blob: 4fad92213609f3923a12daf74df70caf412765e3 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10#include <byteswap.h>
11#include <errno.h>
12#include <inttypes.h>
13#include <linux/bitops.h>
14#include <api/fs/fs.h>
15#include <api/fs/tracing_path.h>
16#include <traceevent/event-parse.h>
17#include <linux/hw_breakpoint.h>
18#include <linux/perf_event.h>
19#include <linux/compiler.h>
20#include <linux/err.h>
21#include <sys/ioctl.h>
22#include <sys/resource.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include "asm/bug.h"
26#include "callchain.h"
27#include "cgroup.h"
28#include "event.h"
29#include "evsel.h"
30#include "evlist.h"
31#include "util.h"
32#include "cpumap.h"
33#include "thread_map.h"
34#include "target.h"
35#include "perf_regs.h"
36#include "debug.h"
37#include "trace-event.h"
38#include "stat.h"
39#include "memswap.h"
40#include "util/parse-branch-options.h"
41
42#include "sane_ctype.h"
43
44struct perf_missing_features perf_missing_features;
45
46static clockid_t clockid;
47
48static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49{
50 return 0;
51}
52
53void __weak test_attr__ready(void) { }
54
55static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56{
57}
58
59static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63} perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67};
68
69int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72{
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90}
91
92#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
94int __perf_evsel__sample_size(u64 sample_type)
95{
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108}
109
110/**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
118static int __perf_evsel__calc_id_pos(u64 sample_type)
119{
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141}
142
143/**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
151static int __perf_evsel__calc_is_pos(u64 sample_type)
152{
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168}
169
170void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171{
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174}
175
176void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178{
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184}
185
186void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188{
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194}
195
196void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198{
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206}
207
208/**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
216bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217{
218#define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223#undef FUNCTION_EVENT
224}
225
226void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228{
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
247 evsel->pmu_name = NULL;
248}
249
250struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251{
252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253
254 if (!evsel)
255 return NULL;
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 if (perf_evsel__is_clock(evsel)) {
265 /*
266 * The evsel->unit points to static alias->unit
267 * so it's ok to use static string in here.
268 */
269 static const char *unit = "msec";
270
271 evsel->unit = unit;
272 evsel->scale = 1e-6;
273 }
274
275 return evsel;
276}
277
278static bool perf_event_can_profile_kernel(void)
279{
280 return geteuid() == 0 || perf_event_paranoid() == -1;
281}
282
283struct perf_evsel *perf_evsel__new_cycles(bool precise)
284{
285 struct perf_event_attr attr = {
286 .type = PERF_TYPE_HARDWARE,
287 .config = PERF_COUNT_HW_CPU_CYCLES,
288 .exclude_kernel = !perf_event_can_profile_kernel(),
289 };
290 struct perf_evsel *evsel;
291
292 event_attr_init(&attr);
293
294 if (!precise)
295 goto new_event;
296 /*
297 * Unnamed union member, not supported as struct member named
298 * initializer in older compilers such as gcc 4.4.7
299 *
300 * Just for probing the precise_ip:
301 */
302 attr.sample_period = 1;
303
304 perf_event_attr__set_max_precise_ip(&attr);
305 /*
306 * Now let the usual logic to set up the perf_event_attr defaults
307 * to kick in when we return and before perf_evsel__open() is called.
308 */
309 attr.sample_period = 0;
310new_event:
311 evsel = perf_evsel__new(&attr);
312 if (evsel == NULL)
313 goto out;
314
315 /* use asprintf() because free(evsel) assumes name is allocated */
316 if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 attr.exclude_kernel ? "u" : "",
319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 goto error_free;
321out:
322 return evsel;
323error_free:
324 perf_evsel__delete(evsel);
325 evsel = NULL;
326 goto out;
327}
328
329/*
330 * Returns pointer with encoded error via <linux/err.h> interface.
331 */
332struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333{
334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 int err = -ENOMEM;
336
337 if (evsel == NULL) {
338 goto out_err;
339 } else {
340 struct perf_event_attr attr = {
341 .type = PERF_TYPE_TRACEPOINT,
342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 };
345
346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 goto out_free;
348
349 evsel->tp_format = trace_event__tp_format(sys, name);
350 if (IS_ERR(evsel->tp_format)) {
351 err = PTR_ERR(evsel->tp_format);
352 goto out_free;
353 }
354
355 event_attr_init(&attr);
356 attr.config = evsel->tp_format->id;
357 attr.sample_period = 1;
358 perf_evsel__init(evsel, &attr, idx);
359 }
360
361 return evsel;
362
363out_free:
364 zfree(&evsel->name);
365 free(evsel);
366out_err:
367 return ERR_PTR(err);
368}
369
370const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 "cycles",
372 "instructions",
373 "cache-references",
374 "cache-misses",
375 "branches",
376 "branch-misses",
377 "bus-cycles",
378 "stalled-cycles-frontend",
379 "stalled-cycles-backend",
380 "ref-cycles",
381};
382
383static const char *__perf_evsel__hw_name(u64 config)
384{
385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 return perf_evsel__hw_names[config];
387
388 return "unknown-hardware";
389}
390
391static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392{
393 int colon = 0, r = 0;
394 struct perf_event_attr *attr = &evsel->attr;
395 bool exclude_guest_default = false;
396
397#define MOD_PRINT(context, mod) do { \
398 if (!attr->exclude_##context) { \
399 if (!colon) colon = ++r; \
400 r += scnprintf(bf + r, size - r, "%c", mod); \
401 } } while(0)
402
403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 MOD_PRINT(kernel, 'k');
405 MOD_PRINT(user, 'u');
406 MOD_PRINT(hv, 'h');
407 exclude_guest_default = true;
408 }
409
410 if (attr->precise_ip) {
411 if (!colon)
412 colon = ++r;
413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 exclude_guest_default = true;
415 }
416
417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 MOD_PRINT(host, 'H');
419 MOD_PRINT(guest, 'G');
420 }
421#undef MOD_PRINT
422 if (colon)
423 bf[colon - 1] = ':';
424 return r;
425}
426
427static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428{
429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431}
432
433const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 "cpu-clock",
435 "task-clock",
436 "page-faults",
437 "context-switches",
438 "cpu-migrations",
439 "minor-faults",
440 "major-faults",
441 "alignment-faults",
442 "emulation-faults",
443 "dummy",
444};
445
446static const char *__perf_evsel__sw_name(u64 config)
447{
448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 return perf_evsel__sw_names[config];
450 return "unknown-software";
451}
452
453static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454{
455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457}
458
459static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460{
461 int r;
462
463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464
465 if (type & HW_BREAKPOINT_R)
466 r += scnprintf(bf + r, size - r, "r");
467
468 if (type & HW_BREAKPOINT_W)
469 r += scnprintf(bf + r, size - r, "w");
470
471 if (type & HW_BREAKPOINT_X)
472 r += scnprintf(bf + r, size - r, "x");
473
474 return r;
475}
476
477static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478{
479 struct perf_event_attr *attr = &evsel->attr;
480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482}
483
484const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 [PERF_EVSEL__MAX_ALIASES] = {
486 { "L1-dcache", "l1-d", "l1d", "L1-data", },
487 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
488 { "LLC", "L2", },
489 { "dTLB", "d-tlb", "Data-TLB", },
490 { "iTLB", "i-tlb", "Instruction-TLB", },
491 { "branch", "branches", "bpu", "btb", "bpc", },
492 { "node", },
493};
494
495const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 [PERF_EVSEL__MAX_ALIASES] = {
497 { "load", "loads", "read", },
498 { "store", "stores", "write", },
499 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
500};
501
502const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 [PERF_EVSEL__MAX_ALIASES] = {
504 { "refs", "Reference", "ops", "access", },
505 { "misses", "miss", },
506};
507
508#define C(x) PERF_COUNT_HW_CACHE_##x
509#define CACHE_READ (1 << C(OP_READ))
510#define CACHE_WRITE (1 << C(OP_WRITE))
511#define CACHE_PREFETCH (1 << C(OP_PREFETCH))
512#define COP(x) (1 << x)
513
514/*
515 * cache operartion stat
516 * L1I : Read and prefetch only
517 * ITLB and BPU : Read-only
518 */
519static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 [C(ITLB)] = (CACHE_READ),
525 [C(BPU)] = (CACHE_READ),
526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527};
528
529bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530{
531 if (perf_evsel__hw_cache_stat[type] & COP(op))
532 return true; /* valid */
533 else
534 return false; /* invalid */
535}
536
537int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 char *bf, size_t size)
539{
540 if (result) {
541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 perf_evsel__hw_cache_op[op][0],
543 perf_evsel__hw_cache_result[result][0]);
544 }
545
546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 perf_evsel__hw_cache_op[op][1]);
548}
549
550static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551{
552 u8 op, result, type = (config >> 0) & 0xff;
553 const char *err = "unknown-ext-hardware-cache-type";
554
555 if (type >= PERF_COUNT_HW_CACHE_MAX)
556 goto out_err;
557
558 op = (config >> 8) & 0xff;
559 err = "unknown-ext-hardware-cache-op";
560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 goto out_err;
562
563 result = (config >> 16) & 0xff;
564 err = "unknown-ext-hardware-cache-result";
565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 goto out_err;
567
568 err = "invalid-cache";
569 if (!perf_evsel__is_cache_op_valid(type, op))
570 goto out_err;
571
572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573out_err:
574 return scnprintf(bf, size, "%s", err);
575}
576
577static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578{
579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581}
582
583static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584{
585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587}
588
589const char *perf_evsel__name(struct perf_evsel *evsel)
590{
591 char bf[128];
592
593 if (!evsel)
594 goto out_unknown;
595
596 if (evsel->name)
597 return evsel->name;
598
599 switch (evsel->attr.type) {
600 case PERF_TYPE_RAW:
601 perf_evsel__raw_name(evsel, bf, sizeof(bf));
602 break;
603
604 case PERF_TYPE_HARDWARE:
605 perf_evsel__hw_name(evsel, bf, sizeof(bf));
606 break;
607
608 case PERF_TYPE_HW_CACHE:
609 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
610 break;
611
612 case PERF_TYPE_SOFTWARE:
613 perf_evsel__sw_name(evsel, bf, sizeof(bf));
614 break;
615
616 case PERF_TYPE_TRACEPOINT:
617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
618 break;
619
620 case PERF_TYPE_BREAKPOINT:
621 perf_evsel__bp_name(evsel, bf, sizeof(bf));
622 break;
623
624 default:
625 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
626 evsel->attr.type);
627 break;
628 }
629
630 evsel->name = strdup(bf);
631
632 if (evsel->name)
633 return evsel->name;
634out_unknown:
635 return "unknown";
636}
637
638const char *perf_evsel__group_name(struct perf_evsel *evsel)
639{
640 return evsel->group_name ?: "anon group";
641}
642
643/*
644 * Returns the group details for the specified leader,
645 * with following rules.
646 *
647 * For record -e '{cycles,instructions}'
648 * 'anon group { cycles:u, instructions:u }'
649 *
650 * For record -e 'cycles,instructions' and report --group
651 * 'cycles:u, instructions:u'
652 */
653int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
654{
655 int ret = 0;
656 struct perf_evsel *pos;
657 const char *group_name = perf_evsel__group_name(evsel);
658
659 if (!evsel->forced_leader)
660 ret = scnprintf(buf, size, "%s { ", group_name);
661
662 ret += scnprintf(buf + ret, size - ret, "%s",
663 perf_evsel__name(evsel));
664
665 for_each_group_member(pos, evsel)
666 ret += scnprintf(buf + ret, size - ret, ", %s",
667 perf_evsel__name(pos));
668
669 if (!evsel->forced_leader)
670 ret += scnprintf(buf + ret, size - ret, " }");
671
672 return ret;
673}
674
675static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
676 struct record_opts *opts,
677 struct callchain_param *param)
678{
679 bool function = perf_evsel__is_function_event(evsel);
680 struct perf_event_attr *attr = &evsel->attr;
681
682 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
683
684 attr->sample_max_stack = param->max_stack;
685
686 if (param->record_mode == CALLCHAIN_LBR) {
687 if (!opts->branch_stack) {
688 if (attr->exclude_user) {
689 pr_warning("LBR callstack option is only available "
690 "to get user callchain information. "
691 "Falling back to framepointers.\n");
692 } else {
693 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
694 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
695 PERF_SAMPLE_BRANCH_CALL_STACK |
696 PERF_SAMPLE_BRANCH_NO_CYCLES |
697 PERF_SAMPLE_BRANCH_NO_FLAGS;
698 }
699 } else
700 pr_warning("Cannot use LBR callstack with branch stack. "
701 "Falling back to framepointers.\n");
702 }
703
704 if (param->record_mode == CALLCHAIN_DWARF) {
705 if (!function) {
706 perf_evsel__set_sample_bit(evsel, REGS_USER);
707 perf_evsel__set_sample_bit(evsel, STACK_USER);
708 attr->sample_regs_user |= PERF_REGS_MASK;
709 attr->sample_stack_user = param->dump_size;
710 attr->exclude_callchain_user = 1;
711 } else {
712 pr_info("Cannot use DWARF unwind for function trace event,"
713 " falling back to framepointers.\n");
714 }
715 }
716
717 if (function) {
718 pr_info("Disabling user space callchains for function trace event.\n");
719 attr->exclude_callchain_user = 1;
720 }
721}
722
723void perf_evsel__config_callchain(struct perf_evsel *evsel,
724 struct record_opts *opts,
725 struct callchain_param *param)
726{
727 if (param->enabled)
728 return __perf_evsel__config_callchain(evsel, opts, param);
729}
730
731static void
732perf_evsel__reset_callgraph(struct perf_evsel *evsel,
733 struct callchain_param *param)
734{
735 struct perf_event_attr *attr = &evsel->attr;
736
737 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
738 if (param->record_mode == CALLCHAIN_LBR) {
739 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
740 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
741 PERF_SAMPLE_BRANCH_CALL_STACK);
742 }
743 if (param->record_mode == CALLCHAIN_DWARF) {
744 perf_evsel__reset_sample_bit(evsel, REGS_USER);
745 perf_evsel__reset_sample_bit(evsel, STACK_USER);
746 }
747}
748
749static void apply_config_terms(struct perf_evsel *evsel,
750 struct record_opts *opts, bool track)
751{
752 struct perf_evsel_config_term *term;
753 struct list_head *config_terms = &evsel->config_terms;
754 struct perf_event_attr *attr = &evsel->attr;
755 /* callgraph default */
756 struct callchain_param param = {
757 .record_mode = callchain_param.record_mode,
758 };
759 u32 dump_size = 0;
760 int max_stack = 0;
761 const char *callgraph_buf = NULL;
762
763 list_for_each_entry(term, config_terms, list) {
764 switch (term->type) {
765 case PERF_EVSEL__CONFIG_TERM_PERIOD:
766 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
767 attr->sample_period = term->val.period;
768 attr->freq = 0;
769 perf_evsel__reset_sample_bit(evsel, PERIOD);
770 }
771 break;
772 case PERF_EVSEL__CONFIG_TERM_FREQ:
773 if (!(term->weak && opts->user_freq != UINT_MAX)) {
774 attr->sample_freq = term->val.freq;
775 attr->freq = 1;
776 perf_evsel__set_sample_bit(evsel, PERIOD);
777 }
778 break;
779 case PERF_EVSEL__CONFIG_TERM_TIME:
780 if (term->val.time)
781 perf_evsel__set_sample_bit(evsel, TIME);
782 else
783 perf_evsel__reset_sample_bit(evsel, TIME);
784 break;
785 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
786 callgraph_buf = term->val.callgraph;
787 break;
788 case PERF_EVSEL__CONFIG_TERM_BRANCH:
789 if (term->val.branch && strcmp(term->val.branch, "no")) {
790 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
791 parse_branch_str(term->val.branch,
792 &attr->branch_sample_type);
793 } else
794 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
795 break;
796 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
797 dump_size = term->val.stack_user;
798 break;
799 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
800 max_stack = term->val.max_stack;
801 break;
802 case PERF_EVSEL__CONFIG_TERM_INHERIT:
803 /*
804 * attr->inherit should has already been set by
805 * perf_evsel__config. If user explicitly set
806 * inherit using config terms, override global
807 * opt->no_inherit setting.
808 */
809 attr->inherit = term->val.inherit ? 1 : 0;
810 break;
811 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
812 attr->write_backward = term->val.overwrite ? 1 : 0;
813 break;
814 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
815 break;
816 default:
817 break;
818 }
819 }
820
821 /* User explicitly set per-event callgraph, clear the old setting and reset. */
822 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
823 bool sample_address = false;
824
825 if (max_stack) {
826 param.max_stack = max_stack;
827 if (callgraph_buf == NULL)
828 callgraph_buf = "fp";
829 }
830
831 /* parse callgraph parameters */
832 if (callgraph_buf != NULL) {
833 if (!strcmp(callgraph_buf, "no")) {
834 param.enabled = false;
835 param.record_mode = CALLCHAIN_NONE;
836 } else {
837 param.enabled = true;
838 if (parse_callchain_record(callgraph_buf, &param)) {
839 pr_err("per-event callgraph setting for %s failed. "
840 "Apply callgraph global setting for it\n",
841 evsel->name);
842 return;
843 }
844 if (param.record_mode == CALLCHAIN_DWARF)
845 sample_address = true;
846 }
847 }
848 if (dump_size > 0) {
849 dump_size = round_up(dump_size, sizeof(u64));
850 param.dump_size = dump_size;
851 }
852
853 /* If global callgraph set, clear it */
854 if (callchain_param.enabled)
855 perf_evsel__reset_callgraph(evsel, &callchain_param);
856
857 /* set perf-event callgraph */
858 if (param.enabled) {
859 if (sample_address) {
860 perf_evsel__set_sample_bit(evsel, ADDR);
861 perf_evsel__set_sample_bit(evsel, DATA_SRC);
862 evsel->attr.mmap_data = track;
863 }
864 perf_evsel__config_callchain(evsel, opts, &param);
865 }
866 }
867}
868
869static bool is_dummy_event(struct perf_evsel *evsel)
870{
871 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
872 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
873}
874
875/*
876 * The enable_on_exec/disabled value strategy:
877 *
878 * 1) For any type of traced program:
879 * - all independent events and group leaders are disabled
880 * - all group members are enabled
881 *
882 * Group members are ruled by group leaders. They need to
883 * be enabled, because the group scheduling relies on that.
884 *
885 * 2) For traced programs executed by perf:
886 * - all independent events and group leaders have
887 * enable_on_exec set
888 * - we don't specifically enable or disable any event during
889 * the record command
890 *
891 * Independent events and group leaders are initially disabled
892 * and get enabled by exec. Group members are ruled by group
893 * leaders as stated in 1).
894 *
895 * 3) For traced programs attached by perf (pid/tid):
896 * - we specifically enable or disable all events during
897 * the record command
898 *
899 * When attaching events to already running traced we
900 * enable/disable events specifically, as there's no
901 * initial traced exec call.
902 */
903void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
904 struct callchain_param *callchain)
905{
906 struct perf_evsel *leader = evsel->leader;
907 struct perf_event_attr *attr = &evsel->attr;
908 int track = evsel->tracking;
909 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
910
911 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
912 attr->inherit = !opts->no_inherit;
913 attr->write_backward = opts->overwrite ? 1 : 0;
914
915 perf_evsel__set_sample_bit(evsel, IP);
916 perf_evsel__set_sample_bit(evsel, TID);
917
918 if (evsel->sample_read) {
919 perf_evsel__set_sample_bit(evsel, READ);
920
921 /*
922 * We need ID even in case of single event, because
923 * PERF_SAMPLE_READ process ID specific data.
924 */
925 perf_evsel__set_sample_id(evsel, false);
926
927 /*
928 * Apply group format only if we belong to group
929 * with more than one members.
930 */
931 if (leader->nr_members > 1) {
932 attr->read_format |= PERF_FORMAT_GROUP;
933 attr->inherit = 0;
934 }
935 }
936
937 /*
938 * We default some events to have a default interval. But keep
939 * it a weak assumption overridable by the user.
940 */
941 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
942 opts->user_interval != ULLONG_MAX)) {
943 if (opts->freq) {
944 perf_evsel__set_sample_bit(evsel, PERIOD);
945 attr->freq = 1;
946 attr->sample_freq = opts->freq;
947 } else {
948 attr->sample_period = opts->default_interval;
949 }
950 }
951
952 /*
953 * Disable sampling for all group members other
954 * than leader in case leader 'leads' the sampling.
955 */
956 if ((leader != evsel) && leader->sample_read) {
957 attr->freq = 0;
958 attr->sample_freq = 0;
959 attr->sample_period = 0;
960 attr->write_backward = 0;
961 }
962
963 if (opts->no_samples)
964 attr->sample_freq = 0;
965
966 if (opts->inherit_stat) {
967 evsel->attr.read_format |=
968 PERF_FORMAT_TOTAL_TIME_ENABLED |
969 PERF_FORMAT_TOTAL_TIME_RUNNING |
970 PERF_FORMAT_ID;
971 attr->inherit_stat = 1;
972 }
973
974 if (opts->sample_address) {
975 perf_evsel__set_sample_bit(evsel, ADDR);
976 attr->mmap_data = track;
977 }
978
979 /*
980 * We don't allow user space callchains for function trace
981 * event, due to issues with page faults while tracing page
982 * fault handler and its overall trickiness nature.
983 */
984 if (perf_evsel__is_function_event(evsel))
985 evsel->attr.exclude_callchain_user = 1;
986
987 if (callchain && callchain->enabled && !evsel->no_aux_samples)
988 perf_evsel__config_callchain(evsel, opts, callchain);
989
990 if (opts->sample_intr_regs) {
991 attr->sample_regs_intr = opts->sample_intr_regs;
992 perf_evsel__set_sample_bit(evsel, REGS_INTR);
993 }
994
995 if (opts->sample_user_regs) {
996 attr->sample_regs_user |= opts->sample_user_regs;
997 perf_evsel__set_sample_bit(evsel, REGS_USER);
998 }
999
1000 if (target__has_cpu(&opts->target) || opts->sample_cpu)
1001 perf_evsel__set_sample_bit(evsel, CPU);
1002
1003 /*
1004 * When the user explicitly disabled time don't force it here.
1005 */
1006 if (opts->sample_time &&
1007 (!perf_missing_features.sample_id_all &&
1008 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1009 opts->sample_time_set)))
1010 perf_evsel__set_sample_bit(evsel, TIME);
1011
1012 if (opts->raw_samples && !evsel->no_aux_samples) {
1013 perf_evsel__set_sample_bit(evsel, TIME);
1014 perf_evsel__set_sample_bit(evsel, RAW);
1015 perf_evsel__set_sample_bit(evsel, CPU);
1016 }
1017
1018 if (opts->sample_address)
1019 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1020
1021 if (opts->sample_phys_addr)
1022 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1023
1024 if (opts->no_buffering) {
1025 attr->watermark = 0;
1026 attr->wakeup_events = 1;
1027 }
1028 if (opts->branch_stack && !evsel->no_aux_samples) {
1029 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1030 attr->branch_sample_type = opts->branch_stack;
1031 }
1032
1033 if (opts->sample_weight)
1034 perf_evsel__set_sample_bit(evsel, WEIGHT);
1035
1036 attr->task = track;
1037 attr->mmap = track;
1038 attr->mmap2 = track && !perf_missing_features.mmap2;
1039 attr->comm = track;
1040
1041 if (opts->record_namespaces)
1042 attr->namespaces = track;
1043
1044 if (opts->record_switch_events)
1045 attr->context_switch = track;
1046
1047 if (opts->sample_transaction)
1048 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1049
1050 if (opts->running_time) {
1051 evsel->attr.read_format |=
1052 PERF_FORMAT_TOTAL_TIME_ENABLED |
1053 PERF_FORMAT_TOTAL_TIME_RUNNING;
1054 }
1055
1056 /*
1057 * XXX see the function comment above
1058 *
1059 * Disabling only independent events or group leaders,
1060 * keeping group members enabled.
1061 */
1062 if (perf_evsel__is_group_leader(evsel))
1063 attr->disabled = 1;
1064
1065 /*
1066 * Setting enable_on_exec for independent events and
1067 * group leaders for traced executed by perf.
1068 */
1069 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1070 !opts->initial_delay)
1071 attr->enable_on_exec = 1;
1072
1073 if (evsel->immediate) {
1074 attr->disabled = 0;
1075 attr->enable_on_exec = 0;
1076 }
1077
1078 clockid = opts->clockid;
1079 if (opts->use_clockid) {
1080 attr->use_clockid = 1;
1081 attr->clockid = opts->clockid;
1082 }
1083
1084 if (evsel->precise_max)
1085 perf_event_attr__set_max_precise_ip(attr);
1086
1087 if (opts->all_user) {
1088 attr->exclude_kernel = 1;
1089 attr->exclude_user = 0;
1090 }
1091
1092 if (opts->all_kernel) {
1093 attr->exclude_kernel = 0;
1094 attr->exclude_user = 1;
1095 }
1096
1097 if (evsel->own_cpus || evsel->unit)
1098 evsel->attr.read_format |= PERF_FORMAT_ID;
1099
1100 /*
1101 * Apply event specific term settings,
1102 * it overloads any global configuration.
1103 */
1104 apply_config_terms(evsel, opts, track);
1105
1106 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1107
1108 /* The --period option takes the precedence. */
1109 if (opts->period_set) {
1110 if (opts->period)
1111 perf_evsel__set_sample_bit(evsel, PERIOD);
1112 else
1113 perf_evsel__reset_sample_bit(evsel, PERIOD);
1114 }
1115
1116 /*
1117 * For initial_delay, a dummy event is added implicitly.
1118 * The software event will trigger -EOPNOTSUPP error out,
1119 * if BRANCH_STACK bit is set.
1120 */
1121 if (opts->initial_delay && is_dummy_event(evsel))
1122 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1123}
1124
1125static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1126{
1127 if (evsel->system_wide)
1128 nthreads = 1;
1129
1130 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1131
1132 if (evsel->fd) {
1133 int cpu, thread;
1134 for (cpu = 0; cpu < ncpus; cpu++) {
1135 for (thread = 0; thread < nthreads; thread++) {
1136 FD(evsel, cpu, thread) = -1;
1137 }
1138 }
1139 }
1140
1141 return evsel->fd != NULL ? 0 : -ENOMEM;
1142}
1143
1144static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1145 int ioc, void *arg)
1146{
1147 int cpu, thread;
1148
1149 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1150 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1151 int fd = FD(evsel, cpu, thread),
1152 err = ioctl(fd, ioc, arg);
1153
1154 if (err)
1155 return err;
1156 }
1157 }
1158
1159 return 0;
1160}
1161
1162int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1163{
1164 return perf_evsel__run_ioctl(evsel,
1165 PERF_EVENT_IOC_SET_FILTER,
1166 (void *)filter);
1167}
1168
1169int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1170{
1171 char *new_filter = strdup(filter);
1172
1173 if (new_filter != NULL) {
1174 free(evsel->filter);
1175 evsel->filter = new_filter;
1176 return 0;
1177 }
1178
1179 return -1;
1180}
1181
1182static int perf_evsel__append_filter(struct perf_evsel *evsel,
1183 const char *fmt, const char *filter)
1184{
1185 char *new_filter;
1186
1187 if (evsel->filter == NULL)
1188 return perf_evsel__set_filter(evsel, filter);
1189
1190 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1191 free(evsel->filter);
1192 evsel->filter = new_filter;
1193 return 0;
1194 }
1195
1196 return -1;
1197}
1198
1199int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1200{
1201 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1202}
1203
1204int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1205{
1206 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1207}
1208
1209int perf_evsel__enable(struct perf_evsel *evsel)
1210{
1211 return perf_evsel__run_ioctl(evsel,
1212 PERF_EVENT_IOC_ENABLE,
1213 0);
1214}
1215
1216int perf_evsel__disable(struct perf_evsel *evsel)
1217{
1218 return perf_evsel__run_ioctl(evsel,
1219 PERF_EVENT_IOC_DISABLE,
1220 0);
1221}
1222
1223int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1224{
1225 if (ncpus == 0 || nthreads == 0)
1226 return 0;
1227
1228 if (evsel->system_wide)
1229 nthreads = 1;
1230
1231 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1232 if (evsel->sample_id == NULL)
1233 return -ENOMEM;
1234
1235 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1236 if (evsel->id == NULL) {
1237 xyarray__delete(evsel->sample_id);
1238 evsel->sample_id = NULL;
1239 return -ENOMEM;
1240 }
1241
1242 return 0;
1243}
1244
1245static void perf_evsel__free_fd(struct perf_evsel *evsel)
1246{
1247 xyarray__delete(evsel->fd);
1248 evsel->fd = NULL;
1249}
1250
1251static void perf_evsel__free_id(struct perf_evsel *evsel)
1252{
1253 xyarray__delete(evsel->sample_id);
1254 evsel->sample_id = NULL;
1255 zfree(&evsel->id);
1256}
1257
1258static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1259{
1260 struct perf_evsel_config_term *term, *h;
1261
1262 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1263 list_del(&term->list);
1264 free(term);
1265 }
1266}
1267
1268void perf_evsel__close_fd(struct perf_evsel *evsel)
1269{
1270 int cpu, thread;
1271
1272 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1273 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1274 close(FD(evsel, cpu, thread));
1275 FD(evsel, cpu, thread) = -1;
1276 }
1277}
1278
1279void perf_evsel__exit(struct perf_evsel *evsel)
1280{
1281 assert(list_empty(&evsel->node));
1282 assert(evsel->evlist == NULL);
1283 perf_evsel__free_counts(evsel);
1284 perf_evsel__free_fd(evsel);
1285 perf_evsel__free_id(evsel);
1286 perf_evsel__free_config_terms(evsel);
1287 cgroup__put(evsel->cgrp);
1288 cpu_map__put(evsel->cpus);
1289 cpu_map__put(evsel->own_cpus);
1290 thread_map__put(evsel->threads);
1291 zfree(&evsel->group_name);
1292 zfree(&evsel->name);
1293 perf_evsel__object.fini(evsel);
1294}
1295
1296void perf_evsel__delete(struct perf_evsel *evsel)
1297{
1298 perf_evsel__exit(evsel);
1299 free(evsel);
1300}
1301
1302void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1303 struct perf_counts_values *count)
1304{
1305 struct perf_counts_values tmp;
1306
1307 if (!evsel->prev_raw_counts)
1308 return;
1309
1310 if (cpu == -1) {
1311 tmp = evsel->prev_raw_counts->aggr;
1312 evsel->prev_raw_counts->aggr = *count;
1313 } else {
1314 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1315 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1316 }
1317
1318 count->val = count->val - tmp.val;
1319 count->ena = count->ena - tmp.ena;
1320 count->run = count->run - tmp.run;
1321}
1322
1323void perf_counts_values__scale(struct perf_counts_values *count,
1324 bool scale, s8 *pscaled)
1325{
1326 s8 scaled = 0;
1327
1328 if (scale) {
1329 if (count->run == 0) {
1330 scaled = -1;
1331 count->val = 0;
1332 } else if (count->run < count->ena) {
1333 scaled = 1;
1334 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1335 }
1336 } else
1337 count->ena = count->run = 0;
1338
1339 if (pscaled)
1340 *pscaled = scaled;
1341}
1342
1343static int perf_evsel__read_size(struct perf_evsel *evsel)
1344{
1345 u64 read_format = evsel->attr.read_format;
1346 int entry = sizeof(u64); /* value */
1347 int size = 0;
1348 int nr = 1;
1349
1350 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1351 size += sizeof(u64);
1352
1353 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1354 size += sizeof(u64);
1355
1356 if (read_format & PERF_FORMAT_ID)
1357 entry += sizeof(u64);
1358
1359 if (read_format & PERF_FORMAT_GROUP) {
1360 nr = evsel->nr_members;
1361 size += sizeof(u64);
1362 }
1363
1364 size += entry * nr;
1365 return size;
1366}
1367
1368int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1369 struct perf_counts_values *count)
1370{
1371 size_t size = perf_evsel__read_size(evsel);
1372
1373 memset(count, 0, sizeof(*count));
1374
1375 if (FD(evsel, cpu, thread) < 0)
1376 return -EINVAL;
1377
1378 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1379 return -errno;
1380
1381 return 0;
1382}
1383
1384static int
1385perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1386{
1387 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1388
1389 return perf_evsel__read(evsel, cpu, thread, count);
1390}
1391
1392static void
1393perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1394 u64 val, u64 ena, u64 run)
1395{
1396 struct perf_counts_values *count;
1397
1398 count = perf_counts(counter->counts, cpu, thread);
1399
1400 count->val = val;
1401 count->ena = ena;
1402 count->run = run;
1403 count->loaded = true;
1404}
1405
1406static int
1407perf_evsel__process_group_data(struct perf_evsel *leader,
1408 int cpu, int thread, u64 *data)
1409{
1410 u64 read_format = leader->attr.read_format;
1411 struct sample_read_value *v;
1412 u64 nr, ena = 0, run = 0, i;
1413
1414 nr = *data++;
1415
1416 if (nr != (u64) leader->nr_members)
1417 return -EINVAL;
1418
1419 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1420 ena = *data++;
1421
1422 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1423 run = *data++;
1424
1425 v = (struct sample_read_value *) data;
1426
1427 perf_evsel__set_count(leader, cpu, thread,
1428 v[0].value, ena, run);
1429
1430 for (i = 1; i < nr; i++) {
1431 struct perf_evsel *counter;
1432
1433 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1434 if (!counter)
1435 return -EINVAL;
1436
1437 perf_evsel__set_count(counter, cpu, thread,
1438 v[i].value, ena, run);
1439 }
1440
1441 return 0;
1442}
1443
1444static int
1445perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1446{
1447 struct perf_stat_evsel *ps = leader->stats;
1448 u64 read_format = leader->attr.read_format;
1449 int size = perf_evsel__read_size(leader);
1450 u64 *data = ps->group_data;
1451
1452 if (!(read_format & PERF_FORMAT_ID))
1453 return -EINVAL;
1454
1455 if (!perf_evsel__is_group_leader(leader))
1456 return -EINVAL;
1457
1458 if (!data) {
1459 data = zalloc(size);
1460 if (!data)
1461 return -ENOMEM;
1462
1463 ps->group_data = data;
1464 }
1465
1466 if (FD(leader, cpu, thread) < 0)
1467 return -EINVAL;
1468
1469 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1470 return -errno;
1471
1472 return perf_evsel__process_group_data(leader, cpu, thread, data);
1473}
1474
1475int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1476{
1477 u64 read_format = evsel->attr.read_format;
1478
1479 if (read_format & PERF_FORMAT_GROUP)
1480 return perf_evsel__read_group(evsel, cpu, thread);
1481 else
1482 return perf_evsel__read_one(evsel, cpu, thread);
1483}
1484
1485int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1486 int cpu, int thread, bool scale)
1487{
1488 struct perf_counts_values count;
1489 size_t nv = scale ? 3 : 1;
1490
1491 if (FD(evsel, cpu, thread) < 0)
1492 return -EINVAL;
1493
1494 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1495 return -ENOMEM;
1496
1497 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1498 return -errno;
1499
1500 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1501 perf_counts_values__scale(&count, scale, NULL);
1502 *perf_counts(evsel->counts, cpu, thread) = count;
1503 return 0;
1504}
1505
1506static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1507{
1508 struct perf_evsel *leader = evsel->leader;
1509 int fd;
1510
1511 if (perf_evsel__is_group_leader(evsel))
1512 return -1;
1513
1514 /*
1515 * Leader must be already processed/open,
1516 * if not it's a bug.
1517 */
1518 BUG_ON(!leader->fd);
1519
1520 fd = FD(leader, cpu, thread);
1521 BUG_ON(fd == -1);
1522
1523 return fd;
1524}
1525
1526struct bit_names {
1527 int bit;
1528 const char *name;
1529};
1530
1531static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1532{
1533 bool first_bit = true;
1534 int i = 0;
1535
1536 do {
1537 if (value & bits[i].bit) {
1538 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1539 first_bit = false;
1540 }
1541 } while (bits[++i].name != NULL);
1542}
1543
1544static void __p_sample_type(char *buf, size_t size, u64 value)
1545{
1546#define bit_name(n) { PERF_SAMPLE_##n, #n }
1547 struct bit_names bits[] = {
1548 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1549 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1550 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1551 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1552 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1553 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1554 { .name = NULL, }
1555 };
1556#undef bit_name
1557 __p_bits(buf, size, value, bits);
1558}
1559
1560static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1561{
1562#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1563 struct bit_names bits[] = {
1564 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1565 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1566 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1567 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1568 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1569 { .name = NULL, }
1570 };
1571#undef bit_name
1572 __p_bits(buf, size, value, bits);
1573}
1574
1575static void __p_read_format(char *buf, size_t size, u64 value)
1576{
1577#define bit_name(n) { PERF_FORMAT_##n, #n }
1578 struct bit_names bits[] = {
1579 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1580 bit_name(ID), bit_name(GROUP),
1581 { .name = NULL, }
1582 };
1583#undef bit_name
1584 __p_bits(buf, size, value, bits);
1585}
1586
1587#define BUF_SIZE 1024
1588
1589#define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1590#define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1591#define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1592#define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1593#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1594#define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1595
1596#define PRINT_ATTRn(_n, _f, _p) \
1597do { \
1598 if (attr->_f) { \
1599 _p(attr->_f); \
1600 ret += attr__fprintf(fp, _n, buf, priv);\
1601 } \
1602} while (0)
1603
1604#define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1605
1606int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1607 attr__fprintf_f attr__fprintf, void *priv)
1608{
1609 char buf[BUF_SIZE];
1610 int ret = 0;
1611
1612 PRINT_ATTRf(type, p_unsigned);
1613 PRINT_ATTRf(size, p_unsigned);
1614 PRINT_ATTRf(config, p_hex);
1615 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1616 PRINT_ATTRf(sample_type, p_sample_type);
1617 PRINT_ATTRf(read_format, p_read_format);
1618
1619 PRINT_ATTRf(disabled, p_unsigned);
1620 PRINT_ATTRf(inherit, p_unsigned);
1621 PRINT_ATTRf(pinned, p_unsigned);
1622 PRINT_ATTRf(exclusive, p_unsigned);
1623 PRINT_ATTRf(exclude_user, p_unsigned);
1624 PRINT_ATTRf(exclude_kernel, p_unsigned);
1625 PRINT_ATTRf(exclude_hv, p_unsigned);
1626 PRINT_ATTRf(exclude_idle, p_unsigned);
1627 PRINT_ATTRf(mmap, p_unsigned);
1628 PRINT_ATTRf(comm, p_unsigned);
1629 PRINT_ATTRf(freq, p_unsigned);
1630 PRINT_ATTRf(inherit_stat, p_unsigned);
1631 PRINT_ATTRf(enable_on_exec, p_unsigned);
1632 PRINT_ATTRf(task, p_unsigned);
1633 PRINT_ATTRf(watermark, p_unsigned);
1634 PRINT_ATTRf(precise_ip, p_unsigned);
1635 PRINT_ATTRf(mmap_data, p_unsigned);
1636 PRINT_ATTRf(sample_id_all, p_unsigned);
1637 PRINT_ATTRf(exclude_host, p_unsigned);
1638 PRINT_ATTRf(exclude_guest, p_unsigned);
1639 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1640 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1641 PRINT_ATTRf(mmap2, p_unsigned);
1642 PRINT_ATTRf(comm_exec, p_unsigned);
1643 PRINT_ATTRf(use_clockid, p_unsigned);
1644 PRINT_ATTRf(context_switch, p_unsigned);
1645 PRINT_ATTRf(write_backward, p_unsigned);
1646 PRINT_ATTRf(namespaces, p_unsigned);
1647
1648 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1649 PRINT_ATTRf(bp_type, p_unsigned);
1650 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1651 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1652 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1653 PRINT_ATTRf(sample_regs_user, p_hex);
1654 PRINT_ATTRf(sample_stack_user, p_unsigned);
1655 PRINT_ATTRf(clockid, p_signed);
1656 PRINT_ATTRf(sample_regs_intr, p_hex);
1657 PRINT_ATTRf(aux_watermark, p_unsigned);
1658 PRINT_ATTRf(sample_max_stack, p_unsigned);
1659
1660 return ret;
1661}
1662
1663static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1664 void *priv __maybe_unused)
1665{
1666 return fprintf(fp, " %-32s %s\n", name, val);
1667}
1668
1669static void perf_evsel__remove_fd(struct perf_evsel *pos,
1670 int nr_cpus, int nr_threads,
1671 int thread_idx)
1672{
1673 for (int cpu = 0; cpu < nr_cpus; cpu++)
1674 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1675 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1676}
1677
1678static int update_fds(struct perf_evsel *evsel,
1679 int nr_cpus, int cpu_idx,
1680 int nr_threads, int thread_idx)
1681{
1682 struct perf_evsel *pos;
1683
1684 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1685 return -EINVAL;
1686
1687 evlist__for_each_entry(evsel->evlist, pos) {
1688 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1689
1690 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1691
1692 /*
1693 * Since fds for next evsel has not been created,
1694 * there is no need to iterate whole event list.
1695 */
1696 if (pos == evsel)
1697 break;
1698 }
1699 return 0;
1700}
1701
1702static bool ignore_missing_thread(struct perf_evsel *evsel,
1703 int nr_cpus, int cpu,
1704 struct thread_map *threads,
1705 int thread, int err)
1706{
1707 pid_t ignore_pid = thread_map__pid(threads, thread);
1708
1709 if (!evsel->ignore_missing_thread)
1710 return false;
1711
1712 /* The system wide setup does not work with threads. */
1713 if (evsel->system_wide)
1714 return false;
1715
1716 /* The -ESRCH is perf event syscall errno for pid's not found. */
1717 if (err != -ESRCH)
1718 return false;
1719
1720 /* If there's only one thread, let it fail. */
1721 if (threads->nr == 1)
1722 return false;
1723
1724 /*
1725 * We should remove fd for missing_thread first
1726 * because thread_map__remove() will decrease threads->nr.
1727 */
1728 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1729 return false;
1730
1731 if (thread_map__remove(threads, thread))
1732 return false;
1733
1734 pr_warning("WARNING: Ignored open failure for pid %d\n",
1735 ignore_pid);
1736 return true;
1737}
1738
1739int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1740 struct thread_map *threads)
1741{
1742 int cpu, thread, nthreads;
1743 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1744 int pid = -1, err;
1745 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1746
1747 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1748 return -EINVAL;
1749
1750 if (cpus == NULL) {
1751 static struct cpu_map *empty_cpu_map;
1752
1753 if (empty_cpu_map == NULL) {
1754 empty_cpu_map = cpu_map__dummy_new();
1755 if (empty_cpu_map == NULL)
1756 return -ENOMEM;
1757 }
1758
1759 cpus = empty_cpu_map;
1760 }
1761
1762 if (threads == NULL) {
1763 static struct thread_map *empty_thread_map;
1764
1765 if (empty_thread_map == NULL) {
1766 empty_thread_map = thread_map__new_by_tid(-1);
1767 if (empty_thread_map == NULL)
1768 return -ENOMEM;
1769 }
1770
1771 threads = empty_thread_map;
1772 }
1773
1774 if (evsel->system_wide)
1775 nthreads = 1;
1776 else
1777 nthreads = threads->nr;
1778
1779 if (evsel->fd == NULL &&
1780 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1781 return -ENOMEM;
1782
1783 if (evsel->cgrp) {
1784 flags |= PERF_FLAG_PID_CGROUP;
1785 pid = evsel->cgrp->fd;
1786 }
1787
1788fallback_missing_features:
1789 if (perf_missing_features.clockid_wrong)
1790 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1791 if (perf_missing_features.clockid) {
1792 evsel->attr.use_clockid = 0;
1793 evsel->attr.clockid = 0;
1794 }
1795 if (perf_missing_features.cloexec)
1796 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1797 if (perf_missing_features.mmap2)
1798 evsel->attr.mmap2 = 0;
1799 if (perf_missing_features.exclude_guest)
1800 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1801 if (perf_missing_features.lbr_flags)
1802 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1803 PERF_SAMPLE_BRANCH_NO_CYCLES);
1804 if (perf_missing_features.group_read && evsel->attr.inherit)
1805 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1806retry_sample_id:
1807 if (perf_missing_features.sample_id_all)
1808 evsel->attr.sample_id_all = 0;
1809
1810 if (verbose >= 2) {
1811 fprintf(stderr, "%.60s\n", graph_dotted_line);
1812 fprintf(stderr, "perf_event_attr:\n");
1813 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1814 fprintf(stderr, "%.60s\n", graph_dotted_line);
1815 }
1816
1817 for (cpu = 0; cpu < cpus->nr; cpu++) {
1818
1819 for (thread = 0; thread < nthreads; thread++) {
1820 int fd, group_fd;
1821
1822 if (!evsel->cgrp && !evsel->system_wide)
1823 pid = thread_map__pid(threads, thread);
1824
1825 group_fd = get_group_fd(evsel, cpu, thread);
1826retry_open:
1827 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1828 pid, cpus->map[cpu], group_fd, flags);
1829
1830 test_attr__ready();
1831
1832 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1833 group_fd, flags);
1834
1835 FD(evsel, cpu, thread) = fd;
1836
1837 if (fd < 0) {
1838 err = -errno;
1839
1840 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1841 /*
1842 * We just removed 1 thread, so take a step
1843 * back on thread index and lower the upper
1844 * nthreads limit.
1845 */
1846 nthreads--;
1847 thread--;
1848
1849 /* ... and pretend like nothing have happened. */
1850 err = 0;
1851 continue;
1852 }
1853
1854 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1855 err);
1856 goto try_fallback;
1857 }
1858
1859 pr_debug2(" = %d\n", fd);
1860
1861 if (evsel->bpf_fd >= 0) {
1862 int evt_fd = fd;
1863 int bpf_fd = evsel->bpf_fd;
1864
1865 err = ioctl(evt_fd,
1866 PERF_EVENT_IOC_SET_BPF,
1867 bpf_fd);
1868 if (err && errno != EEXIST) {
1869 pr_err("failed to attach bpf fd %d: %s\n",
1870 bpf_fd, strerror(errno));
1871 err = -EINVAL;
1872 goto out_close;
1873 }
1874 }
1875
1876 set_rlimit = NO_CHANGE;
1877
1878 /*
1879 * If we succeeded but had to kill clockid, fail and
1880 * have perf_evsel__open_strerror() print us a nice
1881 * error.
1882 */
1883 if (perf_missing_features.clockid ||
1884 perf_missing_features.clockid_wrong) {
1885 err = -EINVAL;
1886 goto out_close;
1887 }
1888 }
1889 }
1890
1891 return 0;
1892
1893try_fallback:
1894 /*
1895 * perf stat needs between 5 and 22 fds per CPU. When we run out
1896 * of them try to increase the limits.
1897 */
1898 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1899 struct rlimit l;
1900 int old_errno = errno;
1901
1902 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1903 if (set_rlimit == NO_CHANGE)
1904 l.rlim_cur = l.rlim_max;
1905 else {
1906 l.rlim_cur = l.rlim_max + 1000;
1907 l.rlim_max = l.rlim_cur;
1908 }
1909 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1910 set_rlimit++;
1911 errno = old_errno;
1912 goto retry_open;
1913 }
1914 }
1915 errno = old_errno;
1916 }
1917
1918 if (err != -EINVAL || cpu > 0 || thread > 0)
1919 goto out_close;
1920
1921 /*
1922 * Must probe features in the order they were added to the
1923 * perf_event_attr interface.
1924 */
1925 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1926 perf_missing_features.write_backward = true;
1927 pr_debug2("switching off write_backward\n");
1928 goto out_close;
1929 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1930 perf_missing_features.clockid_wrong = true;
1931 pr_debug2("switching off clockid\n");
1932 goto fallback_missing_features;
1933 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1934 perf_missing_features.clockid = true;
1935 pr_debug2("switching off use_clockid\n");
1936 goto fallback_missing_features;
1937 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1938 perf_missing_features.cloexec = true;
1939 pr_debug2("switching off cloexec flag\n");
1940 goto fallback_missing_features;
1941 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1942 perf_missing_features.mmap2 = true;
1943 pr_debug2("switching off mmap2\n");
1944 goto fallback_missing_features;
1945 } else if (!perf_missing_features.exclude_guest &&
1946 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1947 perf_missing_features.exclude_guest = true;
1948 pr_debug2("switching off exclude_guest, exclude_host\n");
1949 goto fallback_missing_features;
1950 } else if (!perf_missing_features.sample_id_all) {
1951 perf_missing_features.sample_id_all = true;
1952 pr_debug2("switching off sample_id_all\n");
1953 goto retry_sample_id;
1954 } else if (!perf_missing_features.lbr_flags &&
1955 (evsel->attr.branch_sample_type &
1956 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1957 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1958 perf_missing_features.lbr_flags = true;
1959 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1960 goto fallback_missing_features;
1961 } else if (!perf_missing_features.group_read &&
1962 evsel->attr.inherit &&
1963 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1964 perf_evsel__is_group_leader(evsel)) {
1965 perf_missing_features.group_read = true;
1966 pr_debug2("switching off group read\n");
1967 goto fallback_missing_features;
1968 }
1969out_close:
1970 if (err)
1971 threads->err_thread = thread;
1972
1973 do {
1974 while (--thread >= 0) {
1975 close(FD(evsel, cpu, thread));
1976 FD(evsel, cpu, thread) = -1;
1977 }
1978 thread = nthreads;
1979 } while (--cpu >= 0);
1980 return err;
1981}
1982
1983void perf_evsel__close(struct perf_evsel *evsel)
1984{
1985 if (evsel->fd == NULL)
1986 return;
1987
1988 perf_evsel__close_fd(evsel);
1989 perf_evsel__free_fd(evsel);
1990}
1991
1992int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1993 struct cpu_map *cpus)
1994{
1995 return perf_evsel__open(evsel, cpus, NULL);
1996}
1997
1998int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1999 struct thread_map *threads)
2000{
2001 return perf_evsel__open(evsel, NULL, threads);
2002}
2003
2004static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2005 const union perf_event *event,
2006 struct perf_sample *sample)
2007{
2008 u64 type = evsel->attr.sample_type;
2009 const u64 *array = event->sample.array;
2010 bool swapped = evsel->needs_swap;
2011 union u64_swap u;
2012
2013 array += ((event->header.size -
2014 sizeof(event->header)) / sizeof(u64)) - 1;
2015
2016 if (type & PERF_SAMPLE_IDENTIFIER) {
2017 sample->id = *array;
2018 array--;
2019 }
2020
2021 if (type & PERF_SAMPLE_CPU) {
2022 u.val64 = *array;
2023 if (swapped) {
2024 /* undo swap of u64, then swap on individual u32s */
2025 u.val64 = bswap_64(u.val64);
2026 u.val32[0] = bswap_32(u.val32[0]);
2027 }
2028
2029 sample->cpu = u.val32[0];
2030 array--;
2031 }
2032
2033 if (type & PERF_SAMPLE_STREAM_ID) {
2034 sample->stream_id = *array;
2035 array--;
2036 }
2037
2038 if (type & PERF_SAMPLE_ID) {
2039 sample->id = *array;
2040 array--;
2041 }
2042
2043 if (type & PERF_SAMPLE_TIME) {
2044 sample->time = *array;
2045 array--;
2046 }
2047
2048 if (type & PERF_SAMPLE_TID) {
2049 u.val64 = *array;
2050 if (swapped) {
2051 /* undo swap of u64, then swap on individual u32s */
2052 u.val64 = bswap_64(u.val64);
2053 u.val32[0] = bswap_32(u.val32[0]);
2054 u.val32[1] = bswap_32(u.val32[1]);
2055 }
2056
2057 sample->pid = u.val32[0];
2058 sample->tid = u.val32[1];
2059 array--;
2060 }
2061
2062 return 0;
2063}
2064
2065static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2066 u64 size)
2067{
2068 return size > max_size || offset + size > endp;
2069}
2070
2071#define OVERFLOW_CHECK(offset, size, max_size) \
2072 do { \
2073 if (overflow(endp, (max_size), (offset), (size))) \
2074 return -EFAULT; \
2075 } while (0)
2076
2077#define OVERFLOW_CHECK_u64(offset) \
2078 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2079
2080static int
2081perf_event__check_size(union perf_event *event, unsigned int sample_size)
2082{
2083 /*
2084 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2085 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2086 * check the format does not go past the end of the event.
2087 */
2088 if (sample_size + sizeof(event->header) > event->header.size)
2089 return -EFAULT;
2090
2091 return 0;
2092}
2093
2094int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2095 struct perf_sample *data)
2096{
2097 u64 type = evsel->attr.sample_type;
2098 bool swapped = evsel->needs_swap;
2099 const u64 *array;
2100 u16 max_size = event->header.size;
2101 const void *endp = (void *)event + max_size;
2102 u64 sz;
2103
2104 /*
2105 * used for cross-endian analysis. See git commit 65014ab3
2106 * for why this goofiness is needed.
2107 */
2108 union u64_swap u;
2109
2110 memset(data, 0, sizeof(*data));
2111 data->cpu = data->pid = data->tid = -1;
2112 data->stream_id = data->id = data->time = -1ULL;
2113 data->period = evsel->attr.sample_period;
2114 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2115 data->misc = event->header.misc;
2116 data->id = -1ULL;
2117 data->data_src = PERF_MEM_DATA_SRC_NONE;
2118
2119 if (event->header.type != PERF_RECORD_SAMPLE) {
2120 if (!evsel->attr.sample_id_all)
2121 return 0;
2122 return perf_evsel__parse_id_sample(evsel, event, data);
2123 }
2124
2125 array = event->sample.array;
2126
2127 if (perf_event__check_size(event, evsel->sample_size))
2128 return -EFAULT;
2129
2130 if (type & PERF_SAMPLE_IDENTIFIER) {
2131 data->id = *array;
2132 array++;
2133 }
2134
2135 if (type & PERF_SAMPLE_IP) {
2136 data->ip = *array;
2137 array++;
2138 }
2139
2140 if (type & PERF_SAMPLE_TID) {
2141 u.val64 = *array;
2142 if (swapped) {
2143 /* undo swap of u64, then swap on individual u32s */
2144 u.val64 = bswap_64(u.val64);
2145 u.val32[0] = bswap_32(u.val32[0]);
2146 u.val32[1] = bswap_32(u.val32[1]);
2147 }
2148
2149 data->pid = u.val32[0];
2150 data->tid = u.val32[1];
2151 array++;
2152 }
2153
2154 if (type & PERF_SAMPLE_TIME) {
2155 data->time = *array;
2156 array++;
2157 }
2158
2159 if (type & PERF_SAMPLE_ADDR) {
2160 data->addr = *array;
2161 array++;
2162 }
2163
2164 if (type & PERF_SAMPLE_ID) {
2165 data->id = *array;
2166 array++;
2167 }
2168
2169 if (type & PERF_SAMPLE_STREAM_ID) {
2170 data->stream_id = *array;
2171 array++;
2172 }
2173
2174 if (type & PERF_SAMPLE_CPU) {
2175
2176 u.val64 = *array;
2177 if (swapped) {
2178 /* undo swap of u64, then swap on individual u32s */
2179 u.val64 = bswap_64(u.val64);
2180 u.val32[0] = bswap_32(u.val32[0]);
2181 }
2182
2183 data->cpu = u.val32[0];
2184 array++;
2185 }
2186
2187 if (type & PERF_SAMPLE_PERIOD) {
2188 data->period = *array;
2189 array++;
2190 }
2191
2192 if (type & PERF_SAMPLE_READ) {
2193 u64 read_format = evsel->attr.read_format;
2194
2195 OVERFLOW_CHECK_u64(array);
2196 if (read_format & PERF_FORMAT_GROUP)
2197 data->read.group.nr = *array;
2198 else
2199 data->read.one.value = *array;
2200
2201 array++;
2202
2203 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2204 OVERFLOW_CHECK_u64(array);
2205 data->read.time_enabled = *array;
2206 array++;
2207 }
2208
2209 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2210 OVERFLOW_CHECK_u64(array);
2211 data->read.time_running = *array;
2212 array++;
2213 }
2214
2215 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2216 if (read_format & PERF_FORMAT_GROUP) {
2217 const u64 max_group_nr = UINT64_MAX /
2218 sizeof(struct sample_read_value);
2219
2220 if (data->read.group.nr > max_group_nr)
2221 return -EFAULT;
2222 sz = data->read.group.nr *
2223 sizeof(struct sample_read_value);
2224 OVERFLOW_CHECK(array, sz, max_size);
2225 data->read.group.values =
2226 (struct sample_read_value *)array;
2227 array = (void *)array + sz;
2228 } else {
2229 OVERFLOW_CHECK_u64(array);
2230 data->read.one.id = *array;
2231 array++;
2232 }
2233 }
2234
2235 if (evsel__has_callchain(evsel)) {
2236 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2237
2238 OVERFLOW_CHECK_u64(array);
2239 data->callchain = (struct ip_callchain *)array++;
2240 if (data->callchain->nr > max_callchain_nr)
2241 return -EFAULT;
2242 sz = data->callchain->nr * sizeof(u64);
2243 OVERFLOW_CHECK(array, sz, max_size);
2244 array = (void *)array + sz;
2245 }
2246
2247 if (type & PERF_SAMPLE_RAW) {
2248 OVERFLOW_CHECK_u64(array);
2249 u.val64 = *array;
2250
2251 /*
2252 * Undo swap of u64, then swap on individual u32s,
2253 * get the size of the raw area and undo all of the
2254 * swap. The pevent interface handles endianity by
2255 * itself.
2256 */
2257 if (swapped) {
2258 u.val64 = bswap_64(u.val64);
2259 u.val32[0] = bswap_32(u.val32[0]);
2260 u.val32[1] = bswap_32(u.val32[1]);
2261 }
2262 data->raw_size = u.val32[0];
2263
2264 /*
2265 * The raw data is aligned on 64bits including the
2266 * u32 size, so it's safe to use mem_bswap_64.
2267 */
2268 if (swapped)
2269 mem_bswap_64((void *) array, data->raw_size);
2270
2271 array = (void *)array + sizeof(u32);
2272
2273 OVERFLOW_CHECK(array, data->raw_size, max_size);
2274 data->raw_data = (void *)array;
2275 array = (void *)array + data->raw_size;
2276 }
2277
2278 if (type & PERF_SAMPLE_BRANCH_STACK) {
2279 const u64 max_branch_nr = UINT64_MAX /
2280 sizeof(struct branch_entry);
2281
2282 OVERFLOW_CHECK_u64(array);
2283 data->branch_stack = (struct branch_stack *)array++;
2284
2285 if (data->branch_stack->nr > max_branch_nr)
2286 return -EFAULT;
2287 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2288 OVERFLOW_CHECK(array, sz, max_size);
2289 array = (void *)array + sz;
2290 }
2291
2292 if (type & PERF_SAMPLE_REGS_USER) {
2293 OVERFLOW_CHECK_u64(array);
2294 data->user_regs.abi = *array;
2295 array++;
2296
2297 if (data->user_regs.abi) {
2298 u64 mask = evsel->attr.sample_regs_user;
2299
2300 sz = hweight_long(mask) * sizeof(u64);
2301 OVERFLOW_CHECK(array, sz, max_size);
2302 data->user_regs.mask = mask;
2303 data->user_regs.regs = (u64 *)array;
2304 array = (void *)array + sz;
2305 }
2306 }
2307
2308 if (type & PERF_SAMPLE_STACK_USER) {
2309 OVERFLOW_CHECK_u64(array);
2310 sz = *array++;
2311
2312 data->user_stack.offset = ((char *)(array - 1)
2313 - (char *) event);
2314
2315 if (!sz) {
2316 data->user_stack.size = 0;
2317 } else {
2318 OVERFLOW_CHECK(array, sz, max_size);
2319 data->user_stack.data = (char *)array;
2320 array = (void *)array + sz;
2321 OVERFLOW_CHECK_u64(array);
2322 data->user_stack.size = *array++;
2323 if (WARN_ONCE(data->user_stack.size > sz,
2324 "user stack dump failure\n"))
2325 return -EFAULT;
2326 }
2327 }
2328
2329 if (type & PERF_SAMPLE_WEIGHT) {
2330 OVERFLOW_CHECK_u64(array);
2331 data->weight = *array;
2332 array++;
2333 }
2334
2335 if (type & PERF_SAMPLE_DATA_SRC) {
2336 OVERFLOW_CHECK_u64(array);
2337 data->data_src = *array;
2338 array++;
2339 }
2340
2341 if (type & PERF_SAMPLE_TRANSACTION) {
2342 OVERFLOW_CHECK_u64(array);
2343 data->transaction = *array;
2344 array++;
2345 }
2346
2347 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2348 if (type & PERF_SAMPLE_REGS_INTR) {
2349 OVERFLOW_CHECK_u64(array);
2350 data->intr_regs.abi = *array;
2351 array++;
2352
2353 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2354 u64 mask = evsel->attr.sample_regs_intr;
2355
2356 sz = hweight_long(mask) * sizeof(u64);
2357 OVERFLOW_CHECK(array, sz, max_size);
2358 data->intr_regs.mask = mask;
2359 data->intr_regs.regs = (u64 *)array;
2360 array = (void *)array + sz;
2361 }
2362 }
2363
2364 data->phys_addr = 0;
2365 if (type & PERF_SAMPLE_PHYS_ADDR) {
2366 data->phys_addr = *array;
2367 array++;
2368 }
2369
2370 return 0;
2371}
2372
2373int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2374 union perf_event *event,
2375 u64 *timestamp)
2376{
2377 u64 type = evsel->attr.sample_type;
2378 const u64 *array;
2379
2380 if (!(type & PERF_SAMPLE_TIME))
2381 return -1;
2382
2383 if (event->header.type != PERF_RECORD_SAMPLE) {
2384 struct perf_sample data = {
2385 .time = -1ULL,
2386 };
2387
2388 if (!evsel->attr.sample_id_all)
2389 return -1;
2390 if (perf_evsel__parse_id_sample(evsel, event, &data))
2391 return -1;
2392
2393 *timestamp = data.time;
2394 return 0;
2395 }
2396
2397 array = event->sample.array;
2398
2399 if (perf_event__check_size(event, evsel->sample_size))
2400 return -EFAULT;
2401
2402 if (type & PERF_SAMPLE_IDENTIFIER)
2403 array++;
2404
2405 if (type & PERF_SAMPLE_IP)
2406 array++;
2407
2408 if (type & PERF_SAMPLE_TID)
2409 array++;
2410
2411 if (type & PERF_SAMPLE_TIME)
2412 *timestamp = *array;
2413
2414 return 0;
2415}
2416
2417size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2418 u64 read_format)
2419{
2420 size_t sz, result = sizeof(struct sample_event);
2421
2422 if (type & PERF_SAMPLE_IDENTIFIER)
2423 result += sizeof(u64);
2424
2425 if (type & PERF_SAMPLE_IP)
2426 result += sizeof(u64);
2427
2428 if (type & PERF_SAMPLE_TID)
2429 result += sizeof(u64);
2430
2431 if (type & PERF_SAMPLE_TIME)
2432 result += sizeof(u64);
2433
2434 if (type & PERF_SAMPLE_ADDR)
2435 result += sizeof(u64);
2436
2437 if (type & PERF_SAMPLE_ID)
2438 result += sizeof(u64);
2439
2440 if (type & PERF_SAMPLE_STREAM_ID)
2441 result += sizeof(u64);
2442
2443 if (type & PERF_SAMPLE_CPU)
2444 result += sizeof(u64);
2445
2446 if (type & PERF_SAMPLE_PERIOD)
2447 result += sizeof(u64);
2448
2449 if (type & PERF_SAMPLE_READ) {
2450 result += sizeof(u64);
2451 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2452 result += sizeof(u64);
2453 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2454 result += sizeof(u64);
2455 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2456 if (read_format & PERF_FORMAT_GROUP) {
2457 sz = sample->read.group.nr *
2458 sizeof(struct sample_read_value);
2459 result += sz;
2460 } else {
2461 result += sizeof(u64);
2462 }
2463 }
2464
2465 if (type & PERF_SAMPLE_CALLCHAIN) {
2466 sz = (sample->callchain->nr + 1) * sizeof(u64);
2467 result += sz;
2468 }
2469
2470 if (type & PERF_SAMPLE_RAW) {
2471 result += sizeof(u32);
2472 result += sample->raw_size;
2473 }
2474
2475 if (type & PERF_SAMPLE_BRANCH_STACK) {
2476 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2477 sz += sizeof(u64);
2478 result += sz;
2479 }
2480
2481 if (type & PERF_SAMPLE_REGS_USER) {
2482 if (sample->user_regs.abi) {
2483 result += sizeof(u64);
2484 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2485 result += sz;
2486 } else {
2487 result += sizeof(u64);
2488 }
2489 }
2490
2491 if (type & PERF_SAMPLE_STACK_USER) {
2492 sz = sample->user_stack.size;
2493 result += sizeof(u64);
2494 if (sz) {
2495 result += sz;
2496 result += sizeof(u64);
2497 }
2498 }
2499
2500 if (type & PERF_SAMPLE_WEIGHT)
2501 result += sizeof(u64);
2502
2503 if (type & PERF_SAMPLE_DATA_SRC)
2504 result += sizeof(u64);
2505
2506 if (type & PERF_SAMPLE_TRANSACTION)
2507 result += sizeof(u64);
2508
2509 if (type & PERF_SAMPLE_REGS_INTR) {
2510 if (sample->intr_regs.abi) {
2511 result += sizeof(u64);
2512 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2513 result += sz;
2514 } else {
2515 result += sizeof(u64);
2516 }
2517 }
2518
2519 if (type & PERF_SAMPLE_PHYS_ADDR)
2520 result += sizeof(u64);
2521
2522 return result;
2523}
2524
2525int perf_event__synthesize_sample(union perf_event *event, u64 type,
2526 u64 read_format,
2527 const struct perf_sample *sample)
2528{
2529 u64 *array;
2530 size_t sz;
2531 /*
2532 * used for cross-endian analysis. See git commit 65014ab3
2533 * for why this goofiness is needed.
2534 */
2535 union u64_swap u;
2536
2537 array = event->sample.array;
2538
2539 if (type & PERF_SAMPLE_IDENTIFIER) {
2540 *array = sample->id;
2541 array++;
2542 }
2543
2544 if (type & PERF_SAMPLE_IP) {
2545 *array = sample->ip;
2546 array++;
2547 }
2548
2549 if (type & PERF_SAMPLE_TID) {
2550 u.val32[0] = sample->pid;
2551 u.val32[1] = sample->tid;
2552 *array = u.val64;
2553 array++;
2554 }
2555
2556 if (type & PERF_SAMPLE_TIME) {
2557 *array = sample->time;
2558 array++;
2559 }
2560
2561 if (type & PERF_SAMPLE_ADDR) {
2562 *array = sample->addr;
2563 array++;
2564 }
2565
2566 if (type & PERF_SAMPLE_ID) {
2567 *array = sample->id;
2568 array++;
2569 }
2570
2571 if (type & PERF_SAMPLE_STREAM_ID) {
2572 *array = sample->stream_id;
2573 array++;
2574 }
2575
2576 if (type & PERF_SAMPLE_CPU) {
2577 u.val32[0] = sample->cpu;
2578 u.val32[1] = 0;
2579 *array = u.val64;
2580 array++;
2581 }
2582
2583 if (type & PERF_SAMPLE_PERIOD) {
2584 *array = sample->period;
2585 array++;
2586 }
2587
2588 if (type & PERF_SAMPLE_READ) {
2589 if (read_format & PERF_FORMAT_GROUP)
2590 *array = sample->read.group.nr;
2591 else
2592 *array = sample->read.one.value;
2593 array++;
2594
2595 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2596 *array = sample->read.time_enabled;
2597 array++;
2598 }
2599
2600 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2601 *array = sample->read.time_running;
2602 array++;
2603 }
2604
2605 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2606 if (read_format & PERF_FORMAT_GROUP) {
2607 sz = sample->read.group.nr *
2608 sizeof(struct sample_read_value);
2609 memcpy(array, sample->read.group.values, sz);
2610 array = (void *)array + sz;
2611 } else {
2612 *array = sample->read.one.id;
2613 array++;
2614 }
2615 }
2616
2617 if (type & PERF_SAMPLE_CALLCHAIN) {
2618 sz = (sample->callchain->nr + 1) * sizeof(u64);
2619 memcpy(array, sample->callchain, sz);
2620 array = (void *)array + sz;
2621 }
2622
2623 if (type & PERF_SAMPLE_RAW) {
2624 u.val32[0] = sample->raw_size;
2625 *array = u.val64;
2626 array = (void *)array + sizeof(u32);
2627
2628 memcpy(array, sample->raw_data, sample->raw_size);
2629 array = (void *)array + sample->raw_size;
2630 }
2631
2632 if (type & PERF_SAMPLE_BRANCH_STACK) {
2633 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2634 sz += sizeof(u64);
2635 memcpy(array, sample->branch_stack, sz);
2636 array = (void *)array + sz;
2637 }
2638
2639 if (type & PERF_SAMPLE_REGS_USER) {
2640 if (sample->user_regs.abi) {
2641 *array++ = sample->user_regs.abi;
2642 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2643 memcpy(array, sample->user_regs.regs, sz);
2644 array = (void *)array + sz;
2645 } else {
2646 *array++ = 0;
2647 }
2648 }
2649
2650 if (type & PERF_SAMPLE_STACK_USER) {
2651 sz = sample->user_stack.size;
2652 *array++ = sz;
2653 if (sz) {
2654 memcpy(array, sample->user_stack.data, sz);
2655 array = (void *)array + sz;
2656 *array++ = sz;
2657 }
2658 }
2659
2660 if (type & PERF_SAMPLE_WEIGHT) {
2661 *array = sample->weight;
2662 array++;
2663 }
2664
2665 if (type & PERF_SAMPLE_DATA_SRC) {
2666 *array = sample->data_src;
2667 array++;
2668 }
2669
2670 if (type & PERF_SAMPLE_TRANSACTION) {
2671 *array = sample->transaction;
2672 array++;
2673 }
2674
2675 if (type & PERF_SAMPLE_REGS_INTR) {
2676 if (sample->intr_regs.abi) {
2677 *array++ = sample->intr_regs.abi;
2678 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2679 memcpy(array, sample->intr_regs.regs, sz);
2680 array = (void *)array + sz;
2681 } else {
2682 *array++ = 0;
2683 }
2684 }
2685
2686 if (type & PERF_SAMPLE_PHYS_ADDR) {
2687 *array = sample->phys_addr;
2688 array++;
2689 }
2690
2691 return 0;
2692}
2693
2694struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2695{
2696 return tep_find_field(evsel->tp_format, name);
2697}
2698
2699void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2700 const char *name)
2701{
2702 struct format_field *field = perf_evsel__field(evsel, name);
2703 int offset;
2704
2705 if (!field)
2706 return NULL;
2707
2708 offset = field->offset;
2709
2710 if (field->flags & FIELD_IS_DYNAMIC) {
2711 offset = *(int *)(sample->raw_data + field->offset);
2712 offset &= 0xffff;
2713 }
2714
2715 return sample->raw_data + offset;
2716}
2717
2718u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2719 bool needs_swap)
2720{
2721 u64 value;
2722 void *ptr = sample->raw_data + field->offset;
2723
2724 switch (field->size) {
2725 case 1:
2726 return *(u8 *)ptr;
2727 case 2:
2728 value = *(u16 *)ptr;
2729 break;
2730 case 4:
2731 value = *(u32 *)ptr;
2732 break;
2733 case 8:
2734 memcpy(&value, ptr, sizeof(u64));
2735 break;
2736 default:
2737 return 0;
2738 }
2739
2740 if (!needs_swap)
2741 return value;
2742
2743 switch (field->size) {
2744 case 2:
2745 return bswap_16(value);
2746 case 4:
2747 return bswap_32(value);
2748 case 8:
2749 return bswap_64(value);
2750 default:
2751 return 0;
2752 }
2753
2754 return 0;
2755}
2756
2757u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2758 const char *name)
2759{
2760 struct format_field *field = perf_evsel__field(evsel, name);
2761
2762 if (!field)
2763 return 0;
2764
2765 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2766}
2767
2768bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2769 char *msg, size_t msgsize)
2770{
2771 int paranoid;
2772
2773 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2774 evsel->attr.type == PERF_TYPE_HARDWARE &&
2775 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2776 /*
2777 * If it's cycles then fall back to hrtimer based
2778 * cpu-clock-tick sw counter, which is always available even if
2779 * no PMU support.
2780 *
2781 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2782 * b0a873e).
2783 */
2784 scnprintf(msg, msgsize, "%s",
2785"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2786
2787 evsel->attr.type = PERF_TYPE_SOFTWARE;
2788 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2789
2790 zfree(&evsel->name);
2791 return true;
2792 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2793 (paranoid = perf_event_paranoid()) > 1) {
2794 const char *name = perf_evsel__name(evsel);
2795 char *new_name;
2796 const char *sep = ":";
2797
2798 /* Is there already the separator in the name. */
2799 if (strchr(name, '/') ||
2800 strchr(name, ':'))
2801 sep = "";
2802
2803 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2804 return false;
2805
2806 if (evsel->name)
2807 free(evsel->name);
2808 evsel->name = new_name;
2809 scnprintf(msg, msgsize,
2810"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2811 evsel->attr.exclude_kernel = 1;
2812
2813 return true;
2814 }
2815
2816 return false;
2817}
2818
2819static bool find_process(const char *name)
2820{
2821 size_t len = strlen(name);
2822 DIR *dir;
2823 struct dirent *d;
2824 int ret = -1;
2825
2826 dir = opendir(procfs__mountpoint());
2827 if (!dir)
2828 return false;
2829
2830 /* Walk through the directory. */
2831 while (ret && (d = readdir(dir)) != NULL) {
2832 char path[PATH_MAX];
2833 char *data;
2834 size_t size;
2835
2836 if ((d->d_type != DT_DIR) ||
2837 !strcmp(".", d->d_name) ||
2838 !strcmp("..", d->d_name))
2839 continue;
2840
2841 scnprintf(path, sizeof(path), "%s/%s/comm",
2842 procfs__mountpoint(), d->d_name);
2843
2844 if (filename__read_str(path, &data, &size))
2845 continue;
2846
2847 ret = strncmp(name, data, len);
2848 free(data);
2849 }
2850
2851 closedir(dir);
2852 return ret ? false : true;
2853}
2854
2855int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2856 int err, char *msg, size_t size)
2857{
2858 char sbuf[STRERR_BUFSIZE];
2859 int printed = 0;
2860
2861 switch (err) {
2862 case EPERM:
2863 case EACCES:
2864 if (err == EPERM)
2865 printed = scnprintf(msg, size,
2866 "No permission to enable %s event.\n\n",
2867 perf_evsel__name(evsel));
2868
2869 return scnprintf(msg + printed, size - printed,
2870 "You may not have permission to collect %sstats.\n\n"
2871 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2872 "which controls use of the performance events system by\n"
2873 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2874 "The current value is %d:\n\n"
2875 " -1: Allow use of (almost) all events by all users\n"
2876 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2877 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2878 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2879 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2880 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2881 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2882 " kernel.perf_event_paranoid = -1\n" ,
2883 target->system_wide ? "system-wide " : "",
2884 perf_event_paranoid());
2885 case ENOENT:
2886 return scnprintf(msg, size, "The %s event is not supported.",
2887 perf_evsel__name(evsel));
2888 case EMFILE:
2889 return scnprintf(msg, size, "%s",
2890 "Too many events are opened.\n"
2891 "Probably the maximum number of open file descriptors has been reached.\n"
2892 "Hint: Try again after reducing the number of events.\n"
2893 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2894 case ENOMEM:
2895 if (evsel__has_callchain(evsel) &&
2896 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2897 return scnprintf(msg, size,
2898 "Not enough memory to setup event with callchain.\n"
2899 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2900 "Hint: Current value: %d", sysctl__max_stack());
2901 break;
2902 case ENODEV:
2903 if (target->cpu_list)
2904 return scnprintf(msg, size, "%s",
2905 "No such device - did you specify an out-of-range profile CPU?");
2906 break;
2907 case EOPNOTSUPP:
2908 if (evsel->attr.sample_period != 0)
2909 return scnprintf(msg, size,
2910 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2911 perf_evsel__name(evsel));
2912 if (evsel->attr.precise_ip)
2913 return scnprintf(msg, size, "%s",
2914 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2915#if defined(__i386__) || defined(__x86_64__)
2916 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2917 return scnprintf(msg, size, "%s",
2918 "No hardware sampling interrupt available.\n");
2919#endif
2920 break;
2921 case EBUSY:
2922 if (find_process("oprofiled"))
2923 return scnprintf(msg, size,
2924 "The PMU counters are busy/taken by another profiler.\n"
2925 "We found oprofile daemon running, please stop it and try again.");
2926 break;
2927 case EINVAL:
2928 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2929 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2930 if (perf_missing_features.clockid)
2931 return scnprintf(msg, size, "clockid feature not supported.");
2932 if (perf_missing_features.clockid_wrong)
2933 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2934 break;
2935 default:
2936 break;
2937 }
2938
2939 return scnprintf(msg, size,
2940 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2941 "/bin/dmesg | grep -i perf may provide additional information.\n",
2942 err, str_error_r(err, sbuf, sizeof(sbuf)),
2943 perf_evsel__name(evsel));
2944}
2945
2946struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2947{
2948 if (evsel && evsel->evlist)
2949 return evsel->evlist->env;
2950 return NULL;
2951}