| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Cortina Gemini SoC Clock Controller driver | 
|  | 4 | * Copyright (c) 2017 Linus Walleij <linus.walleij@linaro.org> | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | #define pr_fmt(fmt) "clk-gemini: " fmt | 
|  | 8 |  | 
|  | 9 | #include <linux/init.h> | 
|  | 10 | #include <linux/module.h> | 
|  | 11 | #include <linux/platform_device.h> | 
|  | 12 | #include <linux/slab.h> | 
|  | 13 | #include <linux/err.h> | 
|  | 14 | #include <linux/io.h> | 
|  | 15 | #include <linux/clk-provider.h> | 
|  | 16 | #include <linux/of.h> | 
|  | 17 | #include <linux/of_address.h> | 
|  | 18 | #include <linux/mfd/syscon.h> | 
|  | 19 | #include <linux/regmap.h> | 
|  | 20 | #include <linux/spinlock.h> | 
|  | 21 | #include <linux/reset-controller.h> | 
|  | 22 | #include <dt-bindings/reset/cortina,gemini-reset.h> | 
|  | 23 | #include <dt-bindings/clock/cortina,gemini-clock.h> | 
|  | 24 |  | 
|  | 25 | /* Globally visible clocks */ | 
|  | 26 | static DEFINE_SPINLOCK(gemini_clk_lock); | 
|  | 27 |  | 
|  | 28 | #define GEMINI_GLOBAL_STATUS		0x04 | 
|  | 29 | #define PLL_OSC_SEL			BIT(30) | 
|  | 30 | #define AHBSPEED_SHIFT			(15) | 
|  | 31 | #define AHBSPEED_MASK			0x07 | 
|  | 32 | #define CPU_AHB_RATIO_SHIFT		(18) | 
|  | 33 | #define CPU_AHB_RATIO_MASK		0x03 | 
|  | 34 |  | 
|  | 35 | #define GEMINI_GLOBAL_PLL_CONTROL	0x08 | 
|  | 36 |  | 
|  | 37 | #define GEMINI_GLOBAL_SOFT_RESET	0x0c | 
|  | 38 |  | 
|  | 39 | #define GEMINI_GLOBAL_MISC_CONTROL	0x30 | 
|  | 40 | #define PCI_CLK_66MHZ			BIT(18) | 
|  | 41 |  | 
|  | 42 | #define GEMINI_GLOBAL_CLOCK_CONTROL	0x34 | 
|  | 43 | #define PCI_CLKRUN_EN			BIT(16) | 
|  | 44 | #define TVC_HALFDIV_SHIFT		(24) | 
|  | 45 | #define TVC_HALFDIV_MASK		0x1f | 
|  | 46 | #define SECURITY_CLK_SEL		BIT(29) | 
|  | 47 |  | 
|  | 48 | #define GEMINI_GLOBAL_PCI_DLL_CONTROL	0x44 | 
|  | 49 | #define PCI_DLL_BYPASS			BIT(31) | 
|  | 50 | #define PCI_DLL_TAP_SEL_MASK		0x1f | 
|  | 51 |  | 
|  | 52 | /** | 
|  | 53 | * struct gemini_data_data - Gemini gated clocks | 
|  | 54 | * @bit_idx: the bit used to gate this clock in the clock register | 
|  | 55 | * @name: the clock name | 
|  | 56 | * @parent_name: the name of the parent clock | 
|  | 57 | * @flags: standard clock framework flags | 
|  | 58 | */ | 
|  | 59 | struct gemini_gate_data { | 
|  | 60 | u8 bit_idx; | 
|  | 61 | const char *name; | 
|  | 62 | const char *parent_name; | 
|  | 63 | unsigned long flags; | 
|  | 64 | }; | 
|  | 65 |  | 
|  | 66 | /** | 
|  | 67 | * struct clk_gemini_pci - Gemini PCI clock | 
|  | 68 | * @hw: corresponding clock hardware entry | 
|  | 69 | * @map: regmap to access the registers | 
|  | 70 | * @rate: current rate | 
|  | 71 | */ | 
|  | 72 | struct clk_gemini_pci { | 
|  | 73 | struct clk_hw hw; | 
|  | 74 | struct regmap *map; | 
|  | 75 | unsigned long rate; | 
|  | 76 | }; | 
|  | 77 |  | 
|  | 78 | /** | 
|  | 79 | * struct gemini_reset - gemini reset controller | 
|  | 80 | * @map: regmap to access the containing system controller | 
|  | 81 | * @rcdev: reset controller device | 
|  | 82 | */ | 
|  | 83 | struct gemini_reset { | 
|  | 84 | struct regmap *map; | 
|  | 85 | struct reset_controller_dev rcdev; | 
|  | 86 | }; | 
|  | 87 |  | 
|  | 88 | /* Keeps track of all clocks */ | 
|  | 89 | static struct clk_hw_onecell_data *gemini_clk_data; | 
|  | 90 |  | 
|  | 91 | static const struct gemini_gate_data gemini_gates[] = { | 
|  | 92 | { 1, "security-gate", "secdiv", 0 }, | 
|  | 93 | { 2, "gmac0-gate", "ahb", 0 }, | 
|  | 94 | { 3, "gmac1-gate", "ahb", 0 }, | 
|  | 95 | { 4, "sata0-gate", "ahb", 0 }, | 
|  | 96 | { 5, "sata1-gate", "ahb", 0 }, | 
|  | 97 | { 6, "usb0-gate", "ahb", 0 }, | 
|  | 98 | { 7, "usb1-gate", "ahb", 0 }, | 
|  | 99 | { 8, "ide-gate", "ahb", 0 }, | 
|  | 100 | { 9, "pci-gate", "ahb", 0 }, | 
|  | 101 | /* | 
|  | 102 | * The DDR controller may never have a driver, but certainly must | 
|  | 103 | * not be gated off. | 
|  | 104 | */ | 
|  | 105 | { 10, "ddr-gate", "ahb", CLK_IS_CRITICAL }, | 
|  | 106 | /* | 
|  | 107 | * The flash controller must be on to access NOR flash through the | 
|  | 108 | * memory map. | 
|  | 109 | */ | 
|  | 110 | { 11, "flash-gate", "ahb", CLK_IGNORE_UNUSED }, | 
|  | 111 | { 12, "tvc-gate", "ahb", 0 }, | 
|  | 112 | { 13, "boot-gate", "apb", 0 }, | 
|  | 113 | }; | 
|  | 114 |  | 
|  | 115 | #define to_pciclk(_hw) container_of(_hw, struct clk_gemini_pci, hw) | 
|  | 116 |  | 
|  | 117 | #define to_gemini_reset(p) container_of((p), struct gemini_reset, rcdev) | 
|  | 118 |  | 
|  | 119 | static unsigned long gemini_pci_recalc_rate(struct clk_hw *hw, | 
|  | 120 | unsigned long parent_rate) | 
|  | 121 | { | 
|  | 122 | struct clk_gemini_pci *pciclk = to_pciclk(hw); | 
|  | 123 | u32 val; | 
|  | 124 |  | 
|  | 125 | regmap_read(pciclk->map, GEMINI_GLOBAL_MISC_CONTROL, &val); | 
|  | 126 | if (val & PCI_CLK_66MHZ) | 
|  | 127 | return 66000000; | 
|  | 128 | return 33000000; | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | static long gemini_pci_round_rate(struct clk_hw *hw, unsigned long rate, | 
|  | 132 | unsigned long *prate) | 
|  | 133 | { | 
|  | 134 | /* We support 33 and 66 MHz */ | 
|  | 135 | if (rate < 48000000) | 
|  | 136 | return 33000000; | 
|  | 137 | return 66000000; | 
|  | 138 | } | 
|  | 139 |  | 
|  | 140 | static int gemini_pci_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | 141 | unsigned long parent_rate) | 
|  | 142 | { | 
|  | 143 | struct clk_gemini_pci *pciclk = to_pciclk(hw); | 
|  | 144 |  | 
|  | 145 | if (rate == 33000000) | 
|  | 146 | return regmap_update_bits(pciclk->map, | 
|  | 147 | GEMINI_GLOBAL_MISC_CONTROL, | 
|  | 148 | PCI_CLK_66MHZ, 0); | 
|  | 149 | if (rate == 66000000) | 
|  | 150 | return regmap_update_bits(pciclk->map, | 
|  | 151 | GEMINI_GLOBAL_MISC_CONTROL, | 
|  | 152 | 0, PCI_CLK_66MHZ); | 
|  | 153 | return -EINVAL; | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | static int gemini_pci_enable(struct clk_hw *hw) | 
|  | 157 | { | 
|  | 158 | struct clk_gemini_pci *pciclk = to_pciclk(hw); | 
|  | 159 |  | 
|  | 160 | regmap_update_bits(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, | 
|  | 161 | 0, PCI_CLKRUN_EN); | 
|  | 162 | return 0; | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | static void gemini_pci_disable(struct clk_hw *hw) | 
|  | 166 | { | 
|  | 167 | struct clk_gemini_pci *pciclk = to_pciclk(hw); | 
|  | 168 |  | 
|  | 169 | regmap_update_bits(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, | 
|  | 170 | PCI_CLKRUN_EN, 0); | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | static int gemini_pci_is_enabled(struct clk_hw *hw) | 
|  | 174 | { | 
|  | 175 | struct clk_gemini_pci *pciclk = to_pciclk(hw); | 
|  | 176 | unsigned int val; | 
|  | 177 |  | 
|  | 178 | regmap_read(pciclk->map, GEMINI_GLOBAL_CLOCK_CONTROL, &val); | 
|  | 179 | return !!(val & PCI_CLKRUN_EN); | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | static const struct clk_ops gemini_pci_clk_ops = { | 
|  | 183 | .recalc_rate = gemini_pci_recalc_rate, | 
|  | 184 | .round_rate = gemini_pci_round_rate, | 
|  | 185 | .set_rate = gemini_pci_set_rate, | 
|  | 186 | .enable = gemini_pci_enable, | 
|  | 187 | .disable = gemini_pci_disable, | 
|  | 188 | .is_enabled = gemini_pci_is_enabled, | 
|  | 189 | }; | 
|  | 190 |  | 
|  | 191 | static struct clk_hw *gemini_pci_clk_setup(const char *name, | 
|  | 192 | const char *parent_name, | 
|  | 193 | struct regmap *map) | 
|  | 194 | { | 
|  | 195 | struct clk_gemini_pci *pciclk; | 
|  | 196 | struct clk_init_data init; | 
|  | 197 | int ret; | 
|  | 198 |  | 
|  | 199 | pciclk = kzalloc(sizeof(*pciclk), GFP_KERNEL); | 
|  | 200 | if (!pciclk) | 
|  | 201 | return ERR_PTR(-ENOMEM); | 
|  | 202 |  | 
|  | 203 | init.name = name; | 
|  | 204 | init.ops = &gemini_pci_clk_ops; | 
|  | 205 | init.flags = 0; | 
|  | 206 | init.parent_names = &parent_name; | 
|  | 207 | init.num_parents = 1; | 
|  | 208 | pciclk->map = map; | 
|  | 209 | pciclk->hw.init = &init; | 
|  | 210 |  | 
|  | 211 | ret = clk_hw_register(NULL, &pciclk->hw); | 
|  | 212 | if (ret) { | 
|  | 213 | kfree(pciclk); | 
|  | 214 | return ERR_PTR(ret); | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | return &pciclk->hw; | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | /* | 
|  | 221 | * This is a self-deasserting reset controller. | 
|  | 222 | */ | 
|  | 223 | static int gemini_reset(struct reset_controller_dev *rcdev, | 
|  | 224 | unsigned long id) | 
|  | 225 | { | 
|  | 226 | struct gemini_reset *gr = to_gemini_reset(rcdev); | 
|  | 227 |  | 
|  | 228 | /* Manual says to always set BIT 30 (CPU1) to 1 */ | 
|  | 229 | return regmap_write(gr->map, | 
|  | 230 | GEMINI_GLOBAL_SOFT_RESET, | 
|  | 231 | BIT(GEMINI_RESET_CPU1) | BIT(id)); | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | static int gemini_reset_assert(struct reset_controller_dev *rcdev, | 
|  | 235 | unsigned long id) | 
|  | 236 | { | 
|  | 237 | return 0; | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | static int gemini_reset_deassert(struct reset_controller_dev *rcdev, | 
|  | 241 | unsigned long id) | 
|  | 242 | { | 
|  | 243 | return 0; | 
|  | 244 | } | 
|  | 245 |  | 
|  | 246 | static int gemini_reset_status(struct reset_controller_dev *rcdev, | 
|  | 247 | unsigned long id) | 
|  | 248 | { | 
|  | 249 | struct gemini_reset *gr = to_gemini_reset(rcdev); | 
|  | 250 | u32 val; | 
|  | 251 | int ret; | 
|  | 252 |  | 
|  | 253 | ret = regmap_read(gr->map, GEMINI_GLOBAL_SOFT_RESET, &val); | 
|  | 254 | if (ret) | 
|  | 255 | return ret; | 
|  | 256 |  | 
|  | 257 | return !!(val & BIT(id)); | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | static const struct reset_control_ops gemini_reset_ops = { | 
|  | 261 | .reset = gemini_reset, | 
|  | 262 | .assert = gemini_reset_assert, | 
|  | 263 | .deassert = gemini_reset_deassert, | 
|  | 264 | .status = gemini_reset_status, | 
|  | 265 | }; | 
|  | 266 |  | 
|  | 267 | static int gemini_clk_probe(struct platform_device *pdev) | 
|  | 268 | { | 
|  | 269 | /* Gives the fracions 1x, 1.5x, 1.85x and 2x */ | 
|  | 270 | unsigned int cpu_ahb_mult[4] = { 1, 3, 24, 2 }; | 
|  | 271 | unsigned int cpu_ahb_div[4] = { 1, 2, 13, 1 }; | 
|  | 272 | void __iomem *base; | 
|  | 273 | struct gemini_reset *gr; | 
|  | 274 | struct regmap *map; | 
|  | 275 | struct clk_hw *hw; | 
|  | 276 | struct device *dev = &pdev->dev; | 
|  | 277 | struct device_node *np = dev->of_node; | 
|  | 278 | unsigned int mult, div; | 
|  | 279 | struct resource *res; | 
|  | 280 | u32 val; | 
|  | 281 | int ret; | 
|  | 282 | int i; | 
|  | 283 |  | 
|  | 284 | gr = devm_kzalloc(dev, sizeof(*gr), GFP_KERNEL); | 
|  | 285 | if (!gr) | 
|  | 286 | return -ENOMEM; | 
|  | 287 |  | 
|  | 288 | /* Remap the system controller for the exclusive register */ | 
|  | 289 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | 290 | base = devm_ioremap_resource(dev, res); | 
|  | 291 | if (IS_ERR(base)) | 
|  | 292 | return PTR_ERR(base); | 
|  | 293 |  | 
|  | 294 | map = syscon_node_to_regmap(np); | 
|  | 295 | if (IS_ERR(map)) { | 
|  | 296 | dev_err(dev, "no syscon regmap\n"); | 
|  | 297 | return PTR_ERR(map); | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | gr->map = map; | 
|  | 301 | gr->rcdev.owner = THIS_MODULE; | 
|  | 302 | gr->rcdev.nr_resets = 32; | 
|  | 303 | gr->rcdev.ops = &gemini_reset_ops; | 
|  | 304 | gr->rcdev.of_node = np; | 
|  | 305 |  | 
|  | 306 | ret = devm_reset_controller_register(dev, &gr->rcdev); | 
|  | 307 | if (ret) { | 
|  | 308 | dev_err(dev, "could not register reset controller\n"); | 
|  | 309 | return ret; | 
|  | 310 | } | 
|  | 311 |  | 
|  | 312 | /* RTC clock 32768 Hz */ | 
|  | 313 | hw = clk_hw_register_fixed_rate(NULL, "rtc", NULL, 0, 32768); | 
|  | 314 | gemini_clk_data->hws[GEMINI_CLK_RTC] = hw; | 
|  | 315 |  | 
|  | 316 | /* CPU clock derived as a fixed ratio from the AHB clock */ | 
|  | 317 | regmap_read(map, GEMINI_GLOBAL_STATUS, &val); | 
|  | 318 | val >>= CPU_AHB_RATIO_SHIFT; | 
|  | 319 | val &= CPU_AHB_RATIO_MASK; | 
|  | 320 | hw = clk_hw_register_fixed_factor(NULL, "cpu", "ahb", 0, | 
|  | 321 | cpu_ahb_mult[val], | 
|  | 322 | cpu_ahb_div[val]); | 
|  | 323 | gemini_clk_data->hws[GEMINI_CLK_CPU] = hw; | 
|  | 324 |  | 
|  | 325 | /* Security clock is 1:1 or 0.75 of APB */ | 
|  | 326 | regmap_read(map, GEMINI_GLOBAL_CLOCK_CONTROL, &val); | 
|  | 327 | if (val & SECURITY_CLK_SEL) { | 
|  | 328 | mult = 1; | 
|  | 329 | div = 1; | 
|  | 330 | } else { | 
|  | 331 | mult = 3; | 
|  | 332 | div = 4; | 
|  | 333 | } | 
|  | 334 | hw = clk_hw_register_fixed_factor(NULL, "secdiv", "ahb", 0, mult, div); | 
|  | 335 |  | 
|  | 336 | /* | 
|  | 337 | * These are the leaf gates, at boot no clocks are gated. | 
|  | 338 | */ | 
|  | 339 | for (i = 0; i < ARRAY_SIZE(gemini_gates); i++) { | 
|  | 340 | const struct gemini_gate_data *gd; | 
|  | 341 |  | 
|  | 342 | gd = &gemini_gates[i]; | 
|  | 343 | gemini_clk_data->hws[GEMINI_CLK_GATES + i] = | 
|  | 344 | clk_hw_register_gate(NULL, gd->name, | 
|  | 345 | gd->parent_name, | 
|  | 346 | gd->flags, | 
|  | 347 | base + GEMINI_GLOBAL_CLOCK_CONTROL, | 
|  | 348 | gd->bit_idx, | 
|  | 349 | CLK_GATE_SET_TO_DISABLE, | 
|  | 350 | &gemini_clk_lock); | 
|  | 351 | } | 
|  | 352 |  | 
|  | 353 | /* | 
|  | 354 | * The TV Interface Controller has a 5-bit half divider register. | 
|  | 355 | * This clock is supposed to be 27MHz as this is an exact multiple | 
|  | 356 | * of PAL and NTSC frequencies. The register is undocumented :( | 
|  | 357 | * FIXME: figure out the parent and how the divider works. | 
|  | 358 | */ | 
|  | 359 | mult = 1; | 
|  | 360 | div = ((val >> TVC_HALFDIV_SHIFT) & TVC_HALFDIV_MASK); | 
|  | 361 | dev_dbg(dev, "TVC half divider value = %d\n", div); | 
|  | 362 | div += 1; | 
|  | 363 | hw = clk_hw_register_fixed_rate(NULL, "tvcdiv", "xtal", 0, 27000000); | 
|  | 364 | gemini_clk_data->hws[GEMINI_CLK_TVC] = hw; | 
|  | 365 |  | 
|  | 366 | /* FIXME: very unclear what the parent is */ | 
|  | 367 | hw = gemini_pci_clk_setup("PCI", "xtal", map); | 
|  | 368 | gemini_clk_data->hws[GEMINI_CLK_PCI] = hw; | 
|  | 369 |  | 
|  | 370 | /* FIXME: very unclear what the parent is */ | 
|  | 371 | hw = clk_hw_register_fixed_rate(NULL, "uart", "xtal", 0, 48000000); | 
|  | 372 | gemini_clk_data->hws[GEMINI_CLK_UART] = hw; | 
|  | 373 |  | 
|  | 374 | return 0; | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | static const struct of_device_id gemini_clk_dt_ids[] = { | 
|  | 378 | { .compatible = "cortina,gemini-syscon", }, | 
|  | 379 | { /* sentinel */ }, | 
|  | 380 | }; | 
|  | 381 |  | 
|  | 382 | static struct platform_driver gemini_clk_driver = { | 
|  | 383 | .probe  = gemini_clk_probe, | 
|  | 384 | .driver = { | 
|  | 385 | .name = "gemini-clk", | 
|  | 386 | .of_match_table = gemini_clk_dt_ids, | 
|  | 387 | .suppress_bind_attrs = true, | 
|  | 388 | }, | 
|  | 389 | }; | 
|  | 390 | builtin_platform_driver(gemini_clk_driver); | 
|  | 391 |  | 
|  | 392 | static void __init gemini_cc_init(struct device_node *np) | 
|  | 393 | { | 
|  | 394 | struct regmap *map; | 
|  | 395 | struct clk_hw *hw; | 
|  | 396 | unsigned long freq; | 
|  | 397 | unsigned int mult, div; | 
|  | 398 | u32 val; | 
|  | 399 | int ret; | 
|  | 400 | int i; | 
|  | 401 |  | 
|  | 402 | gemini_clk_data = kzalloc(struct_size(gemini_clk_data, hws, | 
|  | 403 | GEMINI_NUM_CLKS), | 
|  | 404 | GFP_KERNEL); | 
|  | 405 | if (!gemini_clk_data) | 
|  | 406 | return; | 
|  | 407 |  | 
|  | 408 | /* | 
|  | 409 | * This way all clock fetched before the platform device probes, | 
|  | 410 | * except those we assign here for early use, will be deferred. | 
|  | 411 | */ | 
|  | 412 | for (i = 0; i < GEMINI_NUM_CLKS; i++) | 
|  | 413 | gemini_clk_data->hws[i] = ERR_PTR(-EPROBE_DEFER); | 
|  | 414 |  | 
|  | 415 | map = syscon_node_to_regmap(np); | 
|  | 416 | if (IS_ERR(map)) { | 
|  | 417 | pr_err("no syscon regmap\n"); | 
|  | 418 | return; | 
|  | 419 | } | 
|  | 420 | /* | 
|  | 421 | * We check that the regmap works on this very first access, | 
|  | 422 | * but as this is an MMIO-backed regmap, subsequent regmap | 
|  | 423 | * access is not going to fail and we skip error checks from | 
|  | 424 | * this point. | 
|  | 425 | */ | 
|  | 426 | ret = regmap_read(map, GEMINI_GLOBAL_STATUS, &val); | 
|  | 427 | if (ret) { | 
|  | 428 | pr_err("failed to read global status register\n"); | 
|  | 429 | return; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | /* | 
|  | 433 | * XTAL is the crystal oscillator, 60 or 30 MHz selected from | 
|  | 434 | * strap pin E6 | 
|  | 435 | */ | 
|  | 436 | if (val & PLL_OSC_SEL) | 
|  | 437 | freq = 30000000; | 
|  | 438 | else | 
|  | 439 | freq = 60000000; | 
|  | 440 | hw = clk_hw_register_fixed_rate(NULL, "xtal", NULL, 0, freq); | 
|  | 441 | pr_debug("main crystal @%lu MHz\n", freq / 1000000); | 
|  | 442 |  | 
|  | 443 | /* VCO clock derived from the crystal */ | 
|  | 444 | mult = 13 + ((val >> AHBSPEED_SHIFT) & AHBSPEED_MASK); | 
|  | 445 | div = 2; | 
|  | 446 | /* If we run on 30 MHz crystal we have to multiply with two */ | 
|  | 447 | if (val & PLL_OSC_SEL) | 
|  | 448 | mult *= 2; | 
|  | 449 | hw = clk_hw_register_fixed_factor(NULL, "vco", "xtal", 0, mult, div); | 
|  | 450 |  | 
|  | 451 | /* The AHB clock is always 1/3 of the VCO */ | 
|  | 452 | hw = clk_hw_register_fixed_factor(NULL, "ahb", "vco", 0, 1, 3); | 
|  | 453 | gemini_clk_data->hws[GEMINI_CLK_AHB] = hw; | 
|  | 454 |  | 
|  | 455 | /* The APB clock is always 1/6 of the AHB */ | 
|  | 456 | hw = clk_hw_register_fixed_factor(NULL, "apb", "ahb", 0, 1, 6); | 
|  | 457 | gemini_clk_data->hws[GEMINI_CLK_APB] = hw; | 
|  | 458 |  | 
|  | 459 | /* Register the clocks to be accessed by the device tree */ | 
|  | 460 | gemini_clk_data->num = GEMINI_NUM_CLKS; | 
|  | 461 | of_clk_add_hw_provider(np, of_clk_hw_onecell_get, gemini_clk_data); | 
|  | 462 | } | 
|  | 463 | CLK_OF_DECLARE_DRIVER(gemini_cc, "cortina,gemini-syscon", gemini_cc_init); |