per_zspage = objs_per_zspage; | 
 | 2509 | 		spin_lock_init(&class->lock); | 
 | 2510 | 		pool->size_class[i] = class; | 
 | 2511 | 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; | 
 | 2512 | 							fullness++) | 
 | 2513 | 			INIT_LIST_HEAD(&class->fullness_list[fullness]); | 
 | 2514 |  | 
 | 2515 | 		prev_class = class; | 
 | 2516 | 	} | 
 | 2517 |  | 
 | 2518 | 	/* debug only, don't abort if it fails */ | 
 | 2519 | 	zs_pool_stat_create(pool, name); | 
 | 2520 |  | 
 | 2521 | 	if (zs_register_migration(pool)) | 
 | 2522 | 		goto err; | 
 | 2523 |  | 
 | 2524 | 	/* | 
 | 2525 | 	 * Not critical since shrinker is only used to trigger internal | 
 | 2526 | 	 * defragmentation of the pool which is pretty optional thing.  If | 
 | 2527 | 	 * registration fails we still can use the pool normally and user can | 
 | 2528 | 	 * trigger compaction manually. Thus, ignore return code. | 
 | 2529 | 	 */ | 
 | 2530 | 	zs_register_shrinker(pool); | 
 | 2531 |  | 
 | 2532 | 	return pool; | 
 | 2533 |  | 
 | 2534 | err: | 
 | 2535 | 	zs_destroy_pool(pool); | 
 | 2536 | 	return NULL; | 
 | 2537 | } | 
 | 2538 | EXPORT_SYMBOL_GPL(zs_create_pool); | 
 | 2539 |  | 
 | 2540 | void zs_destroy_pool(struct zs_pool *pool) | 
 | 2541 | { | 
 | 2542 | 	int i; | 
 | 2543 |  | 
 | 2544 | 	zs_unregister_shrinker(pool); | 
 | 2545 | 	zs_unregister_migration(pool); | 
 | 2546 | 	zs_pool_stat_destroy(pool); | 
 | 2547 |  | 
 | 2548 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 2549 | 		int fg; | 
 | 2550 | 		struct size_class *class = pool->size_class[i]; | 
 | 2551 |  | 
 | 2552 | 		if (!class) | 
 | 2553 | 			continue; | 
 | 2554 |  | 
 | 2555 | 		if (class->index != i) | 
 | 2556 | 			continue; | 
 | 2557 |  | 
 | 2558 | 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { | 
 | 2559 | 			if (!list_empty(&class->fullness_list[fg])) { | 
 | 2560 | 				pr_info("Freeing non-empty class with size %db, fullness group %d\n", | 
 | 2561 | 					class->size, fg); | 
 | 2562 | 			} | 
 | 2563 | 		} | 
 | 2564 | 		kfree(class); | 
 | 2565 | 	} | 
 | 2566 |  | 
 | 2567 | 	destroy_cache(pool); | 
 | 2568 | 	kfree(pool->name); | 
 | 2569 | 	kfree(pool); | 
 | 2570 | } | 
 | 2571 | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
 | 2572 |  | 
 | 2573 | static int __init zs_init(void) | 
 | 2574 | { | 
 | 2575 | 	int ret; | 
 | 2576 |  | 
 | 2577 | 	ret = zsmalloc_mount(); | 
 | 2578 | 	if (ret) | 
 | 2579 | 		goto out; | 
 | 2580 |  | 
 | 2581 | 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", | 
 | 2582 | 				zs_cpu_prepare, zs_cpu_dead); | 
 | 2583 | 	if (ret) | 
 | 2584 | 		goto hp_setup_fail; | 
 | 2585 |  | 
 | 2586 | #ifdef CONFIG_ZPOOL | 
 | 2587 | 	zpool_register_driver(&zs_zpool_driver); | 
 | 2588 | #endif | 
 | 2589 |  | 
 | 2590 | 	zs_stat_init(); | 
 | 2591 |  | 
 | 2592 | 	return 0; | 
 | 2593 |  | 
 | 2594 | hp_setup_fail: | 
 | 2595 | 	zsmalloc_unmount(); | 
 | 2596 | out: | 
 | 2597 | 	return ret; | 
 | 2598 | } | 
 | 2599 |  | 
 | 2600 | static void __exit zs_exit(void) | 
 | 2601 | { | 
 | 2602 | #ifdef CONFIG_ZPOOL | 
 | 2603 | 	zpool_unregister_driver(&zs_zpool_driver); | 
 | 2604 | #endif | 
 | 2605 | 	zsmalloc_unmount(); | 
 | 2606 | 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); | 
 | 2607 |  | 
 | 2608 | 	zs_stat_exit(); | 
 | 2609 | } | 
 | 2610 |  | 
 | 2611 | module_init(zs_init); | 
 | 2612 | module_exit(zs_exit); | 
 | 2613 |  | 
 | 2614 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | 2615 | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |