blob: b92fe0d6adb4dcfa3cea50ac8ef9f6f97d2943ae [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
24#include <linux/mutex.h>
25#include <linux/of_device.h>
26#include <linux/of_irq.h>
27#include <linux/clk/clk-conf.h>
28#include <linux/slab.h>
29#include <linux/mod_devicetable.h>
30#include <linux/spi/spi.h>
31#include <linux/spi/spi-mem.h>
32#include <linux/of_gpio.h>
33#include <linux/pm_runtime.h>
34#include <linux/pm_domain.h>
35#include <linux/property.h>
36#include <linux/export.h>
37#include <linux/sched/rt.h>
38#include <uapi/linux/sched/types.h>
39#include <linux/delay.h>
40#include <linux/kthread.h>
41#include <linux/ioport.h>
42#include <linux/acpi.h>
43#include <linux/highmem.h>
44#include <linux/idr.h>
45#include <linux/platform_data/x86/apple.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/spi.h>
49
50#include "internals.h"
51
52static DEFINE_IDR(spi_master_idr);
53
54static void spidev_release(struct device *dev)
55{
56 struct spi_device *spi = to_spi_device(dev);
57
58 /* spi controllers may cleanup for released devices */
59 if (spi->controller->cleanup)
60 spi->controller->cleanup(spi);
61
62 spi_controller_put(spi->controller);
63 kfree(spi);
64}
65
66static ssize_t
67modalias_show(struct device *dev, struct device_attribute *a, char *buf)
68{
69 const struct spi_device *spi = to_spi_device(dev);
70 int len;
71
72 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73 if (len != -ENODEV)
74 return len;
75
76 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
77}
78static DEVICE_ATTR_RO(modalias);
79
80#define SPI_STATISTICS_ATTRS(field, file) \
81static ssize_t spi_controller_##field##_show(struct device *dev, \
82 struct device_attribute *attr, \
83 char *buf) \
84{ \
85 struct spi_controller *ctlr = container_of(dev, \
86 struct spi_controller, dev); \
87 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
88} \
89static struct device_attribute dev_attr_spi_controller_##field = { \
90 .attr = { .name = file, .mode = 0444 }, \
91 .show = spi_controller_##field##_show, \
92}; \
93static ssize_t spi_device_##field##_show(struct device *dev, \
94 struct device_attribute *attr, \
95 char *buf) \
96{ \
97 struct spi_device *spi = to_spi_device(dev); \
98 return spi_statistics_##field##_show(&spi->statistics, buf); \
99} \
100static struct device_attribute dev_attr_spi_device_##field = { \
101 .attr = { .name = file, .mode = 0444 }, \
102 .show = spi_device_##field##_show, \
103}
104
105#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
106static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107 char *buf) \
108{ \
109 unsigned long flags; \
110 ssize_t len; \
111 spin_lock_irqsave(&stat->lock, flags); \
112 len = sprintf(buf, format_string, stat->field); \
113 spin_unlock_irqrestore(&stat->lock, flags); \
114 return len; \
115} \
116SPI_STATISTICS_ATTRS(name, file)
117
118#define SPI_STATISTICS_SHOW(field, format_string) \
119 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
120 field, format_string)
121
122SPI_STATISTICS_SHOW(messages, "%lu");
123SPI_STATISTICS_SHOW(transfers, "%lu");
124SPI_STATISTICS_SHOW(errors, "%lu");
125SPI_STATISTICS_SHOW(timedout, "%lu");
126
127SPI_STATISTICS_SHOW(spi_sync, "%lu");
128SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129SPI_STATISTICS_SHOW(spi_async, "%lu");
130
131SPI_STATISTICS_SHOW(bytes, "%llu");
132SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133SPI_STATISTICS_SHOW(bytes_tx, "%llu");
134
135#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
136 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
137 "transfer_bytes_histo_" number, \
138 transfer_bytes_histo[index], "%lu")
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
146SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
147SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
148SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
149SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
156
157SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
158
159static struct attribute *spi_dev_attrs[] = {
160 &dev_attr_modalias.attr,
161 NULL,
162};
163
164static const struct attribute_group spi_dev_group = {
165 .attrs = spi_dev_attrs,
166};
167
168static struct attribute *spi_device_statistics_attrs[] = {
169 &dev_attr_spi_device_messages.attr,
170 &dev_attr_spi_device_transfers.attr,
171 &dev_attr_spi_device_errors.attr,
172 &dev_attr_spi_device_timedout.attr,
173 &dev_attr_spi_device_spi_sync.attr,
174 &dev_attr_spi_device_spi_sync_immediate.attr,
175 &dev_attr_spi_device_spi_async.attr,
176 &dev_attr_spi_device_bytes.attr,
177 &dev_attr_spi_device_bytes_rx.attr,
178 &dev_attr_spi_device_bytes_tx.attr,
179 &dev_attr_spi_device_transfer_bytes_histo0.attr,
180 &dev_attr_spi_device_transfer_bytes_histo1.attr,
181 &dev_attr_spi_device_transfer_bytes_histo2.attr,
182 &dev_attr_spi_device_transfer_bytes_histo3.attr,
183 &dev_attr_spi_device_transfer_bytes_histo4.attr,
184 &dev_attr_spi_device_transfer_bytes_histo5.attr,
185 &dev_attr_spi_device_transfer_bytes_histo6.attr,
186 &dev_attr_spi_device_transfer_bytes_histo7.attr,
187 &dev_attr_spi_device_transfer_bytes_histo8.attr,
188 &dev_attr_spi_device_transfer_bytes_histo9.attr,
189 &dev_attr_spi_device_transfer_bytes_histo10.attr,
190 &dev_attr_spi_device_transfer_bytes_histo11.attr,
191 &dev_attr_spi_device_transfer_bytes_histo12.attr,
192 &dev_attr_spi_device_transfer_bytes_histo13.attr,
193 &dev_attr_spi_device_transfer_bytes_histo14.attr,
194 &dev_attr_spi_device_transfer_bytes_histo15.attr,
195 &dev_attr_spi_device_transfer_bytes_histo16.attr,
196 &dev_attr_spi_device_transfers_split_maxsize.attr,
197 NULL,
198};
199
200static const struct attribute_group spi_device_statistics_group = {
201 .name = "statistics",
202 .attrs = spi_device_statistics_attrs,
203};
204
205static const struct attribute_group *spi_dev_groups[] = {
206 &spi_dev_group,
207 &spi_device_statistics_group,
208 NULL,
209};
210
211static struct attribute *spi_controller_statistics_attrs[] = {
212 &dev_attr_spi_controller_messages.attr,
213 &dev_attr_spi_controller_transfers.attr,
214 &dev_attr_spi_controller_errors.attr,
215 &dev_attr_spi_controller_timedout.attr,
216 &dev_attr_spi_controller_spi_sync.attr,
217 &dev_attr_spi_controller_spi_sync_immediate.attr,
218 &dev_attr_spi_controller_spi_async.attr,
219 &dev_attr_spi_controller_bytes.attr,
220 &dev_attr_spi_controller_bytes_rx.attr,
221 &dev_attr_spi_controller_bytes_tx.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
236 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
237 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
238 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
239 &dev_attr_spi_controller_transfers_split_maxsize.attr,
240 NULL,
241};
242
243static const struct attribute_group spi_controller_statistics_group = {
244 .name = "statistics",
245 .attrs = spi_controller_statistics_attrs,
246};
247
248static const struct attribute_group *spi_master_groups[] = {
249 &spi_controller_statistics_group,
250 NULL,
251};
252
253void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254 struct spi_transfer *xfer,
255 struct spi_controller *ctlr)
256{
257 unsigned long flags;
258 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
259
260 if (l2len < 0)
261 l2len = 0;
262
263 spin_lock_irqsave(&stats->lock, flags);
264
265 stats->transfers++;
266 stats->transfer_bytes_histo[l2len]++;
267
268 stats->bytes += xfer->len;
269 if ((xfer->tx_buf) &&
270 (xfer->tx_buf != ctlr->dummy_tx))
271 stats->bytes_tx += xfer->len;
272 if ((xfer->rx_buf) &&
273 (xfer->rx_buf != ctlr->dummy_rx))
274 stats->bytes_rx += xfer->len;
275
276 spin_unlock_irqrestore(&stats->lock, flags);
277}
278EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
279
280/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281 * and the sysfs version makes coldplug work too.
282 */
283
284static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285 const struct spi_device *sdev)
286{
287 while (id->name[0]) {
288 if (!strcmp(sdev->modalias, id->name))
289 return id;
290 id++;
291 }
292 return NULL;
293}
294
295const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
296{
297 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
298
299 return spi_match_id(sdrv->id_table, sdev);
300}
301EXPORT_SYMBOL_GPL(spi_get_device_id);
302
303static int spi_match_device(struct device *dev, struct device_driver *drv)
304{
305 const struct spi_device *spi = to_spi_device(dev);
306 const struct spi_driver *sdrv = to_spi_driver(drv);
307
308 /* Attempt an OF style match */
309 if (of_driver_match_device(dev, drv))
310 return 1;
311
312 /* Then try ACPI */
313 if (acpi_driver_match_device(dev, drv))
314 return 1;
315
316 if (sdrv->id_table)
317 return !!spi_match_id(sdrv->id_table, spi);
318
319 return strcmp(spi->modalias, drv->name) == 0;
320}
321
322static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
323{
324 const struct spi_device *spi = to_spi_device(dev);
325 int rc;
326
327 rc = acpi_device_uevent_modalias(dev, env);
328 if (rc != -ENODEV)
329 return rc;
330
331 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
332}
333
334struct bus_type spi_bus_type = {
335 .name = "spi",
336 .dev_groups = spi_dev_groups,
337 .match = spi_match_device,
338 .uevent = spi_uevent,
339};
340EXPORT_SYMBOL_GPL(spi_bus_type);
341
342
343static int spi_drv_probe(struct device *dev)
344{
345 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
346 struct spi_device *spi = to_spi_device(dev);
347 int ret;
348
349 ret = of_clk_set_defaults(dev->of_node, false);
350 if (ret)
351 return ret;
352
353 if (dev->of_node) {
354 spi->irq = of_irq_get(dev->of_node, 0);
355 if (spi->irq == -EPROBE_DEFER)
356 return -EPROBE_DEFER;
357 if (spi->irq < 0)
358 spi->irq = 0;
359 }
360
361 ret = dev_pm_domain_attach(dev, true);
362 if (ret)
363 return ret;
364
365 ret = sdrv->probe(spi);
366 if (ret)
367 dev_pm_domain_detach(dev, true);
368
369 return ret;
370}
371
372static int spi_drv_remove(struct device *dev)
373{
374 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
375 int ret;
376
377 ret = sdrv->remove(to_spi_device(dev));
378 dev_pm_domain_detach(dev, true);
379
380 return ret;
381}
382
383static void spi_drv_shutdown(struct device *dev)
384{
385 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
386
387 sdrv->shutdown(to_spi_device(dev));
388}
389
390/**
391 * __spi_register_driver - register a SPI driver
392 * @owner: owner module of the driver to register
393 * @sdrv: the driver to register
394 * Context: can sleep
395 *
396 * Return: zero on success, else a negative error code.
397 */
398int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
399{
400 sdrv->driver.owner = owner;
401 sdrv->driver.bus = &spi_bus_type;
402 if (sdrv->probe)
403 sdrv->driver.probe = spi_drv_probe;
404 if (sdrv->remove)
405 sdrv->driver.remove = spi_drv_remove;
406 if (sdrv->shutdown)
407 sdrv->driver.shutdown = spi_drv_shutdown;
408 return driver_register(&sdrv->driver);
409}
410EXPORT_SYMBOL_GPL(__spi_register_driver);
411
412/*-------------------------------------------------------------------------*/
413
414/* SPI devices should normally not be created by SPI device drivers; that
415 * would make them board-specific. Similarly with SPI controller drivers.
416 * Device registration normally goes into like arch/.../mach.../board-YYY.c
417 * with other readonly (flashable) information about mainboard devices.
418 */
419
420struct boardinfo {
421 struct list_head list;
422 struct spi_board_info board_info;
423};
424
425static LIST_HEAD(board_list);
426static LIST_HEAD(spi_controller_list);
427
428/*
429 * Used to protect add/del opertion for board_info list and
430 * spi_controller list, and their matching process
431 * also used to protect object of type struct idr
432 */
433static DEFINE_MUTEX(board_lock);
434
435/**
436 * spi_alloc_device - Allocate a new SPI device
437 * @ctlr: Controller to which device is connected
438 * Context: can sleep
439 *
440 * Allows a driver to allocate and initialize a spi_device without
441 * registering it immediately. This allows a driver to directly
442 * fill the spi_device with device parameters before calling
443 * spi_add_device() on it.
444 *
445 * Caller is responsible to call spi_add_device() on the returned
446 * spi_device structure to add it to the SPI controller. If the caller
447 * needs to discard the spi_device without adding it, then it should
448 * call spi_dev_put() on it.
449 *
450 * Return: a pointer to the new device, or NULL.
451 */
452struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
453{
454 struct spi_device *spi;
455
456 if (!spi_controller_get(ctlr))
457 return NULL;
458
459 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
460 if (!spi) {
461 spi_controller_put(ctlr);
462 return NULL;
463 }
464
465 spi->master = spi->controller = ctlr;
466 spi->dev.parent = &ctlr->dev;
467 spi->dev.bus = &spi_bus_type;
468 spi->dev.release = spidev_release;
469 spi->cs_gpio = -ENOENT;
470
471 spin_lock_init(&spi->statistics.lock);
472
473 device_initialize(&spi->dev);
474 return spi;
475}
476EXPORT_SYMBOL_GPL(spi_alloc_device);
477
478static void spi_dev_set_name(struct spi_device *spi)
479{
480 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
481
482 if (adev) {
483 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
484 return;
485 }
486
487 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
488 spi->chip_select);
489}
490
491static int spi_dev_check(struct device *dev, void *data)
492{
493 struct spi_device *spi = to_spi_device(dev);
494 struct spi_device *new_spi = data;
495
496 if (spi->controller == new_spi->controller &&
497 spi->chip_select == new_spi->chip_select)
498 return -EBUSY;
499 return 0;
500}
501
502/**
503 * spi_add_device - Add spi_device allocated with spi_alloc_device
504 * @spi: spi_device to register
505 *
506 * Companion function to spi_alloc_device. Devices allocated with
507 * spi_alloc_device can be added onto the spi bus with this function.
508 *
509 * Return: 0 on success; negative errno on failure
510 */
511int spi_add_device(struct spi_device *spi)
512{
513 static DEFINE_MUTEX(spi_add_lock);
514 struct spi_controller *ctlr = spi->controller;
515 struct device *dev = ctlr->dev.parent;
516 int status;
517
518 /* Chipselects are numbered 0..max; validate. */
519 if (spi->chip_select >= ctlr->num_chipselect) {
520 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
521 ctlr->num_chipselect);
522 return -EINVAL;
523 }
524
525 /* Set the bus ID string */
526 spi_dev_set_name(spi);
527
528 /* We need to make sure there's no other device with this
529 * chipselect **BEFORE** we call setup(), else we'll trash
530 * its configuration. Lock against concurrent add() calls.
531 */
532 mutex_lock(&spi_add_lock);
533
534 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
535 if (status) {
536 dev_err(dev, "chipselect %d already in use\n",
537 spi->chip_select);
538 goto done;
539 }
540
541 if (ctlr->cs_gpios)
542 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
543
544 /* Drivers may modify this initial i/o setup, but will
545 * normally rely on the device being setup. Devices
546 * using SPI_CS_HIGH can't coexist well otherwise...
547 */
548 status = spi_setup(spi);
549 if (status < 0) {
550 dev_err(dev, "can't setup %s, status %d\n",
551 dev_name(&spi->dev), status);
552 goto done;
553 }
554
555 /* Device may be bound to an active driver when this returns */
556 status = device_add(&spi->dev);
557 if (status < 0)
558 dev_err(dev, "can't add %s, status %d\n",
559 dev_name(&spi->dev), status);
560 else
561 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
562
563done:
564 mutex_unlock(&spi_add_lock);
565 return status;
566}
567EXPORT_SYMBOL_GPL(spi_add_device);
568
569/**
570 * spi_new_device - instantiate one new SPI device
571 * @ctlr: Controller to which device is connected
572 * @chip: Describes the SPI device
573 * Context: can sleep
574 *
575 * On typical mainboards, this is purely internal; and it's not needed
576 * after board init creates the hard-wired devices. Some development
577 * platforms may not be able to use spi_register_board_info though, and
578 * this is exported so that for example a USB or parport based adapter
579 * driver could add devices (which it would learn about out-of-band).
580 *
581 * Return: the new device, or NULL.
582 */
583struct spi_device *spi_new_device(struct spi_controller *ctlr,
584 struct spi_board_info *chip)
585{
586 struct spi_device *proxy;
587 int status;
588
589 /* NOTE: caller did any chip->bus_num checks necessary.
590 *
591 * Also, unless we change the return value convention to use
592 * error-or-pointer (not NULL-or-pointer), troubleshootability
593 * suggests syslogged diagnostics are best here (ugh).
594 */
595
596 proxy = spi_alloc_device(ctlr);
597 if (!proxy)
598 return NULL;
599
600 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
601
602 proxy->chip_select = chip->chip_select;
603 proxy->max_speed_hz = chip->max_speed_hz;
604 proxy->mode = chip->mode;
605 proxy->irq = chip->irq;
606 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
607 proxy->dev.platform_data = (void *) chip->platform_data;
608 proxy->controller_data = chip->controller_data;
609 proxy->controller_state = NULL;
610
611 if (chip->properties) {
612 status = device_add_properties(&proxy->dev, chip->properties);
613 if (status) {
614 dev_err(&ctlr->dev,
615 "failed to add properties to '%s': %d\n",
616 chip->modalias, status);
617 goto err_dev_put;
618 }
619 }
620
621 status = spi_add_device(proxy);
622 if (status < 0)
623 goto err_remove_props;
624
625 return proxy;
626
627err_remove_props:
628 if (chip->properties)
629 device_remove_properties(&proxy->dev);
630err_dev_put:
631 spi_dev_put(proxy);
632 return NULL;
633}
634EXPORT_SYMBOL_GPL(spi_new_device);
635
636/**
637 * spi_unregister_device - unregister a single SPI device
638 * @spi: spi_device to unregister
639 *
640 * Start making the passed SPI device vanish. Normally this would be handled
641 * by spi_unregister_controller().
642 */
643void spi_unregister_device(struct spi_device *spi)
644{
645 if (!spi)
646 return;
647
648 if (spi->dev.of_node) {
649 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
650 of_node_put(spi->dev.of_node);
651 }
652 if (ACPI_COMPANION(&spi->dev))
653 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
654 device_unregister(&spi->dev);
655}
656EXPORT_SYMBOL_GPL(spi_unregister_device);
657
658static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
659 struct spi_board_info *bi)
660{
661 struct spi_device *dev;
662
663 if (ctlr->bus_num != bi->bus_num)
664 return;
665
666 dev = spi_new_device(ctlr, bi);
667 if (!dev)
668 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
669 bi->modalias);
670}
671
672/**
673 * spi_register_board_info - register SPI devices for a given board
674 * @info: array of chip descriptors
675 * @n: how many descriptors are provided
676 * Context: can sleep
677 *
678 * Board-specific early init code calls this (probably during arch_initcall)
679 * with segments of the SPI device table. Any device nodes are created later,
680 * after the relevant parent SPI controller (bus_num) is defined. We keep
681 * this table of devices forever, so that reloading a controller driver will
682 * not make Linux forget about these hard-wired devices.
683 *
684 * Other code can also call this, e.g. a particular add-on board might provide
685 * SPI devices through its expansion connector, so code initializing that board
686 * would naturally declare its SPI devices.
687 *
688 * The board info passed can safely be __initdata ... but be careful of
689 * any embedded pointers (platform_data, etc), they're copied as-is.
690 * Device properties are deep-copied though.
691 *
692 * Return: zero on success, else a negative error code.
693 */
694int spi_register_board_info(struct spi_board_info const *info, unsigned n)
695{
696 struct boardinfo *bi;
697 int i;
698
699 if (!n)
700 return 0;
701
702 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
703 if (!bi)
704 return -ENOMEM;
705
706 for (i = 0; i < n; i++, bi++, info++) {
707 struct spi_controller *ctlr;
708
709 memcpy(&bi->board_info, info, sizeof(*info));
710 if (info->properties) {
711 bi->board_info.properties =
712 property_entries_dup(info->properties);
713 if (IS_ERR(bi->board_info.properties))
714 return PTR_ERR(bi->board_info.properties);
715 }
716
717 mutex_lock(&board_lock);
718 list_add_tail(&bi->list, &board_list);
719 list_for_each_entry(ctlr, &spi_controller_list, list)
720 spi_match_controller_to_boardinfo(ctlr,
721 &bi->board_info);
722 mutex_unlock(&board_lock);
723 }
724
725 return 0;
726}
727
728/*-------------------------------------------------------------------------*/
729
730static void spi_set_cs(struct spi_device *spi, bool enable)
731{
732 if (spi->mode & SPI_CS_HIGH)
733 enable = !enable;
734
735 if (gpio_is_valid(spi->cs_gpio)) {
736 gpio_set_value_cansleep(spi->cs_gpio, !enable);
737 /* Some SPI masters need both GPIO CS & slave_select */
738 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
739 spi->controller->set_cs)
740 spi->controller->set_cs(spi, !enable);
741 } else if (spi->controller->set_cs) {
742 spi->controller->set_cs(spi, !enable);
743 }
744}
745
746#ifdef CONFIG_HAS_DMA
747int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
748 struct sg_table *sgt, void *buf, size_t len,
749 enum dma_data_direction dir)
750{
751 const bool vmalloced_buf = is_vmalloc_addr(buf);
752 unsigned int max_seg_size = dma_get_max_seg_size(dev);
753#ifdef CONFIG_HIGHMEM
754 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
755 (unsigned long)buf < (PKMAP_BASE +
756 (LAST_PKMAP * PAGE_SIZE)));
757#else
758 const bool kmap_buf = false;
759#endif
760 int desc_len;
761 int sgs;
762 struct page *vm_page;
763 struct scatterlist *sg;
764 void *sg_buf;
765 size_t min;
766 int i, ret;
767
768 if (vmalloced_buf || kmap_buf) {
769 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
770 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
771 } else if (virt_addr_valid(buf)) {
772 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
773 sgs = DIV_ROUND_UP(len, desc_len);
774 } else {
775 return -EINVAL;
776 }
777
778 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
779 if (ret != 0)
780 return ret;
781
782 sg = &sgt->sgl[0];
783 for (i = 0; i < sgs; i++) {
784
785 if (vmalloced_buf || kmap_buf) {
786 /*
787 * Next scatterlist entry size is the minimum between
788 * the desc_len and the remaining buffer length that
789 * fits in a page.
790 */
791 min = min_t(size_t, desc_len,
792 min_t(size_t, len,
793 PAGE_SIZE - offset_in_page(buf)));
794 if (vmalloced_buf)
795 vm_page = vmalloc_to_page(buf);
796 else
797 vm_page = kmap_to_page(buf);
798 if (!vm_page) {
799 sg_free_table(sgt);
800 return -ENOMEM;
801 }
802 sg_set_page(sg, vm_page,
803 min, offset_in_page(buf));
804 } else {
805 min = min_t(size_t, len, desc_len);
806 sg_buf = buf;
807 sg_set_buf(sg, sg_buf, min);
808 }
809
810 buf += min;
811 len -= min;
812 sg = sg_next(sg);
813 }
814
815 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
816 if (!ret)
817 ret = -ENOMEM;
818 if (ret < 0) {
819 sg_free_table(sgt);
820 return ret;
821 }
822
823 sgt->nents = ret;
824
825 return 0;
826}
827
828void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
829 struct sg_table *sgt, enum dma_data_direction dir)
830{
831 if (sgt->orig_nents) {
832 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
833 sg_free_table(sgt);
834 }
835}
836
837static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
838{
839 struct device *tx_dev, *rx_dev;
840 struct spi_transfer *xfer;
841 int ret;
842
843 if (!ctlr->can_dma)
844 return 0;
845
846 if (ctlr->dma_tx)
847 tx_dev = ctlr->dma_tx->device->dev;
848 else
849 tx_dev = ctlr->dev.parent;
850
851 if (ctlr->dma_rx)
852 rx_dev = ctlr->dma_rx->device->dev;
853 else
854 rx_dev = ctlr->dev.parent;
855
856 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
857 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
858 continue;
859
860 if (xfer->tx_buf != NULL) {
861 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
862 (void *)xfer->tx_buf, xfer->len,
863 DMA_TO_DEVICE);
864 if (ret != 0)
865 return ret;
866 }
867
868 if (xfer->rx_buf != NULL) {
869 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
870 xfer->rx_buf, xfer->len,
871 DMA_FROM_DEVICE);
872 if (ret != 0) {
873 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
874 DMA_TO_DEVICE);
875 return ret;
876 }
877 }
878 }
879
880 ctlr->cur_msg_mapped = true;
881
882 return 0;
883}
884
885static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
886{
887 struct spi_transfer *xfer;
888 struct device *tx_dev, *rx_dev;
889
890 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
891 return 0;
892
893 if (ctlr->dma_tx)
894 tx_dev = ctlr->dma_tx->device->dev;
895 else
896 tx_dev = ctlr->dev.parent;
897
898 if (ctlr->dma_rx)
899 rx_dev = ctlr->dma_rx->device->dev;
900 else
901 rx_dev = ctlr->dev.parent;
902
903 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
904 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
905 continue;
906
907 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
908 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
909 }
910
911 return 0;
912}
913#else /* !CONFIG_HAS_DMA */
914static inline int __spi_map_msg(struct spi_controller *ctlr,
915 struct spi_message *msg)
916{
917 return 0;
918}
919
920static inline int __spi_unmap_msg(struct spi_controller *ctlr,
921 struct spi_message *msg)
922{
923 return 0;
924}
925#endif /* !CONFIG_HAS_DMA */
926
927static inline int spi_unmap_msg(struct spi_controller *ctlr,
928 struct spi_message *msg)
929{
930 struct spi_transfer *xfer;
931
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 /*
934 * Restore the original value of tx_buf or rx_buf if they are
935 * NULL.
936 */
937 if (xfer->tx_buf == ctlr->dummy_tx)
938 xfer->tx_buf = NULL;
939 if (xfer->rx_buf == ctlr->dummy_rx)
940 xfer->rx_buf = NULL;
941 }
942
943 return __spi_unmap_msg(ctlr, msg);
944}
945
946static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
947{
948 struct spi_transfer *xfer;
949 void *tmp;
950 unsigned int max_tx, max_rx;
951
952 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
953 max_tx = 0;
954 max_rx = 0;
955
956 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
958 !xfer->tx_buf)
959 max_tx = max(xfer->len, max_tx);
960 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
961 !xfer->rx_buf)
962 max_rx = max(xfer->len, max_rx);
963 }
964
965 if (max_tx) {
966 tmp = krealloc(ctlr->dummy_tx, max_tx,
967 GFP_KERNEL | GFP_DMA);
968 if (!tmp)
969 return -ENOMEM;
970 ctlr->dummy_tx = tmp;
971 memset(tmp, 0, max_tx);
972 }
973
974 if (max_rx) {
975 tmp = krealloc(ctlr->dummy_rx, max_rx,
976 GFP_KERNEL | GFP_DMA);
977 if (!tmp)
978 return -ENOMEM;
979 ctlr->dummy_rx = tmp;
980 }
981
982 if (max_tx || max_rx) {
983 list_for_each_entry(xfer, &msg->transfers,
984 transfer_list) {
985 if (!xfer->len)
986 continue;
987 if (!xfer->tx_buf)
988 xfer->tx_buf = ctlr->dummy_tx;
989 if (!xfer->rx_buf)
990 xfer->rx_buf = ctlr->dummy_rx;
991 }
992 }
993 }
994
995 return __spi_map_msg(ctlr, msg);
996}
997
998/*
999 * spi_transfer_one_message - Default implementation of transfer_one_message()
1000 *
1001 * This is a standard implementation of transfer_one_message() for
1002 * drivers which implement a transfer_one() operation. It provides
1003 * standard handling of delays and chip select management.
1004 */
1005static int spi_transfer_one_message(struct spi_controller *ctlr,
1006 struct spi_message *msg)
1007{
1008 struct spi_transfer *xfer;
1009 bool keep_cs = false;
1010 int ret = 0;
1011 unsigned long long ms = 1;
1012 struct spi_statistics *statm = &ctlr->statistics;
1013 struct spi_statistics *stats = &msg->spi->statistics;
1014
1015 spi_set_cs(msg->spi, true);
1016
1017 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1018 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1019
1020 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1021 trace_spi_transfer_start(msg, xfer);
1022
1023 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1024 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1025
1026 if (xfer->tx_buf || xfer->rx_buf) {
1027 reinit_completion(&ctlr->xfer_completion);
1028
1029 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1030 if (ret < 0) {
1031 SPI_STATISTICS_INCREMENT_FIELD(statm,
1032 errors);
1033 SPI_STATISTICS_INCREMENT_FIELD(stats,
1034 errors);
1035 dev_err(&msg->spi->dev,
1036 "SPI transfer failed: %d\n", ret);
1037 goto out;
1038 }
1039
1040 if (ret > 0) {
1041 ret = 0;
1042 ms = 8LL * 1000LL * xfer->len;
1043 do_div(ms, xfer->speed_hz);
1044 ms += ms + 200; /* some tolerance */
1045
1046 if (ms > UINT_MAX)
1047 ms = UINT_MAX;
1048
1049 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1050 msecs_to_jiffies(ms));
1051 }
1052
1053 if (ms == 0) {
1054 SPI_STATISTICS_INCREMENT_FIELD(statm,
1055 timedout);
1056 SPI_STATISTICS_INCREMENT_FIELD(stats,
1057 timedout);
1058 dev_err(&msg->spi->dev,
1059 "SPI transfer timed out\n");
1060 msg->status = -ETIMEDOUT;
1061 }
1062 } else {
1063 if (xfer->len)
1064 dev_err(&msg->spi->dev,
1065 "Bufferless transfer has length %u\n",
1066 xfer->len);
1067 }
1068
1069 trace_spi_transfer_stop(msg, xfer);
1070
1071 if (msg->status != -EINPROGRESS)
1072 goto out;
1073
1074 if (xfer->delay_usecs) {
1075 u16 us = xfer->delay_usecs;
1076
1077 if (us <= 10)
1078 udelay(us);
1079 else
1080 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1081 }
1082
1083 if (xfer->cs_change) {
1084 if (list_is_last(&xfer->transfer_list,
1085 &msg->transfers)) {
1086 keep_cs = true;
1087 } else {
1088 spi_set_cs(msg->spi, false);
1089 udelay(10);
1090 spi_set_cs(msg->spi, true);
1091 }
1092 }
1093
1094 msg->actual_length += xfer->len;
1095 }
1096
1097out:
1098 if (ret != 0 || !keep_cs)
1099 spi_set_cs(msg->spi, false);
1100
1101 if (msg->status == -EINPROGRESS)
1102 msg->status = ret;
1103
1104 if (msg->status && ctlr->handle_err)
1105 ctlr->handle_err(ctlr, msg);
1106
1107 spi_res_release(ctlr, msg);
1108
1109 spi_finalize_current_message(ctlr);
1110
1111 return ret;
1112}
1113
1114/**
1115 * spi_finalize_current_transfer - report completion of a transfer
1116 * @ctlr: the controller reporting completion
1117 *
1118 * Called by SPI drivers using the core transfer_one_message()
1119 * implementation to notify it that the current interrupt driven
1120 * transfer has finished and the next one may be scheduled.
1121 */
1122void spi_finalize_current_transfer(struct spi_controller *ctlr)
1123{
1124 complete(&ctlr->xfer_completion);
1125}
1126EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1127
1128/**
1129 * __spi_pump_messages - function which processes spi message queue
1130 * @ctlr: controller to process queue for
1131 * @in_kthread: true if we are in the context of the message pump thread
1132 *
1133 * This function checks if there is any spi message in the queue that
1134 * needs processing and if so call out to the driver to initialize hardware
1135 * and transfer each message.
1136 *
1137 * Note that it is called both from the kthread itself and also from
1138 * inside spi_sync(); the queue extraction handling at the top of the
1139 * function should deal with this safely.
1140 */
1141static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1142{
1143 unsigned long flags;
1144 bool was_busy = false;
1145 int ret;
1146
1147 /* Lock queue */
1148 spin_lock_irqsave(&ctlr->queue_lock, flags);
1149
1150 /* Make sure we are not already running a message */
1151 if (ctlr->cur_msg) {
1152 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1153 return;
1154 }
1155
1156 /* If another context is idling the device then defer */
1157 if (ctlr->idling) {
1158 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1159 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160 return;
1161 }
1162
1163 /* Check if the queue is idle */
1164 if (list_empty(&ctlr->queue) || !ctlr->running) {
1165 if (!ctlr->busy) {
1166 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167 return;
1168 }
1169
1170 /* Only do teardown in the thread */
1171 if (!in_kthread) {
1172 kthread_queue_work(&ctlr->kworker,
1173 &ctlr->pump_messages);
1174 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1175 return;
1176 }
1177
1178 ctlr->busy = false;
1179 ctlr->idling = true;
1180 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1181
1182 kfree(ctlr->dummy_rx);
1183 ctlr->dummy_rx = NULL;
1184 kfree(ctlr->dummy_tx);
1185 ctlr->dummy_tx = NULL;
1186 if (ctlr->unprepare_transfer_hardware &&
1187 ctlr->unprepare_transfer_hardware(ctlr))
1188 dev_err(&ctlr->dev,
1189 "failed to unprepare transfer hardware\n");
1190 if (ctlr->auto_runtime_pm) {
1191 pm_runtime_mark_last_busy(ctlr->dev.parent);
1192 pm_runtime_put_autosuspend(ctlr->dev.parent);
1193 }
1194 trace_spi_controller_idle(ctlr);
1195
1196 spin_lock_irqsave(&ctlr->queue_lock, flags);
1197 ctlr->idling = false;
1198 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1199 return;
1200 }
1201
1202 /* Extract head of queue */
1203 ctlr->cur_msg =
1204 list_first_entry(&ctlr->queue, struct spi_message, queue);
1205
1206 list_del_init(&ctlr->cur_msg->queue);
1207 if (ctlr->busy)
1208 was_busy = true;
1209 else
1210 ctlr->busy = true;
1211 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1212
1213 mutex_lock(&ctlr->io_mutex);
1214
1215 if (!was_busy && ctlr->auto_runtime_pm) {
1216 ret = pm_runtime_get_sync(ctlr->dev.parent);
1217 if (ret < 0) {
1218 pm_runtime_put_noidle(ctlr->dev.parent);
1219 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220 ret);
1221 mutex_unlock(&ctlr->io_mutex);
1222 return;
1223 }
1224 }
1225
1226 if (!was_busy)
1227 trace_spi_controller_busy(ctlr);
1228
1229 if (!was_busy && ctlr->prepare_transfer_hardware) {
1230 ret = ctlr->prepare_transfer_hardware(ctlr);
1231 if (ret) {
1232 dev_err(&ctlr->dev,
1233 "failed to prepare transfer hardware\n");
1234
1235 if (ctlr->auto_runtime_pm)
1236 pm_runtime_put(ctlr->dev.parent);
1237 mutex_unlock(&ctlr->io_mutex);
1238 return;
1239 }
1240 }
1241
1242 trace_spi_message_start(ctlr->cur_msg);
1243
1244 if (ctlr->prepare_message) {
1245 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246 if (ret) {
1247 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248 ret);
1249 ctlr->cur_msg->status = ret;
1250 spi_finalize_current_message(ctlr);
1251 goto out;
1252 }
1253 ctlr->cur_msg_prepared = true;
1254 }
1255
1256 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257 if (ret) {
1258 ctlr->cur_msg->status = ret;
1259 spi_finalize_current_message(ctlr);
1260 goto out;
1261 }
1262
1263 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264 if (ret) {
1265 dev_err(&ctlr->dev,
1266 "failed to transfer one message from queue\n");
1267 goto out;
1268 }
1269
1270out:
1271 mutex_unlock(&ctlr->io_mutex);
1272
1273 /* Prod the scheduler in case transfer_one() was busy waiting */
1274 if (!ret)
1275 cond_resched();
1276}
1277
1278/**
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1281 */
1282static void spi_pump_messages(struct kthread_work *work)
1283{
1284 struct spi_controller *ctlr =
1285 container_of(work, struct spi_controller, pump_messages);
1286
1287 __spi_pump_messages(ctlr, true);
1288}
1289
1290static int spi_init_queue(struct spi_controller *ctlr)
1291{
1292 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1293
1294 ctlr->running = false;
1295 ctlr->busy = false;
1296
1297 kthread_init_worker(&ctlr->kworker);
1298 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299 "%s", dev_name(&ctlr->dev));
1300 if (IS_ERR(ctlr->kworker_task)) {
1301 dev_err(&ctlr->dev, "failed to create message pump task\n");
1302 return PTR_ERR(ctlr->kworker_task);
1303 }
1304 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305
1306 /*
1307 * Controller config will indicate if this controller should run the
1308 * message pump with high (realtime) priority to reduce the transfer
1309 * latency on the bus by minimising the delay between a transfer
1310 * request and the scheduling of the message pump thread. Without this
1311 * setting the message pump thread will remain at default priority.
1312 */
1313 if (ctlr->rt) {
1314 dev_info(&ctlr->dev,
1315 "will run message pump with realtime priority\n");
1316 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317 }
1318
1319 return 0;
1320}
1321
1322/**
1323 * spi_get_next_queued_message() - called by driver to check for queued
1324 * messages
1325 * @ctlr: the controller to check for queued messages
1326 *
1327 * If there are more messages in the queue, the next message is returned from
1328 * this call.
1329 *
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1331 */
1332struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333{
1334 struct spi_message *next;
1335 unsigned long flags;
1336
1337 /* get a pointer to the next message, if any */
1338 spin_lock_irqsave(&ctlr->queue_lock, flags);
1339 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340 queue);
1341 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342
1343 return next;
1344}
1345EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1346
1347/**
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1350 *
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1353 */
1354void spi_finalize_current_message(struct spi_controller *ctlr)
1355{
1356 struct spi_message *mesg;
1357 unsigned long flags;
1358 int ret;
1359
1360 spin_lock_irqsave(&ctlr->queue_lock, flags);
1361 mesg = ctlr->cur_msg;
1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363
1364 spi_unmap_msg(ctlr, mesg);
1365
1366 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367 ret = ctlr->unprepare_message(ctlr, mesg);
1368 if (ret) {
1369 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370 ret);
1371 }
1372 }
1373
1374 spin_lock_irqsave(&ctlr->queue_lock, flags);
1375 ctlr->cur_msg = NULL;
1376 ctlr->cur_msg_prepared = false;
1377 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379
1380 trace_spi_message_done(mesg);
1381
1382 mesg->state = NULL;
1383 if (mesg->complete)
1384 mesg->complete(mesg->context);
1385}
1386EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1387
1388static int spi_start_queue(struct spi_controller *ctlr)
1389{
1390 unsigned long flags;
1391
1392 spin_lock_irqsave(&ctlr->queue_lock, flags);
1393
1394 if (ctlr->running || ctlr->busy) {
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 return -EBUSY;
1397 }
1398
1399 ctlr->running = true;
1400 ctlr->cur_msg = NULL;
1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402
1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404
1405 return 0;
1406}
1407
1408static int spi_stop_queue(struct spi_controller *ctlr)
1409{
1410 unsigned long flags;
1411 unsigned limit = 500;
1412 int ret = 0;
1413
1414 spin_lock_irqsave(&ctlr->queue_lock, flags);
1415
1416 /*
1417 * This is a bit lame, but is optimized for the common execution path.
1418 * A wait_queue on the ctlr->busy could be used, but then the common
1419 * execution path (pump_messages) would be required to call wake_up or
1420 * friends on every SPI message. Do this instead.
1421 */
1422 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 usleep_range(10000, 11000);
1425 spin_lock_irqsave(&ctlr->queue_lock, flags);
1426 }
1427
1428 if (!list_empty(&ctlr->queue) || ctlr->busy)
1429 ret = -EBUSY;
1430 else
1431 ctlr->running = false;
1432
1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434
1435 if (ret) {
1436 dev_warn(&ctlr->dev, "could not stop message queue\n");
1437 return ret;
1438 }
1439 return ret;
1440}
1441
1442static int spi_destroy_queue(struct spi_controller *ctlr)
1443{
1444 int ret;
1445
1446 ret = spi_stop_queue(ctlr);
1447
1448 /*
1449 * kthread_flush_worker will block until all work is done.
1450 * If the reason that stop_queue timed out is that the work will never
1451 * finish, then it does no good to call flush/stop thread, so
1452 * return anyway.
1453 */
1454 if (ret) {
1455 dev_err(&ctlr->dev, "problem destroying queue\n");
1456 return ret;
1457 }
1458
1459 kthread_flush_worker(&ctlr->kworker);
1460 kthread_stop(ctlr->kworker_task);
1461
1462 return 0;
1463}
1464
1465static int __spi_queued_transfer(struct spi_device *spi,
1466 struct spi_message *msg,
1467 bool need_pump)
1468{
1469 struct spi_controller *ctlr = spi->controller;
1470 unsigned long flags;
1471
1472 spin_lock_irqsave(&ctlr->queue_lock, flags);
1473
1474 if (!ctlr->running) {
1475 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 return -ESHUTDOWN;
1477 }
1478 msg->actual_length = 0;
1479 msg->status = -EINPROGRESS;
1480
1481 list_add_tail(&msg->queue, &ctlr->queue);
1482 if (!ctlr->busy && need_pump)
1483 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484
1485 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486 return 0;
1487}
1488
1489/**
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1493 *
1494 * Return: zero on success, else a negative error code.
1495 */
1496static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1497{
1498 return __spi_queued_transfer(spi, msg, true);
1499}
1500
1501static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502{
1503 int ret;
1504
1505 ctlr->transfer = spi_queued_transfer;
1506 if (!ctlr->transfer_one_message)
1507 ctlr->transfer_one_message = spi_transfer_one_message;
1508
1509 /* Initialize and start queue */
1510 ret = spi_init_queue(ctlr);
1511 if (ret) {
1512 dev_err(&ctlr->dev, "problem initializing queue\n");
1513 goto err_init_queue;
1514 }
1515 ctlr->queued = true;
1516 ret = spi_start_queue(ctlr);
1517 if (ret) {
1518 dev_err(&ctlr->dev, "problem starting queue\n");
1519 goto err_start_queue;
1520 }
1521
1522 return 0;
1523
1524err_start_queue:
1525 spi_destroy_queue(ctlr);
1526err_init_queue:
1527 return ret;
1528}
1529
1530/**
1531 * spi_flush_queue - Send all pending messages in the queue from the callers'
1532 * context
1533 * @ctlr: controller to process queue for
1534 *
1535 * This should be used when one wants to ensure all pending messages have been
1536 * sent before doing something. Is used by the spi-mem code to make sure SPI
1537 * memory operations do not preempt regular SPI transfers that have been queued
1538 * before the spi-mem operation.
1539 */
1540void spi_flush_queue(struct spi_controller *ctlr)
1541{
1542 if (ctlr->transfer == spi_queued_transfer)
1543 __spi_pump_messages(ctlr, false);
1544}
1545
1546/*-------------------------------------------------------------------------*/
1547
1548#if defined(CONFIG_OF)
1549static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1550 struct device_node *nc)
1551{
1552 u32 value;
1553 int rc;
1554
1555 /* Mode (clock phase/polarity/etc.) */
1556 if (of_property_read_bool(nc, "spi-cpha"))
1557 spi->mode |= SPI_CPHA;
1558 if (of_property_read_bool(nc, "spi-cpol"))
1559 spi->mode |= SPI_CPOL;
1560 if (of_property_read_bool(nc, "spi-cs-high"))
1561 spi->mode |= SPI_CS_HIGH;
1562 if (of_property_read_bool(nc, "spi-3wire"))
1563 spi->mode |= SPI_3WIRE;
1564 if (of_property_read_bool(nc, "spi-lsb-first"))
1565 spi->mode |= SPI_LSB_FIRST;
1566
1567 /* Device DUAL/QUAD mode */
1568 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1569 switch (value) {
1570 case 1:
1571 break;
1572 case 2:
1573 spi->mode |= SPI_TX_DUAL;
1574 break;
1575 case 4:
1576 spi->mode |= SPI_TX_QUAD;
1577 break;
1578 default:
1579 dev_warn(&ctlr->dev,
1580 "spi-tx-bus-width %d not supported\n",
1581 value);
1582 break;
1583 }
1584 }
1585
1586 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1587 switch (value) {
1588 case 1:
1589 break;
1590 case 2:
1591 spi->mode |= SPI_RX_DUAL;
1592 break;
1593 case 4:
1594 spi->mode |= SPI_RX_QUAD;
1595 break;
1596 default:
1597 dev_warn(&ctlr->dev,
1598 "spi-rx-bus-width %d not supported\n",
1599 value);
1600 break;
1601 }
1602 }
1603
1604 if (spi_controller_is_slave(ctlr)) {
1605 if (strcmp(nc->name, "slave")) {
1606 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1607 nc);
1608 return -EINVAL;
1609 }
1610 return 0;
1611 }
1612
1613 /* Device address */
1614 rc = of_property_read_u32(nc, "reg", &value);
1615 if (rc) {
1616 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1617 nc, rc);
1618 return rc;
1619 }
1620 spi->chip_select = value;
1621
1622 /* Device speed */
1623 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1624 if (rc) {
1625 dev_err(&ctlr->dev,
1626 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1627 return rc;
1628 }
1629 spi->max_speed_hz = value;
1630
1631 return 0;
1632}
1633
1634static struct spi_device *
1635of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1636{
1637 struct spi_device *spi;
1638 int rc;
1639
1640 /* Alloc an spi_device */
1641 spi = spi_alloc_device(ctlr);
1642 if (!spi) {
1643 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1644 rc = -ENOMEM;
1645 goto err_out;
1646 }
1647
1648 /* Select device driver */
1649 rc = of_modalias_node(nc, spi->modalias,
1650 sizeof(spi->modalias));
1651 if (rc < 0) {
1652 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1653 goto err_out;
1654 }
1655
1656 rc = of_spi_parse_dt(ctlr, spi, nc);
1657 if (rc)
1658 goto err_out;
1659
1660 /* Store a pointer to the node in the device structure */
1661 of_node_get(nc);
1662 spi->dev.of_node = nc;
1663
1664 /* Register the new device */
1665 rc = spi_add_device(spi);
1666 if (rc) {
1667 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1668 goto err_of_node_put;
1669 }
1670
1671 return spi;
1672
1673err_of_node_put:
1674 of_node_put(nc);
1675err_out:
1676 spi_dev_put(spi);
1677 return ERR_PTR(rc);
1678}
1679
1680/**
1681 * of_register_spi_devices() - Register child devices onto the SPI bus
1682 * @ctlr: Pointer to spi_controller device
1683 *
1684 * Registers an spi_device for each child node of controller node which
1685 * represents a valid SPI slave.
1686 */
1687static void of_register_spi_devices(struct spi_controller *ctlr)
1688{
1689 struct spi_device *spi;
1690 struct device_node *nc;
1691
1692 if (!ctlr->dev.of_node)
1693 return;
1694
1695 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1696 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1697 continue;
1698 spi = of_register_spi_device(ctlr, nc);
1699 if (IS_ERR(spi)) {
1700 dev_warn(&ctlr->dev,
1701 "Failed to create SPI device for %pOF\n", nc);
1702 of_node_clear_flag(nc, OF_POPULATED);
1703 }
1704 }
1705}
1706#else
1707static void of_register_spi_devices(struct spi_controller *ctlr) { }
1708#endif
1709
1710#ifdef CONFIG_ACPI
1711static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1712{
1713 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1714 const union acpi_object *obj;
1715
1716 if (!x86_apple_machine)
1717 return;
1718
1719 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1720 && obj->buffer.length >= 4)
1721 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1722
1723 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1724 && obj->buffer.length == 8)
1725 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1726
1727 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1728 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1729 spi->mode |= SPI_LSB_FIRST;
1730
1731 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1732 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1733 spi->mode |= SPI_CPOL;
1734
1735 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1736 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1737 spi->mode |= SPI_CPHA;
1738}
1739
1740static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1741{
1742 struct spi_device *spi = data;
1743 struct spi_controller *ctlr = spi->controller;
1744
1745 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1746 struct acpi_resource_spi_serialbus *sb;
1747
1748 sb = &ares->data.spi_serial_bus;
1749 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1750 /*
1751 * ACPI DeviceSelection numbering is handled by the
1752 * host controller driver in Windows and can vary
1753 * from driver to driver. In Linux we always expect
1754 * 0 .. max - 1 so we need to ask the driver to
1755 * translate between the two schemes.
1756 */
1757 if (ctlr->fw_translate_cs) {
1758 int cs = ctlr->fw_translate_cs(ctlr,
1759 sb->device_selection);
1760 if (cs < 0)
1761 return cs;
1762 spi->chip_select = cs;
1763 } else {
1764 spi->chip_select = sb->device_selection;
1765 }
1766
1767 spi->max_speed_hz = sb->connection_speed;
1768
1769 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1770 spi->mode |= SPI_CPHA;
1771 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1772 spi->mode |= SPI_CPOL;
1773 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1774 spi->mode |= SPI_CS_HIGH;
1775 }
1776 } else if (spi->irq < 0) {
1777 struct resource r;
1778
1779 if (acpi_dev_resource_interrupt(ares, 0, &r))
1780 spi->irq = r.start;
1781 }
1782
1783 /* Always tell the ACPI core to skip this resource */
1784 return 1;
1785}
1786
1787static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1788 struct acpi_device *adev)
1789{
1790 struct list_head resource_list;
1791 struct spi_device *spi;
1792 int ret;
1793
1794 if (acpi_bus_get_status(adev) || !adev->status.present ||
1795 acpi_device_enumerated(adev))
1796 return AE_OK;
1797
1798 spi = spi_alloc_device(ctlr);
1799 if (!spi) {
1800 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1801 dev_name(&adev->dev));
1802 return AE_NO_MEMORY;
1803 }
1804
1805 ACPI_COMPANION_SET(&spi->dev, adev);
1806 spi->irq = -1;
1807
1808 INIT_LIST_HEAD(&resource_list);
1809 ret = acpi_dev_get_resources(adev, &resource_list,
1810 acpi_spi_add_resource, spi);
1811 acpi_dev_free_resource_list(&resource_list);
1812
1813 acpi_spi_parse_apple_properties(spi);
1814
1815 if (ret < 0 || !spi->max_speed_hz) {
1816 spi_dev_put(spi);
1817 return AE_OK;
1818 }
1819
1820 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1821 sizeof(spi->modalias));
1822
1823 if (spi->irq < 0)
1824 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1825
1826 acpi_device_set_enumerated(adev);
1827
1828 adev->power.flags.ignore_parent = true;
1829 if (spi_add_device(spi)) {
1830 adev->power.flags.ignore_parent = false;
1831 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1832 dev_name(&adev->dev));
1833 spi_dev_put(spi);
1834 }
1835
1836 return AE_OK;
1837}
1838
1839static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1840 void *data, void **return_value)
1841{
1842 struct spi_controller *ctlr = data;
1843 struct acpi_device *adev;
1844
1845 if (acpi_bus_get_device(handle, &adev))
1846 return AE_OK;
1847
1848 return acpi_register_spi_device(ctlr, adev);
1849}
1850
1851static void acpi_register_spi_devices(struct spi_controller *ctlr)
1852{
1853 acpi_status status;
1854 acpi_handle handle;
1855
1856 handle = ACPI_HANDLE(ctlr->dev.parent);
1857 if (!handle)
1858 return;
1859
1860 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1861 acpi_spi_add_device, NULL, ctlr, NULL);
1862 if (ACPI_FAILURE(status))
1863 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1864}
1865#else
1866static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1867#endif /* CONFIG_ACPI */
1868
1869static void spi_controller_release(struct device *dev)
1870{
1871 struct spi_controller *ctlr;
1872
1873 ctlr = container_of(dev, struct spi_controller, dev);
1874 kfree(ctlr);
1875}
1876
1877static struct class spi_master_class = {
1878 .name = "spi_master",
1879 .owner = THIS_MODULE,
1880 .dev_release = spi_controller_release,
1881 .dev_groups = spi_master_groups,
1882};
1883
1884#ifdef CONFIG_SPI_SLAVE
1885/**
1886 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1887 * controller
1888 * @spi: device used for the current transfer
1889 */
1890int spi_slave_abort(struct spi_device *spi)
1891{
1892 struct spi_controller *ctlr = spi->controller;
1893
1894 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1895 return ctlr->slave_abort(ctlr);
1896
1897 return -ENOTSUPP;
1898}
1899EXPORT_SYMBOL_GPL(spi_slave_abort);
1900
1901static int match_true(struct device *dev, void *data)
1902{
1903 return 1;
1904}
1905
1906static ssize_t spi_slave_show(struct device *dev,
1907 struct device_attribute *attr, char *buf)
1908{
1909 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1910 dev);
1911 struct device *child;
1912
1913 child = device_find_child(&ctlr->dev, NULL, match_true);
1914 return sprintf(buf, "%s\n",
1915 child ? to_spi_device(child)->modalias : NULL);
1916}
1917
1918static ssize_t spi_slave_store(struct device *dev,
1919 struct device_attribute *attr, const char *buf,
1920 size_t count)
1921{
1922 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1923 dev);
1924 struct spi_device *spi;
1925 struct device *child;
1926 char name[32];
1927 int rc;
1928
1929 rc = sscanf(buf, "%31s", name);
1930 if (rc != 1 || !name[0])
1931 return -EINVAL;
1932
1933 child = device_find_child(&ctlr->dev, NULL, match_true);
1934 if (child) {
1935 /* Remove registered slave */
1936 device_unregister(child);
1937 put_device(child);
1938 }
1939
1940 if (strcmp(name, "(null)")) {
1941 /* Register new slave */
1942 spi = spi_alloc_device(ctlr);
1943 if (!spi)
1944 return -ENOMEM;
1945
1946 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1947
1948 rc = spi_add_device(spi);
1949 if (rc) {
1950 spi_dev_put(spi);
1951 return rc;
1952 }
1953 }
1954
1955 return count;
1956}
1957
1958static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1959
1960static struct attribute *spi_slave_attrs[] = {
1961 &dev_attr_slave.attr,
1962 NULL,
1963};
1964
1965static const struct attribute_group spi_slave_group = {
1966 .attrs = spi_slave_attrs,
1967};
1968
1969static const struct attribute_group *spi_slave_groups[] = {
1970 &spi_controller_statistics_group,
1971 &spi_slave_group,
1972 NULL,
1973};
1974
1975static struct class spi_slave_class = {
1976 .name = "spi_slave",
1977 .owner = THIS_MODULE,
1978 .dev_release = spi_controller_release,
1979 .dev_groups = spi_slave_groups,
1980};
1981#else
1982extern struct class spi_slave_class; /* dummy */
1983#endif
1984
1985/**
1986 * __spi_alloc_controller - allocate an SPI master or slave controller
1987 * @dev: the controller, possibly using the platform_bus
1988 * @size: how much zeroed driver-private data to allocate; the pointer to this
1989 * memory is in the driver_data field of the returned device,
1990 * accessible with spi_controller_get_devdata().
1991 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1992 * slave (true) controller
1993 * Context: can sleep
1994 *
1995 * This call is used only by SPI controller drivers, which are the
1996 * only ones directly touching chip registers. It's how they allocate
1997 * an spi_controller structure, prior to calling spi_register_controller().
1998 *
1999 * This must be called from context that can sleep.
2000 *
2001 * The caller is responsible for assigning the bus number and initializing the
2002 * controller's methods before calling spi_register_controller(); and (after
2003 * errors adding the device) calling spi_controller_put() to prevent a memory
2004 * leak.
2005 *
2006 * Return: the SPI controller structure on success, else NULL.
2007 */
2008struct spi_controller *__spi_alloc_controller(struct device *dev,
2009 unsigned int size, bool slave)
2010{
2011 struct spi_controller *ctlr;
2012
2013 if (!dev)
2014 return NULL;
2015
2016 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2017 if (!ctlr)
2018 return NULL;
2019
2020 device_initialize(&ctlr->dev);
2021 ctlr->bus_num = -1;
2022 ctlr->num_chipselect = 1;
2023 ctlr->slave = slave;
2024 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2025 ctlr->dev.class = &spi_slave_class;
2026 else
2027 ctlr->dev.class = &spi_master_class;
2028 ctlr->dev.parent = dev;
2029 pm_suspend_ignore_children(&ctlr->dev, true);
2030 spi_controller_set_devdata(ctlr, &ctlr[1]);
2031
2032 return ctlr;
2033}
2034EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2035
2036#ifdef CONFIG_OF
2037static int of_spi_register_master(struct spi_controller *ctlr)
2038{
2039 int nb, i, *cs;
2040 struct device_node *np = ctlr->dev.of_node;
2041
2042 if (!np)
2043 return 0;
2044
2045 nb = of_gpio_named_count(np, "cs-gpios");
2046 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2047
2048 /* Return error only for an incorrectly formed cs-gpios property */
2049 if (nb == 0 || nb == -ENOENT)
2050 return 0;
2051 else if (nb < 0)
2052 return nb;
2053
2054 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2055 GFP_KERNEL);
2056 ctlr->cs_gpios = cs;
2057
2058 if (!ctlr->cs_gpios)
2059 return -ENOMEM;
2060
2061 for (i = 0; i < ctlr->num_chipselect; i++)
2062 cs[i] = -ENOENT;
2063
2064 for (i = 0; i < nb; i++)
2065 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2066
2067 return 0;
2068}
2069#else
2070static int of_spi_register_master(struct spi_controller *ctlr)
2071{
2072 return 0;
2073}
2074#endif
2075
2076static int spi_controller_check_ops(struct spi_controller *ctlr)
2077{
2078 /*
2079 * The controller may implement only the high-level SPI-memory like
2080 * operations if it does not support regular SPI transfers, and this is
2081 * valid use case.
2082 * If ->mem_ops is NULL, we request that at least one of the
2083 * ->transfer_xxx() method be implemented.
2084 */
2085 if (ctlr->mem_ops) {
2086 if (!ctlr->mem_ops->exec_op)
2087 return -EINVAL;
2088 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2089 !ctlr->transfer_one_message) {
2090 return -EINVAL;
2091 }
2092
2093 return 0;
2094}
2095
2096/**
2097 * spi_register_controller - register SPI master or slave controller
2098 * @ctlr: initialized master, originally from spi_alloc_master() or
2099 * spi_alloc_slave()
2100 * Context: can sleep
2101 *
2102 * SPI controllers connect to their drivers using some non-SPI bus,
2103 * such as the platform bus. The final stage of probe() in that code
2104 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2105 *
2106 * SPI controllers use board specific (often SOC specific) bus numbers,
2107 * and board-specific addressing for SPI devices combines those numbers
2108 * with chip select numbers. Since SPI does not directly support dynamic
2109 * device identification, boards need configuration tables telling which
2110 * chip is at which address.
2111 *
2112 * This must be called from context that can sleep. It returns zero on
2113 * success, else a negative error code (dropping the controller's refcount).
2114 * After a successful return, the caller is responsible for calling
2115 * spi_unregister_controller().
2116 *
2117 * Return: zero on success, else a negative error code.
2118 */
2119int spi_register_controller(struct spi_controller *ctlr)
2120{
2121 struct device *dev = ctlr->dev.parent;
2122 struct boardinfo *bi;
2123 int status = -ENODEV;
2124 int id, first_dynamic;
2125
2126 if (!dev)
2127 return -ENODEV;
2128
2129 /*
2130 * Make sure all necessary hooks are implemented before registering
2131 * the SPI controller.
2132 */
2133 status = spi_controller_check_ops(ctlr);
2134 if (status)
2135 return status;
2136
2137 if (!spi_controller_is_slave(ctlr)) {
2138 status = of_spi_register_master(ctlr);
2139 if (status)
2140 return status;
2141 }
2142
2143 /* even if it's just one always-selected device, there must
2144 * be at least one chipselect
2145 */
2146 if (ctlr->num_chipselect == 0)
2147 return -EINVAL;
2148 if (ctlr->bus_num >= 0) {
2149 /* devices with a fixed bus num must check-in with the num */
2150 mutex_lock(&board_lock);
2151 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2152 ctlr->bus_num + 1, GFP_KERNEL);
2153 mutex_unlock(&board_lock);
2154 if (WARN(id < 0, "couldn't get idr"))
2155 return id == -ENOSPC ? -EBUSY : id;
2156 ctlr->bus_num = id;
2157 } else if (ctlr->dev.of_node) {
2158 /* allocate dynamic bus number using Linux idr */
2159 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2160 if (id >= 0) {
2161 ctlr->bus_num = id;
2162 mutex_lock(&board_lock);
2163 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2164 ctlr->bus_num + 1, GFP_KERNEL);
2165 mutex_unlock(&board_lock);
2166 if (WARN(id < 0, "couldn't get idr"))
2167 return id == -ENOSPC ? -EBUSY : id;
2168 }
2169 }
2170 if (ctlr->bus_num < 0) {
2171 first_dynamic = of_alias_get_highest_id("spi");
2172 if (first_dynamic < 0)
2173 first_dynamic = 0;
2174 else
2175 first_dynamic++;
2176
2177 mutex_lock(&board_lock);
2178 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2179 0, GFP_KERNEL);
2180 mutex_unlock(&board_lock);
2181 if (WARN(id < 0, "couldn't get idr"))
2182 return id;
2183 ctlr->bus_num = id;
2184 }
2185 INIT_LIST_HEAD(&ctlr->queue);
2186 spin_lock_init(&ctlr->queue_lock);
2187 spin_lock_init(&ctlr->bus_lock_spinlock);
2188 mutex_init(&ctlr->bus_lock_mutex);
2189 mutex_init(&ctlr->io_mutex);
2190 ctlr->bus_lock_flag = 0;
2191 init_completion(&ctlr->xfer_completion);
2192 if (!ctlr->max_dma_len)
2193 ctlr->max_dma_len = INT_MAX;
2194
2195 /* register the device, then userspace will see it.
2196 * registration fails if the bus ID is in use.
2197 */
2198 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2199 status = device_add(&ctlr->dev);
2200 if (status < 0) {
2201 /* free bus id */
2202 mutex_lock(&board_lock);
2203 idr_remove(&spi_master_idr, ctlr->bus_num);
2204 mutex_unlock(&board_lock);
2205 goto done;
2206 }
2207 dev_dbg(dev, "registered %s %s\n",
2208 spi_controller_is_slave(ctlr) ? "slave" : "master",
2209 dev_name(&ctlr->dev));
2210
2211 /*
2212 * If we're using a queued driver, start the queue. Note that we don't
2213 * need the queueing logic if the driver is only supporting high-level
2214 * memory operations.
2215 */
2216 if (ctlr->transfer) {
2217 dev_info(dev, "controller is unqueued, this is deprecated\n");
2218 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2219 status = spi_controller_initialize_queue(ctlr);
2220 if (status) {
2221 device_del(&ctlr->dev);
2222 /* free bus id */
2223 mutex_lock(&board_lock);
2224 idr_remove(&spi_master_idr, ctlr->bus_num);
2225 mutex_unlock(&board_lock);
2226 goto done;
2227 }
2228 }
2229 /* add statistics */
2230 spin_lock_init(&ctlr->statistics.lock);
2231
2232 mutex_lock(&board_lock);
2233 list_add_tail(&ctlr->list, &spi_controller_list);
2234 list_for_each_entry(bi, &board_list, list)
2235 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2236 mutex_unlock(&board_lock);
2237
2238 /* Register devices from the device tree and ACPI */
2239 of_register_spi_devices(ctlr);
2240 acpi_register_spi_devices(ctlr);
2241done:
2242 return status;
2243}
2244EXPORT_SYMBOL_GPL(spi_register_controller);
2245
2246static void devm_spi_unregister(struct device *dev, void *res)
2247{
2248 spi_unregister_controller(*(struct spi_controller **)res);
2249}
2250
2251/**
2252 * devm_spi_register_controller - register managed SPI master or slave
2253 * controller
2254 * @dev: device managing SPI controller
2255 * @ctlr: initialized controller, originally from spi_alloc_master() or
2256 * spi_alloc_slave()
2257 * Context: can sleep
2258 *
2259 * Register a SPI device as with spi_register_controller() which will
2260 * automatically be unregistered and freed.
2261 *
2262 * Return: zero on success, else a negative error code.
2263 */
2264int devm_spi_register_controller(struct device *dev,
2265 struct spi_controller *ctlr)
2266{
2267 struct spi_controller **ptr;
2268 int ret;
2269
2270 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2271 if (!ptr)
2272 return -ENOMEM;
2273
2274 ret = spi_register_controller(ctlr);
2275 if (!ret) {
2276 *ptr = ctlr;
2277 devres_add(dev, ptr);
2278 } else {
2279 devres_free(ptr);
2280 }
2281
2282 return ret;
2283}
2284EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2285
2286static int __unregister(struct device *dev, void *null)
2287{
2288 spi_unregister_device(to_spi_device(dev));
2289 return 0;
2290}
2291
2292/**
2293 * spi_unregister_controller - unregister SPI master or slave controller
2294 * @ctlr: the controller being unregistered
2295 * Context: can sleep
2296 *
2297 * This call is used only by SPI controller drivers, which are the
2298 * only ones directly touching chip registers.
2299 *
2300 * This must be called from context that can sleep.
2301 *
2302 * Note that this function also drops a reference to the controller.
2303 */
2304void spi_unregister_controller(struct spi_controller *ctlr)
2305{
2306 struct spi_controller *found;
2307 int id = ctlr->bus_num;
2308 int dummy;
2309
2310 /* First make sure that this controller was ever added */
2311 mutex_lock(&board_lock);
2312 found = idr_find(&spi_master_idr, id);
2313 mutex_unlock(&board_lock);
2314 if (ctlr->queued) {
2315 if (spi_destroy_queue(ctlr))
2316 dev_err(&ctlr->dev, "queue remove failed\n");
2317 }
2318 mutex_lock(&board_lock);
2319 list_del(&ctlr->list);
2320 mutex_unlock(&board_lock);
2321
2322 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2323 device_unregister(&ctlr->dev);
2324 /* free bus id */
2325 mutex_lock(&board_lock);
2326 if (found == ctlr)
2327 idr_remove(&spi_master_idr, id);
2328 mutex_unlock(&board_lock);
2329}
2330EXPORT_SYMBOL_GPL(spi_unregister_controller);
2331
2332int spi_controller_suspend(struct spi_controller *ctlr)
2333{
2334 int ret;
2335
2336 /* Basically no-ops for non-queued controllers */
2337 if (!ctlr->queued)
2338 return 0;
2339
2340 ret = spi_stop_queue(ctlr);
2341 if (ret)
2342 dev_err(&ctlr->dev, "queue stop failed\n");
2343
2344 return ret;
2345}
2346EXPORT_SYMBOL_GPL(spi_controller_suspend);
2347
2348int spi_controller_resume(struct spi_controller *ctlr)
2349{
2350 int ret;
2351
2352 if (!ctlr->queued)
2353 return 0;
2354
2355 ret = spi_start_queue(ctlr);
2356 if (ret)
2357 dev_err(&ctlr->dev, "queue restart failed\n");
2358
2359 return ret;
2360}
2361EXPORT_SYMBOL_GPL(spi_controller_resume);
2362
2363static int __spi_controller_match(struct device *dev, const void *data)
2364{
2365 struct spi_controller *ctlr;
2366 const u16 *bus_num = data;
2367
2368 ctlr = container_of(dev, struct spi_controller, dev);
2369 return ctlr->bus_num == *bus_num;
2370}
2371
2372/**
2373 * spi_busnum_to_master - look up master associated with bus_num
2374 * @bus_num: the master's bus number
2375 * Context: can sleep
2376 *
2377 * This call may be used with devices that are registered after
2378 * arch init time. It returns a refcounted pointer to the relevant
2379 * spi_controller (which the caller must release), or NULL if there is
2380 * no such master registered.
2381 *
2382 * Return: the SPI master structure on success, else NULL.
2383 */
2384struct spi_controller *spi_busnum_to_master(u16 bus_num)
2385{
2386 struct device *dev;
2387 struct spi_controller *ctlr = NULL;
2388
2389 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2390 __spi_controller_match);
2391 if (dev)
2392 ctlr = container_of(dev, struct spi_controller, dev);
2393 /* reference got in class_find_device */
2394 return ctlr;
2395}
2396EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2397
2398/*-------------------------------------------------------------------------*/
2399
2400/* Core methods for SPI resource management */
2401
2402/**
2403 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2404 * during the processing of a spi_message while using
2405 * spi_transfer_one
2406 * @spi: the spi device for which we allocate memory
2407 * @release: the release code to execute for this resource
2408 * @size: size to alloc and return
2409 * @gfp: GFP allocation flags
2410 *
2411 * Return: the pointer to the allocated data
2412 *
2413 * This may get enhanced in the future to allocate from a memory pool
2414 * of the @spi_device or @spi_controller to avoid repeated allocations.
2415 */
2416void *spi_res_alloc(struct spi_device *spi,
2417 spi_res_release_t release,
2418 size_t size, gfp_t gfp)
2419{
2420 struct spi_res *sres;
2421
2422 sres = kzalloc(sizeof(*sres) + size, gfp);
2423 if (!sres)
2424 return NULL;
2425
2426 INIT_LIST_HEAD(&sres->entry);
2427 sres->release = release;
2428
2429 return sres->data;
2430}
2431EXPORT_SYMBOL_GPL(spi_res_alloc);
2432
2433/**
2434 * spi_res_free - free an spi resource
2435 * @res: pointer to the custom data of a resource
2436 *
2437 */
2438void spi_res_free(void *res)
2439{
2440 struct spi_res *sres = container_of(res, struct spi_res, data);
2441
2442 if (!res)
2443 return;
2444
2445 WARN_ON(!list_empty(&sres->entry));
2446 kfree(sres);
2447}
2448EXPORT_SYMBOL_GPL(spi_res_free);
2449
2450/**
2451 * spi_res_add - add a spi_res to the spi_message
2452 * @message: the spi message
2453 * @res: the spi_resource
2454 */
2455void spi_res_add(struct spi_message *message, void *res)
2456{
2457 struct spi_res *sres = container_of(res, struct spi_res, data);
2458
2459 WARN_ON(!list_empty(&sres->entry));
2460 list_add_tail(&sres->entry, &message->resources);
2461}
2462EXPORT_SYMBOL_GPL(spi_res_add);
2463
2464/**
2465 * spi_res_release - release all spi resources for this message
2466 * @ctlr: the @spi_controller
2467 * @message: the @spi_message
2468 */
2469void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2470{
2471 struct spi_res *res;
2472
2473 while (!list_empty(&message->resources)) {
2474 res = list_last_entry(&message->resources,
2475 struct spi_res, entry);
2476
2477 if (res->release)
2478 res->release(ctlr, message, res->data);
2479
2480 list_del(&res->entry);
2481
2482 kfree(res);
2483 }
2484}
2485EXPORT_SYMBOL_GPL(spi_res_release);
2486
2487/*-------------------------------------------------------------------------*/
2488
2489/* Core methods for spi_message alterations */
2490
2491static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2492 struct spi_message *msg,
2493 void *res)
2494{
2495 struct spi_replaced_transfers *rxfer = res;
2496 size_t i;
2497
2498 /* call extra callback if requested */
2499 if (rxfer->release)
2500 rxfer->release(ctlr, msg, res);
2501
2502 /* insert replaced transfers back into the message */
2503 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2504
2505 /* remove the formerly inserted entries */
2506 for (i = 0; i < rxfer->inserted; i++)
2507 list_del(&rxfer->inserted_transfers[i].transfer_list);
2508}
2509
2510/**
2511 * spi_replace_transfers - replace transfers with several transfers
2512 * and register change with spi_message.resources
2513 * @msg: the spi_message we work upon
2514 * @xfer_first: the first spi_transfer we want to replace
2515 * @remove: number of transfers to remove
2516 * @insert: the number of transfers we want to insert instead
2517 * @release: extra release code necessary in some circumstances
2518 * @extradatasize: extra data to allocate (with alignment guarantees
2519 * of struct @spi_transfer)
2520 * @gfp: gfp flags
2521 *
2522 * Returns: pointer to @spi_replaced_transfers,
2523 * PTR_ERR(...) in case of errors.
2524 */
2525struct spi_replaced_transfers *spi_replace_transfers(
2526 struct spi_message *msg,
2527 struct spi_transfer *xfer_first,
2528 size_t remove,
2529 size_t insert,
2530 spi_replaced_release_t release,
2531 size_t extradatasize,
2532 gfp_t gfp)
2533{
2534 struct spi_replaced_transfers *rxfer;
2535 struct spi_transfer *xfer;
2536 size_t i;
2537
2538 /* allocate the structure using spi_res */
2539 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2540 insert * sizeof(struct spi_transfer)
2541 + sizeof(struct spi_replaced_transfers)
2542 + extradatasize,
2543 gfp);
2544 if (!rxfer)
2545 return ERR_PTR(-ENOMEM);
2546
2547 /* the release code to invoke before running the generic release */
2548 rxfer->release = release;
2549
2550 /* assign extradata */
2551 if (extradatasize)
2552 rxfer->extradata =
2553 &rxfer->inserted_transfers[insert];
2554
2555 /* init the replaced_transfers list */
2556 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2557
2558 /* assign the list_entry after which we should reinsert
2559 * the @replaced_transfers - it may be spi_message.messages!
2560 */
2561 rxfer->replaced_after = xfer_first->transfer_list.prev;
2562
2563 /* remove the requested number of transfers */
2564 for (i = 0; i < remove; i++) {
2565 /* if the entry after replaced_after it is msg->transfers
2566 * then we have been requested to remove more transfers
2567 * than are in the list
2568 */
2569 if (rxfer->replaced_after->next == &msg->transfers) {
2570 dev_err(&msg->spi->dev,
2571 "requested to remove more spi_transfers than are available\n");
2572 /* insert replaced transfers back into the message */
2573 list_splice(&rxfer->replaced_transfers,
2574 rxfer->replaced_after);
2575
2576 /* free the spi_replace_transfer structure */
2577 spi_res_free(rxfer);
2578
2579 /* and return with an error */
2580 return ERR_PTR(-EINVAL);
2581 }
2582
2583 /* remove the entry after replaced_after from list of
2584 * transfers and add it to list of replaced_transfers
2585 */
2586 list_move_tail(rxfer->replaced_after->next,
2587 &rxfer->replaced_transfers);
2588 }
2589
2590 /* create copy of the given xfer with identical settings
2591 * based on the first transfer to get removed
2592 */
2593 for (i = 0; i < insert; i++) {
2594 /* we need to run in reverse order */
2595 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2596
2597 /* copy all spi_transfer data */
2598 memcpy(xfer, xfer_first, sizeof(*xfer));
2599
2600 /* add to list */
2601 list_add(&xfer->transfer_list, rxfer->replaced_after);
2602
2603 /* clear cs_change and delay_usecs for all but the last */
2604 if (i) {
2605 xfer->cs_change = false;
2606 xfer->delay_usecs = 0;
2607 }
2608 }
2609
2610 /* set up inserted */
2611 rxfer->inserted = insert;
2612
2613 /* and register it with spi_res/spi_message */
2614 spi_res_add(msg, rxfer);
2615
2616 return rxfer;
2617}
2618EXPORT_SYMBOL_GPL(spi_replace_transfers);
2619
2620static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2621 struct spi_message *msg,
2622 struct spi_transfer **xferp,
2623 size_t maxsize,
2624 gfp_t gfp)
2625{
2626 struct spi_transfer *xfer = *xferp, *xfers;
2627 struct spi_replaced_transfers *srt;
2628 size_t offset;
2629 size_t count, i;
2630
2631 /* warn once about this fact that we are splitting a transfer */
2632 dev_warn_once(&msg->spi->dev,
2633 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2634 xfer->len, maxsize);
2635
2636 /* calculate how many we have to replace */
2637 count = DIV_ROUND_UP(xfer->len, maxsize);
2638
2639 /* create replacement */
2640 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2641 if (IS_ERR(srt))
2642 return PTR_ERR(srt);
2643 xfers = srt->inserted_transfers;
2644
2645 /* now handle each of those newly inserted spi_transfers
2646 * note that the replacements spi_transfers all are preset
2647 * to the same values as *xferp, so tx_buf, rx_buf and len
2648 * are all identical (as well as most others)
2649 * so we just have to fix up len and the pointers.
2650 *
2651 * this also includes support for the depreciated
2652 * spi_message.is_dma_mapped interface
2653 */
2654
2655 /* the first transfer just needs the length modified, so we
2656 * run it outside the loop
2657 */
2658 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2659
2660 /* all the others need rx_buf/tx_buf also set */
2661 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2662 /* update rx_buf, tx_buf and dma */
2663 if (xfers[i].rx_buf)
2664 xfers[i].rx_buf += offset;
2665 if (xfers[i].rx_dma)
2666 xfers[i].rx_dma += offset;
2667 if (xfers[i].tx_buf)
2668 xfers[i].tx_buf += offset;
2669 if (xfers[i].tx_dma)
2670 xfers[i].tx_dma += offset;
2671
2672 /* update length */
2673 xfers[i].len = min(maxsize, xfers[i].len - offset);
2674 }
2675
2676 /* we set up xferp to the last entry we have inserted,
2677 * so that we skip those already split transfers
2678 */
2679 *xferp = &xfers[count - 1];
2680
2681 /* increment statistics counters */
2682 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2683 transfers_split_maxsize);
2684 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2685 transfers_split_maxsize);
2686
2687 return 0;
2688}
2689
2690/**
2691 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2692 * when an individual transfer exceeds a
2693 * certain size
2694 * @ctlr: the @spi_controller for this transfer
2695 * @msg: the @spi_message to transform
2696 * @maxsize: the maximum when to apply this
2697 * @gfp: GFP allocation flags
2698 *
2699 * Return: status of transformation
2700 */
2701int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2702 struct spi_message *msg,
2703 size_t maxsize,
2704 gfp_t gfp)
2705{
2706 struct spi_transfer *xfer;
2707 int ret;
2708
2709 /* iterate over the transfer_list,
2710 * but note that xfer is advanced to the last transfer inserted
2711 * to avoid checking sizes again unnecessarily (also xfer does
2712 * potentiall belong to a different list by the time the
2713 * replacement has happened
2714 */
2715 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2716 if (xfer->len > maxsize) {
2717 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2718 maxsize, gfp);
2719 if (ret)
2720 return ret;
2721 }
2722 }
2723
2724 return 0;
2725}
2726EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2727
2728/*-------------------------------------------------------------------------*/
2729
2730/* Core methods for SPI controller protocol drivers. Some of the
2731 * other core methods are currently defined as inline functions.
2732 */
2733
2734static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2735 u8 bits_per_word)
2736{
2737 if (ctlr->bits_per_word_mask) {
2738 /* Only 32 bits fit in the mask */
2739 if (bits_per_word > 32)
2740 return -EINVAL;
2741 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2742 return -EINVAL;
2743 }
2744
2745 return 0;
2746}
2747
2748/**
2749 * spi_setup - setup SPI mode and clock rate
2750 * @spi: the device whose settings are being modified
2751 * Context: can sleep, and no requests are queued to the device
2752 *
2753 * SPI protocol drivers may need to update the transfer mode if the
2754 * device doesn't work with its default. They may likewise need
2755 * to update clock rates or word sizes from initial values. This function
2756 * changes those settings, and must be called from a context that can sleep.
2757 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2758 * effect the next time the device is selected and data is transferred to
2759 * or from it. When this function returns, the spi device is deselected.
2760 *
2761 * Note that this call will fail if the protocol driver specifies an option
2762 * that the underlying controller or its driver does not support. For
2763 * example, not all hardware supports wire transfers using nine bit words,
2764 * LSB-first wire encoding, or active-high chipselects.
2765 *
2766 * Return: zero on success, else a negative error code.
2767 */
2768int spi_setup(struct spi_device *spi)
2769{
2770 unsigned bad_bits, ugly_bits;
2771 int status;
2772
2773 /* check mode to prevent that DUAL and QUAD set at the same time
2774 */
2775 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2776 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2777 dev_err(&spi->dev,
2778 "setup: can not select dual and quad at the same time\n");
2779 return -EINVAL;
2780 }
2781 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2782 */
2783 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2784 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2785 return -EINVAL;
2786 /* help drivers fail *cleanly* when they need options
2787 * that aren't supported with their current controller
2788 */
2789 bad_bits = spi->mode & ~spi->controller->mode_bits;
2790 ugly_bits = bad_bits &
2791 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2792 if (ugly_bits) {
2793 dev_warn(&spi->dev,
2794 "setup: ignoring unsupported mode bits %x\n",
2795 ugly_bits);
2796 spi->mode &= ~ugly_bits;
2797 bad_bits &= ~ugly_bits;
2798 }
2799 if (bad_bits) {
2800 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2801 bad_bits);
2802 return -EINVAL;
2803 }
2804
2805 if (!spi->bits_per_word)
2806 spi->bits_per_word = 8;
2807
2808 status = __spi_validate_bits_per_word(spi->controller,
2809 spi->bits_per_word);
2810 if (status)
2811 return status;
2812
2813 if (!spi->max_speed_hz)
2814 spi->max_speed_hz = spi->controller->max_speed_hz;
2815
2816 if (spi->controller->setup)
2817 status = spi->controller->setup(spi);
2818
2819 if (spi->master->auto_runtime_pm && spi->master->set_cs) {
2820 status = pm_runtime_get_sync(spi->master->dev.parent);
2821 if (status < 0) {
2822 pm_runtime_put_noidle(spi->master->dev.parent);
2823 dev_err(&spi->dev, "Failed to power device: %d\n",
2824 status);
2825 return status;
2826 }
2827 spi_set_cs(spi, false);
2828 pm_runtime_mark_last_busy(spi->master->dev.parent);
2829 pm_runtime_put_autosuspend(spi->master->dev.parent);
2830 } else {
2831 spi_set_cs(spi, false);
2832 }
2833
2834 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2835 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2836 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2837 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2838 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2839 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2840 spi->bits_per_word, spi->max_speed_hz,
2841 status);
2842
2843 return status;
2844}
2845EXPORT_SYMBOL_GPL(spi_setup);
2846
2847static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2848{
2849 struct spi_controller *ctlr = spi->controller;
2850 struct spi_transfer *xfer;
2851 int w_size;
2852
2853 if (list_empty(&message->transfers))
2854 return -EINVAL;
2855
2856 /* Half-duplex links include original MicroWire, and ones with
2857 * only one data pin like SPI_3WIRE (switches direction) or where
2858 * either MOSI or MISO is missing. They can also be caused by
2859 * software limitations.
2860 */
2861 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2862 (spi->mode & SPI_3WIRE)) {
2863 unsigned flags = ctlr->flags;
2864
2865 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2866 if (xfer->rx_buf && xfer->tx_buf)
2867 return -EINVAL;
2868 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2869 return -EINVAL;
2870 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2871 return -EINVAL;
2872 }
2873 }
2874
2875 /**
2876 * Set transfer bits_per_word and max speed as spi device default if
2877 * it is not set for this transfer.
2878 * Set transfer tx_nbits and rx_nbits as single transfer default
2879 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2880 */
2881 message->frame_length = 0;
2882 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2883 message->frame_length += xfer->len;
2884 if (!xfer->bits_per_word)
2885 xfer->bits_per_word = spi->bits_per_word;
2886
2887 if (!xfer->speed_hz)
2888 xfer->speed_hz = spi->max_speed_hz;
2889 if (!xfer->speed_hz)
2890 xfer->speed_hz = ctlr->max_speed_hz;
2891
2892 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2893 xfer->speed_hz = ctlr->max_speed_hz;
2894
2895 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2896 return -EINVAL;
2897
2898 /*
2899 * SPI transfer length should be multiple of SPI word size
2900 * where SPI word size should be power-of-two multiple
2901 */
2902 if (xfer->bits_per_word <= 8)
2903 w_size = 1;
2904 else if (xfer->bits_per_word <= 16)
2905 w_size = 2;
2906 else
2907 w_size = 4;
2908
2909 /* No partial transfers accepted */
2910 if (xfer->len % w_size)
2911 return -EINVAL;
2912
2913 if (xfer->speed_hz && ctlr->min_speed_hz &&
2914 xfer->speed_hz < ctlr->min_speed_hz)
2915 return -EINVAL;
2916
2917 if (xfer->tx_buf && !xfer->tx_nbits)
2918 xfer->tx_nbits = SPI_NBITS_SINGLE;
2919 if (xfer->rx_buf && !xfer->rx_nbits)
2920 xfer->rx_nbits = SPI_NBITS_SINGLE;
2921 /* check transfer tx/rx_nbits:
2922 * 1. check the value matches one of single, dual and quad
2923 * 2. check tx/rx_nbits match the mode in spi_device
2924 */
2925 if (xfer->tx_buf) {
2926 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2927 xfer->tx_nbits != SPI_NBITS_DUAL &&
2928 xfer->tx_nbits != SPI_NBITS_QUAD)
2929 return -EINVAL;
2930 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2931 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2932 return -EINVAL;
2933 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2934 !(spi->mode & SPI_TX_QUAD))
2935 return -EINVAL;
2936 }
2937 /* check transfer rx_nbits */
2938 if (xfer->rx_buf) {
2939 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2940 xfer->rx_nbits != SPI_NBITS_DUAL &&
2941 xfer->rx_nbits != SPI_NBITS_QUAD)
2942 return -EINVAL;
2943 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2944 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2945 return -EINVAL;
2946 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2947 !(spi->mode & SPI_RX_QUAD))
2948 return -EINVAL;
2949 }
2950 }
2951
2952 message->status = -EINPROGRESS;
2953
2954 return 0;
2955}
2956
2957static int __spi_async(struct spi_device *spi, struct spi_message *message)
2958{
2959 struct spi_controller *ctlr = spi->controller;
2960
2961 /*
2962 * Some controllers do not support doing regular SPI transfers. Return
2963 * ENOTSUPP when this is the case.
2964 */
2965 if (!ctlr->transfer)
2966 return -ENOTSUPP;
2967
2968 message->spi = spi;
2969
2970 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2971 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2972
2973 trace_spi_message_submit(message);
2974
2975 return ctlr->transfer(spi, message);
2976}
2977
2978/**
2979 * spi_async - asynchronous SPI transfer
2980 * @spi: device with which data will be exchanged
2981 * @message: describes the data transfers, including completion callback
2982 * Context: any (irqs may be blocked, etc)
2983 *
2984 * This call may be used in_irq and other contexts which can't sleep,
2985 * as well as from task contexts which can sleep.
2986 *
2987 * The completion callback is invoked in a context which can't sleep.
2988 * Before that invocation, the value of message->status is undefined.
2989 * When the callback is issued, message->status holds either zero (to
2990 * indicate complete success) or a negative error code. After that
2991 * callback returns, the driver which issued the transfer request may
2992 * deallocate the associated memory; it's no longer in use by any SPI
2993 * core or controller driver code.
2994 *
2995 * Note that although all messages to a spi_device are handled in
2996 * FIFO order, messages may go to different devices in other orders.
2997 * Some device might be higher priority, or have various "hard" access
2998 * time requirements, for example.
2999 *
3000 * On detection of any fault during the transfer, processing of
3001 * the entire message is aborted, and the device is deselected.
3002 * Until returning from the associated message completion callback,
3003 * no other spi_message queued to that device will be processed.
3004 * (This rule applies equally to all the synchronous transfer calls,
3005 * which are wrappers around this core asynchronous primitive.)
3006 *
3007 * Return: zero on success, else a negative error code.
3008 */
3009int spi_async(struct spi_device *spi, struct spi_message *message)
3010{
3011 struct spi_controller *ctlr = spi->controller;
3012 int ret;
3013 unsigned long flags;
3014
3015 ret = __spi_validate(spi, message);
3016 if (ret != 0)
3017 return ret;
3018
3019 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3020
3021 if (ctlr->bus_lock_flag)
3022 ret = -EBUSY;
3023 else
3024 ret = __spi_async(spi, message);
3025
3026 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3027
3028 return ret;
3029}
3030EXPORT_SYMBOL_GPL(spi_async);
3031
3032/**
3033 * spi_async_locked - version of spi_async with exclusive bus usage
3034 * @spi: device with which data will be exchanged
3035 * @message: describes the data transfers, including completion callback
3036 * Context: any (irqs may be blocked, etc)
3037 *
3038 * This call may be used in_irq and other contexts which can't sleep,
3039 * as well as from task contexts which can sleep.
3040 *
3041 * The completion callback is invoked in a context which can't sleep.
3042 * Before that invocation, the value of message->status is undefined.
3043 * When the callback is issued, message->status holds either zero (to
3044 * indicate complete success) or a negative error code. After that
3045 * callback returns, the driver which issued the transfer request may
3046 * deallocate the associated memory; it's no longer in use by any SPI
3047 * core or controller driver code.
3048 *
3049 * Note that although all messages to a spi_device are handled in
3050 * FIFO order, messages may go to different devices in other orders.
3051 * Some device might be higher priority, or have various "hard" access
3052 * time requirements, for example.
3053 *
3054 * On detection of any fault during the transfer, processing of
3055 * the entire message is aborted, and the device is deselected.
3056 * Until returning from the associated message completion callback,
3057 * no other spi_message queued to that device will be processed.
3058 * (This rule applies equally to all the synchronous transfer calls,
3059 * which are wrappers around this core asynchronous primitive.)
3060 *
3061 * Return: zero on success, else a negative error code.
3062 */
3063int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3064{
3065 struct spi_controller *ctlr = spi->controller;
3066 int ret;
3067 unsigned long flags;
3068
3069 ret = __spi_validate(spi, message);
3070 if (ret != 0)
3071 return ret;
3072
3073 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3074
3075 ret = __spi_async(spi, message);
3076
3077 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3078
3079 return ret;
3080
3081}
3082EXPORT_SYMBOL_GPL(spi_async_locked);
3083
3084/*-------------------------------------------------------------------------*/
3085
3086/* Utility methods for SPI protocol drivers, layered on
3087 * top of the core. Some other utility methods are defined as
3088 * inline functions.
3089 */
3090
3091static void spi_complete(void *arg)
3092{
3093 complete(arg);
3094}
3095
3096static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3097{
3098 DECLARE_COMPLETION_ONSTACK(done);
3099 int status;
3100 struct spi_controller *ctlr = spi->controller;
3101 unsigned long flags;
3102
3103 status = __spi_validate(spi, message);
3104 if (status != 0)
3105 return status;
3106
3107 message->complete = spi_complete;
3108 message->context = &done;
3109 message->spi = spi;
3110
3111 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3112 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3113
3114 /* If we're not using the legacy transfer method then we will
3115 * try to transfer in the calling context so special case.
3116 * This code would be less tricky if we could remove the
3117 * support for driver implemented message queues.
3118 */
3119 if (ctlr->transfer == spi_queued_transfer) {
3120 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3121
3122 trace_spi_message_submit(message);
3123
3124 status = __spi_queued_transfer(spi, message, false);
3125
3126 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3127 } else {
3128 status = spi_async_locked(spi, message);
3129 }
3130
3131 if (status == 0) {
3132 /* Push out the messages in the calling context if we
3133 * can.
3134 */
3135 if (ctlr->transfer == spi_queued_transfer) {
3136 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3137 spi_sync_immediate);
3138 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3139 spi_sync_immediate);
3140 __spi_pump_messages(ctlr, false);
3141 }
3142
3143 wait_for_completion(&done);
3144 status = message->status;
3145 }
3146 message->context = NULL;
3147 return status;
3148}
3149
3150/**
3151 * spi_sync - blocking/synchronous SPI data transfers
3152 * @spi: device with which data will be exchanged
3153 * @message: describes the data transfers
3154 * Context: can sleep
3155 *
3156 * This call may only be used from a context that may sleep. The sleep
3157 * is non-interruptible, and has no timeout. Low-overhead controller
3158 * drivers may DMA directly into and out of the message buffers.
3159 *
3160 * Note that the SPI device's chip select is active during the message,
3161 * and then is normally disabled between messages. Drivers for some
3162 * frequently-used devices may want to minimize costs of selecting a chip,
3163 * by leaving it selected in anticipation that the next message will go
3164 * to the same chip. (That may increase power usage.)
3165 *
3166 * Also, the caller is guaranteeing that the memory associated with the
3167 * message will not be freed before this call returns.
3168 *
3169 * Return: zero on success, else a negative error code.
3170 */
3171int spi_sync(struct spi_device *spi, struct spi_message *message)
3172{
3173 int ret;
3174
3175 mutex_lock(&spi->controller->bus_lock_mutex);
3176 ret = __spi_sync(spi, message);
3177 mutex_unlock(&spi->controller->bus_lock_mutex);
3178
3179 return ret;
3180}
3181EXPORT_SYMBOL_GPL(spi_sync);
3182
3183/**
3184 * spi_sync_locked - version of spi_sync with exclusive bus usage
3185 * @spi: device with which data will be exchanged
3186 * @message: describes the data transfers
3187 * Context: can sleep
3188 *
3189 * This call may only be used from a context that may sleep. The sleep
3190 * is non-interruptible, and has no timeout. Low-overhead controller
3191 * drivers may DMA directly into and out of the message buffers.
3192 *
3193 * This call should be used by drivers that require exclusive access to the
3194 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3195 * be released by a spi_bus_unlock call when the exclusive access is over.
3196 *
3197 * Return: zero on success, else a negative error code.
3198 */
3199int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3200{
3201 return __spi_sync(spi, message);
3202}
3203EXPORT_SYMBOL_GPL(spi_sync_locked);
3204
3205/**
3206 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3207 * @ctlr: SPI bus master that should be locked for exclusive bus access
3208 * Context: can sleep
3209 *
3210 * This call may only be used from a context that may sleep. The sleep
3211 * is non-interruptible, and has no timeout.
3212 *
3213 * This call should be used by drivers that require exclusive access to the
3214 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3215 * exclusive access is over. Data transfer must be done by spi_sync_locked
3216 * and spi_async_locked calls when the SPI bus lock is held.
3217 *
3218 * Return: always zero.
3219 */
3220int spi_bus_lock(struct spi_controller *ctlr)
3221{
3222 unsigned long flags;
3223
3224 mutex_lock(&ctlr->bus_lock_mutex);
3225
3226 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3227 ctlr->bus_lock_flag = 1;
3228 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3229
3230 /* mutex remains locked until spi_bus_unlock is called */
3231
3232 return 0;
3233}
3234EXPORT_SYMBOL_GPL(spi_bus_lock);
3235
3236/**
3237 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3238 * @ctlr: SPI bus master that was locked for exclusive bus access
3239 * Context: can sleep
3240 *
3241 * This call may only be used from a context that may sleep. The sleep
3242 * is non-interruptible, and has no timeout.
3243 *
3244 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3245 * call.
3246 *
3247 * Return: always zero.
3248 */
3249int spi_bus_unlock(struct spi_controller *ctlr)
3250{
3251 ctlr->bus_lock_flag = 0;
3252
3253 mutex_unlock(&ctlr->bus_lock_mutex);
3254
3255 return 0;
3256}
3257EXPORT_SYMBOL_GPL(spi_bus_unlock);
3258
3259/* portable code must never pass more than 32 bytes */
3260#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3261
3262static u8 *buf;
3263
3264/**
3265 * spi_write_then_read - SPI synchronous write followed by read
3266 * @spi: device with which data will be exchanged
3267 * @txbuf: data to be written (need not be dma-safe)
3268 * @n_tx: size of txbuf, in bytes
3269 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3270 * @n_rx: size of rxbuf, in bytes
3271 * Context: can sleep
3272 *
3273 * This performs a half duplex MicroWire style transaction with the
3274 * device, sending txbuf and then reading rxbuf. The return value
3275 * is zero for success, else a negative errno status code.
3276 * This call may only be used from a context that may sleep.
3277 *
3278 * Parameters to this routine are always copied using a small buffer;
3279 * portable code should never use this for more than 32 bytes.
3280 * Performance-sensitive or bulk transfer code should instead use
3281 * spi_{async,sync}() calls with dma-safe buffers.
3282 *
3283 * Return: zero on success, else a negative error code.
3284 */
3285int spi_write_then_read(struct spi_device *spi,
3286 const void *txbuf, unsigned n_tx,
3287 void *rxbuf, unsigned n_rx)
3288{
3289 static DEFINE_MUTEX(lock);
3290
3291 int status;
3292 struct spi_message message;
3293 struct spi_transfer x[2];
3294 u8 *local_buf;
3295
3296 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3297 * copying here, (as a pure convenience thing), but we can
3298 * keep heap costs out of the hot path unless someone else is
3299 * using the pre-allocated buffer or the transfer is too large.
3300 */
3301 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3302 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3303 GFP_KERNEL | GFP_DMA);
3304 if (!local_buf)
3305 return -ENOMEM;
3306 } else {
3307 local_buf = buf;
3308 }
3309
3310 spi_message_init(&message);
3311 memset(x, 0, sizeof(x));
3312 if (n_tx) {
3313 x[0].len = n_tx;
3314 spi_message_add_tail(&x[0], &message);
3315 }
3316 if (n_rx) {
3317 x[1].len = n_rx;
3318 spi_message_add_tail(&x[1], &message);
3319 }
3320
3321 memcpy(local_buf, txbuf, n_tx);
3322 x[0].tx_buf = local_buf;
3323 x[1].rx_buf = local_buf + n_tx;
3324
3325 /* do the i/o */
3326 status = spi_sync(spi, &message);
3327 if (status == 0)
3328 memcpy(rxbuf, x[1].rx_buf, n_rx);
3329
3330 if (x[0].tx_buf == buf)
3331 mutex_unlock(&lock);
3332 else
3333 kfree(local_buf);
3334
3335 return status;
3336}
3337EXPORT_SYMBOL_GPL(spi_write_then_read);
3338
3339/*-------------------------------------------------------------------------*/
3340
3341#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3342static int __spi_of_device_match(struct device *dev, void *data)
3343{
3344 return dev->of_node == data;
3345}
3346
3347/* must call put_device() when done with returned spi_device device */
3348static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3349{
3350 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3351 __spi_of_device_match);
3352 return dev ? to_spi_device(dev) : NULL;
3353}
3354
3355static int __spi_of_controller_match(struct device *dev, const void *data)
3356{
3357 return dev->of_node == data;
3358}
3359
3360/* the spi controllers are not using spi_bus, so we find it with another way */
3361static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3362{
3363 struct device *dev;
3364
3365 dev = class_find_device(&spi_master_class, NULL, node,
3366 __spi_of_controller_match);
3367 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3368 dev = class_find_device(&spi_slave_class, NULL, node,
3369 __spi_of_controller_match);
3370 if (!dev)
3371 return NULL;
3372
3373 /* reference got in class_find_device */
3374 return container_of(dev, struct spi_controller, dev);
3375}
3376
3377static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3378 void *arg)
3379{
3380 struct of_reconfig_data *rd = arg;
3381 struct spi_controller *ctlr;
3382 struct spi_device *spi;
3383
3384 switch (of_reconfig_get_state_change(action, arg)) {
3385 case OF_RECONFIG_CHANGE_ADD:
3386 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3387 if (ctlr == NULL)
3388 return NOTIFY_OK; /* not for us */
3389
3390 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3391 put_device(&ctlr->dev);
3392 return NOTIFY_OK;
3393 }
3394
3395 spi = of_register_spi_device(ctlr, rd->dn);
3396 put_device(&ctlr->dev);
3397
3398 if (IS_ERR(spi)) {
3399 pr_err("%s: failed to create for '%pOF'\n",
3400 __func__, rd->dn);
3401 of_node_clear_flag(rd->dn, OF_POPULATED);
3402 return notifier_from_errno(PTR_ERR(spi));
3403 }
3404 break;
3405
3406 case OF_RECONFIG_CHANGE_REMOVE:
3407 /* already depopulated? */
3408 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3409 return NOTIFY_OK;
3410
3411 /* find our device by node */
3412 spi = of_find_spi_device_by_node(rd->dn);
3413 if (spi == NULL)
3414 return NOTIFY_OK; /* no? not meant for us */
3415
3416 /* unregister takes one ref away */
3417 spi_unregister_device(spi);
3418
3419 /* and put the reference of the find */
3420 put_device(&spi->dev);
3421 break;
3422 }
3423
3424 return NOTIFY_OK;
3425}
3426
3427static struct notifier_block spi_of_notifier = {
3428 .notifier_call = of_spi_notify,
3429};
3430#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3431extern struct notifier_block spi_of_notifier;
3432#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3433
3434#if IS_ENABLED(CONFIG_ACPI)
3435static int spi_acpi_controller_match(struct device *dev, const void *data)
3436{
3437 return ACPI_COMPANION(dev->parent) == data;
3438}
3439
3440static int spi_acpi_device_match(struct device *dev, void *data)
3441{
3442 return ACPI_COMPANION(dev) == data;
3443}
3444
3445static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3446{
3447 struct device *dev;
3448
3449 dev = class_find_device(&spi_master_class, NULL, adev,
3450 spi_acpi_controller_match);
3451 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3452 dev = class_find_device(&spi_slave_class, NULL, adev,
3453 spi_acpi_controller_match);
3454 if (!dev)
3455 return NULL;
3456
3457 return container_of(dev, struct spi_controller, dev);
3458}
3459
3460static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3461{
3462 struct device *dev;
3463
3464 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3465
3466 return dev ? to_spi_device(dev) : NULL;
3467}
3468
3469static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3470 void *arg)
3471{
3472 struct acpi_device *adev = arg;
3473 struct spi_controller *ctlr;
3474 struct spi_device *spi;
3475
3476 switch (value) {
3477 case ACPI_RECONFIG_DEVICE_ADD:
3478 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3479 if (!ctlr)
3480 break;
3481
3482 acpi_register_spi_device(ctlr, adev);
3483 put_device(&ctlr->dev);
3484 break;
3485 case ACPI_RECONFIG_DEVICE_REMOVE:
3486 if (!acpi_device_enumerated(adev))
3487 break;
3488
3489 spi = acpi_spi_find_device_by_adev(adev);
3490 if (!spi)
3491 break;
3492
3493 spi_unregister_device(spi);
3494 put_device(&spi->dev);
3495 break;
3496 }
3497
3498 return NOTIFY_OK;
3499}
3500
3501static struct notifier_block spi_acpi_notifier = {
3502 .notifier_call = acpi_spi_notify,
3503};
3504#else
3505extern struct notifier_block spi_acpi_notifier;
3506#endif
3507
3508static int __init spi_init(void)
3509{
3510 int status;
3511
3512 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3513 if (!buf) {
3514 status = -ENOMEM;
3515 goto err0;
3516 }
3517
3518 status = bus_register(&spi_bus_type);
3519 if (status < 0)
3520 goto err1;
3521
3522 status = class_register(&spi_master_class);
3523 if (status < 0)
3524 goto err2;
3525
3526 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3527 status = class_register(&spi_slave_class);
3528 if (status < 0)
3529 goto err3;
3530 }
3531
3532 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3533 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3534 if (IS_ENABLED(CONFIG_ACPI))
3535 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3536
3537 return 0;
3538
3539err3:
3540 class_unregister(&spi_master_class);
3541err2:
3542 bus_unregister(&spi_bus_type);
3543err1:
3544 kfree(buf);
3545 buf = NULL;
3546err0:
3547 return status;
3548}
3549
3550/* board_info is normally registered in arch_initcall(),
3551 * but even essential drivers wait till later
3552 *
3553 * REVISIT only boardinfo really needs static linking. the rest (device and
3554 * driver registration) _could_ be dynamically linked (modular) ... costs
3555 * include needing to have boardinfo data structures be much more public.
3556 */
3557postcore_initcall(spi_init);
3558