blob: e4f167e35353f24badbb3af48aea981ba08c6834 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <rdma/mr_pool.h>
19#include <linux/err.h>
20#include <linux/string.h>
21#include <linux/atomic.h>
22#include <linux/blk-mq.h>
23#include <linux/blk-mq-rdma.h>
24#include <linux/types.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/scatterlist.h>
28#include <linux/nvme.h>
29#include <asm/unaligned.h>
30
31#include <rdma/ib_verbs.h>
32#include <rdma/rdma_cm.h>
33#include <linux/nvme-rdma.h>
34
35#include "nvme.h"
36#include "fabrics.h"
37
38
39#define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41#define NVME_RDMA_MAX_SEGMENTS 256
42
43#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
44
45struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 unsigned int num_inline_segments;
51};
52
53struct nvme_rdma_qe {
54 struct ib_cqe cqe;
55 void *data;
56 u64 dma;
57};
58
59struct nvme_rdma_queue;
60struct nvme_rdma_request {
61 struct nvme_request req;
62 struct ib_mr *mr;
63 struct nvme_rdma_qe sqe;
64 union nvme_result result;
65 __le16 status;
66 refcount_t ref;
67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 u32 num_sge;
69 int nents;
70 struct ib_reg_wr reg_wr;
71 struct ib_cqe reg_cqe;
72 struct nvme_rdma_queue *queue;
73 struct sg_table sg_table;
74 struct scatterlist first_sgl[];
75};
76
77enum nvme_rdma_queue_flags {
78 NVME_RDMA_Q_ALLOCATED = 0,
79 NVME_RDMA_Q_LIVE = 1,
80 NVME_RDMA_Q_TR_READY = 2,
81};
82
83struct nvme_rdma_queue {
84 struct nvme_rdma_qe *rsp_ring;
85 int queue_size;
86 size_t cmnd_capsule_len;
87 struct nvme_rdma_ctrl *ctrl;
88 struct nvme_rdma_device *device;
89 struct ib_cq *ib_cq;
90 struct ib_qp *qp;
91
92 unsigned long flags;
93 struct rdma_cm_id *cm_id;
94 int cm_error;
95 struct completion cm_done;
96};
97
98struct nvme_rdma_ctrl {
99 /* read only in the hot path */
100 struct nvme_rdma_queue *queues;
101
102 /* other member variables */
103 struct blk_mq_tag_set tag_set;
104 struct work_struct err_work;
105
106 struct nvme_rdma_qe async_event_sqe;
107
108 struct delayed_work reconnect_work;
109
110 struct list_head list;
111
112 struct blk_mq_tag_set admin_tag_set;
113 struct nvme_rdma_device *device;
114
115 u32 max_fr_pages;
116
117 struct sockaddr_storage addr;
118 struct sockaddr_storage src_addr;
119
120 struct nvme_ctrl ctrl;
121 bool use_inline_data;
122};
123
124static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125{
126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127}
128
129static LIST_HEAD(device_list);
130static DEFINE_MUTEX(device_list_mutex);
131
132static LIST_HEAD(nvme_rdma_ctrl_list);
133static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134
135/*
136 * Disabling this option makes small I/O goes faster, but is fundamentally
137 * unsafe. With it turned off we will have to register a global rkey that
138 * allows read and write access to all physical memory.
139 */
140static bool register_always = true;
141module_param(register_always, bool, 0444);
142MODULE_PARM_DESC(register_always,
143 "Use memory registration even for contiguous memory regions");
144
145static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146 struct rdma_cm_event *event);
147static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148
149static const struct blk_mq_ops nvme_rdma_mq_ops;
150static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151
152/* XXX: really should move to a generic header sooner or later.. */
153static inline void put_unaligned_le24(u32 val, u8 *p)
154{
155 *p++ = val;
156 *p++ = val >> 8;
157 *p++ = val >> 16;
158}
159
160static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161{
162 return queue - queue->ctrl->queues;
163}
164
165static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166{
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168}
169
170static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
172{
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
175}
176
177static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179{
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
183
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 qe->data = NULL;
188 return -ENOMEM;
189 }
190
191 return 0;
192}
193
194static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 size_t capsule_size, enum dma_data_direction dir)
197{
198 int i;
199
200 for (i = 0; i < ib_queue_size; i++)
201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 kfree(ring);
203}
204
205static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 size_t ib_queue_size, size_t capsule_size,
207 enum dma_data_direction dir)
208{
209 struct nvme_rdma_qe *ring;
210 int i;
211
212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 if (!ring)
214 return NULL;
215
216 for (i = 0; i < ib_queue_size; i++) {
217 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218 goto out_free_ring;
219 }
220
221 return ring;
222
223out_free_ring:
224 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225 return NULL;
226}
227
228static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229{
230 pr_debug("QP event %s (%d)\n",
231 ib_event_msg(event->event), event->event);
232
233}
234
235static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236{
237 wait_for_completion_interruptible_timeout(&queue->cm_done,
238 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
239 return queue->cm_error;
240}
241
242static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
243{
244 struct nvme_rdma_device *dev = queue->device;
245 struct ib_qp_init_attr init_attr;
246 int ret;
247
248 memset(&init_attr, 0, sizeof(init_attr));
249 init_attr.event_handler = nvme_rdma_qp_event;
250 /* +1 for drain */
251 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
252 /* +1 for drain */
253 init_attr.cap.max_recv_wr = queue->queue_size + 1;
254 init_attr.cap.max_recv_sge = 1;
255 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
256 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
257 init_attr.qp_type = IB_QPT_RC;
258 init_attr.send_cq = queue->ib_cq;
259 init_attr.recv_cq = queue->ib_cq;
260
261 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
262
263 queue->qp = queue->cm_id->qp;
264 return ret;
265}
266
267static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
268 struct request *rq, unsigned int hctx_idx)
269{
270 struct nvme_rdma_ctrl *ctrl = set->driver_data;
271 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
272 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
273 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
274 struct nvme_rdma_device *dev = queue->device;
275
276 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
277 DMA_TO_DEVICE);
278}
279
280static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
281 struct request *rq, unsigned int hctx_idx,
282 unsigned int numa_node)
283{
284 struct nvme_rdma_ctrl *ctrl = set->driver_data;
285 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
286 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
287 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
288 struct nvme_rdma_device *dev = queue->device;
289 struct ib_device *ibdev = dev->dev;
290 int ret;
291
292 nvme_req(rq)->ctrl = &ctrl->ctrl;
293 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
294 DMA_TO_DEVICE);
295 if (ret)
296 return ret;
297
298 req->queue = queue;
299
300 return 0;
301}
302
303static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
304 unsigned int hctx_idx)
305{
306 struct nvme_rdma_ctrl *ctrl = data;
307 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
308
309 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
310
311 hctx->driver_data = queue;
312 return 0;
313}
314
315static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
316 unsigned int hctx_idx)
317{
318 struct nvme_rdma_ctrl *ctrl = data;
319 struct nvme_rdma_queue *queue = &ctrl->queues[0];
320
321 BUG_ON(hctx_idx != 0);
322
323 hctx->driver_data = queue;
324 return 0;
325}
326
327static void nvme_rdma_free_dev(struct kref *ref)
328{
329 struct nvme_rdma_device *ndev =
330 container_of(ref, struct nvme_rdma_device, ref);
331
332 mutex_lock(&device_list_mutex);
333 list_del(&ndev->entry);
334 mutex_unlock(&device_list_mutex);
335
336 ib_dealloc_pd(ndev->pd);
337 kfree(ndev);
338}
339
340static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
341{
342 kref_put(&dev->ref, nvme_rdma_free_dev);
343}
344
345static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
346{
347 return kref_get_unless_zero(&dev->ref);
348}
349
350static struct nvme_rdma_device *
351nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
352{
353 struct nvme_rdma_device *ndev;
354
355 mutex_lock(&device_list_mutex);
356 list_for_each_entry(ndev, &device_list, entry) {
357 if (ndev->dev->node_guid == cm_id->device->node_guid &&
358 nvme_rdma_dev_get(ndev))
359 goto out_unlock;
360 }
361
362 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
363 if (!ndev)
364 goto out_err;
365
366 ndev->dev = cm_id->device;
367 kref_init(&ndev->ref);
368
369 ndev->pd = ib_alloc_pd(ndev->dev,
370 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
371 if (IS_ERR(ndev->pd))
372 goto out_free_dev;
373
374 if (!(ndev->dev->attrs.device_cap_flags &
375 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
376 dev_err(&ndev->dev->dev,
377 "Memory registrations not supported.\n");
378 goto out_free_pd;
379 }
380
381 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
382 ndev->dev->attrs.max_send_sge - 1);
383 list_add(&ndev->entry, &device_list);
384out_unlock:
385 mutex_unlock(&device_list_mutex);
386 return ndev;
387
388out_free_pd:
389 ib_dealloc_pd(ndev->pd);
390out_free_dev:
391 kfree(ndev);
392out_err:
393 mutex_unlock(&device_list_mutex);
394 return NULL;
395}
396
397static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
398{
399 struct nvme_rdma_device *dev;
400 struct ib_device *ibdev;
401
402 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
403 return;
404
405 dev = queue->device;
406 ibdev = dev->dev;
407
408 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
409
410 /*
411 * The cm_id object might have been destroyed during RDMA connection
412 * establishment error flow to avoid getting other cma events, thus
413 * the destruction of the QP shouldn't use rdma_cm API.
414 */
415 ib_destroy_qp(queue->qp);
416 ib_free_cq(queue->ib_cq);
417
418 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
419 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
420
421 nvme_rdma_dev_put(dev);
422}
423
424static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
425{
426 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
427 ibdev->attrs.max_fast_reg_page_list_len);
428}
429
430static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
431{
432 struct ib_device *ibdev;
433 const int send_wr_factor = 3; /* MR, SEND, INV */
434 const int cq_factor = send_wr_factor + 1; /* + RECV */
435 int comp_vector, idx = nvme_rdma_queue_idx(queue);
436 int ret;
437
438 queue->device = nvme_rdma_find_get_device(queue->cm_id);
439 if (!queue->device) {
440 dev_err(queue->cm_id->device->dev.parent,
441 "no client data found!\n");
442 return -ECONNREFUSED;
443 }
444 ibdev = queue->device->dev;
445
446 /*
447 * Spread I/O queues completion vectors according their queue index.
448 * Admin queues can always go on completion vector 0.
449 */
450 comp_vector = idx == 0 ? idx : idx - 1;
451
452 /* +1 for ib_stop_cq */
453 queue->ib_cq = ib_alloc_cq(ibdev, queue,
454 cq_factor * queue->queue_size + 1,
455 comp_vector, IB_POLL_SOFTIRQ);
456 if (IS_ERR(queue->ib_cq)) {
457 ret = PTR_ERR(queue->ib_cq);
458 goto out_put_dev;
459 }
460
461 ret = nvme_rdma_create_qp(queue, send_wr_factor);
462 if (ret)
463 goto out_destroy_ib_cq;
464
465 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
466 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
467 if (!queue->rsp_ring) {
468 ret = -ENOMEM;
469 goto out_destroy_qp;
470 }
471
472 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
473 queue->queue_size,
474 IB_MR_TYPE_MEM_REG,
475 nvme_rdma_get_max_fr_pages(ibdev));
476 if (ret) {
477 dev_err(queue->ctrl->ctrl.device,
478 "failed to initialize MR pool sized %d for QID %d\n",
479 queue->queue_size, idx);
480 goto out_destroy_ring;
481 }
482
483 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
484
485 return 0;
486
487out_destroy_ring:
488 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
489 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490out_destroy_qp:
491 rdma_destroy_qp(queue->cm_id);
492out_destroy_ib_cq:
493 ib_free_cq(queue->ib_cq);
494out_put_dev:
495 nvme_rdma_dev_put(queue->device);
496 return ret;
497}
498
499static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
500 int idx, size_t queue_size)
501{
502 struct nvme_rdma_queue *queue;
503 struct sockaddr *src_addr = NULL;
504 int ret;
505
506 queue = &ctrl->queues[idx];
507 queue->ctrl = ctrl;
508 init_completion(&queue->cm_done);
509
510 if (idx > 0)
511 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
512 else
513 queue->cmnd_capsule_len = sizeof(struct nvme_command);
514
515 queue->queue_size = queue_size;
516
517 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
518 RDMA_PS_TCP, IB_QPT_RC);
519 if (IS_ERR(queue->cm_id)) {
520 dev_info(ctrl->ctrl.device,
521 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
522 return PTR_ERR(queue->cm_id);
523 }
524
525 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
526 src_addr = (struct sockaddr *)&ctrl->src_addr;
527
528 queue->cm_error = -ETIMEDOUT;
529 ret = rdma_resolve_addr(queue->cm_id, src_addr,
530 (struct sockaddr *)&ctrl->addr,
531 NVME_RDMA_CONNECT_TIMEOUT_MS);
532 if (ret) {
533 dev_info(ctrl->ctrl.device,
534 "rdma_resolve_addr failed (%d).\n", ret);
535 goto out_destroy_cm_id;
536 }
537
538 ret = nvme_rdma_wait_for_cm(queue);
539 if (ret) {
540 dev_info(ctrl->ctrl.device,
541 "rdma connection establishment failed (%d)\n", ret);
542 goto out_destroy_cm_id;
543 }
544
545 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
546
547 return 0;
548
549out_destroy_cm_id:
550 rdma_destroy_id(queue->cm_id);
551 nvme_rdma_destroy_queue_ib(queue);
552 return ret;
553}
554
555static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
556{
557 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
558 return;
559
560 rdma_disconnect(queue->cm_id);
561 ib_drain_qp(queue->qp);
562}
563
564static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
565{
566 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
567 return;
568
569 nvme_rdma_destroy_queue_ib(queue);
570 rdma_destroy_id(queue->cm_id);
571}
572
573static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
574{
575 int i;
576
577 for (i = 1; i < ctrl->ctrl.queue_count; i++)
578 nvme_rdma_free_queue(&ctrl->queues[i]);
579}
580
581static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
582{
583 int i;
584
585 for (i = 1; i < ctrl->ctrl.queue_count; i++)
586 nvme_rdma_stop_queue(&ctrl->queues[i]);
587}
588
589static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
590{
591 int ret;
592
593 if (idx)
594 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
595 else
596 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
597
598 if (!ret)
599 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
600 else
601 dev_info(ctrl->ctrl.device,
602 "failed to connect queue: %d ret=%d\n", idx, ret);
603 return ret;
604}
605
606static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
607{
608 int i, ret = 0;
609
610 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
611 ret = nvme_rdma_start_queue(ctrl, i);
612 if (ret)
613 goto out_stop_queues;
614 }
615
616 return 0;
617
618out_stop_queues:
619 for (i--; i >= 1; i--)
620 nvme_rdma_stop_queue(&ctrl->queues[i]);
621 return ret;
622}
623
624static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
625{
626 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
627 struct ib_device *ibdev = ctrl->device->dev;
628 unsigned int nr_io_queues;
629 int i, ret;
630
631 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
632
633 /*
634 * we map queues according to the device irq vectors for
635 * optimal locality so we don't need more queues than
636 * completion vectors.
637 */
638 nr_io_queues = min_t(unsigned int, nr_io_queues,
639 ibdev->num_comp_vectors);
640
641 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
642 if (ret)
643 return ret;
644
645 ctrl->ctrl.queue_count = nr_io_queues + 1;
646 if (ctrl->ctrl.queue_count < 2)
647 return 0;
648
649 dev_info(ctrl->ctrl.device,
650 "creating %d I/O queues.\n", nr_io_queues);
651
652 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
653 ret = nvme_rdma_alloc_queue(ctrl, i,
654 ctrl->ctrl.sqsize + 1);
655 if (ret)
656 goto out_free_queues;
657 }
658
659 return 0;
660
661out_free_queues:
662 for (i--; i >= 1; i--)
663 nvme_rdma_free_queue(&ctrl->queues[i]);
664
665 return ret;
666}
667
668static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
669 struct blk_mq_tag_set *set)
670{
671 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
672
673 blk_mq_free_tag_set(set);
674 nvme_rdma_dev_put(ctrl->device);
675}
676
677static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
678 bool admin)
679{
680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681 struct blk_mq_tag_set *set;
682 int ret;
683
684 if (admin) {
685 set = &ctrl->admin_tag_set;
686 memset(set, 0, sizeof(*set));
687 set->ops = &nvme_rdma_admin_mq_ops;
688 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
689 set->reserved_tags = 2; /* connect + keep-alive */
690 set->numa_node = NUMA_NO_NODE;
691 set->cmd_size = sizeof(struct nvme_rdma_request) +
692 SG_CHUNK_SIZE * sizeof(struct scatterlist);
693 set->driver_data = ctrl;
694 set->nr_hw_queues = 1;
695 set->timeout = ADMIN_TIMEOUT;
696 set->flags = BLK_MQ_F_NO_SCHED;
697 } else {
698 set = &ctrl->tag_set;
699 memset(set, 0, sizeof(*set));
700 set->ops = &nvme_rdma_mq_ops;
701 set->queue_depth = nctrl->sqsize + 1;
702 set->reserved_tags = 1; /* fabric connect */
703 set->numa_node = NUMA_NO_NODE;
704 set->flags = BLK_MQ_F_SHOULD_MERGE;
705 set->cmd_size = sizeof(struct nvme_rdma_request) +
706 SG_CHUNK_SIZE * sizeof(struct scatterlist);
707 set->driver_data = ctrl;
708 set->nr_hw_queues = nctrl->queue_count - 1;
709 set->timeout = NVME_IO_TIMEOUT;
710 }
711
712 ret = blk_mq_alloc_tag_set(set);
713 if (ret)
714 goto out;
715
716 /*
717 * We need a reference on the device as long as the tag_set is alive,
718 * as the MRs in the request structures need a valid ib_device.
719 */
720 ret = nvme_rdma_dev_get(ctrl->device);
721 if (!ret) {
722 ret = -EINVAL;
723 goto out_free_tagset;
724 }
725
726 return set;
727
728out_free_tagset:
729 blk_mq_free_tag_set(set);
730out:
731 return ERR_PTR(ret);
732}
733
734static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
735 bool remove)
736{
737 if (remove) {
738 blk_cleanup_queue(ctrl->ctrl.admin_q);
739 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
740 }
741 if (ctrl->async_event_sqe.data) {
742 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
743 sizeof(struct nvme_command), DMA_TO_DEVICE);
744 ctrl->async_event_sqe.data = NULL;
745 }
746 nvme_rdma_free_queue(&ctrl->queues[0]);
747}
748
749static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
750 bool new)
751{
752 int error;
753
754 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
755 if (error)
756 return error;
757
758 ctrl->device = ctrl->queues[0].device;
759
760 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
761
762 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
763 sizeof(struct nvme_command), DMA_TO_DEVICE);
764 if (error)
765 goto out_free_queue;
766
767 if (new) {
768 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
769 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
770 error = PTR_ERR(ctrl->ctrl.admin_tagset);
771 goto out_free_async_qe;
772 }
773
774 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
775 if (IS_ERR(ctrl->ctrl.admin_q)) {
776 error = PTR_ERR(ctrl->ctrl.admin_q);
777 goto out_free_tagset;
778 }
779 }
780
781 error = nvme_rdma_start_queue(ctrl, 0);
782 if (error)
783 goto out_cleanup_queue;
784
785 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
786 &ctrl->ctrl.cap);
787 if (error) {
788 dev_err(ctrl->ctrl.device,
789 "prop_get NVME_REG_CAP failed\n");
790 goto out_stop_queue;
791 }
792
793 ctrl->ctrl.sqsize =
794 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
795
796 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
797 if (error)
798 goto out_stop_queue;
799
800 ctrl->ctrl.max_hw_sectors =
801 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
802
803 error = nvme_init_identify(&ctrl->ctrl);
804 if (error)
805 goto out_stop_queue;
806
807 return 0;
808
809out_stop_queue:
810 nvme_rdma_stop_queue(&ctrl->queues[0]);
811out_cleanup_queue:
812 if (new)
813 blk_cleanup_queue(ctrl->ctrl.admin_q);
814out_free_tagset:
815 if (new)
816 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
817out_free_async_qe:
818 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
819 sizeof(struct nvme_command), DMA_TO_DEVICE);
820 ctrl->async_event_sqe.data = NULL;
821out_free_queue:
822 nvme_rdma_free_queue(&ctrl->queues[0]);
823 return error;
824}
825
826static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
827 bool remove)
828{
829 if (remove) {
830 blk_cleanup_queue(ctrl->ctrl.connect_q);
831 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
832 }
833 nvme_rdma_free_io_queues(ctrl);
834}
835
836static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
837{
838 int ret;
839
840 ret = nvme_rdma_alloc_io_queues(ctrl);
841 if (ret)
842 return ret;
843
844 if (new) {
845 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
846 if (IS_ERR(ctrl->ctrl.tagset)) {
847 ret = PTR_ERR(ctrl->ctrl.tagset);
848 goto out_free_io_queues;
849 }
850
851 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
852 if (IS_ERR(ctrl->ctrl.connect_q)) {
853 ret = PTR_ERR(ctrl->ctrl.connect_q);
854 goto out_free_tag_set;
855 }
856 } else {
857 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
858 ctrl->ctrl.queue_count - 1);
859 }
860
861 ret = nvme_rdma_start_io_queues(ctrl);
862 if (ret)
863 goto out_cleanup_connect_q;
864
865 return 0;
866
867out_cleanup_connect_q:
868 if (new)
869 blk_cleanup_queue(ctrl->ctrl.connect_q);
870out_free_tag_set:
871 if (new)
872 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
873out_free_io_queues:
874 nvme_rdma_free_io_queues(ctrl);
875 return ret;
876}
877
878static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
879 bool remove)
880{
881 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
882 nvme_rdma_stop_queue(&ctrl->queues[0]);
883 if (ctrl->ctrl.admin_tagset)
884 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
885 nvme_cancel_request, &ctrl->ctrl);
886 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
887 nvme_rdma_destroy_admin_queue(ctrl, remove);
888}
889
890static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
891 bool remove)
892{
893 if (ctrl->ctrl.queue_count > 1) {
894 nvme_stop_queues(&ctrl->ctrl);
895 nvme_rdma_stop_io_queues(ctrl);
896 if (ctrl->ctrl.tagset)
897 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
898 nvme_cancel_request, &ctrl->ctrl);
899 if (remove)
900 nvme_start_queues(&ctrl->ctrl);
901 nvme_rdma_destroy_io_queues(ctrl, remove);
902 }
903}
904
905static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
906{
907 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
908
909 cancel_work_sync(&ctrl->err_work);
910 cancel_delayed_work_sync(&ctrl->reconnect_work);
911}
912
913static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
914{
915 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
916
917 if (list_empty(&ctrl->list))
918 goto free_ctrl;
919
920 mutex_lock(&nvme_rdma_ctrl_mutex);
921 list_del(&ctrl->list);
922 mutex_unlock(&nvme_rdma_ctrl_mutex);
923
924 nvmf_free_options(nctrl->opts);
925free_ctrl:
926 kfree(ctrl->queues);
927 kfree(ctrl);
928}
929
930static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
931{
932 /* If we are resetting/deleting then do nothing */
933 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
934 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
935 ctrl->ctrl.state == NVME_CTRL_LIVE);
936 return;
937 }
938
939 if (nvmf_should_reconnect(&ctrl->ctrl)) {
940 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
941 ctrl->ctrl.opts->reconnect_delay);
942 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
943 ctrl->ctrl.opts->reconnect_delay * HZ);
944 } else {
945 nvme_delete_ctrl(&ctrl->ctrl);
946 }
947}
948
949static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
950{
951 int ret = -EINVAL;
952 bool changed;
953
954 ret = nvme_rdma_configure_admin_queue(ctrl, new);
955 if (ret)
956 return ret;
957
958 if (ctrl->ctrl.icdoff) {
959 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
960 goto destroy_admin;
961 }
962
963 if (!(ctrl->ctrl.sgls & (1 << 2))) {
964 dev_err(ctrl->ctrl.device,
965 "Mandatory keyed sgls are not supported!\n");
966 goto destroy_admin;
967 }
968
969 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
970 dev_warn(ctrl->ctrl.device,
971 "queue_size %zu > ctrl sqsize %u, clamping down\n",
972 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
973 }
974
975 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
976 dev_warn(ctrl->ctrl.device,
977 "sqsize %u > ctrl maxcmd %u, clamping down\n",
978 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
979 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
980 }
981
982 if (ctrl->ctrl.sgls & (1 << 20))
983 ctrl->use_inline_data = true;
984
985 if (ctrl->ctrl.queue_count > 1) {
986 ret = nvme_rdma_configure_io_queues(ctrl, new);
987 if (ret)
988 goto destroy_admin;
989 }
990
991 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
992 if (!changed) {
993 /* state change failure is ok if we're in DELETING state */
994 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
995 ret = -EINVAL;
996 goto destroy_io;
997 }
998
999 nvme_start_ctrl(&ctrl->ctrl);
1000 return 0;
1001
1002destroy_io:
1003 if (ctrl->ctrl.queue_count > 1)
1004 nvme_rdma_destroy_io_queues(ctrl, new);
1005destroy_admin:
1006 nvme_rdma_stop_queue(&ctrl->queues[0]);
1007 nvme_rdma_destroy_admin_queue(ctrl, new);
1008 return ret;
1009}
1010
1011static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1012{
1013 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1014 struct nvme_rdma_ctrl, reconnect_work);
1015
1016 ++ctrl->ctrl.nr_reconnects;
1017
1018 if (nvme_rdma_setup_ctrl(ctrl, false))
1019 goto requeue;
1020
1021 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1022 ctrl->ctrl.nr_reconnects);
1023
1024 ctrl->ctrl.nr_reconnects = 0;
1025
1026 return;
1027
1028requeue:
1029 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1030 ctrl->ctrl.nr_reconnects);
1031 nvme_rdma_reconnect_or_remove(ctrl);
1032}
1033
1034static void nvme_rdma_error_recovery_work(struct work_struct *work)
1035{
1036 struct nvme_rdma_ctrl *ctrl = container_of(work,
1037 struct nvme_rdma_ctrl, err_work);
1038
1039 nvme_stop_keep_alive(&ctrl->ctrl);
1040 nvme_rdma_teardown_io_queues(ctrl, false);
1041 nvme_start_queues(&ctrl->ctrl);
1042 nvme_rdma_teardown_admin_queue(ctrl, false);
1043
1044 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1045 /* state change failure is ok if we're in DELETING state */
1046 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1047 return;
1048 }
1049
1050 nvme_rdma_reconnect_or_remove(ctrl);
1051}
1052
1053static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1054{
1055 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1056 return;
1057
1058 queue_work(nvme_wq, &ctrl->err_work);
1059}
1060
1061static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1062 const char *op)
1063{
1064 struct nvme_rdma_queue *queue = cq->cq_context;
1065 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1066
1067 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1068 dev_info(ctrl->ctrl.device,
1069 "%s for CQE 0x%p failed with status %s (%d)\n",
1070 op, wc->wr_cqe,
1071 ib_wc_status_msg(wc->status), wc->status);
1072 nvme_rdma_error_recovery(ctrl);
1073}
1074
1075static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1076{
1077 if (unlikely(wc->status != IB_WC_SUCCESS))
1078 nvme_rdma_wr_error(cq, wc, "MEMREG");
1079}
1080
1081static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1082{
1083 struct nvme_rdma_request *req =
1084 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1085 struct request *rq = blk_mq_rq_from_pdu(req);
1086
1087 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1088 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1089 return;
1090 }
1091
1092 if (refcount_dec_and_test(&req->ref))
1093 nvme_end_request(rq, req->status, req->result);
1094
1095}
1096
1097static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1098 struct nvme_rdma_request *req)
1099{
1100 struct ib_send_wr wr = {
1101 .opcode = IB_WR_LOCAL_INV,
1102 .next = NULL,
1103 .num_sge = 0,
1104 .send_flags = IB_SEND_SIGNALED,
1105 .ex.invalidate_rkey = req->mr->rkey,
1106 };
1107
1108 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1109 wr.wr_cqe = &req->reg_cqe;
1110
1111 return ib_post_send(queue->qp, &wr, NULL);
1112}
1113
1114static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1115 struct request *rq)
1116{
1117 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1118 struct nvme_rdma_device *dev = queue->device;
1119 struct ib_device *ibdev = dev->dev;
1120
1121 if (!blk_rq_payload_bytes(rq))
1122 return;
1123
1124 if (req->mr) {
1125 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1126 req->mr = NULL;
1127 }
1128
1129 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1130 req->nents, rq_data_dir(rq) ==
1131 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1132
1133 nvme_cleanup_cmd(rq);
1134 sg_free_table_chained(&req->sg_table, true);
1135}
1136
1137static int nvme_rdma_set_sg_null(struct nvme_command *c)
1138{
1139 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1140
1141 sg->addr = 0;
1142 put_unaligned_le24(0, sg->length);
1143 put_unaligned_le32(0, sg->key);
1144 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1145 return 0;
1146}
1147
1148static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1149 struct nvme_rdma_request *req, struct nvme_command *c,
1150 int count)
1151{
1152 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1153 struct scatterlist *sgl = req->sg_table.sgl;
1154 struct ib_sge *sge = &req->sge[1];
1155 u32 len = 0;
1156 int i;
1157
1158 for (i = 0; i < count; i++, sgl++, sge++) {
1159 sge->addr = sg_dma_address(sgl);
1160 sge->length = sg_dma_len(sgl);
1161 sge->lkey = queue->device->pd->local_dma_lkey;
1162 len += sge->length;
1163 }
1164
1165 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1166 sg->length = cpu_to_le32(len);
1167 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1168
1169 req->num_sge += count;
1170 return 0;
1171}
1172
1173static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1174 struct nvme_rdma_request *req, struct nvme_command *c)
1175{
1176 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1177
1178 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1179 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1180 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1181 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1182 return 0;
1183}
1184
1185static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1186 struct nvme_rdma_request *req, struct nvme_command *c,
1187 int count)
1188{
1189 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1190 int nr;
1191
1192 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1193 if (WARN_ON_ONCE(!req->mr))
1194 return -EAGAIN;
1195
1196 /*
1197 * Align the MR to a 4K page size to match the ctrl page size and
1198 * the block virtual boundary.
1199 */
1200 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1201 if (unlikely(nr < count)) {
1202 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1203 req->mr = NULL;
1204 if (nr < 0)
1205 return nr;
1206 return -EINVAL;
1207 }
1208
1209 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1210
1211 req->reg_cqe.done = nvme_rdma_memreg_done;
1212 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1213 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1214 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1215 req->reg_wr.wr.num_sge = 0;
1216 req->reg_wr.mr = req->mr;
1217 req->reg_wr.key = req->mr->rkey;
1218 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1219 IB_ACCESS_REMOTE_READ |
1220 IB_ACCESS_REMOTE_WRITE;
1221
1222 sg->addr = cpu_to_le64(req->mr->iova);
1223 put_unaligned_le24(req->mr->length, sg->length);
1224 put_unaligned_le32(req->mr->rkey, sg->key);
1225 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1226 NVME_SGL_FMT_INVALIDATE;
1227
1228 return 0;
1229}
1230
1231static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1232 struct request *rq, struct nvme_command *c)
1233{
1234 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1235 struct nvme_rdma_device *dev = queue->device;
1236 struct ib_device *ibdev = dev->dev;
1237 int count, ret;
1238
1239 req->num_sge = 1;
1240 refcount_set(&req->ref, 2); /* send and recv completions */
1241
1242 c->common.flags |= NVME_CMD_SGL_METABUF;
1243
1244 if (!blk_rq_payload_bytes(rq))
1245 return nvme_rdma_set_sg_null(c);
1246
1247 req->sg_table.sgl = req->first_sgl;
1248 ret = sg_alloc_table_chained(&req->sg_table,
1249 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1250 if (ret)
1251 return -ENOMEM;
1252
1253 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1254
1255 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1256 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1257 if (unlikely(count <= 0)) {
1258 ret = -EIO;
1259 goto out_free_table;
1260 }
1261
1262 if (count <= dev->num_inline_segments) {
1263 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1264 queue->ctrl->use_inline_data &&
1265 blk_rq_payload_bytes(rq) <=
1266 nvme_rdma_inline_data_size(queue)) {
1267 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1268 goto out;
1269 }
1270
1271 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1272 ret = nvme_rdma_map_sg_single(queue, req, c);
1273 goto out;
1274 }
1275 }
1276
1277 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1278out:
1279 if (unlikely(ret))
1280 goto out_unmap_sg;
1281
1282 return 0;
1283
1284out_unmap_sg:
1285 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1286 req->nents, rq_data_dir(rq) ==
1287 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1288out_free_table:
1289 sg_free_table_chained(&req->sg_table, true);
1290 return ret;
1291}
1292
1293static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1294{
1295 struct nvme_rdma_qe *qe =
1296 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1297 struct nvme_rdma_request *req =
1298 container_of(qe, struct nvme_rdma_request, sqe);
1299 struct request *rq = blk_mq_rq_from_pdu(req);
1300
1301 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1302 nvme_rdma_wr_error(cq, wc, "SEND");
1303 return;
1304 }
1305
1306 if (refcount_dec_and_test(&req->ref))
1307 nvme_end_request(rq, req->status, req->result);
1308}
1309
1310static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1311 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1312 struct ib_send_wr *first)
1313{
1314 struct ib_send_wr wr;
1315 int ret;
1316
1317 sge->addr = qe->dma;
1318 sge->length = sizeof(struct nvme_command),
1319 sge->lkey = queue->device->pd->local_dma_lkey;
1320
1321 wr.next = NULL;
1322 wr.wr_cqe = &qe->cqe;
1323 wr.sg_list = sge;
1324 wr.num_sge = num_sge;
1325 wr.opcode = IB_WR_SEND;
1326 wr.send_flags = IB_SEND_SIGNALED;
1327
1328 if (first)
1329 first->next = &wr;
1330 else
1331 first = &wr;
1332
1333 ret = ib_post_send(queue->qp, first, NULL);
1334 if (unlikely(ret)) {
1335 dev_err(queue->ctrl->ctrl.device,
1336 "%s failed with error code %d\n", __func__, ret);
1337 }
1338 return ret;
1339}
1340
1341static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1342 struct nvme_rdma_qe *qe)
1343{
1344 struct ib_recv_wr wr;
1345 struct ib_sge list;
1346 int ret;
1347
1348 list.addr = qe->dma;
1349 list.length = sizeof(struct nvme_completion);
1350 list.lkey = queue->device->pd->local_dma_lkey;
1351
1352 qe->cqe.done = nvme_rdma_recv_done;
1353
1354 wr.next = NULL;
1355 wr.wr_cqe = &qe->cqe;
1356 wr.sg_list = &list;
1357 wr.num_sge = 1;
1358
1359 ret = ib_post_recv(queue->qp, &wr, NULL);
1360 if (unlikely(ret)) {
1361 dev_err(queue->ctrl->ctrl.device,
1362 "%s failed with error code %d\n", __func__, ret);
1363 }
1364 return ret;
1365}
1366
1367static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1368{
1369 u32 queue_idx = nvme_rdma_queue_idx(queue);
1370
1371 if (queue_idx == 0)
1372 return queue->ctrl->admin_tag_set.tags[queue_idx];
1373 return queue->ctrl->tag_set.tags[queue_idx - 1];
1374}
1375
1376static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1377{
1378 if (unlikely(wc->status != IB_WC_SUCCESS))
1379 nvme_rdma_wr_error(cq, wc, "ASYNC");
1380}
1381
1382static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1383{
1384 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1385 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1386 struct ib_device *dev = queue->device->dev;
1387 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1388 struct nvme_command *cmd = sqe->data;
1389 struct ib_sge sge;
1390 int ret;
1391
1392 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1393
1394 memset(cmd, 0, sizeof(*cmd));
1395 cmd->common.opcode = nvme_admin_async_event;
1396 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1397 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1398 nvme_rdma_set_sg_null(cmd);
1399
1400 sqe->cqe.done = nvme_rdma_async_done;
1401
1402 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1403 DMA_TO_DEVICE);
1404
1405 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1406 WARN_ON_ONCE(ret);
1407}
1408
1409static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1410 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1411{
1412 struct request *rq;
1413 struct nvme_rdma_request *req;
1414 int ret = 0;
1415
1416 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1417 if (!rq) {
1418 dev_err(queue->ctrl->ctrl.device,
1419 "tag 0x%x on QP %#x not found\n",
1420 cqe->command_id, queue->qp->qp_num);
1421 nvme_rdma_error_recovery(queue->ctrl);
1422 return ret;
1423 }
1424 req = blk_mq_rq_to_pdu(rq);
1425
1426 req->status = cqe->status;
1427 req->result = cqe->result;
1428
1429 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1430 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1431 dev_err(queue->ctrl->ctrl.device,
1432 "Bogus remote invalidation for rkey %#x\n",
1433 req->mr->rkey);
1434 nvme_rdma_error_recovery(queue->ctrl);
1435 }
1436 } else if (req->mr) {
1437 ret = nvme_rdma_inv_rkey(queue, req);
1438 if (unlikely(ret < 0)) {
1439 dev_err(queue->ctrl->ctrl.device,
1440 "Queueing INV WR for rkey %#x failed (%d)\n",
1441 req->mr->rkey, ret);
1442 nvme_rdma_error_recovery(queue->ctrl);
1443 }
1444 /* the local invalidation completion will end the request */
1445 return 0;
1446 }
1447
1448 if (refcount_dec_and_test(&req->ref)) {
1449 if (rq->tag == tag)
1450 ret = 1;
1451 nvme_end_request(rq, req->status, req->result);
1452 }
1453
1454 return ret;
1455}
1456
1457static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1458{
1459 struct nvme_rdma_qe *qe =
1460 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1461 struct nvme_rdma_queue *queue = cq->cq_context;
1462 struct ib_device *ibdev = queue->device->dev;
1463 struct nvme_completion *cqe = qe->data;
1464 const size_t len = sizeof(struct nvme_completion);
1465 int ret = 0;
1466
1467 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1468 nvme_rdma_wr_error(cq, wc, "RECV");
1469 return 0;
1470 }
1471
1472 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1473 /*
1474 * AEN requests are special as they don't time out and can
1475 * survive any kind of queue freeze and often don't respond to
1476 * aborts. We don't even bother to allocate a struct request
1477 * for them but rather special case them here.
1478 */
1479 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1480 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1481 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1482 &cqe->result);
1483 else
1484 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1485 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1486
1487 nvme_rdma_post_recv(queue, qe);
1488 return ret;
1489}
1490
1491static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1492{
1493 __nvme_rdma_recv_done(cq, wc, -1);
1494}
1495
1496static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1497{
1498 int ret, i;
1499
1500 for (i = 0; i < queue->queue_size; i++) {
1501 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1502 if (ret)
1503 goto out_destroy_queue_ib;
1504 }
1505
1506 return 0;
1507
1508out_destroy_queue_ib:
1509 nvme_rdma_destroy_queue_ib(queue);
1510 return ret;
1511}
1512
1513static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1514 struct rdma_cm_event *ev)
1515{
1516 struct rdma_cm_id *cm_id = queue->cm_id;
1517 int status = ev->status;
1518 const char *rej_msg;
1519 const struct nvme_rdma_cm_rej *rej_data;
1520 u8 rej_data_len;
1521
1522 rej_msg = rdma_reject_msg(cm_id, status);
1523 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1524
1525 if (rej_data && rej_data_len >= sizeof(u16)) {
1526 u16 sts = le16_to_cpu(rej_data->sts);
1527
1528 dev_err(queue->ctrl->ctrl.device,
1529 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1530 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1531 } else {
1532 dev_err(queue->ctrl->ctrl.device,
1533 "Connect rejected: status %d (%s).\n", status, rej_msg);
1534 }
1535
1536 return -ECONNRESET;
1537}
1538
1539static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1540{
1541 int ret;
1542
1543 ret = nvme_rdma_create_queue_ib(queue);
1544 if (ret)
1545 return ret;
1546
1547 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1548 if (ret) {
1549 dev_err(queue->ctrl->ctrl.device,
1550 "rdma_resolve_route failed (%d).\n",
1551 queue->cm_error);
1552 goto out_destroy_queue;
1553 }
1554
1555 return 0;
1556
1557out_destroy_queue:
1558 nvme_rdma_destroy_queue_ib(queue);
1559 return ret;
1560}
1561
1562static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1563{
1564 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1565 struct rdma_conn_param param = { };
1566 struct nvme_rdma_cm_req priv = { };
1567 int ret;
1568
1569 param.qp_num = queue->qp->qp_num;
1570 param.flow_control = 1;
1571
1572 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1573 /* maximum retry count */
1574 param.retry_count = 7;
1575 param.rnr_retry_count = 7;
1576 param.private_data = &priv;
1577 param.private_data_len = sizeof(priv);
1578
1579 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1580 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1581 /*
1582 * set the admin queue depth to the minimum size
1583 * specified by the Fabrics standard.
1584 */
1585 if (priv.qid == 0) {
1586 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1587 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1588 } else {
1589 /*
1590 * current interpretation of the fabrics spec
1591 * is at minimum you make hrqsize sqsize+1, or a
1592 * 1's based representation of sqsize.
1593 */
1594 priv.hrqsize = cpu_to_le16(queue->queue_size);
1595 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1596 }
1597
1598 ret = rdma_connect(queue->cm_id, &param);
1599 if (ret) {
1600 dev_err(ctrl->ctrl.device,
1601 "rdma_connect failed (%d).\n", ret);
1602 goto out_destroy_queue_ib;
1603 }
1604
1605 return 0;
1606
1607out_destroy_queue_ib:
1608 nvme_rdma_destroy_queue_ib(queue);
1609 return ret;
1610}
1611
1612static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1613 struct rdma_cm_event *ev)
1614{
1615 struct nvme_rdma_queue *queue = cm_id->context;
1616 int cm_error = 0;
1617
1618 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1619 rdma_event_msg(ev->event), ev->event,
1620 ev->status, cm_id);
1621
1622 switch (ev->event) {
1623 case RDMA_CM_EVENT_ADDR_RESOLVED:
1624 cm_error = nvme_rdma_addr_resolved(queue);
1625 break;
1626 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1627 cm_error = nvme_rdma_route_resolved(queue);
1628 break;
1629 case RDMA_CM_EVENT_ESTABLISHED:
1630 queue->cm_error = nvme_rdma_conn_established(queue);
1631 /* complete cm_done regardless of success/failure */
1632 complete(&queue->cm_done);
1633 return 0;
1634 case RDMA_CM_EVENT_REJECTED:
1635 nvme_rdma_destroy_queue_ib(queue);
1636 cm_error = nvme_rdma_conn_rejected(queue, ev);
1637 break;
1638 case RDMA_CM_EVENT_ROUTE_ERROR:
1639 case RDMA_CM_EVENT_CONNECT_ERROR:
1640 case RDMA_CM_EVENT_UNREACHABLE:
1641 nvme_rdma_destroy_queue_ib(queue);
1642 /* fall through */
1643 case RDMA_CM_EVENT_ADDR_ERROR:
1644 dev_dbg(queue->ctrl->ctrl.device,
1645 "CM error event %d\n", ev->event);
1646 cm_error = -ECONNRESET;
1647 break;
1648 case RDMA_CM_EVENT_DISCONNECTED:
1649 case RDMA_CM_EVENT_ADDR_CHANGE:
1650 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1651 dev_dbg(queue->ctrl->ctrl.device,
1652 "disconnect received - connection closed\n");
1653 nvme_rdma_error_recovery(queue->ctrl);
1654 break;
1655 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1656 /* device removal is handled via the ib_client API */
1657 break;
1658 default:
1659 dev_err(queue->ctrl->ctrl.device,
1660 "Unexpected RDMA CM event (%d)\n", ev->event);
1661 nvme_rdma_error_recovery(queue->ctrl);
1662 break;
1663 }
1664
1665 if (cm_error) {
1666 queue->cm_error = cm_error;
1667 complete(&queue->cm_done);
1668 }
1669
1670 return 0;
1671}
1672
1673static enum blk_eh_timer_return
1674nvme_rdma_timeout(struct request *rq, bool reserved)
1675{
1676 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1677 struct nvme_rdma_queue *queue = req->queue;
1678 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1679
1680 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1681 rq->tag, nvme_rdma_queue_idx(queue));
1682
1683 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1684 /*
1685 * Teardown immediately if controller times out while starting
1686 * or we are already started error recovery. all outstanding
1687 * requests are completed on shutdown, so we return BLK_EH_DONE.
1688 */
1689 flush_work(&ctrl->err_work);
1690 nvme_rdma_teardown_io_queues(ctrl, false);
1691 nvme_rdma_teardown_admin_queue(ctrl, false);
1692 return BLK_EH_DONE;
1693 }
1694
1695 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1696 nvme_rdma_error_recovery(ctrl);
1697
1698 return BLK_EH_RESET_TIMER;
1699}
1700
1701static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1702 const struct blk_mq_queue_data *bd)
1703{
1704 struct nvme_ns *ns = hctx->queue->queuedata;
1705 struct nvme_rdma_queue *queue = hctx->driver_data;
1706 struct request *rq = bd->rq;
1707 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1708 struct nvme_rdma_qe *sqe = &req->sqe;
1709 struct nvme_command *c = sqe->data;
1710 struct ib_device *dev;
1711 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1712 blk_status_t ret;
1713 int err;
1714
1715 WARN_ON_ONCE(rq->tag < 0);
1716
1717 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1718 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1719
1720 dev = queue->device->dev;
1721 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1722 sizeof(struct nvme_command), DMA_TO_DEVICE);
1723
1724 ret = nvme_setup_cmd(ns, rq, c);
1725 if (ret)
1726 return ret;
1727
1728 blk_mq_start_request(rq);
1729
1730 err = nvme_rdma_map_data(queue, rq, c);
1731 if (unlikely(err < 0)) {
1732 dev_err(queue->ctrl->ctrl.device,
1733 "Failed to map data (%d)\n", err);
1734 nvme_cleanup_cmd(rq);
1735 goto err;
1736 }
1737
1738 sqe->cqe.done = nvme_rdma_send_done;
1739
1740 ib_dma_sync_single_for_device(dev, sqe->dma,
1741 sizeof(struct nvme_command), DMA_TO_DEVICE);
1742
1743 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1744 req->mr ? &req->reg_wr.wr : NULL);
1745 if (unlikely(err)) {
1746 nvme_rdma_unmap_data(queue, rq);
1747 goto err;
1748 }
1749
1750 return BLK_STS_OK;
1751err:
1752 if (err == -ENOMEM || err == -EAGAIN)
1753 return BLK_STS_RESOURCE;
1754 return BLK_STS_IOERR;
1755}
1756
1757static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1758{
1759 struct nvme_rdma_queue *queue = hctx->driver_data;
1760 struct ib_cq *cq = queue->ib_cq;
1761 struct ib_wc wc;
1762 int found = 0;
1763
1764 while (ib_poll_cq(cq, 1, &wc) > 0) {
1765 struct ib_cqe *cqe = wc.wr_cqe;
1766
1767 if (cqe) {
1768 if (cqe->done == nvme_rdma_recv_done)
1769 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1770 else
1771 cqe->done(cq, &wc);
1772 }
1773 }
1774
1775 return found;
1776}
1777
1778static void nvme_rdma_complete_rq(struct request *rq)
1779{
1780 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1781
1782 nvme_rdma_unmap_data(req->queue, rq);
1783 nvme_complete_rq(rq);
1784}
1785
1786static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1787{
1788 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1789
1790 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1791}
1792
1793static const struct blk_mq_ops nvme_rdma_mq_ops = {
1794 .queue_rq = nvme_rdma_queue_rq,
1795 .complete = nvme_rdma_complete_rq,
1796 .init_request = nvme_rdma_init_request,
1797 .exit_request = nvme_rdma_exit_request,
1798 .init_hctx = nvme_rdma_init_hctx,
1799 .poll = nvme_rdma_poll,
1800 .timeout = nvme_rdma_timeout,
1801 .map_queues = nvme_rdma_map_queues,
1802};
1803
1804static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1805 .queue_rq = nvme_rdma_queue_rq,
1806 .complete = nvme_rdma_complete_rq,
1807 .init_request = nvme_rdma_init_request,
1808 .exit_request = nvme_rdma_exit_request,
1809 .init_hctx = nvme_rdma_init_admin_hctx,
1810 .timeout = nvme_rdma_timeout,
1811};
1812
1813static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1814{
1815 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1816 if (shutdown)
1817 nvme_shutdown_ctrl(&ctrl->ctrl);
1818 else
1819 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1820 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1821}
1822
1823static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1824{
1825 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1826}
1827
1828static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1829{
1830 struct nvme_rdma_ctrl *ctrl =
1831 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1832
1833 nvme_stop_ctrl(&ctrl->ctrl);
1834 nvme_rdma_shutdown_ctrl(ctrl, false);
1835
1836 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1837 /* state change failure should never happen */
1838 WARN_ON_ONCE(1);
1839 return;
1840 }
1841
1842 if (nvme_rdma_setup_ctrl(ctrl, false))
1843 goto out_fail;
1844
1845 return;
1846
1847out_fail:
1848 ++ctrl->ctrl.nr_reconnects;
1849 nvme_rdma_reconnect_or_remove(ctrl);
1850}
1851
1852static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1853 .name = "rdma",
1854 .module = THIS_MODULE,
1855 .flags = NVME_F_FABRICS,
1856 .reg_read32 = nvmf_reg_read32,
1857 .reg_read64 = nvmf_reg_read64,
1858 .reg_write32 = nvmf_reg_write32,
1859 .free_ctrl = nvme_rdma_free_ctrl,
1860 .submit_async_event = nvme_rdma_submit_async_event,
1861 .delete_ctrl = nvme_rdma_delete_ctrl,
1862 .get_address = nvmf_get_address,
1863 .stop_ctrl = nvme_rdma_stop_ctrl,
1864};
1865
1866static inline bool
1867__nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1868 struct nvmf_ctrl_options *opts)
1869{
1870 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1871
1872
1873 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1874 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1875 return false;
1876
1877 if (opts->mask & NVMF_OPT_TRSVCID &&
1878 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1879 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1880 return false;
1881 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1882 if (strcmp(opts->trsvcid, stdport))
1883 return false;
1884 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1885 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1886 return false;
1887 }
1888 /* else, it's a match as both have stdport. Fall to next checks */
1889
1890 /*
1891 * checking the local address is rough. In most cases, one
1892 * is not specified and the host port is selected by the stack.
1893 *
1894 * Assume no match if:
1895 * local address is specified and address is not the same
1896 * local address is not specified but remote is, or vice versa
1897 * (admin using specific host_traddr when it matters).
1898 */
1899 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1900 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1901 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1902 return false;
1903 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1904 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1905 return false;
1906 /*
1907 * if neither controller had an host port specified, assume it's
1908 * a match as everything else matched.
1909 */
1910
1911 return true;
1912}
1913
1914/*
1915 * Fails a connection request if it matches an existing controller
1916 * (association) with the same tuple:
1917 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1918 *
1919 * if local address is not specified in the request, it will match an
1920 * existing controller with all the other parameters the same and no
1921 * local port address specified as well.
1922 *
1923 * The ports don't need to be compared as they are intrinsically
1924 * already matched by the port pointers supplied.
1925 */
1926static bool
1927nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1928{
1929 struct nvme_rdma_ctrl *ctrl;
1930 bool found = false;
1931
1932 mutex_lock(&nvme_rdma_ctrl_mutex);
1933 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1934 found = __nvme_rdma_options_match(ctrl, opts);
1935 if (found)
1936 break;
1937 }
1938 mutex_unlock(&nvme_rdma_ctrl_mutex);
1939
1940 return found;
1941}
1942
1943static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1944 struct nvmf_ctrl_options *opts)
1945{
1946 struct nvme_rdma_ctrl *ctrl;
1947 int ret;
1948 bool changed;
1949 char *port;
1950
1951 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1952 if (!ctrl)
1953 return ERR_PTR(-ENOMEM);
1954 ctrl->ctrl.opts = opts;
1955 INIT_LIST_HEAD(&ctrl->list);
1956
1957 if (opts->mask & NVMF_OPT_TRSVCID)
1958 port = opts->trsvcid;
1959 else
1960 port = __stringify(NVME_RDMA_IP_PORT);
1961
1962 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1963 opts->traddr, port, &ctrl->addr);
1964 if (ret) {
1965 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1966 goto out_free_ctrl;
1967 }
1968
1969 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1970 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1971 opts->host_traddr, NULL, &ctrl->src_addr);
1972 if (ret) {
1973 pr_err("malformed src address passed: %s\n",
1974 opts->host_traddr);
1975 goto out_free_ctrl;
1976 }
1977 }
1978
1979 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1980 ret = -EALREADY;
1981 goto out_free_ctrl;
1982 }
1983
1984 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1985 nvme_rdma_reconnect_ctrl_work);
1986 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1987 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1988
1989 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1990 ctrl->ctrl.sqsize = opts->queue_size - 1;
1991 ctrl->ctrl.kato = opts->kato;
1992
1993 ret = -ENOMEM;
1994 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1995 GFP_KERNEL);
1996 if (!ctrl->queues)
1997 goto out_free_ctrl;
1998
1999 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2000 0 /* no quirks, we're perfect! */);
2001 if (ret)
2002 goto out_kfree_queues;
2003
2004 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2005 WARN_ON_ONCE(!changed);
2006
2007 ret = nvme_rdma_setup_ctrl(ctrl, true);
2008 if (ret)
2009 goto out_uninit_ctrl;
2010
2011 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2012 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2013
2014 nvme_get_ctrl(&ctrl->ctrl);
2015
2016 mutex_lock(&nvme_rdma_ctrl_mutex);
2017 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2018 mutex_unlock(&nvme_rdma_ctrl_mutex);
2019
2020 return &ctrl->ctrl;
2021
2022out_uninit_ctrl:
2023 nvme_uninit_ctrl(&ctrl->ctrl);
2024 nvme_put_ctrl(&ctrl->ctrl);
2025 if (ret > 0)
2026 ret = -EIO;
2027 return ERR_PTR(ret);
2028out_kfree_queues:
2029 kfree(ctrl->queues);
2030out_free_ctrl:
2031 kfree(ctrl);
2032 return ERR_PTR(ret);
2033}
2034
2035static struct nvmf_transport_ops nvme_rdma_transport = {
2036 .name = "rdma",
2037 .module = THIS_MODULE,
2038 .required_opts = NVMF_OPT_TRADDR,
2039 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2040 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2041 .create_ctrl = nvme_rdma_create_ctrl,
2042};
2043
2044static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2045{
2046 struct nvme_rdma_ctrl *ctrl;
2047 struct nvme_rdma_device *ndev;
2048 bool found = false;
2049
2050 mutex_lock(&device_list_mutex);
2051 list_for_each_entry(ndev, &device_list, entry) {
2052 if (ndev->dev == ib_device) {
2053 found = true;
2054 break;
2055 }
2056 }
2057 mutex_unlock(&device_list_mutex);
2058
2059 if (!found)
2060 return;
2061
2062 /* Delete all controllers using this device */
2063 mutex_lock(&nvme_rdma_ctrl_mutex);
2064 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2065 if (ctrl->device->dev != ib_device)
2066 continue;
2067 nvme_delete_ctrl(&ctrl->ctrl);
2068 }
2069 mutex_unlock(&nvme_rdma_ctrl_mutex);
2070
2071 flush_workqueue(nvme_delete_wq);
2072}
2073
2074static struct ib_client nvme_rdma_ib_client = {
2075 .name = "nvme_rdma",
2076 .remove = nvme_rdma_remove_one
2077};
2078
2079static int __init nvme_rdma_init_module(void)
2080{
2081 int ret;
2082
2083 ret = ib_register_client(&nvme_rdma_ib_client);
2084 if (ret)
2085 return ret;
2086
2087 ret = nvmf_register_transport(&nvme_rdma_transport);
2088 if (ret)
2089 goto err_unreg_client;
2090
2091 return 0;
2092
2093err_unreg_client:
2094 ib_unregister_client(&nvme_rdma_ib_client);
2095 return ret;
2096}
2097
2098static void __exit nvme_rdma_cleanup_module(void)
2099{
2100 nvmf_unregister_transport(&nvme_rdma_transport);
2101 ib_unregister_client(&nvme_rdma_ib_client);
2102}
2103
2104module_init(nvme_rdma_init_module);
2105module_exit(nvme_rdma_cleanup_module);
2106
2107MODULE_LICENSE("GPL v2");