| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| 4 | * |
| 5 | * Uses a block device as cache for other block devices; optimized for SSDs. |
| 6 | * All allocation is done in buckets, which should match the erase block size |
| 7 | * of the device. |
| 8 | * |
| 9 | * Buckets containing cached data are kept on a heap sorted by priority; |
| 10 | * bucket priority is increased on cache hit, and periodically all the buckets |
| 11 | * on the heap have their priority scaled down. This currently is just used as |
| 12 | * an LRU but in the future should allow for more intelligent heuristics. |
| 13 | * |
| 14 | * Buckets have an 8 bit counter; freeing is accomplished by incrementing the |
| 15 | * counter. Garbage collection is used to remove stale pointers. |
| 16 | * |
| 17 | * Indexing is done via a btree; nodes are not necessarily fully sorted, rather |
| 18 | * as keys are inserted we only sort the pages that have not yet been written. |
| 19 | * When garbage collection is run, we resort the entire node. |
| 20 | * |
| 21 | * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. |
| 22 | */ |
| 23 | |
| 24 | #include "bcache.h" |
| 25 | #include "btree.h" |
| 26 | #include "debug.h" |
| 27 | #include "extents.h" |
| 28 | |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/bitops.h> |
| 31 | #include <linux/hash.h> |
| 32 | #include <linux/kthread.h> |
| 33 | #include <linux/prefetch.h> |
| 34 | #include <linux/random.h> |
| 35 | #include <linux/rcupdate.h> |
| 36 | #include <linux/sched/clock.h> |
| 37 | #include <linux/rculist.h> |
| 38 | #include <linux/delay.h> |
| 39 | #include <trace/events/bcache.h> |
| 40 | |
| 41 | /* |
| 42 | * Todo: |
| 43 | * register_bcache: Return errors out to userspace correctly |
| 44 | * |
| 45 | * Writeback: don't undirty key until after a cache flush |
| 46 | * |
| 47 | * Create an iterator for key pointers |
| 48 | * |
| 49 | * On btree write error, mark bucket such that it won't be freed from the cache |
| 50 | * |
| 51 | * Journalling: |
| 52 | * Check for bad keys in replay |
| 53 | * Propagate barriers |
| 54 | * Refcount journal entries in journal_replay |
| 55 | * |
| 56 | * Garbage collection: |
| 57 | * Finish incremental gc |
| 58 | * Gc should free old UUIDs, data for invalid UUIDs |
| 59 | * |
| 60 | * Provide a way to list backing device UUIDs we have data cached for, and |
| 61 | * probably how long it's been since we've seen them, and a way to invalidate |
| 62 | * dirty data for devices that will never be attached again |
| 63 | * |
| 64 | * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so |
| 65 | * that based on that and how much dirty data we have we can keep writeback |
| 66 | * from being starved |
| 67 | * |
| 68 | * Add a tracepoint or somesuch to watch for writeback starvation |
| 69 | * |
| 70 | * When btree depth > 1 and splitting an interior node, we have to make sure |
| 71 | * alloc_bucket() cannot fail. This should be true but is not completely |
| 72 | * obvious. |
| 73 | * |
| 74 | * Plugging? |
| 75 | * |
| 76 | * If data write is less than hard sector size of ssd, round up offset in open |
| 77 | * bucket to the next whole sector |
| 78 | * |
| 79 | * Superblock needs to be fleshed out for multiple cache devices |
| 80 | * |
| 81 | * Add a sysfs tunable for the number of writeback IOs in flight |
| 82 | * |
| 83 | * Add a sysfs tunable for the number of open data buckets |
| 84 | * |
| 85 | * IO tracking: Can we track when one process is doing io on behalf of another? |
| 86 | * IO tracking: Don't use just an average, weigh more recent stuff higher |
| 87 | * |
| 88 | * Test module load/unload |
| 89 | */ |
| 90 | |
| 91 | #define MAX_NEED_GC 64 |
| 92 | #define MAX_SAVE_PRIO 72 |
| 93 | #define MAX_GC_TIMES 100 |
| 94 | #define MIN_GC_NODES 100 |
| 95 | #define GC_SLEEP_MS 100 |
| 96 | |
| 97 | #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) |
| 98 | |
| 99 | #define PTR_HASH(c, k) \ |
| 100 | (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) |
| 101 | |
| 102 | #define insert_lock(s, b) ((b)->level <= (s)->lock) |
| 103 | |
| 104 | /* |
| 105 | * These macros are for recursing down the btree - they handle the details of |
| 106 | * locking and looking up nodes in the cache for you. They're best treated as |
| 107 | * mere syntax when reading code that uses them. |
| 108 | * |
| 109 | * op->lock determines whether we take a read or a write lock at a given depth. |
| 110 | * If you've got a read lock and find that you need a write lock (i.e. you're |
| 111 | * going to have to split), set op->lock and return -EINTR; btree_root() will |
| 112 | * call you again and you'll have the correct lock. |
| 113 | */ |
| 114 | |
| 115 | /** |
| 116 | * btree - recurse down the btree on a specified key |
| 117 | * @fn: function to call, which will be passed the child node |
| 118 | * @key: key to recurse on |
| 119 | * @b: parent btree node |
| 120 | * @op: pointer to struct btree_op |
| 121 | */ |
| 122 | #define btree(fn, key, b, op, ...) \ |
| 123 | ({ \ |
| 124 | int _r, l = (b)->level - 1; \ |
| 125 | bool _w = l <= (op)->lock; \ |
| 126 | struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ |
| 127 | _w, b); \ |
| 128 | if (!IS_ERR(_child)) { \ |
| 129 | _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ |
| 130 | rw_unlock(_w, _child); \ |
| 131 | } else \ |
| 132 | _r = PTR_ERR(_child); \ |
| 133 | _r; \ |
| 134 | }) |
| 135 | |
| 136 | /** |
| 137 | * btree_root - call a function on the root of the btree |
| 138 | * @fn: function to call, which will be passed the child node |
| 139 | * @c: cache set |
| 140 | * @op: pointer to struct btree_op |
| 141 | */ |
| 142 | #define btree_root(fn, c, op, ...) \ |
| 143 | ({ \ |
| 144 | int _r = -EINTR; \ |
| 145 | do { \ |
| 146 | struct btree *_b = (c)->root; \ |
| 147 | bool _w = insert_lock(op, _b); \ |
| 148 | rw_lock(_w, _b, _b->level); \ |
| 149 | if (_b == (c)->root && \ |
| 150 | _w == insert_lock(op, _b)) { \ |
| 151 | _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ |
| 152 | } \ |
| 153 | rw_unlock(_w, _b); \ |
| 154 | bch_cannibalize_unlock(c); \ |
| 155 | if (_r == -EINTR) \ |
| 156 | schedule(); \ |
| 157 | } while (_r == -EINTR); \ |
| 158 | \ |
| 159 | finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ |
| 160 | _r; \ |
| 161 | }) |
| 162 | |
| 163 | static inline struct bset *write_block(struct btree *b) |
| 164 | { |
| 165 | return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); |
| 166 | } |
| 167 | |
| 168 | static void bch_btree_init_next(struct btree *b) |
| 169 | { |
| 170 | /* If not a leaf node, always sort */ |
| 171 | if (b->level && b->keys.nsets) |
| 172 | bch_btree_sort(&b->keys, &b->c->sort); |
| 173 | else |
| 174 | bch_btree_sort_lazy(&b->keys, &b->c->sort); |
| 175 | |
| 176 | if (b->written < btree_blocks(b)) |
| 177 | bch_bset_init_next(&b->keys, write_block(b), |
| 178 | bset_magic(&b->c->sb)); |
| 179 | |
| 180 | } |
| 181 | |
| 182 | /* Btree key manipulation */ |
| 183 | |
| 184 | void bkey_put(struct cache_set *c, struct bkey *k) |
| 185 | { |
| 186 | unsigned int i; |
| 187 | |
| 188 | for (i = 0; i < KEY_PTRS(k); i++) |
| 189 | if (ptr_available(c, k, i)) |
| 190 | atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); |
| 191 | } |
| 192 | |
| 193 | /* Btree IO */ |
| 194 | |
| 195 | static uint64_t btree_csum_set(struct btree *b, struct bset *i) |
| 196 | { |
| 197 | uint64_t crc = b->key.ptr[0]; |
| 198 | void *data = (void *) i + 8, *end = bset_bkey_last(i); |
| 199 | |
| 200 | crc = bch_crc64_update(crc, data, end - data); |
| 201 | return crc ^ 0xffffffffffffffffULL; |
| 202 | } |
| 203 | |
| 204 | void bch_btree_node_read_done(struct btree *b) |
| 205 | { |
| 206 | const char *err = "bad btree header"; |
| 207 | struct bset *i = btree_bset_first(b); |
| 208 | struct btree_iter *iter; |
| 209 | |
| 210 | iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); |
| 211 | iter->size = b->c->sb.bucket_size / b->c->sb.block_size; |
| 212 | iter->used = 0; |
| 213 | |
| 214 | #ifdef CONFIG_BCACHE_DEBUG |
| 215 | iter->b = &b->keys; |
| 216 | #endif |
| 217 | |
| 218 | if (!i->seq) |
| 219 | goto err; |
| 220 | |
| 221 | for (; |
| 222 | b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; |
| 223 | i = write_block(b)) { |
| 224 | err = "unsupported bset version"; |
| 225 | if (i->version > BCACHE_BSET_VERSION) |
| 226 | goto err; |
| 227 | |
| 228 | err = "bad btree header"; |
| 229 | if (b->written + set_blocks(i, block_bytes(b->c)) > |
| 230 | btree_blocks(b)) |
| 231 | goto err; |
| 232 | |
| 233 | err = "bad magic"; |
| 234 | if (i->magic != bset_magic(&b->c->sb)) |
| 235 | goto err; |
| 236 | |
| 237 | err = "bad checksum"; |
| 238 | switch (i->version) { |
| 239 | case 0: |
| 240 | if (i->csum != csum_set(i)) |
| 241 | goto err; |
| 242 | break; |
| 243 | case BCACHE_BSET_VERSION: |
| 244 | if (i->csum != btree_csum_set(b, i)) |
| 245 | goto err; |
| 246 | break; |
| 247 | } |
| 248 | |
| 249 | err = "empty set"; |
| 250 | if (i != b->keys.set[0].data && !i->keys) |
| 251 | goto err; |
| 252 | |
| 253 | bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); |
| 254 | |
| 255 | b->written += set_blocks(i, block_bytes(b->c)); |
| 256 | } |
| 257 | |
| 258 | err = "corrupted btree"; |
| 259 | for (i = write_block(b); |
| 260 | bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); |
| 261 | i = ((void *) i) + block_bytes(b->c)) |
| 262 | if (i->seq == b->keys.set[0].data->seq) |
| 263 | goto err; |
| 264 | |
| 265 | bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); |
| 266 | |
| 267 | i = b->keys.set[0].data; |
| 268 | err = "short btree key"; |
| 269 | if (b->keys.set[0].size && |
| 270 | bkey_cmp(&b->key, &b->keys.set[0].end) < 0) |
| 271 | goto err; |
| 272 | |
| 273 | if (b->written < btree_blocks(b)) |
| 274 | bch_bset_init_next(&b->keys, write_block(b), |
| 275 | bset_magic(&b->c->sb)); |
| 276 | out: |
| 277 | mempool_free(iter, &b->c->fill_iter); |
| 278 | return; |
| 279 | err: |
| 280 | set_btree_node_io_error(b); |
| 281 | bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", |
| 282 | err, PTR_BUCKET_NR(b->c, &b->key, 0), |
| 283 | bset_block_offset(b, i), i->keys); |
| 284 | goto out; |
| 285 | } |
| 286 | |
| 287 | static void btree_node_read_endio(struct bio *bio) |
| 288 | { |
| 289 | struct closure *cl = bio->bi_private; |
| 290 | |
| 291 | closure_put(cl); |
| 292 | } |
| 293 | |
| 294 | static void bch_btree_node_read(struct btree *b) |
| 295 | { |
| 296 | uint64_t start_time = local_clock(); |
| 297 | struct closure cl; |
| 298 | struct bio *bio; |
| 299 | |
| 300 | trace_bcache_btree_read(b); |
| 301 | |
| 302 | closure_init_stack(&cl); |
| 303 | |
| 304 | bio = bch_bbio_alloc(b->c); |
| 305 | bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; |
| 306 | bio->bi_end_io = btree_node_read_endio; |
| 307 | bio->bi_private = &cl; |
| 308 | bio->bi_opf = REQ_OP_READ | REQ_META; |
| 309 | |
| 310 | bch_bio_map(bio, b->keys.set[0].data); |
| 311 | |
| 312 | bch_submit_bbio(bio, b->c, &b->key, 0); |
| 313 | closure_sync(&cl); |
| 314 | |
| 315 | if (bio->bi_status) |
| 316 | set_btree_node_io_error(b); |
| 317 | |
| 318 | bch_bbio_free(bio, b->c); |
| 319 | |
| 320 | if (btree_node_io_error(b)) |
| 321 | goto err; |
| 322 | |
| 323 | bch_btree_node_read_done(b); |
| 324 | bch_time_stats_update(&b->c->btree_read_time, start_time); |
| 325 | |
| 326 | return; |
| 327 | err: |
| 328 | bch_cache_set_error(b->c, "io error reading bucket %zu", |
| 329 | PTR_BUCKET_NR(b->c, &b->key, 0)); |
| 330 | } |
| 331 | |
| 332 | static void btree_complete_write(struct btree *b, struct btree_write *w) |
| 333 | { |
| 334 | if (w->prio_blocked && |
| 335 | !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) |
| 336 | wake_up_allocators(b->c); |
| 337 | |
| 338 | if (w->journal) { |
| 339 | atomic_dec_bug(w->journal); |
| 340 | __closure_wake_up(&b->c->journal.wait); |
| 341 | } |
| 342 | |
| 343 | w->prio_blocked = 0; |
| 344 | w->journal = NULL; |
| 345 | } |
| 346 | |
| 347 | static void btree_node_write_unlock(struct closure *cl) |
| 348 | { |
| 349 | struct btree *b = container_of(cl, struct btree, io); |
| 350 | |
| 351 | up(&b->io_mutex); |
| 352 | } |
| 353 | |
| 354 | static void __btree_node_write_done(struct closure *cl) |
| 355 | { |
| 356 | struct btree *b = container_of(cl, struct btree, io); |
| 357 | struct btree_write *w = btree_prev_write(b); |
| 358 | |
| 359 | bch_bbio_free(b->bio, b->c); |
| 360 | b->bio = NULL; |
| 361 | btree_complete_write(b, w); |
| 362 | |
| 363 | if (btree_node_dirty(b)) |
| 364 | schedule_delayed_work(&b->work, 30 * HZ); |
| 365 | |
| 366 | closure_return_with_destructor(cl, btree_node_write_unlock); |
| 367 | } |
| 368 | |
| 369 | static void btree_node_write_done(struct closure *cl) |
| 370 | { |
| 371 | struct btree *b = container_of(cl, struct btree, io); |
| 372 | |
| 373 | bio_free_pages(b->bio); |
| 374 | __btree_node_write_done(cl); |
| 375 | } |
| 376 | |
| 377 | static void btree_node_write_endio(struct bio *bio) |
| 378 | { |
| 379 | struct closure *cl = bio->bi_private; |
| 380 | struct btree *b = container_of(cl, struct btree, io); |
| 381 | |
| 382 | if (bio->bi_status) |
| 383 | set_btree_node_io_error(b); |
| 384 | |
| 385 | bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); |
| 386 | closure_put(cl); |
| 387 | } |
| 388 | |
| 389 | static void do_btree_node_write(struct btree *b) |
| 390 | { |
| 391 | struct closure *cl = &b->io; |
| 392 | struct bset *i = btree_bset_last(b); |
| 393 | BKEY_PADDED(key) k; |
| 394 | |
| 395 | i->version = BCACHE_BSET_VERSION; |
| 396 | i->csum = btree_csum_set(b, i); |
| 397 | |
| 398 | BUG_ON(b->bio); |
| 399 | b->bio = bch_bbio_alloc(b->c); |
| 400 | |
| 401 | b->bio->bi_end_io = btree_node_write_endio; |
| 402 | b->bio->bi_private = cl; |
| 403 | b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); |
| 404 | b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; |
| 405 | bch_bio_map(b->bio, i); |
| 406 | |
| 407 | /* |
| 408 | * If we're appending to a leaf node, we don't technically need FUA - |
| 409 | * this write just needs to be persisted before the next journal write, |
| 410 | * which will be marked FLUSH|FUA. |
| 411 | * |
| 412 | * Similarly if we're writing a new btree root - the pointer is going to |
| 413 | * be in the next journal entry. |
| 414 | * |
| 415 | * But if we're writing a new btree node (that isn't a root) or |
| 416 | * appending to a non leaf btree node, we need either FUA or a flush |
| 417 | * when we write the parent with the new pointer. FUA is cheaper than a |
| 418 | * flush, and writes appending to leaf nodes aren't blocking anything so |
| 419 | * just make all btree node writes FUA to keep things sane. |
| 420 | */ |
| 421 | |
| 422 | bkey_copy(&k.key, &b->key); |
| 423 | SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + |
| 424 | bset_sector_offset(&b->keys, i)); |
| 425 | |
| 426 | if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { |
| 427 | int j; |
| 428 | struct bio_vec *bv; |
| 429 | void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); |
| 430 | |
| 431 | bio_for_each_segment_all(bv, b->bio, j) |
| 432 | memcpy(page_address(bv->bv_page), |
| 433 | base + j * PAGE_SIZE, PAGE_SIZE); |
| 434 | |
| 435 | bch_submit_bbio(b->bio, b->c, &k.key, 0); |
| 436 | |
| 437 | continue_at(cl, btree_node_write_done, NULL); |
| 438 | } else { |
| 439 | /* |
| 440 | * No problem for multipage bvec since the bio is |
| 441 | * just allocated |
| 442 | */ |
| 443 | b->bio->bi_vcnt = 0; |
| 444 | bch_bio_map(b->bio, i); |
| 445 | |
| 446 | bch_submit_bbio(b->bio, b->c, &k.key, 0); |
| 447 | |
| 448 | closure_sync(cl); |
| 449 | continue_at_nobarrier(cl, __btree_node_write_done, NULL); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | void __bch_btree_node_write(struct btree *b, struct closure *parent) |
| 454 | { |
| 455 | struct bset *i = btree_bset_last(b); |
| 456 | |
| 457 | lockdep_assert_held(&b->write_lock); |
| 458 | |
| 459 | trace_bcache_btree_write(b); |
| 460 | |
| 461 | BUG_ON(current->bio_list); |
| 462 | BUG_ON(b->written >= btree_blocks(b)); |
| 463 | BUG_ON(b->written && !i->keys); |
| 464 | BUG_ON(btree_bset_first(b)->seq != i->seq); |
| 465 | bch_check_keys(&b->keys, "writing"); |
| 466 | |
| 467 | cancel_delayed_work(&b->work); |
| 468 | |
| 469 | /* If caller isn't waiting for write, parent refcount is cache set */ |
| 470 | down(&b->io_mutex); |
| 471 | closure_init(&b->io, parent ?: &b->c->cl); |
| 472 | |
| 473 | clear_bit(BTREE_NODE_dirty, &b->flags); |
| 474 | change_bit(BTREE_NODE_write_idx, &b->flags); |
| 475 | |
| 476 | do_btree_node_write(b); |
| 477 | |
| 478 | atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, |
| 479 | &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); |
| 480 | |
| 481 | b->written += set_blocks(i, block_bytes(b->c)); |
| 482 | } |
| 483 | |
| 484 | void bch_btree_node_write(struct btree *b, struct closure *parent) |
| 485 | { |
| 486 | unsigned int nsets = b->keys.nsets; |
| 487 | |
| 488 | lockdep_assert_held(&b->lock); |
| 489 | |
| 490 | __bch_btree_node_write(b, parent); |
| 491 | |
| 492 | /* |
| 493 | * do verify if there was more than one set initially (i.e. we did a |
| 494 | * sort) and we sorted down to a single set: |
| 495 | */ |
| 496 | if (nsets && !b->keys.nsets) |
| 497 | bch_btree_verify(b); |
| 498 | |
| 499 | bch_btree_init_next(b); |
| 500 | } |
| 501 | |
| 502 | static void bch_btree_node_write_sync(struct btree *b) |
| 503 | { |
| 504 | struct closure cl; |
| 505 | |
| 506 | closure_init_stack(&cl); |
| 507 | |
| 508 | mutex_lock(&b->write_lock); |
| 509 | bch_btree_node_write(b, &cl); |
| 510 | mutex_unlock(&b->write_lock); |
| 511 | |
| 512 | closure_sync(&cl); |
| 513 | } |
| 514 | |
| 515 | static void btree_node_write_work(struct work_struct *w) |
| 516 | { |
| 517 | struct btree *b = container_of(to_delayed_work(w), struct btree, work); |
| 518 | |
| 519 | mutex_lock(&b->write_lock); |
| 520 | if (btree_node_dirty(b)) |
| 521 | __bch_btree_node_write(b, NULL); |
| 522 | mutex_unlock(&b->write_lock); |
| 523 | } |
| 524 | |
| 525 | static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) |
| 526 | { |
| 527 | struct bset *i = btree_bset_last(b); |
| 528 | struct btree_write *w = btree_current_write(b); |
| 529 | |
| 530 | lockdep_assert_held(&b->write_lock); |
| 531 | |
| 532 | BUG_ON(!b->written); |
| 533 | BUG_ON(!i->keys); |
| 534 | |
| 535 | if (!btree_node_dirty(b)) |
| 536 | schedule_delayed_work(&b->work, 30 * HZ); |
| 537 | |
| 538 | set_btree_node_dirty(b); |
| 539 | |
| 540 | if (journal_ref) { |
| 541 | if (w->journal && |
| 542 | journal_pin_cmp(b->c, w->journal, journal_ref)) { |
| 543 | atomic_dec_bug(w->journal); |
| 544 | w->journal = NULL; |
| 545 | } |
| 546 | |
| 547 | if (!w->journal) { |
| 548 | w->journal = journal_ref; |
| 549 | atomic_inc(w->journal); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /* Force write if set is too big */ |
| 554 | if (set_bytes(i) > PAGE_SIZE - 48 && |
| 555 | !current->bio_list) |
| 556 | bch_btree_node_write(b, NULL); |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * Btree in memory cache - allocation/freeing |
| 561 | * mca -> memory cache |
| 562 | */ |
| 563 | |
| 564 | #define mca_reserve(c) (((c->root && c->root->level) \ |
| 565 | ? c->root->level : 1) * 8 + 16) |
| 566 | #define mca_can_free(c) \ |
| 567 | max_t(int, 0, c->btree_cache_used - mca_reserve(c)) |
| 568 | |
| 569 | static void mca_data_free(struct btree *b) |
| 570 | { |
| 571 | BUG_ON(b->io_mutex.count != 1); |
| 572 | |
| 573 | bch_btree_keys_free(&b->keys); |
| 574 | |
| 575 | b->c->btree_cache_used--; |
| 576 | list_move(&b->list, &b->c->btree_cache_freed); |
| 577 | } |
| 578 | |
| 579 | static void mca_bucket_free(struct btree *b) |
| 580 | { |
| 581 | BUG_ON(btree_node_dirty(b)); |
| 582 | |
| 583 | b->key.ptr[0] = 0; |
| 584 | hlist_del_init_rcu(&b->hash); |
| 585 | list_move(&b->list, &b->c->btree_cache_freeable); |
| 586 | } |
| 587 | |
| 588 | static unsigned int btree_order(struct bkey *k) |
| 589 | { |
| 590 | return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); |
| 591 | } |
| 592 | |
| 593 | static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) |
| 594 | { |
| 595 | if (!bch_btree_keys_alloc(&b->keys, |
| 596 | max_t(unsigned int, |
| 597 | ilog2(b->c->btree_pages), |
| 598 | btree_order(k)), |
| 599 | gfp)) { |
| 600 | b->c->btree_cache_used++; |
| 601 | list_move(&b->list, &b->c->btree_cache); |
| 602 | } else { |
| 603 | list_move(&b->list, &b->c->btree_cache_freed); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | static struct btree *mca_bucket_alloc(struct cache_set *c, |
| 608 | struct bkey *k, gfp_t gfp) |
| 609 | { |
| 610 | struct btree *b = kzalloc(sizeof(struct btree), gfp); |
| 611 | |
| 612 | if (!b) |
| 613 | return NULL; |
| 614 | |
| 615 | init_rwsem(&b->lock); |
| 616 | lockdep_set_novalidate_class(&b->lock); |
| 617 | mutex_init(&b->write_lock); |
| 618 | lockdep_set_novalidate_class(&b->write_lock); |
| 619 | INIT_LIST_HEAD(&b->list); |
| 620 | INIT_DELAYED_WORK(&b->work, btree_node_write_work); |
| 621 | b->c = c; |
| 622 | sema_init(&b->io_mutex, 1); |
| 623 | |
| 624 | mca_data_alloc(b, k, gfp); |
| 625 | return b; |
| 626 | } |
| 627 | |
| 628 | static int mca_reap(struct btree *b, unsigned int min_order, bool flush) |
| 629 | { |
| 630 | struct closure cl; |
| 631 | |
| 632 | closure_init_stack(&cl); |
| 633 | lockdep_assert_held(&b->c->bucket_lock); |
| 634 | |
| 635 | if (!down_write_trylock(&b->lock)) |
| 636 | return -ENOMEM; |
| 637 | |
| 638 | BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); |
| 639 | |
| 640 | if (b->keys.page_order < min_order) |
| 641 | goto out_unlock; |
| 642 | |
| 643 | if (!flush) { |
| 644 | if (btree_node_dirty(b)) |
| 645 | goto out_unlock; |
| 646 | |
| 647 | if (down_trylock(&b->io_mutex)) |
| 648 | goto out_unlock; |
| 649 | up(&b->io_mutex); |
| 650 | } |
| 651 | |
| 652 | retry: |
| 653 | /* |
| 654 | * BTREE_NODE_dirty might be cleared in btree_flush_btree() by |
| 655 | * __bch_btree_node_write(). To avoid an extra flush, acquire |
| 656 | * b->write_lock before checking BTREE_NODE_dirty bit. |
| 657 | */ |
| 658 | mutex_lock(&b->write_lock); |
| 659 | /* |
| 660 | * If this btree node is selected in btree_flush_write() by journal |
| 661 | * code, delay and retry until the node is flushed by journal code |
| 662 | * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). |
| 663 | */ |
| 664 | if (btree_node_journal_flush(b)) { |
| 665 | pr_debug("bnode %p is flushing by journal, retry", b); |
| 666 | mutex_unlock(&b->write_lock); |
| 667 | udelay(1); |
| 668 | goto retry; |
| 669 | } |
| 670 | |
| 671 | if (btree_node_dirty(b)) |
| 672 | __bch_btree_node_write(b, &cl); |
| 673 | mutex_unlock(&b->write_lock); |
| 674 | |
| 675 | closure_sync(&cl); |
| 676 | |
| 677 | /* wait for any in flight btree write */ |
| 678 | down(&b->io_mutex); |
| 679 | up(&b->io_mutex); |
| 680 | |
| 681 | return 0; |
| 682 | out_unlock: |
| 683 | rw_unlock(true, b); |
| 684 | return -ENOMEM; |
| 685 | } |
| 686 | |
| 687 | static unsigned long bch_mca_scan(struct shrinker *shrink, |
| 688 | struct shrink_control *sc) |
| 689 | { |
| 690 | struct cache_set *c = container_of(shrink, struct cache_set, shrink); |
| 691 | struct btree *b, *t; |
| 692 | unsigned long i, nr = sc->nr_to_scan; |
| 693 | unsigned long freed = 0; |
| 694 | unsigned int btree_cache_used; |
| 695 | |
| 696 | if (c->shrinker_disabled) |
| 697 | return SHRINK_STOP; |
| 698 | |
| 699 | if (c->btree_cache_alloc_lock) |
| 700 | return SHRINK_STOP; |
| 701 | |
| 702 | /* Return -1 if we can't do anything right now */ |
| 703 | if (sc->gfp_mask & __GFP_IO) |
| 704 | mutex_lock(&c->bucket_lock); |
| 705 | else if (!mutex_trylock(&c->bucket_lock)) |
| 706 | return -1; |
| 707 | |
| 708 | /* |
| 709 | * It's _really_ critical that we don't free too many btree nodes - we |
| 710 | * have to always leave ourselves a reserve. The reserve is how we |
| 711 | * guarantee that allocating memory for a new btree node can always |
| 712 | * succeed, so that inserting keys into the btree can always succeed and |
| 713 | * IO can always make forward progress: |
| 714 | */ |
| 715 | nr /= c->btree_pages; |
| 716 | if (nr == 0) |
| 717 | nr = 1; |
| 718 | nr = min_t(unsigned long, nr, mca_can_free(c)); |
| 719 | |
| 720 | i = 0; |
| 721 | btree_cache_used = c->btree_cache_used; |
| 722 | list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { |
| 723 | if (nr <= 0) |
| 724 | goto out; |
| 725 | |
| 726 | if (++i > 3 && |
| 727 | !mca_reap(b, 0, false)) { |
| 728 | mca_data_free(b); |
| 729 | rw_unlock(true, b); |
| 730 | freed++; |
| 731 | } |
| 732 | nr--; |
| 733 | } |
| 734 | |
| 735 | for (; (nr--) && i < btree_cache_used; i++) { |
| 736 | if (list_empty(&c->btree_cache)) |
| 737 | goto out; |
| 738 | |
| 739 | b = list_first_entry(&c->btree_cache, struct btree, list); |
| 740 | list_rotate_left(&c->btree_cache); |
| 741 | |
| 742 | if (!b->accessed && |
| 743 | !mca_reap(b, 0, false)) { |
| 744 | mca_bucket_free(b); |
| 745 | mca_data_free(b); |
| 746 | rw_unlock(true, b); |
| 747 | freed++; |
| 748 | } else |
| 749 | b->accessed = 0; |
| 750 | } |
| 751 | out: |
| 752 | mutex_unlock(&c->bucket_lock); |
| 753 | return freed * c->btree_pages; |
| 754 | } |
| 755 | |
| 756 | static unsigned long bch_mca_count(struct shrinker *shrink, |
| 757 | struct shrink_control *sc) |
| 758 | { |
| 759 | struct cache_set *c = container_of(shrink, struct cache_set, shrink); |
| 760 | |
| 761 | if (c->shrinker_disabled) |
| 762 | return 0; |
| 763 | |
| 764 | if (c->btree_cache_alloc_lock) |
| 765 | return 0; |
| 766 | |
| 767 | return mca_can_free(c) * c->btree_pages; |
| 768 | } |
| 769 | |
| 770 | void bch_btree_cache_free(struct cache_set *c) |
| 771 | { |
| 772 | struct btree *b; |
| 773 | struct closure cl; |
| 774 | |
| 775 | closure_init_stack(&cl); |
| 776 | |
| 777 | if (c->shrink.list.next) |
| 778 | unregister_shrinker(&c->shrink); |
| 779 | |
| 780 | mutex_lock(&c->bucket_lock); |
| 781 | |
| 782 | #ifdef CONFIG_BCACHE_DEBUG |
| 783 | if (c->verify_data) |
| 784 | list_move(&c->verify_data->list, &c->btree_cache); |
| 785 | |
| 786 | free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); |
| 787 | #endif |
| 788 | |
| 789 | list_splice(&c->btree_cache_freeable, |
| 790 | &c->btree_cache); |
| 791 | |
| 792 | while (!list_empty(&c->btree_cache)) { |
| 793 | b = list_first_entry(&c->btree_cache, struct btree, list); |
| 794 | |
| 795 | /* |
| 796 | * This function is called by cache_set_free(), no I/O |
| 797 | * request on cache now, it is unnecessary to acquire |
| 798 | * b->write_lock before clearing BTREE_NODE_dirty anymore. |
| 799 | */ |
| 800 | if (btree_node_dirty(b)) { |
| 801 | btree_complete_write(b, btree_current_write(b)); |
| 802 | clear_bit(BTREE_NODE_dirty, &b->flags); |
| 803 | } |
| 804 | mca_data_free(b); |
| 805 | } |
| 806 | |
| 807 | while (!list_empty(&c->btree_cache_freed)) { |
| 808 | b = list_first_entry(&c->btree_cache_freed, |
| 809 | struct btree, list); |
| 810 | list_del(&b->list); |
| 811 | cancel_delayed_work_sync(&b->work); |
| 812 | kfree(b); |
| 813 | } |
| 814 | |
| 815 | mutex_unlock(&c->bucket_lock); |
| 816 | } |
| 817 | |
| 818 | int bch_btree_cache_alloc(struct cache_set *c) |
| 819 | { |
| 820 | unsigned int i; |
| 821 | |
| 822 | for (i = 0; i < mca_reserve(c); i++) |
| 823 | if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) |
| 824 | return -ENOMEM; |
| 825 | |
| 826 | list_splice_init(&c->btree_cache, |
| 827 | &c->btree_cache_freeable); |
| 828 | |
| 829 | #ifdef CONFIG_BCACHE_DEBUG |
| 830 | mutex_init(&c->verify_lock); |
| 831 | |
| 832 | c->verify_ondisk = (void *) |
| 833 | __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); |
| 834 | |
| 835 | c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); |
| 836 | |
| 837 | if (c->verify_data && |
| 838 | c->verify_data->keys.set->data) |
| 839 | list_del_init(&c->verify_data->list); |
| 840 | else |
| 841 | c->verify_data = NULL; |
| 842 | #endif |
| 843 | |
| 844 | c->shrink.count_objects = bch_mca_count; |
| 845 | c->shrink.scan_objects = bch_mca_scan; |
| 846 | c->shrink.seeks = 4; |
| 847 | c->shrink.batch = c->btree_pages * 2; |
| 848 | |
| 849 | if (register_shrinker(&c->shrink)) |
| 850 | pr_warn("bcache: %s: could not register shrinker", |
| 851 | __func__); |
| 852 | |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | /* Btree in memory cache - hash table */ |
| 857 | |
| 858 | static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) |
| 859 | { |
| 860 | return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; |
| 861 | } |
| 862 | |
| 863 | static struct btree *mca_find(struct cache_set *c, struct bkey *k) |
| 864 | { |
| 865 | struct btree *b; |
| 866 | |
| 867 | rcu_read_lock(); |
| 868 | hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) |
| 869 | if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) |
| 870 | goto out; |
| 871 | b = NULL; |
| 872 | out: |
| 873 | rcu_read_unlock(); |
| 874 | return b; |
| 875 | } |
| 876 | |
| 877 | static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) |
| 878 | { |
| 879 | struct task_struct *old; |
| 880 | |
| 881 | old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); |
| 882 | if (old && old != current) { |
| 883 | if (op) |
| 884 | prepare_to_wait(&c->btree_cache_wait, &op->wait, |
| 885 | TASK_UNINTERRUPTIBLE); |
| 886 | return -EINTR; |
| 887 | } |
| 888 | |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, |
| 893 | struct bkey *k) |
| 894 | { |
| 895 | struct btree *b; |
| 896 | |
| 897 | trace_bcache_btree_cache_cannibalize(c); |
| 898 | |
| 899 | if (mca_cannibalize_lock(c, op)) |
| 900 | return ERR_PTR(-EINTR); |
| 901 | |
| 902 | list_for_each_entry_reverse(b, &c->btree_cache, list) |
| 903 | if (!mca_reap(b, btree_order(k), false)) |
| 904 | return b; |
| 905 | |
| 906 | list_for_each_entry_reverse(b, &c->btree_cache, list) |
| 907 | if (!mca_reap(b, btree_order(k), true)) |
| 908 | return b; |
| 909 | |
| 910 | WARN(1, "btree cache cannibalize failed\n"); |
| 911 | return ERR_PTR(-ENOMEM); |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * We can only have one thread cannibalizing other cached btree nodes at a time, |
| 916 | * or we'll deadlock. We use an open coded mutex to ensure that, which a |
| 917 | * cannibalize_bucket() will take. This means every time we unlock the root of |
| 918 | * the btree, we need to release this lock if we have it held. |
| 919 | */ |
| 920 | static void bch_cannibalize_unlock(struct cache_set *c) |
| 921 | { |
| 922 | if (c->btree_cache_alloc_lock == current) { |
| 923 | c->btree_cache_alloc_lock = NULL; |
| 924 | wake_up(&c->btree_cache_wait); |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, |
| 929 | struct bkey *k, int level) |
| 930 | { |
| 931 | struct btree *b; |
| 932 | |
| 933 | BUG_ON(current->bio_list); |
| 934 | |
| 935 | lockdep_assert_held(&c->bucket_lock); |
| 936 | |
| 937 | if (mca_find(c, k)) |
| 938 | return NULL; |
| 939 | |
| 940 | /* btree_free() doesn't free memory; it sticks the node on the end of |
| 941 | * the list. Check if there's any freed nodes there: |
| 942 | */ |
| 943 | list_for_each_entry(b, &c->btree_cache_freeable, list) |
| 944 | if (!mca_reap(b, btree_order(k), false)) |
| 945 | goto out; |
| 946 | |
| 947 | /* We never free struct btree itself, just the memory that holds the on |
| 948 | * disk node. Check the freed list before allocating a new one: |
| 949 | */ |
| 950 | list_for_each_entry(b, &c->btree_cache_freed, list) |
| 951 | if (!mca_reap(b, 0, false)) { |
| 952 | mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); |
| 953 | if (!b->keys.set[0].data) |
| 954 | goto err; |
| 955 | else |
| 956 | goto out; |
| 957 | } |
| 958 | |
| 959 | b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); |
| 960 | if (!b) |
| 961 | goto err; |
| 962 | |
| 963 | BUG_ON(!down_write_trylock(&b->lock)); |
| 964 | if (!b->keys.set->data) |
| 965 | goto err; |
| 966 | out: |
| 967 | BUG_ON(b->io_mutex.count != 1); |
| 968 | |
| 969 | bkey_copy(&b->key, k); |
| 970 | list_move(&b->list, &c->btree_cache); |
| 971 | hlist_del_init_rcu(&b->hash); |
| 972 | hlist_add_head_rcu(&b->hash, mca_hash(c, k)); |
| 973 | |
| 974 | lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); |
| 975 | b->parent = (void *) ~0UL; |
| 976 | b->flags = 0; |
| 977 | b->written = 0; |
| 978 | b->level = level; |
| 979 | |
| 980 | if (!b->level) |
| 981 | bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, |
| 982 | &b->c->expensive_debug_checks); |
| 983 | else |
| 984 | bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, |
| 985 | &b->c->expensive_debug_checks); |
| 986 | |
| 987 | return b; |
| 988 | err: |
| 989 | if (b) |
| 990 | rw_unlock(true, b); |
| 991 | |
| 992 | b = mca_cannibalize(c, op, k); |
| 993 | if (!IS_ERR(b)) |
| 994 | goto out; |
| 995 | |
| 996 | return b; |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * bch_btree_node_get - find a btree node in the cache and lock it, reading it |
| 1001 | * in from disk if necessary. |
| 1002 | * |
| 1003 | * If IO is necessary and running under generic_make_request, returns -EAGAIN. |
| 1004 | * |
| 1005 | * The btree node will have either a read or a write lock held, depending on |
| 1006 | * level and op->lock. |
| 1007 | */ |
| 1008 | struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, |
| 1009 | struct bkey *k, int level, bool write, |
| 1010 | struct btree *parent) |
| 1011 | { |
| 1012 | int i = 0; |
| 1013 | struct btree *b; |
| 1014 | |
| 1015 | BUG_ON(level < 0); |
| 1016 | retry: |
| 1017 | b = mca_find(c, k); |
| 1018 | |
| 1019 | if (!b) { |
| 1020 | if (current->bio_list) |
| 1021 | return ERR_PTR(-EAGAIN); |
| 1022 | |
| 1023 | mutex_lock(&c->bucket_lock); |
| 1024 | b = mca_alloc(c, op, k, level); |
| 1025 | mutex_unlock(&c->bucket_lock); |
| 1026 | |
| 1027 | if (!b) |
| 1028 | goto retry; |
| 1029 | if (IS_ERR(b)) |
| 1030 | return b; |
| 1031 | |
| 1032 | bch_btree_node_read(b); |
| 1033 | |
| 1034 | if (!write) |
| 1035 | downgrade_write(&b->lock); |
| 1036 | } else { |
| 1037 | rw_lock(write, b, level); |
| 1038 | if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { |
| 1039 | rw_unlock(write, b); |
| 1040 | goto retry; |
| 1041 | } |
| 1042 | BUG_ON(b->level != level); |
| 1043 | } |
| 1044 | |
| 1045 | if (btree_node_io_error(b)) { |
| 1046 | rw_unlock(write, b); |
| 1047 | return ERR_PTR(-EIO); |
| 1048 | } |
| 1049 | |
| 1050 | BUG_ON(!b->written); |
| 1051 | |
| 1052 | b->parent = parent; |
| 1053 | b->accessed = 1; |
| 1054 | |
| 1055 | for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { |
| 1056 | prefetch(b->keys.set[i].tree); |
| 1057 | prefetch(b->keys.set[i].data); |
| 1058 | } |
| 1059 | |
| 1060 | for (; i <= b->keys.nsets; i++) |
| 1061 | prefetch(b->keys.set[i].data); |
| 1062 | |
| 1063 | return b; |
| 1064 | } |
| 1065 | |
| 1066 | static void btree_node_prefetch(struct btree *parent, struct bkey *k) |
| 1067 | { |
| 1068 | struct btree *b; |
| 1069 | |
| 1070 | mutex_lock(&parent->c->bucket_lock); |
| 1071 | b = mca_alloc(parent->c, NULL, k, parent->level - 1); |
| 1072 | mutex_unlock(&parent->c->bucket_lock); |
| 1073 | |
| 1074 | if (!IS_ERR_OR_NULL(b)) { |
| 1075 | b->parent = parent; |
| 1076 | bch_btree_node_read(b); |
| 1077 | rw_unlock(true, b); |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /* Btree alloc */ |
| 1082 | |
| 1083 | static void btree_node_free(struct btree *b) |
| 1084 | { |
| 1085 | trace_bcache_btree_node_free(b); |
| 1086 | |
| 1087 | BUG_ON(b == b->c->root); |
| 1088 | |
| 1089 | retry: |
| 1090 | mutex_lock(&b->write_lock); |
| 1091 | /* |
| 1092 | * If the btree node is selected and flushing in btree_flush_write(), |
| 1093 | * delay and retry until the BTREE_NODE_journal_flush bit cleared, |
| 1094 | * then it is safe to free the btree node here. Otherwise this btree |
| 1095 | * node will be in race condition. |
| 1096 | */ |
| 1097 | if (btree_node_journal_flush(b)) { |
| 1098 | mutex_unlock(&b->write_lock); |
| 1099 | pr_debug("bnode %p journal_flush set, retry", b); |
| 1100 | udelay(1); |
| 1101 | goto retry; |
| 1102 | } |
| 1103 | |
| 1104 | if (btree_node_dirty(b)) { |
| 1105 | btree_complete_write(b, btree_current_write(b)); |
| 1106 | clear_bit(BTREE_NODE_dirty, &b->flags); |
| 1107 | } |
| 1108 | |
| 1109 | mutex_unlock(&b->write_lock); |
| 1110 | |
| 1111 | cancel_delayed_work(&b->work); |
| 1112 | |
| 1113 | mutex_lock(&b->c->bucket_lock); |
| 1114 | bch_bucket_free(b->c, &b->key); |
| 1115 | mca_bucket_free(b); |
| 1116 | mutex_unlock(&b->c->bucket_lock); |
| 1117 | } |
| 1118 | |
| 1119 | struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, |
| 1120 | int level, bool wait, |
| 1121 | struct btree *parent) |
| 1122 | { |
| 1123 | BKEY_PADDED(key) k; |
| 1124 | struct btree *b = ERR_PTR(-EAGAIN); |
| 1125 | |
| 1126 | mutex_lock(&c->bucket_lock); |
| 1127 | retry: |
| 1128 | if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) |
| 1129 | goto err; |
| 1130 | |
| 1131 | bkey_put(c, &k.key); |
| 1132 | SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); |
| 1133 | |
| 1134 | b = mca_alloc(c, op, &k.key, level); |
| 1135 | if (IS_ERR(b)) |
| 1136 | goto err_free; |
| 1137 | |
| 1138 | if (!b) { |
| 1139 | cache_bug(c, |
| 1140 | "Tried to allocate bucket that was in btree cache"); |
| 1141 | goto retry; |
| 1142 | } |
| 1143 | |
| 1144 | b->accessed = 1; |
| 1145 | b->parent = parent; |
| 1146 | bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); |
| 1147 | |
| 1148 | mutex_unlock(&c->bucket_lock); |
| 1149 | |
| 1150 | trace_bcache_btree_node_alloc(b); |
| 1151 | return b; |
| 1152 | err_free: |
| 1153 | bch_bucket_free(c, &k.key); |
| 1154 | err: |
| 1155 | mutex_unlock(&c->bucket_lock); |
| 1156 | |
| 1157 | trace_bcache_btree_node_alloc_fail(c); |
| 1158 | return b; |
| 1159 | } |
| 1160 | |
| 1161 | static struct btree *bch_btree_node_alloc(struct cache_set *c, |
| 1162 | struct btree_op *op, int level, |
| 1163 | struct btree *parent) |
| 1164 | { |
| 1165 | return __bch_btree_node_alloc(c, op, level, op != NULL, parent); |
| 1166 | } |
| 1167 | |
| 1168 | static struct btree *btree_node_alloc_replacement(struct btree *b, |
| 1169 | struct btree_op *op) |
| 1170 | { |
| 1171 | struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); |
| 1172 | |
| 1173 | if (!IS_ERR_OR_NULL(n)) { |
| 1174 | mutex_lock(&n->write_lock); |
| 1175 | bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); |
| 1176 | bkey_copy_key(&n->key, &b->key); |
| 1177 | mutex_unlock(&n->write_lock); |
| 1178 | } |
| 1179 | |
| 1180 | return n; |
| 1181 | } |
| 1182 | |
| 1183 | static void make_btree_freeing_key(struct btree *b, struct bkey *k) |
| 1184 | { |
| 1185 | unsigned int i; |
| 1186 | |
| 1187 | mutex_lock(&b->c->bucket_lock); |
| 1188 | |
| 1189 | atomic_inc(&b->c->prio_blocked); |
| 1190 | |
| 1191 | bkey_copy(k, &b->key); |
| 1192 | bkey_copy_key(k, &ZERO_KEY); |
| 1193 | |
| 1194 | for (i = 0; i < KEY_PTRS(k); i++) |
| 1195 | SET_PTR_GEN(k, i, |
| 1196 | bch_inc_gen(PTR_CACHE(b->c, &b->key, i), |
| 1197 | PTR_BUCKET(b->c, &b->key, i))); |
| 1198 | |
| 1199 | mutex_unlock(&b->c->bucket_lock); |
| 1200 | } |
| 1201 | |
| 1202 | static int btree_check_reserve(struct btree *b, struct btree_op *op) |
| 1203 | { |
| 1204 | struct cache_set *c = b->c; |
| 1205 | struct cache *ca; |
| 1206 | unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; |
| 1207 | |
| 1208 | mutex_lock(&c->bucket_lock); |
| 1209 | |
| 1210 | for_each_cache(ca, c, i) |
| 1211 | if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { |
| 1212 | if (op) |
| 1213 | prepare_to_wait(&c->btree_cache_wait, &op->wait, |
| 1214 | TASK_UNINTERRUPTIBLE); |
| 1215 | mutex_unlock(&c->bucket_lock); |
| 1216 | return -EINTR; |
| 1217 | } |
| 1218 | |
| 1219 | mutex_unlock(&c->bucket_lock); |
| 1220 | |
| 1221 | return mca_cannibalize_lock(b->c, op); |
| 1222 | } |
| 1223 | |
| 1224 | /* Garbage collection */ |
| 1225 | |
| 1226 | static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, |
| 1227 | struct bkey *k) |
| 1228 | { |
| 1229 | uint8_t stale = 0; |
| 1230 | unsigned int i; |
| 1231 | struct bucket *g; |
| 1232 | |
| 1233 | /* |
| 1234 | * ptr_invalid() can't return true for the keys that mark btree nodes as |
| 1235 | * freed, but since ptr_bad() returns true we'll never actually use them |
| 1236 | * for anything and thus we don't want mark their pointers here |
| 1237 | */ |
| 1238 | if (!bkey_cmp(k, &ZERO_KEY)) |
| 1239 | return stale; |
| 1240 | |
| 1241 | for (i = 0; i < KEY_PTRS(k); i++) { |
| 1242 | if (!ptr_available(c, k, i)) |
| 1243 | continue; |
| 1244 | |
| 1245 | g = PTR_BUCKET(c, k, i); |
| 1246 | |
| 1247 | if (gen_after(g->last_gc, PTR_GEN(k, i))) |
| 1248 | g->last_gc = PTR_GEN(k, i); |
| 1249 | |
| 1250 | if (ptr_stale(c, k, i)) { |
| 1251 | stale = max(stale, ptr_stale(c, k, i)); |
| 1252 | continue; |
| 1253 | } |
| 1254 | |
| 1255 | cache_bug_on(GC_MARK(g) && |
| 1256 | (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), |
| 1257 | c, "inconsistent ptrs: mark = %llu, level = %i", |
| 1258 | GC_MARK(g), level); |
| 1259 | |
| 1260 | if (level) |
| 1261 | SET_GC_MARK(g, GC_MARK_METADATA); |
| 1262 | else if (KEY_DIRTY(k)) |
| 1263 | SET_GC_MARK(g, GC_MARK_DIRTY); |
| 1264 | else if (!GC_MARK(g)) |
| 1265 | SET_GC_MARK(g, GC_MARK_RECLAIMABLE); |
| 1266 | |
| 1267 | /* guard against overflow */ |
| 1268 | SET_GC_SECTORS_USED(g, min_t(unsigned int, |
| 1269 | GC_SECTORS_USED(g) + KEY_SIZE(k), |
| 1270 | MAX_GC_SECTORS_USED)); |
| 1271 | |
| 1272 | BUG_ON(!GC_SECTORS_USED(g)); |
| 1273 | } |
| 1274 | |
| 1275 | return stale; |
| 1276 | } |
| 1277 | |
| 1278 | #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) |
| 1279 | |
| 1280 | void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) |
| 1281 | { |
| 1282 | unsigned int i; |
| 1283 | |
| 1284 | for (i = 0; i < KEY_PTRS(k); i++) |
| 1285 | if (ptr_available(c, k, i) && |
| 1286 | !ptr_stale(c, k, i)) { |
| 1287 | struct bucket *b = PTR_BUCKET(c, k, i); |
| 1288 | |
| 1289 | b->gen = PTR_GEN(k, i); |
| 1290 | |
| 1291 | if (level && bkey_cmp(k, &ZERO_KEY)) |
| 1292 | b->prio = BTREE_PRIO; |
| 1293 | else if (!level && b->prio == BTREE_PRIO) |
| 1294 | b->prio = INITIAL_PRIO; |
| 1295 | } |
| 1296 | |
| 1297 | __bch_btree_mark_key(c, level, k); |
| 1298 | } |
| 1299 | |
| 1300 | void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) |
| 1301 | { |
| 1302 | stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; |
| 1303 | } |
| 1304 | |
| 1305 | static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) |
| 1306 | { |
| 1307 | uint8_t stale = 0; |
| 1308 | unsigned int keys = 0, good_keys = 0; |
| 1309 | struct bkey *k; |
| 1310 | struct btree_iter iter; |
| 1311 | struct bset_tree *t; |
| 1312 | |
| 1313 | gc->nodes++; |
| 1314 | |
| 1315 | for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { |
| 1316 | stale = max(stale, btree_mark_key(b, k)); |
| 1317 | keys++; |
| 1318 | |
| 1319 | if (bch_ptr_bad(&b->keys, k)) |
| 1320 | continue; |
| 1321 | |
| 1322 | gc->key_bytes += bkey_u64s(k); |
| 1323 | gc->nkeys++; |
| 1324 | good_keys++; |
| 1325 | |
| 1326 | gc->data += KEY_SIZE(k); |
| 1327 | } |
| 1328 | |
| 1329 | for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) |
| 1330 | btree_bug_on(t->size && |
| 1331 | bset_written(&b->keys, t) && |
| 1332 | bkey_cmp(&b->key, &t->end) < 0, |
| 1333 | b, "found short btree key in gc"); |
| 1334 | |
| 1335 | if (b->c->gc_always_rewrite) |
| 1336 | return true; |
| 1337 | |
| 1338 | if (stale > 10) |
| 1339 | return true; |
| 1340 | |
| 1341 | if ((keys - good_keys) * 2 > keys) |
| 1342 | return true; |
| 1343 | |
| 1344 | return false; |
| 1345 | } |
| 1346 | |
| 1347 | #define GC_MERGE_NODES 4U |
| 1348 | |
| 1349 | struct gc_merge_info { |
| 1350 | struct btree *b; |
| 1351 | unsigned int keys; |
| 1352 | }; |
| 1353 | |
| 1354 | static int bch_btree_insert_node(struct btree *b, struct btree_op *op, |
| 1355 | struct keylist *insert_keys, |
| 1356 | atomic_t *journal_ref, |
| 1357 | struct bkey *replace_key); |
| 1358 | |
| 1359 | static int btree_gc_coalesce(struct btree *b, struct btree_op *op, |
| 1360 | struct gc_stat *gc, struct gc_merge_info *r) |
| 1361 | { |
| 1362 | unsigned int i, nodes = 0, keys = 0, blocks; |
| 1363 | struct btree *new_nodes[GC_MERGE_NODES]; |
| 1364 | struct keylist keylist; |
| 1365 | struct closure cl; |
| 1366 | struct bkey *k; |
| 1367 | |
| 1368 | bch_keylist_init(&keylist); |
| 1369 | |
| 1370 | if (btree_check_reserve(b, NULL)) |
| 1371 | return 0; |
| 1372 | |
| 1373 | memset(new_nodes, 0, sizeof(new_nodes)); |
| 1374 | closure_init_stack(&cl); |
| 1375 | |
| 1376 | while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) |
| 1377 | keys += r[nodes++].keys; |
| 1378 | |
| 1379 | blocks = btree_default_blocks(b->c) * 2 / 3; |
| 1380 | |
| 1381 | if (nodes < 2 || |
| 1382 | __set_blocks(b->keys.set[0].data, keys, |
| 1383 | block_bytes(b->c)) > blocks * (nodes - 1)) |
| 1384 | return 0; |
| 1385 | |
| 1386 | for (i = 0; i < nodes; i++) { |
| 1387 | new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); |
| 1388 | if (IS_ERR_OR_NULL(new_nodes[i])) |
| 1389 | goto out_nocoalesce; |
| 1390 | } |
| 1391 | |
| 1392 | /* |
| 1393 | * We have to check the reserve here, after we've allocated our new |
| 1394 | * nodes, to make sure the insert below will succeed - we also check |
| 1395 | * before as an optimization to potentially avoid a bunch of expensive |
| 1396 | * allocs/sorts |
| 1397 | */ |
| 1398 | if (btree_check_reserve(b, NULL)) |
| 1399 | goto out_nocoalesce; |
| 1400 | |
| 1401 | for (i = 0; i < nodes; i++) |
| 1402 | mutex_lock(&new_nodes[i]->write_lock); |
| 1403 | |
| 1404 | for (i = nodes - 1; i > 0; --i) { |
| 1405 | struct bset *n1 = btree_bset_first(new_nodes[i]); |
| 1406 | struct bset *n2 = btree_bset_first(new_nodes[i - 1]); |
| 1407 | struct bkey *k, *last = NULL; |
| 1408 | |
| 1409 | keys = 0; |
| 1410 | |
| 1411 | if (i > 1) { |
| 1412 | for (k = n2->start; |
| 1413 | k < bset_bkey_last(n2); |
| 1414 | k = bkey_next(k)) { |
| 1415 | if (__set_blocks(n1, n1->keys + keys + |
| 1416 | bkey_u64s(k), |
| 1417 | block_bytes(b->c)) > blocks) |
| 1418 | break; |
| 1419 | |
| 1420 | last = k; |
| 1421 | keys += bkey_u64s(k); |
| 1422 | } |
| 1423 | } else { |
| 1424 | /* |
| 1425 | * Last node we're not getting rid of - we're getting |
| 1426 | * rid of the node at r[0]. Have to try and fit all of |
| 1427 | * the remaining keys into this node; we can't ensure |
| 1428 | * they will always fit due to rounding and variable |
| 1429 | * length keys (shouldn't be possible in practice, |
| 1430 | * though) |
| 1431 | */ |
| 1432 | if (__set_blocks(n1, n1->keys + n2->keys, |
| 1433 | block_bytes(b->c)) > |
| 1434 | btree_blocks(new_nodes[i])) |
| 1435 | goto out_nocoalesce; |
| 1436 | |
| 1437 | keys = n2->keys; |
| 1438 | /* Take the key of the node we're getting rid of */ |
| 1439 | last = &r->b->key; |
| 1440 | } |
| 1441 | |
| 1442 | BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > |
| 1443 | btree_blocks(new_nodes[i])); |
| 1444 | |
| 1445 | if (last) |
| 1446 | bkey_copy_key(&new_nodes[i]->key, last); |
| 1447 | |
| 1448 | memcpy(bset_bkey_last(n1), |
| 1449 | n2->start, |
| 1450 | (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); |
| 1451 | |
| 1452 | n1->keys += keys; |
| 1453 | r[i].keys = n1->keys; |
| 1454 | |
| 1455 | memmove(n2->start, |
| 1456 | bset_bkey_idx(n2, keys), |
| 1457 | (void *) bset_bkey_last(n2) - |
| 1458 | (void *) bset_bkey_idx(n2, keys)); |
| 1459 | |
| 1460 | n2->keys -= keys; |
| 1461 | |
| 1462 | if (__bch_keylist_realloc(&keylist, |
| 1463 | bkey_u64s(&new_nodes[i]->key))) |
| 1464 | goto out_nocoalesce; |
| 1465 | |
| 1466 | bch_btree_node_write(new_nodes[i], &cl); |
| 1467 | bch_keylist_add(&keylist, &new_nodes[i]->key); |
| 1468 | } |
| 1469 | |
| 1470 | for (i = 0; i < nodes; i++) |
| 1471 | mutex_unlock(&new_nodes[i]->write_lock); |
| 1472 | |
| 1473 | closure_sync(&cl); |
| 1474 | |
| 1475 | /* We emptied out this node */ |
| 1476 | BUG_ON(btree_bset_first(new_nodes[0])->keys); |
| 1477 | btree_node_free(new_nodes[0]); |
| 1478 | rw_unlock(true, new_nodes[0]); |
| 1479 | new_nodes[0] = NULL; |
| 1480 | |
| 1481 | for (i = 0; i < nodes; i++) { |
| 1482 | if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) |
| 1483 | goto out_nocoalesce; |
| 1484 | |
| 1485 | make_btree_freeing_key(r[i].b, keylist.top); |
| 1486 | bch_keylist_push(&keylist); |
| 1487 | } |
| 1488 | |
| 1489 | bch_btree_insert_node(b, op, &keylist, NULL, NULL); |
| 1490 | BUG_ON(!bch_keylist_empty(&keylist)); |
| 1491 | |
| 1492 | for (i = 0; i < nodes; i++) { |
| 1493 | btree_node_free(r[i].b); |
| 1494 | rw_unlock(true, r[i].b); |
| 1495 | |
| 1496 | r[i].b = new_nodes[i]; |
| 1497 | } |
| 1498 | |
| 1499 | memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); |
| 1500 | r[nodes - 1].b = ERR_PTR(-EINTR); |
| 1501 | |
| 1502 | trace_bcache_btree_gc_coalesce(nodes); |
| 1503 | gc->nodes--; |
| 1504 | |
| 1505 | bch_keylist_free(&keylist); |
| 1506 | |
| 1507 | /* Invalidated our iterator */ |
| 1508 | return -EINTR; |
| 1509 | |
| 1510 | out_nocoalesce: |
| 1511 | closure_sync(&cl); |
| 1512 | bch_keylist_free(&keylist); |
| 1513 | |
| 1514 | while ((k = bch_keylist_pop(&keylist))) |
| 1515 | if (!bkey_cmp(k, &ZERO_KEY)) |
| 1516 | atomic_dec(&b->c->prio_blocked); |
| 1517 | |
| 1518 | for (i = 0; i < nodes; i++) |
| 1519 | if (!IS_ERR_OR_NULL(new_nodes[i])) { |
| 1520 | btree_node_free(new_nodes[i]); |
| 1521 | rw_unlock(true, new_nodes[i]); |
| 1522 | } |
| 1523 | return 0; |
| 1524 | } |
| 1525 | |
| 1526 | static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, |
| 1527 | struct btree *replace) |
| 1528 | { |
| 1529 | struct keylist keys; |
| 1530 | struct btree *n; |
| 1531 | |
| 1532 | if (btree_check_reserve(b, NULL)) |
| 1533 | return 0; |
| 1534 | |
| 1535 | n = btree_node_alloc_replacement(replace, NULL); |
| 1536 | |
| 1537 | /* recheck reserve after allocating replacement node */ |
| 1538 | if (btree_check_reserve(b, NULL)) { |
| 1539 | btree_node_free(n); |
| 1540 | rw_unlock(true, n); |
| 1541 | return 0; |
| 1542 | } |
| 1543 | |
| 1544 | bch_btree_node_write_sync(n); |
| 1545 | |
| 1546 | bch_keylist_init(&keys); |
| 1547 | bch_keylist_add(&keys, &n->key); |
| 1548 | |
| 1549 | make_btree_freeing_key(replace, keys.top); |
| 1550 | bch_keylist_push(&keys); |
| 1551 | |
| 1552 | bch_btree_insert_node(b, op, &keys, NULL, NULL); |
| 1553 | BUG_ON(!bch_keylist_empty(&keys)); |
| 1554 | |
| 1555 | btree_node_free(replace); |
| 1556 | rw_unlock(true, n); |
| 1557 | |
| 1558 | /* Invalidated our iterator */ |
| 1559 | return -EINTR; |
| 1560 | } |
| 1561 | |
| 1562 | static unsigned int btree_gc_count_keys(struct btree *b) |
| 1563 | { |
| 1564 | struct bkey *k; |
| 1565 | struct btree_iter iter; |
| 1566 | unsigned int ret = 0; |
| 1567 | |
| 1568 | for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) |
| 1569 | ret += bkey_u64s(k); |
| 1570 | |
| 1571 | return ret; |
| 1572 | } |
| 1573 | |
| 1574 | static size_t btree_gc_min_nodes(struct cache_set *c) |
| 1575 | { |
| 1576 | size_t min_nodes; |
| 1577 | |
| 1578 | /* |
| 1579 | * Since incremental GC would stop 100ms when front |
| 1580 | * side I/O comes, so when there are many btree nodes, |
| 1581 | * if GC only processes constant (100) nodes each time, |
| 1582 | * GC would last a long time, and the front side I/Os |
| 1583 | * would run out of the buckets (since no new bucket |
| 1584 | * can be allocated during GC), and be blocked again. |
| 1585 | * So GC should not process constant nodes, but varied |
| 1586 | * nodes according to the number of btree nodes, which |
| 1587 | * realized by dividing GC into constant(100) times, |
| 1588 | * so when there are many btree nodes, GC can process |
| 1589 | * more nodes each time, otherwise, GC will process less |
| 1590 | * nodes each time (but no less than MIN_GC_NODES) |
| 1591 | */ |
| 1592 | min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; |
| 1593 | if (min_nodes < MIN_GC_NODES) |
| 1594 | min_nodes = MIN_GC_NODES; |
| 1595 | |
| 1596 | return min_nodes; |
| 1597 | } |
| 1598 | |
| 1599 | |
| 1600 | static int btree_gc_recurse(struct btree *b, struct btree_op *op, |
| 1601 | struct closure *writes, struct gc_stat *gc) |
| 1602 | { |
| 1603 | int ret = 0; |
| 1604 | bool should_rewrite; |
| 1605 | struct bkey *k; |
| 1606 | struct btree_iter iter; |
| 1607 | struct gc_merge_info r[GC_MERGE_NODES]; |
| 1608 | struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; |
| 1609 | |
| 1610 | bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); |
| 1611 | |
| 1612 | for (i = r; i < r + ARRAY_SIZE(r); i++) |
| 1613 | i->b = ERR_PTR(-EINTR); |
| 1614 | |
| 1615 | while (1) { |
| 1616 | k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); |
| 1617 | if (k) { |
| 1618 | r->b = bch_btree_node_get(b->c, op, k, b->level - 1, |
| 1619 | true, b); |
| 1620 | if (IS_ERR(r->b)) { |
| 1621 | ret = PTR_ERR(r->b); |
| 1622 | break; |
| 1623 | } |
| 1624 | |
| 1625 | r->keys = btree_gc_count_keys(r->b); |
| 1626 | |
| 1627 | ret = btree_gc_coalesce(b, op, gc, r); |
| 1628 | if (ret) |
| 1629 | break; |
| 1630 | } |
| 1631 | |
| 1632 | if (!last->b) |
| 1633 | break; |
| 1634 | |
| 1635 | if (!IS_ERR(last->b)) { |
| 1636 | should_rewrite = btree_gc_mark_node(last->b, gc); |
| 1637 | if (should_rewrite) { |
| 1638 | ret = btree_gc_rewrite_node(b, op, last->b); |
| 1639 | if (ret) |
| 1640 | break; |
| 1641 | } |
| 1642 | |
| 1643 | if (last->b->level) { |
| 1644 | ret = btree_gc_recurse(last->b, op, writes, gc); |
| 1645 | if (ret) |
| 1646 | break; |
| 1647 | } |
| 1648 | |
| 1649 | bkey_copy_key(&b->c->gc_done, &last->b->key); |
| 1650 | |
| 1651 | /* |
| 1652 | * Must flush leaf nodes before gc ends, since replace |
| 1653 | * operations aren't journalled |
| 1654 | */ |
| 1655 | mutex_lock(&last->b->write_lock); |
| 1656 | if (btree_node_dirty(last->b)) |
| 1657 | bch_btree_node_write(last->b, writes); |
| 1658 | mutex_unlock(&last->b->write_lock); |
| 1659 | rw_unlock(true, last->b); |
| 1660 | } |
| 1661 | |
| 1662 | memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); |
| 1663 | r->b = NULL; |
| 1664 | |
| 1665 | if (atomic_read(&b->c->search_inflight) && |
| 1666 | gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { |
| 1667 | gc->nodes_pre = gc->nodes; |
| 1668 | ret = -EAGAIN; |
| 1669 | break; |
| 1670 | } |
| 1671 | |
| 1672 | if (need_resched()) { |
| 1673 | ret = -EAGAIN; |
| 1674 | break; |
| 1675 | } |
| 1676 | } |
| 1677 | |
| 1678 | for (i = r; i < r + ARRAY_SIZE(r); i++) |
| 1679 | if (!IS_ERR_OR_NULL(i->b)) { |
| 1680 | mutex_lock(&i->b->write_lock); |
| 1681 | if (btree_node_dirty(i->b)) |
| 1682 | bch_btree_node_write(i->b, writes); |
| 1683 | mutex_unlock(&i->b->write_lock); |
| 1684 | rw_unlock(true, i->b); |
| 1685 | } |
| 1686 | |
| 1687 | return ret; |
| 1688 | } |
| 1689 | |
| 1690 | static int bch_btree_gc_root(struct btree *b, struct btree_op *op, |
| 1691 | struct closure *writes, struct gc_stat *gc) |
| 1692 | { |
| 1693 | struct btree *n = NULL; |
| 1694 | int ret = 0; |
| 1695 | bool should_rewrite; |
| 1696 | |
| 1697 | should_rewrite = btree_gc_mark_node(b, gc); |
| 1698 | if (should_rewrite) { |
| 1699 | n = btree_node_alloc_replacement(b, NULL); |
| 1700 | |
| 1701 | if (!IS_ERR_OR_NULL(n)) { |
| 1702 | bch_btree_node_write_sync(n); |
| 1703 | |
| 1704 | bch_btree_set_root(n); |
| 1705 | btree_node_free(b); |
| 1706 | rw_unlock(true, n); |
| 1707 | |
| 1708 | return -EINTR; |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | __bch_btree_mark_key(b->c, b->level + 1, &b->key); |
| 1713 | |
| 1714 | if (b->level) { |
| 1715 | ret = btree_gc_recurse(b, op, writes, gc); |
| 1716 | if (ret) |
| 1717 | return ret; |
| 1718 | } |
| 1719 | |
| 1720 | bkey_copy_key(&b->c->gc_done, &b->key); |
| 1721 | |
| 1722 | return ret; |
| 1723 | } |
| 1724 | |
| 1725 | static void btree_gc_start(struct cache_set *c) |
| 1726 | { |
| 1727 | struct cache *ca; |
| 1728 | struct bucket *b; |
| 1729 | unsigned int i; |
| 1730 | |
| 1731 | if (!c->gc_mark_valid) |
| 1732 | return; |
| 1733 | |
| 1734 | mutex_lock(&c->bucket_lock); |
| 1735 | |
| 1736 | c->gc_mark_valid = 0; |
| 1737 | c->gc_done = ZERO_KEY; |
| 1738 | |
| 1739 | for_each_cache(ca, c, i) |
| 1740 | for_each_bucket(b, ca) { |
| 1741 | b->last_gc = b->gen; |
| 1742 | if (!atomic_read(&b->pin)) { |
| 1743 | SET_GC_MARK(b, 0); |
| 1744 | SET_GC_SECTORS_USED(b, 0); |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | mutex_unlock(&c->bucket_lock); |
| 1749 | } |
| 1750 | |
| 1751 | static void bch_btree_gc_finish(struct cache_set *c) |
| 1752 | { |
| 1753 | struct bucket *b; |
| 1754 | struct cache *ca; |
| 1755 | unsigned int i; |
| 1756 | |
| 1757 | mutex_lock(&c->bucket_lock); |
| 1758 | |
| 1759 | set_gc_sectors(c); |
| 1760 | c->gc_mark_valid = 1; |
| 1761 | c->need_gc = 0; |
| 1762 | |
| 1763 | for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) |
| 1764 | SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), |
| 1765 | GC_MARK_METADATA); |
| 1766 | |
| 1767 | /* don't reclaim buckets to which writeback keys point */ |
| 1768 | rcu_read_lock(); |
| 1769 | for (i = 0; i < c->devices_max_used; i++) { |
| 1770 | struct bcache_device *d = c->devices[i]; |
| 1771 | struct cached_dev *dc; |
| 1772 | struct keybuf_key *w, *n; |
| 1773 | unsigned int j; |
| 1774 | |
| 1775 | if (!d || UUID_FLASH_ONLY(&c->uuids[i])) |
| 1776 | continue; |
| 1777 | dc = container_of(d, struct cached_dev, disk); |
| 1778 | |
| 1779 | spin_lock(&dc->writeback_keys.lock); |
| 1780 | rbtree_postorder_for_each_entry_safe(w, n, |
| 1781 | &dc->writeback_keys.keys, node) |
| 1782 | for (j = 0; j < KEY_PTRS(&w->key); j++) |
| 1783 | SET_GC_MARK(PTR_BUCKET(c, &w->key, j), |
| 1784 | GC_MARK_DIRTY); |
| 1785 | spin_unlock(&dc->writeback_keys.lock); |
| 1786 | } |
| 1787 | rcu_read_unlock(); |
| 1788 | |
| 1789 | c->avail_nbuckets = 0; |
| 1790 | for_each_cache(ca, c, i) { |
| 1791 | uint64_t *i; |
| 1792 | |
| 1793 | ca->invalidate_needs_gc = 0; |
| 1794 | |
| 1795 | for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) |
| 1796 | SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); |
| 1797 | |
| 1798 | for (i = ca->prio_buckets; |
| 1799 | i < ca->prio_buckets + prio_buckets(ca) * 2; i++) |
| 1800 | SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); |
| 1801 | |
| 1802 | for_each_bucket(b, ca) { |
| 1803 | c->need_gc = max(c->need_gc, bucket_gc_gen(b)); |
| 1804 | |
| 1805 | if (atomic_read(&b->pin)) |
| 1806 | continue; |
| 1807 | |
| 1808 | BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); |
| 1809 | |
| 1810 | if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) |
| 1811 | c->avail_nbuckets++; |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | mutex_unlock(&c->bucket_lock); |
| 1816 | } |
| 1817 | |
| 1818 | static void bch_btree_gc(struct cache_set *c) |
| 1819 | { |
| 1820 | int ret; |
| 1821 | struct gc_stat stats; |
| 1822 | struct closure writes; |
| 1823 | struct btree_op op; |
| 1824 | uint64_t start_time = local_clock(); |
| 1825 | |
| 1826 | trace_bcache_gc_start(c); |
| 1827 | |
| 1828 | memset(&stats, 0, sizeof(struct gc_stat)); |
| 1829 | closure_init_stack(&writes); |
| 1830 | bch_btree_op_init(&op, SHRT_MAX); |
| 1831 | |
| 1832 | btree_gc_start(c); |
| 1833 | |
| 1834 | /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ |
| 1835 | do { |
| 1836 | ret = btree_root(gc_root, c, &op, &writes, &stats); |
| 1837 | closure_sync(&writes); |
| 1838 | cond_resched(); |
| 1839 | |
| 1840 | if (ret == -EAGAIN) |
| 1841 | schedule_timeout_interruptible(msecs_to_jiffies |
| 1842 | (GC_SLEEP_MS)); |
| 1843 | else if (ret) |
| 1844 | pr_warn("gc failed!"); |
| 1845 | } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); |
| 1846 | |
| 1847 | bch_btree_gc_finish(c); |
| 1848 | wake_up_allocators(c); |
| 1849 | |
| 1850 | bch_time_stats_update(&c->btree_gc_time, start_time); |
| 1851 | |
| 1852 | stats.key_bytes *= sizeof(uint64_t); |
| 1853 | stats.data <<= 9; |
| 1854 | bch_update_bucket_in_use(c, &stats); |
| 1855 | memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); |
| 1856 | |
| 1857 | trace_bcache_gc_end(c); |
| 1858 | |
| 1859 | bch_moving_gc(c); |
| 1860 | } |
| 1861 | |
| 1862 | static bool gc_should_run(struct cache_set *c) |
| 1863 | { |
| 1864 | struct cache *ca; |
| 1865 | unsigned int i; |
| 1866 | |
| 1867 | for_each_cache(ca, c, i) |
| 1868 | if (ca->invalidate_needs_gc) |
| 1869 | return true; |
| 1870 | |
| 1871 | if (atomic_read(&c->sectors_to_gc) < 0) |
| 1872 | return true; |
| 1873 | |
| 1874 | return false; |
| 1875 | } |
| 1876 | |
| 1877 | static int bch_gc_thread(void *arg) |
| 1878 | { |
| 1879 | struct cache_set *c = arg; |
| 1880 | |
| 1881 | while (1) { |
| 1882 | wait_event_interruptible(c->gc_wait, |
| 1883 | kthread_should_stop() || |
| 1884 | test_bit(CACHE_SET_IO_DISABLE, &c->flags) || |
| 1885 | gc_should_run(c)); |
| 1886 | |
| 1887 | if (kthread_should_stop() || |
| 1888 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| 1889 | break; |
| 1890 | |
| 1891 | set_gc_sectors(c); |
| 1892 | bch_btree_gc(c); |
| 1893 | } |
| 1894 | |
| 1895 | wait_for_kthread_stop(); |
| 1896 | return 0; |
| 1897 | } |
| 1898 | |
| 1899 | int bch_gc_thread_start(struct cache_set *c) |
| 1900 | { |
| 1901 | c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); |
| 1902 | return PTR_ERR_OR_ZERO(c->gc_thread); |
| 1903 | } |
| 1904 | |
| 1905 | /* Initial partial gc */ |
| 1906 | |
| 1907 | static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) |
| 1908 | { |
| 1909 | int ret = 0; |
| 1910 | struct bkey *k, *p = NULL; |
| 1911 | struct btree_iter iter; |
| 1912 | |
| 1913 | for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) |
| 1914 | bch_initial_mark_key(b->c, b->level, k); |
| 1915 | |
| 1916 | bch_initial_mark_key(b->c, b->level + 1, &b->key); |
| 1917 | |
| 1918 | if (b->level) { |
| 1919 | bch_btree_iter_init(&b->keys, &iter, NULL); |
| 1920 | |
| 1921 | do { |
| 1922 | k = bch_btree_iter_next_filter(&iter, &b->keys, |
| 1923 | bch_ptr_bad); |
| 1924 | if (k) { |
| 1925 | btree_node_prefetch(b, k); |
| 1926 | /* |
| 1927 | * initiallize c->gc_stats.nodes |
| 1928 | * for incremental GC |
| 1929 | */ |
| 1930 | b->c->gc_stats.nodes++; |
| 1931 | } |
| 1932 | |
| 1933 | if (p) |
| 1934 | ret = btree(check_recurse, p, b, op); |
| 1935 | |
| 1936 | p = k; |
| 1937 | } while (p && !ret); |
| 1938 | } |
| 1939 | |
| 1940 | return ret; |
| 1941 | } |
| 1942 | |
| 1943 | int bch_btree_check(struct cache_set *c) |
| 1944 | { |
| 1945 | struct btree_op op; |
| 1946 | |
| 1947 | bch_btree_op_init(&op, SHRT_MAX); |
| 1948 | |
| 1949 | return btree_root(check_recurse, c, &op); |
| 1950 | } |
| 1951 | |
| 1952 | void bch_initial_gc_finish(struct cache_set *c) |
| 1953 | { |
| 1954 | struct cache *ca; |
| 1955 | struct bucket *b; |
| 1956 | unsigned int i; |
| 1957 | |
| 1958 | bch_btree_gc_finish(c); |
| 1959 | |
| 1960 | mutex_lock(&c->bucket_lock); |
| 1961 | |
| 1962 | /* |
| 1963 | * We need to put some unused buckets directly on the prio freelist in |
| 1964 | * order to get the allocator thread started - it needs freed buckets in |
| 1965 | * order to rewrite the prios and gens, and it needs to rewrite prios |
| 1966 | * and gens in order to free buckets. |
| 1967 | * |
| 1968 | * This is only safe for buckets that have no live data in them, which |
| 1969 | * there should always be some of. |
| 1970 | */ |
| 1971 | for_each_cache(ca, c, i) { |
| 1972 | for_each_bucket(b, ca) { |
| 1973 | if (fifo_full(&ca->free[RESERVE_PRIO]) && |
| 1974 | fifo_full(&ca->free[RESERVE_BTREE])) |
| 1975 | break; |
| 1976 | |
| 1977 | if (bch_can_invalidate_bucket(ca, b) && |
| 1978 | !GC_MARK(b)) { |
| 1979 | __bch_invalidate_one_bucket(ca, b); |
| 1980 | if (!fifo_push(&ca->free[RESERVE_PRIO], |
| 1981 | b - ca->buckets)) |
| 1982 | fifo_push(&ca->free[RESERVE_BTREE], |
| 1983 | b - ca->buckets); |
| 1984 | } |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | mutex_unlock(&c->bucket_lock); |
| 1989 | } |
| 1990 | |
| 1991 | /* Btree insertion */ |
| 1992 | |
| 1993 | static bool btree_insert_key(struct btree *b, struct bkey *k, |
| 1994 | struct bkey *replace_key) |
| 1995 | { |
| 1996 | unsigned int status; |
| 1997 | |
| 1998 | BUG_ON(bkey_cmp(k, &b->key) > 0); |
| 1999 | |
| 2000 | status = bch_btree_insert_key(&b->keys, k, replace_key); |
| 2001 | if (status != BTREE_INSERT_STATUS_NO_INSERT) { |
| 2002 | bch_check_keys(&b->keys, "%u for %s", status, |
| 2003 | replace_key ? "replace" : "insert"); |
| 2004 | |
| 2005 | trace_bcache_btree_insert_key(b, k, replace_key != NULL, |
| 2006 | status); |
| 2007 | return true; |
| 2008 | } else |
| 2009 | return false; |
| 2010 | } |
| 2011 | |
| 2012 | static size_t insert_u64s_remaining(struct btree *b) |
| 2013 | { |
| 2014 | long ret = bch_btree_keys_u64s_remaining(&b->keys); |
| 2015 | |
| 2016 | /* |
| 2017 | * Might land in the middle of an existing extent and have to split it |
| 2018 | */ |
| 2019 | if (b->keys.ops->is_extents) |
| 2020 | ret -= KEY_MAX_U64S; |
| 2021 | |
| 2022 | return max(ret, 0L); |
| 2023 | } |
| 2024 | |
| 2025 | static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, |
| 2026 | struct keylist *insert_keys, |
| 2027 | struct bkey *replace_key) |
| 2028 | { |
| 2029 | bool ret = false; |
| 2030 | int oldsize = bch_count_data(&b->keys); |
| 2031 | |
| 2032 | while (!bch_keylist_empty(insert_keys)) { |
| 2033 | struct bkey *k = insert_keys->keys; |
| 2034 | |
| 2035 | if (bkey_u64s(k) > insert_u64s_remaining(b)) |
| 2036 | break; |
| 2037 | |
| 2038 | if (bkey_cmp(k, &b->key) <= 0) { |
| 2039 | if (!b->level) |
| 2040 | bkey_put(b->c, k); |
| 2041 | |
| 2042 | ret |= btree_insert_key(b, k, replace_key); |
| 2043 | bch_keylist_pop_front(insert_keys); |
| 2044 | } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { |
| 2045 | BKEY_PADDED(key) temp; |
| 2046 | bkey_copy(&temp.key, insert_keys->keys); |
| 2047 | |
| 2048 | bch_cut_back(&b->key, &temp.key); |
| 2049 | bch_cut_front(&b->key, insert_keys->keys); |
| 2050 | |
| 2051 | ret |= btree_insert_key(b, &temp.key, replace_key); |
| 2052 | break; |
| 2053 | } else { |
| 2054 | break; |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | if (!ret) |
| 2059 | op->insert_collision = true; |
| 2060 | |
| 2061 | BUG_ON(!bch_keylist_empty(insert_keys) && b->level); |
| 2062 | |
| 2063 | BUG_ON(bch_count_data(&b->keys) < oldsize); |
| 2064 | return ret; |
| 2065 | } |
| 2066 | |
| 2067 | static int btree_split(struct btree *b, struct btree_op *op, |
| 2068 | struct keylist *insert_keys, |
| 2069 | struct bkey *replace_key) |
| 2070 | { |
| 2071 | bool split; |
| 2072 | struct btree *n1, *n2 = NULL, *n3 = NULL; |
| 2073 | uint64_t start_time = local_clock(); |
| 2074 | struct closure cl; |
| 2075 | struct keylist parent_keys; |
| 2076 | |
| 2077 | closure_init_stack(&cl); |
| 2078 | bch_keylist_init(&parent_keys); |
| 2079 | |
| 2080 | if (btree_check_reserve(b, op)) { |
| 2081 | if (!b->level) |
| 2082 | return -EINTR; |
| 2083 | else |
| 2084 | WARN(1, "insufficient reserve for split\n"); |
| 2085 | } |
| 2086 | |
| 2087 | n1 = btree_node_alloc_replacement(b, op); |
| 2088 | if (IS_ERR(n1)) |
| 2089 | goto err; |
| 2090 | |
| 2091 | split = set_blocks(btree_bset_first(n1), |
| 2092 | block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; |
| 2093 | |
| 2094 | if (split) { |
| 2095 | unsigned int keys = 0; |
| 2096 | |
| 2097 | trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); |
| 2098 | |
| 2099 | n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); |
| 2100 | if (IS_ERR(n2)) |
| 2101 | goto err_free1; |
| 2102 | |
| 2103 | if (!b->parent) { |
| 2104 | n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); |
| 2105 | if (IS_ERR(n3)) |
| 2106 | goto err_free2; |
| 2107 | } |
| 2108 | |
| 2109 | mutex_lock(&n1->write_lock); |
| 2110 | mutex_lock(&n2->write_lock); |
| 2111 | |
| 2112 | bch_btree_insert_keys(n1, op, insert_keys, replace_key); |
| 2113 | |
| 2114 | /* |
| 2115 | * Has to be a linear search because we don't have an auxiliary |
| 2116 | * search tree yet |
| 2117 | */ |
| 2118 | |
| 2119 | while (keys < (btree_bset_first(n1)->keys * 3) / 5) |
| 2120 | keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), |
| 2121 | keys)); |
| 2122 | |
| 2123 | bkey_copy_key(&n1->key, |
| 2124 | bset_bkey_idx(btree_bset_first(n1), keys)); |
| 2125 | keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); |
| 2126 | |
| 2127 | btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; |
| 2128 | btree_bset_first(n1)->keys = keys; |
| 2129 | |
| 2130 | memcpy(btree_bset_first(n2)->start, |
| 2131 | bset_bkey_last(btree_bset_first(n1)), |
| 2132 | btree_bset_first(n2)->keys * sizeof(uint64_t)); |
| 2133 | |
| 2134 | bkey_copy_key(&n2->key, &b->key); |
| 2135 | |
| 2136 | bch_keylist_add(&parent_keys, &n2->key); |
| 2137 | bch_btree_node_write(n2, &cl); |
| 2138 | mutex_unlock(&n2->write_lock); |
| 2139 | rw_unlock(true, n2); |
| 2140 | } else { |
| 2141 | trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); |
| 2142 | |
| 2143 | mutex_lock(&n1->write_lock); |
| 2144 | bch_btree_insert_keys(n1, op, insert_keys, replace_key); |
| 2145 | } |
| 2146 | |
| 2147 | bch_keylist_add(&parent_keys, &n1->key); |
| 2148 | bch_btree_node_write(n1, &cl); |
| 2149 | mutex_unlock(&n1->write_lock); |
| 2150 | |
| 2151 | if (n3) { |
| 2152 | /* Depth increases, make a new root */ |
| 2153 | mutex_lock(&n3->write_lock); |
| 2154 | bkey_copy_key(&n3->key, &MAX_KEY); |
| 2155 | bch_btree_insert_keys(n3, op, &parent_keys, NULL); |
| 2156 | bch_btree_node_write(n3, &cl); |
| 2157 | mutex_unlock(&n3->write_lock); |
| 2158 | |
| 2159 | closure_sync(&cl); |
| 2160 | bch_btree_set_root(n3); |
| 2161 | rw_unlock(true, n3); |
| 2162 | } else if (!b->parent) { |
| 2163 | /* Root filled up but didn't need to be split */ |
| 2164 | closure_sync(&cl); |
| 2165 | bch_btree_set_root(n1); |
| 2166 | } else { |
| 2167 | /* Split a non root node */ |
| 2168 | closure_sync(&cl); |
| 2169 | make_btree_freeing_key(b, parent_keys.top); |
| 2170 | bch_keylist_push(&parent_keys); |
| 2171 | |
| 2172 | bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); |
| 2173 | BUG_ON(!bch_keylist_empty(&parent_keys)); |
| 2174 | } |
| 2175 | |
| 2176 | btree_node_free(b); |
| 2177 | rw_unlock(true, n1); |
| 2178 | |
| 2179 | bch_time_stats_update(&b->c->btree_split_time, start_time); |
| 2180 | |
| 2181 | return 0; |
| 2182 | err_free2: |
| 2183 | bkey_put(b->c, &n2->key); |
| 2184 | btree_node_free(n2); |
| 2185 | rw_unlock(true, n2); |
| 2186 | err_free1: |
| 2187 | bkey_put(b->c, &n1->key); |
| 2188 | btree_node_free(n1); |
| 2189 | rw_unlock(true, n1); |
| 2190 | err: |
| 2191 | WARN(1, "bcache: btree split failed (level %u)", b->level); |
| 2192 | |
| 2193 | if (n3 == ERR_PTR(-EAGAIN) || |
| 2194 | n2 == ERR_PTR(-EAGAIN) || |
| 2195 | n1 == ERR_PTR(-EAGAIN)) |
| 2196 | return -EAGAIN; |
| 2197 | |
| 2198 | return -ENOMEM; |
| 2199 | } |
| 2200 | |
| 2201 | static int bch_btree_insert_node(struct btree *b, struct btree_op *op, |
| 2202 | struct keylist *insert_keys, |
| 2203 | atomic_t *journal_ref, |
| 2204 | struct bkey *replace_key) |
| 2205 | { |
| 2206 | struct closure cl; |
| 2207 | |
| 2208 | BUG_ON(b->level && replace_key); |
| 2209 | |
| 2210 | closure_init_stack(&cl); |
| 2211 | |
| 2212 | mutex_lock(&b->write_lock); |
| 2213 | |
| 2214 | if (write_block(b) != btree_bset_last(b) && |
| 2215 | b->keys.last_set_unwritten) |
| 2216 | bch_btree_init_next(b); /* just wrote a set */ |
| 2217 | |
| 2218 | if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { |
| 2219 | mutex_unlock(&b->write_lock); |
| 2220 | goto split; |
| 2221 | } |
| 2222 | |
| 2223 | BUG_ON(write_block(b) != btree_bset_last(b)); |
| 2224 | |
| 2225 | if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { |
| 2226 | if (!b->level) |
| 2227 | bch_btree_leaf_dirty(b, journal_ref); |
| 2228 | else |
| 2229 | bch_btree_node_write(b, &cl); |
| 2230 | } |
| 2231 | |
| 2232 | mutex_unlock(&b->write_lock); |
| 2233 | |
| 2234 | /* wait for btree node write if necessary, after unlock */ |
| 2235 | closure_sync(&cl); |
| 2236 | |
| 2237 | return 0; |
| 2238 | split: |
| 2239 | if (current->bio_list) { |
| 2240 | op->lock = b->c->root->level + 1; |
| 2241 | return -EAGAIN; |
| 2242 | } else if (op->lock <= b->c->root->level) { |
| 2243 | op->lock = b->c->root->level + 1; |
| 2244 | return -EINTR; |
| 2245 | } else { |
| 2246 | /* Invalidated all iterators */ |
| 2247 | int ret = btree_split(b, op, insert_keys, replace_key); |
| 2248 | |
| 2249 | if (bch_keylist_empty(insert_keys)) |
| 2250 | return 0; |
| 2251 | else if (!ret) |
| 2252 | return -EINTR; |
| 2253 | return ret; |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, |
| 2258 | struct bkey *check_key) |
| 2259 | { |
| 2260 | int ret = -EINTR; |
| 2261 | uint64_t btree_ptr = b->key.ptr[0]; |
| 2262 | unsigned long seq = b->seq; |
| 2263 | struct keylist insert; |
| 2264 | bool upgrade = op->lock == -1; |
| 2265 | |
| 2266 | bch_keylist_init(&insert); |
| 2267 | |
| 2268 | if (upgrade) { |
| 2269 | rw_unlock(false, b); |
| 2270 | rw_lock(true, b, b->level); |
| 2271 | |
| 2272 | if (b->key.ptr[0] != btree_ptr || |
| 2273 | b->seq != seq + 1) { |
| 2274 | op->lock = b->level; |
| 2275 | goto out; |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | SET_KEY_PTRS(check_key, 1); |
| 2280 | get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); |
| 2281 | |
| 2282 | SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); |
| 2283 | |
| 2284 | bch_keylist_add(&insert, check_key); |
| 2285 | |
| 2286 | ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); |
| 2287 | |
| 2288 | BUG_ON(!ret && !bch_keylist_empty(&insert)); |
| 2289 | out: |
| 2290 | if (upgrade) |
| 2291 | downgrade_write(&b->lock); |
| 2292 | return ret; |
| 2293 | } |
| 2294 | |
| 2295 | struct btree_insert_op { |
| 2296 | struct btree_op op; |
| 2297 | struct keylist *keys; |
| 2298 | atomic_t *journal_ref; |
| 2299 | struct bkey *replace_key; |
| 2300 | }; |
| 2301 | |
| 2302 | static int btree_insert_fn(struct btree_op *b_op, struct btree *b) |
| 2303 | { |
| 2304 | struct btree_insert_op *op = container_of(b_op, |
| 2305 | struct btree_insert_op, op); |
| 2306 | |
| 2307 | int ret = bch_btree_insert_node(b, &op->op, op->keys, |
| 2308 | op->journal_ref, op->replace_key); |
| 2309 | if (ret && !bch_keylist_empty(op->keys)) |
| 2310 | return ret; |
| 2311 | else |
| 2312 | return MAP_DONE; |
| 2313 | } |
| 2314 | |
| 2315 | int bch_btree_insert(struct cache_set *c, struct keylist *keys, |
| 2316 | atomic_t *journal_ref, struct bkey *replace_key) |
| 2317 | { |
| 2318 | struct btree_insert_op op; |
| 2319 | int ret = 0; |
| 2320 | |
| 2321 | BUG_ON(current->bio_list); |
| 2322 | BUG_ON(bch_keylist_empty(keys)); |
| 2323 | |
| 2324 | bch_btree_op_init(&op.op, 0); |
| 2325 | op.keys = keys; |
| 2326 | op.journal_ref = journal_ref; |
| 2327 | op.replace_key = replace_key; |
| 2328 | |
| 2329 | while (!ret && !bch_keylist_empty(keys)) { |
| 2330 | op.op.lock = 0; |
| 2331 | ret = bch_btree_map_leaf_nodes(&op.op, c, |
| 2332 | &START_KEY(keys->keys), |
| 2333 | btree_insert_fn); |
| 2334 | } |
| 2335 | |
| 2336 | if (ret) { |
| 2337 | struct bkey *k; |
| 2338 | |
| 2339 | pr_err("error %i", ret); |
| 2340 | |
| 2341 | while ((k = bch_keylist_pop(keys))) |
| 2342 | bkey_put(c, k); |
| 2343 | } else if (op.op.insert_collision) |
| 2344 | ret = -ESRCH; |
| 2345 | |
| 2346 | return ret; |
| 2347 | } |
| 2348 | |
| 2349 | void bch_btree_set_root(struct btree *b) |
| 2350 | { |
| 2351 | unsigned int i; |
| 2352 | struct closure cl; |
| 2353 | |
| 2354 | closure_init_stack(&cl); |
| 2355 | |
| 2356 | trace_bcache_btree_set_root(b); |
| 2357 | |
| 2358 | BUG_ON(!b->written); |
| 2359 | |
| 2360 | for (i = 0; i < KEY_PTRS(&b->key); i++) |
| 2361 | BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); |
| 2362 | |
| 2363 | mutex_lock(&b->c->bucket_lock); |
| 2364 | list_del_init(&b->list); |
| 2365 | mutex_unlock(&b->c->bucket_lock); |
| 2366 | |
| 2367 | b->c->root = b; |
| 2368 | |
| 2369 | bch_journal_meta(b->c, &cl); |
| 2370 | closure_sync(&cl); |
| 2371 | } |
| 2372 | |
| 2373 | /* Map across nodes or keys */ |
| 2374 | |
| 2375 | static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, |
| 2376 | struct bkey *from, |
| 2377 | btree_map_nodes_fn *fn, int flags) |
| 2378 | { |
| 2379 | int ret = MAP_CONTINUE; |
| 2380 | |
| 2381 | if (b->level) { |
| 2382 | struct bkey *k; |
| 2383 | struct btree_iter iter; |
| 2384 | |
| 2385 | bch_btree_iter_init(&b->keys, &iter, from); |
| 2386 | |
| 2387 | while ((k = bch_btree_iter_next_filter(&iter, &b->keys, |
| 2388 | bch_ptr_bad))) { |
| 2389 | ret = btree(map_nodes_recurse, k, b, |
| 2390 | op, from, fn, flags); |
| 2391 | from = NULL; |
| 2392 | |
| 2393 | if (ret != MAP_CONTINUE) |
| 2394 | return ret; |
| 2395 | } |
| 2396 | } |
| 2397 | |
| 2398 | if (!b->level || flags == MAP_ALL_NODES) |
| 2399 | ret = fn(op, b); |
| 2400 | |
| 2401 | return ret; |
| 2402 | } |
| 2403 | |
| 2404 | int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, |
| 2405 | struct bkey *from, btree_map_nodes_fn *fn, int flags) |
| 2406 | { |
| 2407 | return btree_root(map_nodes_recurse, c, op, from, fn, flags); |
| 2408 | } |
| 2409 | |
| 2410 | static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, |
| 2411 | struct bkey *from, btree_map_keys_fn *fn, |
| 2412 | int flags) |
| 2413 | { |
| 2414 | int ret = MAP_CONTINUE; |
| 2415 | struct bkey *k; |
| 2416 | struct btree_iter iter; |
| 2417 | |
| 2418 | bch_btree_iter_init(&b->keys, &iter, from); |
| 2419 | |
| 2420 | while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { |
| 2421 | ret = !b->level |
| 2422 | ? fn(op, b, k) |
| 2423 | : btree(map_keys_recurse, k, b, op, from, fn, flags); |
| 2424 | from = NULL; |
| 2425 | |
| 2426 | if (ret != MAP_CONTINUE) |
| 2427 | return ret; |
| 2428 | } |
| 2429 | |
| 2430 | if (!b->level && (flags & MAP_END_KEY)) |
| 2431 | ret = fn(op, b, &KEY(KEY_INODE(&b->key), |
| 2432 | KEY_OFFSET(&b->key), 0)); |
| 2433 | |
| 2434 | return ret; |
| 2435 | } |
| 2436 | |
| 2437 | int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, |
| 2438 | struct bkey *from, btree_map_keys_fn *fn, int flags) |
| 2439 | { |
| 2440 | return btree_root(map_keys_recurse, c, op, from, fn, flags); |
| 2441 | } |
| 2442 | |
| 2443 | /* Keybuf code */ |
| 2444 | |
| 2445 | static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) |
| 2446 | { |
| 2447 | /* Overlapping keys compare equal */ |
| 2448 | if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) |
| 2449 | return -1; |
| 2450 | if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) |
| 2451 | return 1; |
| 2452 | return 0; |
| 2453 | } |
| 2454 | |
| 2455 | static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, |
| 2456 | struct keybuf_key *r) |
| 2457 | { |
| 2458 | return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); |
| 2459 | } |
| 2460 | |
| 2461 | struct refill { |
| 2462 | struct btree_op op; |
| 2463 | unsigned int nr_found; |
| 2464 | struct keybuf *buf; |
| 2465 | struct bkey *end; |
| 2466 | keybuf_pred_fn *pred; |
| 2467 | }; |
| 2468 | |
| 2469 | static int refill_keybuf_fn(struct btree_op *op, struct btree *b, |
| 2470 | struct bkey *k) |
| 2471 | { |
| 2472 | struct refill *refill = container_of(op, struct refill, op); |
| 2473 | struct keybuf *buf = refill->buf; |
| 2474 | int ret = MAP_CONTINUE; |
| 2475 | |
| 2476 | if (bkey_cmp(k, refill->end) > 0) { |
| 2477 | ret = MAP_DONE; |
| 2478 | goto out; |
| 2479 | } |
| 2480 | |
| 2481 | if (!KEY_SIZE(k)) /* end key */ |
| 2482 | goto out; |
| 2483 | |
| 2484 | if (refill->pred(buf, k)) { |
| 2485 | struct keybuf_key *w; |
| 2486 | |
| 2487 | spin_lock(&buf->lock); |
| 2488 | |
| 2489 | w = array_alloc(&buf->freelist); |
| 2490 | if (!w) { |
| 2491 | spin_unlock(&buf->lock); |
| 2492 | return MAP_DONE; |
| 2493 | } |
| 2494 | |
| 2495 | w->private = NULL; |
| 2496 | bkey_copy(&w->key, k); |
| 2497 | |
| 2498 | if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) |
| 2499 | array_free(&buf->freelist, w); |
| 2500 | else |
| 2501 | refill->nr_found++; |
| 2502 | |
| 2503 | if (array_freelist_empty(&buf->freelist)) |
| 2504 | ret = MAP_DONE; |
| 2505 | |
| 2506 | spin_unlock(&buf->lock); |
| 2507 | } |
| 2508 | out: |
| 2509 | buf->last_scanned = *k; |
| 2510 | return ret; |
| 2511 | } |
| 2512 | |
| 2513 | void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, |
| 2514 | struct bkey *end, keybuf_pred_fn *pred) |
| 2515 | { |
| 2516 | struct bkey start = buf->last_scanned; |
| 2517 | struct refill refill; |
| 2518 | |
| 2519 | cond_resched(); |
| 2520 | |
| 2521 | bch_btree_op_init(&refill.op, -1); |
| 2522 | refill.nr_found = 0; |
| 2523 | refill.buf = buf; |
| 2524 | refill.end = end; |
| 2525 | refill.pred = pred; |
| 2526 | |
| 2527 | bch_btree_map_keys(&refill.op, c, &buf->last_scanned, |
| 2528 | refill_keybuf_fn, MAP_END_KEY); |
| 2529 | |
| 2530 | trace_bcache_keyscan(refill.nr_found, |
| 2531 | KEY_INODE(&start), KEY_OFFSET(&start), |
| 2532 | KEY_INODE(&buf->last_scanned), |
| 2533 | KEY_OFFSET(&buf->last_scanned)); |
| 2534 | |
| 2535 | spin_lock(&buf->lock); |
| 2536 | |
| 2537 | if (!RB_EMPTY_ROOT(&buf->keys)) { |
| 2538 | struct keybuf_key *w; |
| 2539 | |
| 2540 | w = RB_FIRST(&buf->keys, struct keybuf_key, node); |
| 2541 | buf->start = START_KEY(&w->key); |
| 2542 | |
| 2543 | w = RB_LAST(&buf->keys, struct keybuf_key, node); |
| 2544 | buf->end = w->key; |
| 2545 | } else { |
| 2546 | buf->start = MAX_KEY; |
| 2547 | buf->end = MAX_KEY; |
| 2548 | } |
| 2549 | |
| 2550 | spin_unlock(&buf->lock); |
| 2551 | } |
| 2552 | |
| 2553 | static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) |
| 2554 | { |
| 2555 | rb_erase(&w->node, &buf->keys); |
| 2556 | array_free(&buf->freelist, w); |
| 2557 | } |
| 2558 | |
| 2559 | void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) |
| 2560 | { |
| 2561 | spin_lock(&buf->lock); |
| 2562 | __bch_keybuf_del(buf, w); |
| 2563 | spin_unlock(&buf->lock); |
| 2564 | } |
| 2565 | |
| 2566 | bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, |
| 2567 | struct bkey *end) |
| 2568 | { |
| 2569 | bool ret = false; |
| 2570 | struct keybuf_key *p, *w, s; |
| 2571 | |
| 2572 | s.key = *start; |
| 2573 | |
| 2574 | if (bkey_cmp(end, &buf->start) <= 0 || |
| 2575 | bkey_cmp(start, &buf->end) >= 0) |
| 2576 | return false; |
| 2577 | |
| 2578 | spin_lock(&buf->lock); |
| 2579 | w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); |
| 2580 | |
| 2581 | while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { |
| 2582 | p = w; |
| 2583 | w = RB_NEXT(w, node); |
| 2584 | |
| 2585 | if (p->private) |
| 2586 | ret = true; |
| 2587 | else |
| 2588 | __bch_keybuf_del(buf, p); |
| 2589 | } |
| 2590 | |
| 2591 | spin_unlock(&buf->lock); |
| 2592 | return ret; |
| 2593 | } |
| 2594 | |
| 2595 | struct keybuf_key *bch_keybuf_next(struct keybuf *buf) |
| 2596 | { |
| 2597 | struct keybuf_key *w; |
| 2598 | |
| 2599 | spin_lock(&buf->lock); |
| 2600 | |
| 2601 | w = RB_FIRST(&buf->keys, struct keybuf_key, node); |
| 2602 | |
| 2603 | while (w && w->private) |
| 2604 | w = RB_NEXT(w, node); |
| 2605 | |
| 2606 | if (w) |
| 2607 | w->private = ERR_PTR(-EINTR); |
| 2608 | |
| 2609 | spin_unlock(&buf->lock); |
| 2610 | return w; |
| 2611 | } |
| 2612 | |
| 2613 | struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, |
| 2614 | struct keybuf *buf, |
| 2615 | struct bkey *end, |
| 2616 | keybuf_pred_fn *pred) |
| 2617 | { |
| 2618 | struct keybuf_key *ret; |
| 2619 | |
| 2620 | while (1) { |
| 2621 | ret = bch_keybuf_next(buf); |
| 2622 | if (ret) |
| 2623 | break; |
| 2624 | |
| 2625 | if (bkey_cmp(&buf->last_scanned, end) >= 0) { |
| 2626 | pr_debug("scan finished"); |
| 2627 | break; |
| 2628 | } |
| 2629 | |
| 2630 | bch_refill_keybuf(c, buf, end, pred); |
| 2631 | } |
| 2632 | |
| 2633 | return ret; |
| 2634 | } |
| 2635 | |
| 2636 | void bch_keybuf_init(struct keybuf *buf) |
| 2637 | { |
| 2638 | buf->last_scanned = MAX_KEY; |
| 2639 | buf->keys = RB_ROOT; |
| 2640 | |
| 2641 | spin_lock_init(&buf->lock); |
| 2642 | array_allocator_init(&buf->freelist); |
| 2643 | } |