| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 | 4 |  * All Rights Reserved. | 
 | 5 |  */ | 
 | 6 | #include "xfs.h" | 
 | 7 | #include "xfs_fs.h" | 
 | 8 | #include "xfs_shared.h" | 
 | 9 | #include "xfs_format.h" | 
 | 10 | #include "xfs_log_format.h" | 
 | 11 | #include "xfs_trans_resv.h" | 
 | 12 | #include "xfs_mount.h" | 
 | 13 | #include "xfs_da_format.h" | 
 | 14 | #include "xfs_da_btree.h" | 
 | 15 | #include "xfs_inode.h" | 
 | 16 | #include "xfs_trans.h" | 
 | 17 | #include "xfs_inode_item.h" | 
 | 18 | #include "xfs_bmap.h" | 
 | 19 | #include "xfs_bmap_util.h" | 
 | 20 | #include "xfs_error.h" | 
 | 21 | #include "xfs_dir2.h" | 
 | 22 | #include "xfs_dir2_priv.h" | 
 | 23 | #include "xfs_ioctl.h" | 
 | 24 | #include "xfs_trace.h" | 
 | 25 | #include "xfs_log.h" | 
 | 26 | #include "xfs_icache.h" | 
 | 27 | #include "xfs_pnfs.h" | 
 | 28 | #include "xfs_iomap.h" | 
 | 29 | #include "xfs_reflink.h" | 
 | 30 |  | 
 | 31 | #include <linux/dcache.h> | 
 | 32 | #include <linux/falloc.h> | 
 | 33 | #include <linux/pagevec.h> | 
 | 34 | #include <linux/backing-dev.h> | 
 | 35 | #include <linux/mman.h> | 
 | 36 |  | 
 | 37 | static const struct vm_operations_struct xfs_file_vm_ops; | 
 | 38 |  | 
 | 39 | int | 
 | 40 | xfs_update_prealloc_flags( | 
 | 41 | 	struct xfs_inode	*ip, | 
 | 42 | 	enum xfs_prealloc_flags	flags) | 
 | 43 | { | 
 | 44 | 	struct xfs_trans	*tp; | 
 | 45 | 	int			error; | 
 | 46 |  | 
 | 47 | 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, | 
 | 48 | 			0, 0, 0, &tp); | 
 | 49 | 	if (error) | 
 | 50 | 		return error; | 
 | 51 |  | 
 | 52 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 53 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 | 54 |  | 
 | 55 | 	if (!(flags & XFS_PREALLOC_INVISIBLE)) { | 
 | 56 | 		VFS_I(ip)->i_mode &= ~S_ISUID; | 
 | 57 | 		if (VFS_I(ip)->i_mode & S_IXGRP) | 
 | 58 | 			VFS_I(ip)->i_mode &= ~S_ISGID; | 
 | 59 | 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 60 | 	} | 
 | 61 |  | 
 | 62 | 	if (flags & XFS_PREALLOC_SET) | 
 | 63 | 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; | 
 | 64 | 	if (flags & XFS_PREALLOC_CLEAR) | 
 | 65 | 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; | 
 | 66 |  | 
 | 67 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 68 | 	if (flags & XFS_PREALLOC_SYNC) | 
 | 69 | 		xfs_trans_set_sync(tp); | 
 | 70 | 	return xfs_trans_commit(tp); | 
 | 71 | } | 
 | 72 |  | 
 | 73 | /* | 
 | 74 |  * Fsync operations on directories are much simpler than on regular files, | 
 | 75 |  * as there is no file data to flush, and thus also no need for explicit | 
 | 76 |  * cache flush operations, and there are no non-transaction metadata updates | 
 | 77 |  * on directories either. | 
 | 78 |  */ | 
 | 79 | STATIC int | 
 | 80 | xfs_dir_fsync( | 
 | 81 | 	struct file		*file, | 
 | 82 | 	loff_t			start, | 
 | 83 | 	loff_t			end, | 
 | 84 | 	int			datasync) | 
 | 85 | { | 
 | 86 | 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host); | 
 | 87 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 88 | 	xfs_lsn_t		lsn = 0; | 
 | 89 |  | 
 | 90 | 	trace_xfs_dir_fsync(ip); | 
 | 91 |  | 
 | 92 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 93 | 	if (xfs_ipincount(ip)) | 
 | 94 | 		lsn = ip->i_itemp->ili_last_lsn; | 
 | 95 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 96 |  | 
 | 97 | 	if (!lsn) | 
 | 98 | 		return 0; | 
 | 99 | 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); | 
 | 100 | } | 
 | 101 |  | 
 | 102 | STATIC int | 
 | 103 | xfs_file_fsync( | 
 | 104 | 	struct file		*file, | 
 | 105 | 	loff_t			start, | 
 | 106 | 	loff_t			end, | 
 | 107 | 	int			datasync) | 
 | 108 | { | 
 | 109 | 	struct inode		*inode = file->f_mapping->host; | 
 | 110 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 111 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 112 | 	int			error = 0; | 
 | 113 | 	int			log_flushed = 0; | 
 | 114 | 	xfs_lsn_t		lsn = 0; | 
 | 115 |  | 
 | 116 | 	trace_xfs_file_fsync(ip); | 
 | 117 |  | 
 | 118 | 	error = file_write_and_wait_range(file, start, end); | 
 | 119 | 	if (error) | 
 | 120 | 		return error; | 
 | 121 |  | 
 | 122 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 123 | 		return -EIO; | 
 | 124 |  | 
 | 125 | 	xfs_iflags_clear(ip, XFS_ITRUNCATED); | 
 | 126 |  | 
 | 127 | 	/* | 
 | 128 | 	 * If we have an RT and/or log subvolume we need to make sure to flush | 
 | 129 | 	 * the write cache the device used for file data first.  This is to | 
 | 130 | 	 * ensure newly written file data make it to disk before logging the new | 
 | 131 | 	 * inode size in case of an extending write. | 
 | 132 | 	 */ | 
 | 133 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 134 | 		xfs_blkdev_issue_flush(mp->m_rtdev_targp); | 
 | 135 | 	else if (mp->m_logdev_targp != mp->m_ddev_targp) | 
 | 136 | 		xfs_blkdev_issue_flush(mp->m_ddev_targp); | 
 | 137 |  | 
 | 138 | 	/* | 
 | 139 | 	 * All metadata updates are logged, which means that we just have to | 
 | 140 | 	 * flush the log up to the latest LSN that touched the inode. If we have | 
 | 141 | 	 * concurrent fsync/fdatasync() calls, we need them to all block on the | 
 | 142 | 	 * log force before we clear the ili_fsync_fields field. This ensures | 
 | 143 | 	 * that we don't get a racing sync operation that does not wait for the | 
 | 144 | 	 * metadata to hit the journal before returning. If we race with | 
 | 145 | 	 * clearing the ili_fsync_fields, then all that will happen is the log | 
 | 146 | 	 * force will do nothing as the lsn will already be on disk. We can't | 
 | 147 | 	 * race with setting ili_fsync_fields because that is done under | 
 | 148 | 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared | 
 | 149 | 	 * until after the ili_fsync_fields is cleared. | 
 | 150 | 	 */ | 
 | 151 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 152 | 	if (xfs_ipincount(ip)) { | 
 | 153 | 		if (!datasync || | 
 | 154 | 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) | 
 | 155 | 			lsn = ip->i_itemp->ili_last_lsn; | 
 | 156 | 	} | 
 | 157 |  | 
 | 158 | 	if (lsn) { | 
 | 159 | 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); | 
 | 160 | 		ip->i_itemp->ili_fsync_fields = 0; | 
 | 161 | 	} | 
 | 162 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 163 |  | 
 | 164 | 	/* | 
 | 165 | 	 * If we only have a single device, and the log force about was | 
 | 166 | 	 * a no-op we might have to flush the data device cache here. | 
 | 167 | 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting | 
 | 168 | 	 * an already allocated file and thus do not have any metadata to | 
 | 169 | 	 * commit. | 
 | 170 | 	 */ | 
 | 171 | 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && | 
 | 172 | 	    mp->m_logdev_targp == mp->m_ddev_targp) | 
 | 173 | 		xfs_blkdev_issue_flush(mp->m_ddev_targp); | 
 | 174 |  | 
 | 175 | 	return error; | 
 | 176 | } | 
 | 177 |  | 
 | 178 | STATIC ssize_t | 
 | 179 | xfs_file_dio_aio_read( | 
 | 180 | 	struct kiocb		*iocb, | 
 | 181 | 	struct iov_iter		*to) | 
 | 182 | { | 
 | 183 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 | 184 | 	size_t			count = iov_iter_count(to); | 
 | 185 | 	ssize_t			ret; | 
 | 186 |  | 
 | 187 | 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos); | 
 | 188 |  | 
 | 189 | 	if (!count) | 
 | 190 | 		return 0; /* skip atime */ | 
 | 191 |  | 
 | 192 | 	file_accessed(iocb->ki_filp); | 
 | 193 |  | 
 | 194 | 	xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 195 | 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); | 
 | 196 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 | 197 |  | 
 | 198 | 	return ret; | 
 | 199 | } | 
 | 200 |  | 
 | 201 | static noinline ssize_t | 
 | 202 | xfs_file_dax_read( | 
 | 203 | 	struct kiocb		*iocb, | 
 | 204 | 	struct iov_iter		*to) | 
 | 205 | { | 
 | 206 | 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host); | 
 | 207 | 	size_t			count = iov_iter_count(to); | 
 | 208 | 	ssize_t			ret = 0; | 
 | 209 |  | 
 | 210 | 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos); | 
 | 211 |  | 
 | 212 | 	if (!count) | 
 | 213 | 		return 0; /* skip atime */ | 
 | 214 |  | 
 | 215 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 216 | 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | 
 | 217 | 			return -EAGAIN; | 
 | 218 | 	} else { | 
 | 219 | 		xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 220 | 	} | 
 | 221 |  | 
 | 222 | 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); | 
 | 223 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 | 224 |  | 
 | 225 | 	file_accessed(iocb->ki_filp); | 
 | 226 | 	return ret; | 
 | 227 | } | 
 | 228 |  | 
 | 229 | STATIC ssize_t | 
 | 230 | xfs_file_buffered_aio_read( | 
 | 231 | 	struct kiocb		*iocb, | 
 | 232 | 	struct iov_iter		*to) | 
 | 233 | { | 
 | 234 | 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
 | 235 | 	ssize_t			ret; | 
 | 236 |  | 
 | 237 | 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); | 
 | 238 |  | 
 | 239 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 240 | 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | 
 | 241 | 			return -EAGAIN; | 
 | 242 | 	} else { | 
 | 243 | 		xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 244 | 	} | 
 | 245 | 	ret = generic_file_read_iter(iocb, to); | 
 | 246 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 | 247 |  | 
 | 248 | 	return ret; | 
 | 249 | } | 
 | 250 |  | 
 | 251 | STATIC ssize_t | 
 | 252 | xfs_file_read_iter( | 
 | 253 | 	struct kiocb		*iocb, | 
 | 254 | 	struct iov_iter		*to) | 
 | 255 | { | 
 | 256 | 	struct inode		*inode = file_inode(iocb->ki_filp); | 
 | 257 | 	struct xfs_mount	*mp = XFS_I(inode)->i_mount; | 
 | 258 | 	ssize_t			ret = 0; | 
 | 259 |  | 
 | 260 | 	XFS_STATS_INC(mp, xs_read_calls); | 
 | 261 |  | 
 | 262 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 263 | 		return -EIO; | 
 | 264 |  | 
 | 265 | 	if (IS_DAX(inode)) | 
 | 266 | 		ret = xfs_file_dax_read(iocb, to); | 
 | 267 | 	else if (iocb->ki_flags & IOCB_DIRECT) | 
 | 268 | 		ret = xfs_file_dio_aio_read(iocb, to); | 
 | 269 | 	else | 
 | 270 | 		ret = xfs_file_buffered_aio_read(iocb, to); | 
 | 271 |  | 
 | 272 | 	if (ret > 0) | 
 | 273 | 		XFS_STATS_ADD(mp, xs_read_bytes, ret); | 
 | 274 | 	return ret; | 
 | 275 | } | 
 | 276 |  | 
 | 277 | /* | 
 | 278 |  * Common pre-write limit and setup checks. | 
 | 279 |  * | 
 | 280 |  * Called with the iolocked held either shared and exclusive according to | 
 | 281 |  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive | 
 | 282 |  * if called for a direct write beyond i_size. | 
 | 283 |  */ | 
 | 284 | STATIC ssize_t | 
 | 285 | xfs_file_aio_write_checks( | 
 | 286 | 	struct kiocb		*iocb, | 
 | 287 | 	struct iov_iter		*from, | 
 | 288 | 	int			*iolock) | 
 | 289 | { | 
 | 290 | 	struct file		*file = iocb->ki_filp; | 
 | 291 | 	struct inode		*inode = file->f_mapping->host; | 
 | 292 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 293 | 	ssize_t			error = 0; | 
 | 294 | 	size_t			count = iov_iter_count(from); | 
 | 295 | 	bool			drained_dio = false; | 
 | 296 | 	loff_t			isize; | 
 | 297 |  | 
 | 298 | restart: | 
 | 299 | 	error = generic_write_checks(iocb, from); | 
 | 300 | 	if (error <= 0) | 
 | 301 | 		return error; | 
 | 302 |  | 
 | 303 | 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE); | 
 | 304 | 	if (error) | 
 | 305 | 		return error; | 
 | 306 |  | 
 | 307 | 	/* | 
 | 308 | 	 * For changing security info in file_remove_privs() we need i_rwsem | 
 | 309 | 	 * exclusively. | 
 | 310 | 	 */ | 
 | 311 | 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { | 
 | 312 | 		xfs_iunlock(ip, *iolock); | 
 | 313 | 		*iolock = XFS_IOLOCK_EXCL; | 
 | 314 | 		xfs_ilock(ip, *iolock); | 
 | 315 | 		goto restart; | 
 | 316 | 	} | 
 | 317 | 	/* | 
 | 318 | 	 * If the offset is beyond the size of the file, we need to zero any | 
 | 319 | 	 * blocks that fall between the existing EOF and the start of this | 
 | 320 | 	 * write.  If zeroing is needed and we are currently holding the | 
 | 321 | 	 * iolock shared, we need to update it to exclusive which implies | 
 | 322 | 	 * having to redo all checks before. | 
 | 323 | 	 * | 
 | 324 | 	 * We need to serialise against EOF updates that occur in IO | 
 | 325 | 	 * completions here. We want to make sure that nobody is changing the | 
 | 326 | 	 * size while we do this check until we have placed an IO barrier (i.e. | 
 | 327 | 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. | 
 | 328 | 	 * The spinlock effectively forms a memory barrier once we have the | 
 | 329 | 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value | 
 | 330 | 	 * and hence be able to correctly determine if we need to run zeroing. | 
 | 331 | 	 */ | 
 | 332 | 	spin_lock(&ip->i_flags_lock); | 
 | 333 | 	isize = i_size_read(inode); | 
 | 334 | 	if (iocb->ki_pos > isize) { | 
 | 335 | 		spin_unlock(&ip->i_flags_lock); | 
 | 336 | 		if (!drained_dio) { | 
 | 337 | 			if (*iolock == XFS_IOLOCK_SHARED) { | 
 | 338 | 				xfs_iunlock(ip, *iolock); | 
 | 339 | 				*iolock = XFS_IOLOCK_EXCL; | 
 | 340 | 				xfs_ilock(ip, *iolock); | 
 | 341 | 				iov_iter_reexpand(from, count); | 
 | 342 | 			} | 
 | 343 | 			/* | 
 | 344 | 			 * We now have an IO submission barrier in place, but | 
 | 345 | 			 * AIO can do EOF updates during IO completion and hence | 
 | 346 | 			 * we now need to wait for all of them to drain. Non-AIO | 
 | 347 | 			 * DIO will have drained before we are given the | 
 | 348 | 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a | 
 | 349 | 			 * no-op. | 
 | 350 | 			 */ | 
 | 351 | 			inode_dio_wait(inode); | 
 | 352 | 			drained_dio = true; | 
 | 353 | 			goto restart; | 
 | 354 | 		} | 
 | 355 | 	 | 
 | 356 | 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); | 
 | 357 | 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, | 
 | 358 | 				NULL, &xfs_iomap_ops); | 
 | 359 | 		if (error) | 
 | 360 | 			return error; | 
 | 361 | 	} else | 
 | 362 | 		spin_unlock(&ip->i_flags_lock); | 
 | 363 |  | 
 | 364 | 	/* | 
 | 365 | 	 * Updating the timestamps will grab the ilock again from | 
 | 366 | 	 * xfs_fs_dirty_inode, so we have to call it after dropping the | 
 | 367 | 	 * lock above.  Eventually we should look into a way to avoid | 
 | 368 | 	 * the pointless lock roundtrip. | 
 | 369 | 	 */ | 
 | 370 | 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) { | 
 | 371 | 		error = file_update_time(file); | 
 | 372 | 		if (error) | 
 | 373 | 			return error; | 
 | 374 | 	} | 
 | 375 |  | 
 | 376 | 	/* | 
 | 377 | 	 * If we're writing the file then make sure to clear the setuid and | 
 | 378 | 	 * setgid bits if the process is not being run by root.  This keeps | 
 | 379 | 	 * people from modifying setuid and setgid binaries. | 
 | 380 | 	 */ | 
 | 381 | 	if (!IS_NOSEC(inode)) | 
 | 382 | 		return file_remove_privs(file); | 
 | 383 | 	return 0; | 
 | 384 | } | 
 | 385 |  | 
 | 386 | static int | 
 | 387 | xfs_dio_write_end_io( | 
 | 388 | 	struct kiocb		*iocb, | 
 | 389 | 	ssize_t			size, | 
 | 390 | 	unsigned		flags) | 
 | 391 | { | 
 | 392 | 	struct inode		*inode = file_inode(iocb->ki_filp); | 
 | 393 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 394 | 	loff_t			offset = iocb->ki_pos; | 
 | 395 | 	int			error = 0; | 
 | 396 |  | 
 | 397 | 	trace_xfs_end_io_direct_write(ip, offset, size); | 
 | 398 |  | 
 | 399 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 400 | 		return -EIO; | 
 | 401 |  | 
 | 402 | 	if (size <= 0) | 
 | 403 | 		return size; | 
 | 404 |  | 
 | 405 | 	/* | 
 | 406 | 	 * Capture amount written on completion as we can't reliably account | 
 | 407 | 	 * for it on submission. | 
 | 408 | 	 */ | 
 | 409 | 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); | 
 | 410 |  | 
 | 411 | 	if (flags & IOMAP_DIO_COW) { | 
 | 412 | 		error = xfs_reflink_end_cow(ip, offset, size); | 
 | 413 | 		if (error) | 
 | 414 | 			return error; | 
 | 415 | 	} | 
 | 416 |  | 
 | 417 | 	/* | 
 | 418 | 	 * Unwritten conversion updates the in-core isize after extent | 
 | 419 | 	 * conversion but before updating the on-disk size. Updating isize any | 
 | 420 | 	 * earlier allows a racing dio read to find unwritten extents before | 
 | 421 | 	 * they are converted. | 
 | 422 | 	 */ | 
 | 423 | 	if (flags & IOMAP_DIO_UNWRITTEN) | 
 | 424 | 		return xfs_iomap_write_unwritten(ip, offset, size, true); | 
 | 425 |  | 
 | 426 | 	/* | 
 | 427 | 	 * We need to update the in-core inode size here so that we don't end up | 
 | 428 | 	 * with the on-disk inode size being outside the in-core inode size. We | 
 | 429 | 	 * have no other method of updating EOF for AIO, so always do it here | 
 | 430 | 	 * if necessary. | 
 | 431 | 	 * | 
 | 432 | 	 * We need to lock the test/set EOF update as we can be racing with | 
 | 433 | 	 * other IO completions here to update the EOF. Failing to serialise | 
 | 434 | 	 * here can result in EOF moving backwards and Bad Things Happen when | 
 | 435 | 	 * that occurs. | 
 | 436 | 	 */ | 
 | 437 | 	spin_lock(&ip->i_flags_lock); | 
 | 438 | 	if (offset + size > i_size_read(inode)) { | 
 | 439 | 		i_size_write(inode, offset + size); | 
 | 440 | 		spin_unlock(&ip->i_flags_lock); | 
 | 441 | 		error = xfs_setfilesize(ip, offset, size); | 
 | 442 | 	} else { | 
 | 443 | 		spin_unlock(&ip->i_flags_lock); | 
 | 444 | 	} | 
 | 445 |  | 
 | 446 | 	return error; | 
 | 447 | } | 
 | 448 |  | 
 | 449 | /* | 
 | 450 |  * xfs_file_dio_aio_write - handle direct IO writes | 
 | 451 |  * | 
 | 452 |  * Lock the inode appropriately to prepare for and issue a direct IO write. | 
 | 453 |  * By separating it from the buffered write path we remove all the tricky to | 
 | 454 |  * follow locking changes and looping. | 
 | 455 |  * | 
 | 456 |  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL | 
 | 457 |  * until we're sure the bytes at the new EOF have been zeroed and/or the cached | 
 | 458 |  * pages are flushed out. | 
 | 459 |  * | 
 | 460 |  * In most cases the direct IO writes will be done holding IOLOCK_SHARED | 
 | 461 |  * allowing them to be done in parallel with reads and other direct IO writes. | 
 | 462 |  * However, if the IO is not aligned to filesystem blocks, the direct IO layer | 
 | 463 |  * needs to do sub-block zeroing and that requires serialisation against other | 
 | 464 |  * direct IOs to the same block. In this case we need to serialise the | 
 | 465 |  * submission of the unaligned IOs so that we don't get racing block zeroing in | 
 | 466 |  * the dio layer.  To avoid the problem with aio, we also need to wait for | 
 | 467 |  * outstanding IOs to complete so that unwritten extent conversion is completed | 
 | 468 |  * before we try to map the overlapping block. This is currently implemented by | 
 | 469 |  * hitting it with a big hammer (i.e. inode_dio_wait()). | 
 | 470 |  * | 
 | 471 |  * Returns with locks held indicated by @iolock and errors indicated by | 
 | 472 |  * negative return values. | 
 | 473 |  */ | 
 | 474 | STATIC ssize_t | 
 | 475 | xfs_file_dio_aio_write( | 
 | 476 | 	struct kiocb		*iocb, | 
 | 477 | 	struct iov_iter		*from) | 
 | 478 | { | 
 | 479 | 	struct file		*file = iocb->ki_filp; | 
 | 480 | 	struct address_space	*mapping = file->f_mapping; | 
 | 481 | 	struct inode		*inode = mapping->host; | 
 | 482 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 483 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 484 | 	ssize_t			ret = 0; | 
 | 485 | 	int			unaligned_io = 0; | 
 | 486 | 	int			iolock; | 
 | 487 | 	size_t			count = iov_iter_count(from); | 
 | 488 | 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ? | 
 | 489 | 					mp->m_rtdev_targp : mp->m_ddev_targp; | 
 | 490 |  | 
 | 491 | 	/* DIO must be aligned to device logical sector size */ | 
 | 492 | 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) | 
 | 493 | 		return -EINVAL; | 
 | 494 |  | 
 | 495 | 	/* | 
 | 496 | 	 * Don't take the exclusive iolock here unless the I/O is unaligned to | 
 | 497 | 	 * the file system block size.  We don't need to consider the EOF | 
 | 498 | 	 * extension case here because xfs_file_aio_write_checks() will relock | 
 | 499 | 	 * the inode as necessary for EOF zeroing cases and fill out the new | 
 | 500 | 	 * inode size as appropriate. | 
 | 501 | 	 */ | 
 | 502 | 	if ((iocb->ki_pos & mp->m_blockmask) || | 
 | 503 | 	    ((iocb->ki_pos + count) & mp->m_blockmask)) { | 
 | 504 | 		unaligned_io = 1; | 
 | 505 |  | 
 | 506 | 		/* | 
 | 507 | 		 * We can't properly handle unaligned direct I/O to reflink | 
 | 508 | 		 * files yet, as we can't unshare a partial block. | 
 | 509 | 		 */ | 
 | 510 | 		if (xfs_is_reflink_inode(ip)) { | 
 | 511 | 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); | 
 | 512 | 			return -EREMCHG; | 
 | 513 | 		} | 
 | 514 | 		iolock = XFS_IOLOCK_EXCL; | 
 | 515 | 	} else { | 
 | 516 | 		iolock = XFS_IOLOCK_SHARED; | 
 | 517 | 	} | 
 | 518 |  | 
 | 519 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 520 | 		/* unaligned dio always waits, bail */ | 
 | 521 | 		if (unaligned_io) | 
 | 522 | 			return -EAGAIN; | 
 | 523 | 		if (!xfs_ilock_nowait(ip, iolock)) | 
 | 524 | 			return -EAGAIN; | 
 | 525 | 	} else { | 
 | 526 | 		xfs_ilock(ip, iolock); | 
 | 527 | 	} | 
 | 528 |  | 
 | 529 | 	ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
 | 530 | 	if (ret) | 
 | 531 | 		goto out; | 
 | 532 | 	count = iov_iter_count(from); | 
 | 533 |  | 
 | 534 | 	/* | 
 | 535 | 	 * If we are doing unaligned IO, we can't allow any other overlapping IO | 
 | 536 | 	 * in-flight at the same time or we risk data corruption. Wait for all | 
 | 537 | 	 * other IO to drain before we submit. If the IO is aligned, demote the | 
 | 538 | 	 * iolock if we had to take the exclusive lock in | 
 | 539 | 	 * xfs_file_aio_write_checks() for other reasons. | 
 | 540 | 	 */ | 
 | 541 | 	if (unaligned_io) { | 
 | 542 | 		inode_dio_wait(inode); | 
 | 543 | 	} else if (iolock == XFS_IOLOCK_EXCL) { | 
 | 544 | 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); | 
 | 545 | 		iolock = XFS_IOLOCK_SHARED; | 
 | 546 | 	} | 
 | 547 |  | 
 | 548 | 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos); | 
 | 549 | 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); | 
 | 550 |  | 
 | 551 | 	/* | 
 | 552 | 	 * If unaligned, this is the only IO in-flight. If it has not yet | 
 | 553 | 	 * completed, wait on it before we release the iolock to prevent | 
 | 554 | 	 * subsequent overlapping IO. | 
 | 555 | 	 */ | 
 | 556 | 	if (ret == -EIOCBQUEUED && unaligned_io) | 
 | 557 | 		inode_dio_wait(inode); | 
 | 558 | out: | 
 | 559 | 	xfs_iunlock(ip, iolock); | 
 | 560 |  | 
 | 561 | 	/* | 
 | 562 | 	 * No fallback to buffered IO on errors for XFS, direct IO will either | 
 | 563 | 	 * complete fully or fail. | 
 | 564 | 	 */ | 
 | 565 | 	ASSERT(ret < 0 || ret == count); | 
 | 566 | 	return ret; | 
 | 567 | } | 
 | 568 |  | 
 | 569 | static noinline ssize_t | 
 | 570 | xfs_file_dax_write( | 
 | 571 | 	struct kiocb		*iocb, | 
 | 572 | 	struct iov_iter		*from) | 
 | 573 | { | 
 | 574 | 	struct inode		*inode = iocb->ki_filp->f_mapping->host; | 
 | 575 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 576 | 	int			iolock = XFS_IOLOCK_EXCL; | 
 | 577 | 	ssize_t			ret, error = 0; | 
 | 578 | 	size_t			count; | 
 | 579 | 	loff_t			pos; | 
 | 580 |  | 
 | 581 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 582 | 		if (!xfs_ilock_nowait(ip, iolock)) | 
 | 583 | 			return -EAGAIN; | 
 | 584 | 	} else { | 
 | 585 | 		xfs_ilock(ip, iolock); | 
 | 586 | 	} | 
 | 587 |  | 
 | 588 | 	ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
 | 589 | 	if (ret) | 
 | 590 | 		goto out; | 
 | 591 |  | 
 | 592 | 	pos = iocb->ki_pos; | 
 | 593 | 	count = iov_iter_count(from); | 
 | 594 |  | 
 | 595 | 	trace_xfs_file_dax_write(ip, count, pos); | 
 | 596 | 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); | 
 | 597 | 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { | 
 | 598 | 		i_size_write(inode, iocb->ki_pos); | 
 | 599 | 		error = xfs_setfilesize(ip, pos, ret); | 
 | 600 | 	} | 
 | 601 | out: | 
 | 602 | 	xfs_iunlock(ip, iolock); | 
 | 603 | 	if (error) | 
 | 604 | 		return error; | 
 | 605 |  | 
 | 606 | 	if (ret > 0) { | 
 | 607 | 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
 | 608 |  | 
 | 609 | 		/* Handle various SYNC-type writes */ | 
 | 610 | 		ret = generic_write_sync(iocb, ret); | 
 | 611 | 	} | 
 | 612 | 	return ret; | 
 | 613 | } | 
 | 614 |  | 
 | 615 | STATIC ssize_t | 
 | 616 | xfs_file_buffered_aio_write( | 
 | 617 | 	struct kiocb		*iocb, | 
 | 618 | 	struct iov_iter		*from) | 
 | 619 | { | 
 | 620 | 	struct file		*file = iocb->ki_filp; | 
 | 621 | 	struct address_space	*mapping = file->f_mapping; | 
 | 622 | 	struct inode		*inode = mapping->host; | 
 | 623 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 624 | 	ssize_t			ret; | 
 | 625 | 	int			enospc = 0; | 
 | 626 | 	int			iolock; | 
 | 627 |  | 
 | 628 | 	if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 629 | 		return -EOPNOTSUPP; | 
 | 630 |  | 
 | 631 | write_retry: | 
 | 632 | 	iolock = XFS_IOLOCK_EXCL; | 
 | 633 | 	xfs_ilock(ip, iolock); | 
 | 634 |  | 
 | 635 | 	ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
 | 636 | 	if (ret) | 
 | 637 | 		goto out; | 
 | 638 |  | 
 | 639 | 	/* We can write back this queue in page reclaim */ | 
 | 640 | 	current->backing_dev_info = inode_to_bdi(inode); | 
 | 641 |  | 
 | 642 | 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); | 
 | 643 | 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); | 
 | 644 | 	if (likely(ret >= 0)) | 
 | 645 | 		iocb->ki_pos += ret; | 
 | 646 |  | 
 | 647 | 	/* | 
 | 648 | 	 * If we hit a space limit, try to free up some lingering preallocated | 
 | 649 | 	 * space before returning an error. In the case of ENOSPC, first try to | 
 | 650 | 	 * write back all dirty inodes to free up some of the excess reserved | 
 | 651 | 	 * metadata space. This reduces the chances that the eofblocks scan | 
 | 652 | 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this | 
 | 653 | 	 * also behaves as a filter to prevent too many eofblocks scans from | 
 | 654 | 	 * running at the same time. | 
 | 655 | 	 */ | 
 | 656 | 	if (ret == -EDQUOT && !enospc) { | 
 | 657 | 		xfs_iunlock(ip, iolock); | 
 | 658 | 		enospc = xfs_inode_free_quota_eofblocks(ip); | 
 | 659 | 		if (enospc) | 
 | 660 | 			goto write_retry; | 
 | 661 | 		enospc = xfs_inode_free_quota_cowblocks(ip); | 
 | 662 | 		if (enospc) | 
 | 663 | 			goto write_retry; | 
 | 664 | 		iolock = 0; | 
 | 665 | 	} else if (ret == -ENOSPC && !enospc) { | 
 | 666 | 		struct xfs_eofblocks eofb = {0}; | 
 | 667 |  | 
 | 668 | 		enospc = 1; | 
 | 669 | 		xfs_flush_inodes(ip->i_mount); | 
 | 670 |  | 
 | 671 | 		xfs_iunlock(ip, iolock); | 
 | 672 | 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC; | 
 | 673 | 		xfs_icache_free_eofblocks(ip->i_mount, &eofb); | 
 | 674 | 		xfs_icache_free_cowblocks(ip->i_mount, &eofb); | 
 | 675 | 		goto write_retry; | 
 | 676 | 	} | 
 | 677 |  | 
 | 678 | 	current->backing_dev_info = NULL; | 
 | 679 | out: | 
 | 680 | 	if (iolock) | 
 | 681 | 		xfs_iunlock(ip, iolock); | 
 | 682 |  | 
 | 683 | 	if (ret > 0) { | 
 | 684 | 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
 | 685 | 		/* Handle various SYNC-type writes */ | 
 | 686 | 		ret = generic_write_sync(iocb, ret); | 
 | 687 | 	} | 
 | 688 | 	return ret; | 
 | 689 | } | 
 | 690 |  | 
 | 691 | STATIC ssize_t | 
 | 692 | xfs_file_write_iter( | 
 | 693 | 	struct kiocb		*iocb, | 
 | 694 | 	struct iov_iter		*from) | 
 | 695 | { | 
 | 696 | 	struct file		*file = iocb->ki_filp; | 
 | 697 | 	struct address_space	*mapping = file->f_mapping; | 
 | 698 | 	struct inode		*inode = mapping->host; | 
 | 699 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 700 | 	ssize_t			ret; | 
 | 701 | 	size_t			ocount = iov_iter_count(from); | 
 | 702 |  | 
 | 703 | 	XFS_STATS_INC(ip->i_mount, xs_write_calls); | 
 | 704 |  | 
 | 705 | 	if (ocount == 0) | 
 | 706 | 		return 0; | 
 | 707 |  | 
 | 708 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 709 | 		return -EIO; | 
 | 710 |  | 
 | 711 | 	if (IS_DAX(inode)) | 
 | 712 | 		return xfs_file_dax_write(iocb, from); | 
 | 713 |  | 
 | 714 | 	if (iocb->ki_flags & IOCB_DIRECT) { | 
 | 715 | 		/* | 
 | 716 | 		 * Allow a directio write to fall back to a buffered | 
 | 717 | 		 * write *only* in the case that we're doing a reflink | 
 | 718 | 		 * CoW.  In all other directio scenarios we do not | 
 | 719 | 		 * allow an operation to fall back to buffered mode. | 
 | 720 | 		 */ | 
 | 721 | 		ret = xfs_file_dio_aio_write(iocb, from); | 
 | 722 | 		if (ret != -EREMCHG) | 
 | 723 | 			return ret; | 
 | 724 | 	} | 
 | 725 |  | 
 | 726 | 	return xfs_file_buffered_aio_write(iocb, from); | 
 | 727 | } | 
 | 728 |  | 
 | 729 | static void | 
 | 730 | xfs_wait_dax_page( | 
 | 731 | 	struct inode		*inode) | 
 | 732 | { | 
 | 733 | 	struct xfs_inode        *ip = XFS_I(inode); | 
 | 734 |  | 
 | 735 | 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
 | 736 | 	schedule(); | 
 | 737 | 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
 | 738 | } | 
 | 739 |  | 
 | 740 | static int | 
 | 741 | xfs_break_dax_layouts( | 
 | 742 | 	struct inode		*inode, | 
 | 743 | 	bool			*retry) | 
 | 744 | { | 
 | 745 | 	struct page		*page; | 
 | 746 |  | 
 | 747 | 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); | 
 | 748 |  | 
 | 749 | 	page = dax_layout_busy_page(inode->i_mapping); | 
 | 750 | 	if (!page) | 
 | 751 | 		return 0; | 
 | 752 |  | 
 | 753 | 	*retry = true; | 
 | 754 | 	return ___wait_var_event(&page->_refcount, | 
 | 755 | 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, | 
 | 756 | 			0, 0, xfs_wait_dax_page(inode)); | 
 | 757 | } | 
 | 758 |  | 
 | 759 | int | 
 | 760 | xfs_break_layouts( | 
 | 761 | 	struct inode		*inode, | 
 | 762 | 	uint			*iolock, | 
 | 763 | 	enum layout_break_reason reason) | 
 | 764 | { | 
 | 765 | 	bool			retry; | 
 | 766 | 	int			error; | 
 | 767 |  | 
 | 768 | 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); | 
 | 769 |  | 
 | 770 | 	do { | 
 | 771 | 		retry = false; | 
 | 772 | 		switch (reason) { | 
 | 773 | 		case BREAK_UNMAP: | 
 | 774 | 			error = xfs_break_dax_layouts(inode, &retry); | 
 | 775 | 			if (error || retry) | 
 | 776 | 				break; | 
 | 777 | 			/* fall through */ | 
 | 778 | 		case BREAK_WRITE: | 
 | 779 | 			error = xfs_break_leased_layouts(inode, iolock, &retry); | 
 | 780 | 			break; | 
 | 781 | 		default: | 
 | 782 | 			WARN_ON_ONCE(1); | 
 | 783 | 			error = -EINVAL; | 
 | 784 | 		} | 
 | 785 | 	} while (error == 0 && retry); | 
 | 786 |  | 
 | 787 | 	return error; | 
 | 788 | } | 
 | 789 |  | 
 | 790 | #define	XFS_FALLOC_FL_SUPPORTED						\ | 
 | 791 | 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\ | 
 | 792 | 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\ | 
 | 793 | 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) | 
 | 794 |  | 
 | 795 | STATIC long | 
 | 796 | xfs_file_fallocate( | 
 | 797 | 	struct file		*file, | 
 | 798 | 	int			mode, | 
 | 799 | 	loff_t			offset, | 
 | 800 | 	loff_t			len) | 
 | 801 | { | 
 | 802 | 	struct inode		*inode = file_inode(file); | 
 | 803 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 804 | 	long			error; | 
 | 805 | 	enum xfs_prealloc_flags	flags = 0; | 
 | 806 | 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; | 
 | 807 | 	loff_t			new_size = 0; | 
 | 808 | 	bool			do_file_insert = false; | 
 | 809 |  | 
 | 810 | 	if (!S_ISREG(inode->i_mode)) | 
 | 811 | 		return -EINVAL; | 
 | 812 | 	if (mode & ~XFS_FALLOC_FL_SUPPORTED) | 
 | 813 | 		return -EOPNOTSUPP; | 
 | 814 |  | 
 | 815 | 	xfs_ilock(ip, iolock); | 
 | 816 | 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); | 
 | 817 | 	if (error) | 
 | 818 | 		goto out_unlock; | 
 | 819 |  | 
 | 820 | 	if (mode & FALLOC_FL_PUNCH_HOLE) { | 
 | 821 | 		error = xfs_free_file_space(ip, offset, len); | 
 | 822 | 		if (error) | 
 | 823 | 			goto out_unlock; | 
 | 824 | 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) { | 
 | 825 | 		unsigned int blksize_mask = i_blocksize(inode) - 1; | 
 | 826 |  | 
 | 827 | 		if (offset & blksize_mask || len & blksize_mask) { | 
 | 828 | 			error = -EINVAL; | 
 | 829 | 			goto out_unlock; | 
 | 830 | 		} | 
 | 831 |  | 
 | 832 | 		/* | 
 | 833 | 		 * There is no need to overlap collapse range with EOF, | 
 | 834 | 		 * in which case it is effectively a truncate operation | 
 | 835 | 		 */ | 
 | 836 | 		if (offset + len >= i_size_read(inode)) { | 
 | 837 | 			error = -EINVAL; | 
 | 838 | 			goto out_unlock; | 
 | 839 | 		} | 
 | 840 |  | 
 | 841 | 		new_size = i_size_read(inode) - len; | 
 | 842 |  | 
 | 843 | 		error = xfs_collapse_file_space(ip, offset, len); | 
 | 844 | 		if (error) | 
 | 845 | 			goto out_unlock; | 
 | 846 | 	} else if (mode & FALLOC_FL_INSERT_RANGE) { | 
 | 847 | 		unsigned int	blksize_mask = i_blocksize(inode) - 1; | 
 | 848 | 		loff_t		isize = i_size_read(inode); | 
 | 849 |  | 
 | 850 | 		if (offset & blksize_mask || len & blksize_mask) { | 
 | 851 | 			error = -EINVAL; | 
 | 852 | 			goto out_unlock; | 
 | 853 | 		} | 
 | 854 |  | 
 | 855 | 		/* | 
 | 856 | 		 * New inode size must not exceed ->s_maxbytes, accounting for | 
 | 857 | 		 * possible signed overflow. | 
 | 858 | 		 */ | 
 | 859 | 		if (inode->i_sb->s_maxbytes - isize < len) { | 
 | 860 | 			error = -EFBIG; | 
 | 861 | 			goto out_unlock; | 
 | 862 | 		} | 
 | 863 | 		new_size = isize + len; | 
 | 864 |  | 
 | 865 | 		/* Offset should be less than i_size */ | 
 | 866 | 		if (offset >= isize) { | 
 | 867 | 			error = -EINVAL; | 
 | 868 | 			goto out_unlock; | 
 | 869 | 		} | 
 | 870 | 		do_file_insert = true; | 
 | 871 | 	} else { | 
 | 872 | 		flags |= XFS_PREALLOC_SET; | 
 | 873 |  | 
 | 874 | 		if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
 | 875 | 		    offset + len > i_size_read(inode)) { | 
 | 876 | 			new_size = offset + len; | 
 | 877 | 			error = inode_newsize_ok(inode, new_size); | 
 | 878 | 			if (error) | 
 | 879 | 				goto out_unlock; | 
 | 880 | 		} | 
 | 881 |  | 
 | 882 | 		if (mode & FALLOC_FL_ZERO_RANGE) | 
 | 883 | 			error = xfs_zero_file_space(ip, offset, len); | 
 | 884 | 		else { | 
 | 885 | 			if (mode & FALLOC_FL_UNSHARE_RANGE) { | 
 | 886 | 				error = xfs_reflink_unshare(ip, offset, len); | 
 | 887 | 				if (error) | 
 | 888 | 					goto out_unlock; | 
 | 889 | 			} | 
 | 890 | 			error = xfs_alloc_file_space(ip, offset, len, | 
 | 891 | 						     XFS_BMAPI_PREALLOC); | 
 | 892 | 		} | 
 | 893 | 		if (error) | 
 | 894 | 			goto out_unlock; | 
 | 895 | 	} | 
 | 896 |  | 
 | 897 | 	if (file->f_flags & O_DSYNC) | 
 | 898 | 		flags |= XFS_PREALLOC_SYNC; | 
 | 899 |  | 
 | 900 | 	error = xfs_update_prealloc_flags(ip, flags); | 
 | 901 | 	if (error) | 
 | 902 | 		goto out_unlock; | 
 | 903 |  | 
 | 904 | 	/* Change file size if needed */ | 
 | 905 | 	if (new_size) { | 
 | 906 | 		struct iattr iattr; | 
 | 907 |  | 
 | 908 | 		iattr.ia_valid = ATTR_SIZE; | 
 | 909 | 		iattr.ia_size = new_size; | 
 | 910 | 		error = xfs_vn_setattr_size(file_dentry(file), &iattr); | 
 | 911 | 		if (error) | 
 | 912 | 			goto out_unlock; | 
 | 913 | 	} | 
 | 914 |  | 
 | 915 | 	/* | 
 | 916 | 	 * Perform hole insertion now that the file size has been | 
 | 917 | 	 * updated so that if we crash during the operation we don't | 
 | 918 | 	 * leave shifted extents past EOF and hence losing access to | 
 | 919 | 	 * the data that is contained within them. | 
 | 920 | 	 */ | 
 | 921 | 	if (do_file_insert) | 
 | 922 | 		error = xfs_insert_file_space(ip, offset, len); | 
 | 923 |  | 
 | 924 | out_unlock: | 
 | 925 | 	xfs_iunlock(ip, iolock); | 
 | 926 | 	return error; | 
 | 927 | } | 
 | 928 |  | 
 | 929 | STATIC int | 
 | 930 | xfs_file_clone_range( | 
 | 931 | 	struct file	*file_in, | 
 | 932 | 	loff_t		pos_in, | 
 | 933 | 	struct file	*file_out, | 
 | 934 | 	loff_t		pos_out, | 
 | 935 | 	u64		len) | 
 | 936 | { | 
 | 937 | 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, | 
 | 938 | 				     len, false); | 
 | 939 | } | 
 | 940 |  | 
 | 941 | STATIC int | 
 | 942 | xfs_file_dedupe_range( | 
 | 943 | 	struct file	*file_in, | 
 | 944 | 	loff_t		pos_in, | 
 | 945 | 	struct file	*file_out, | 
 | 946 | 	loff_t		pos_out, | 
 | 947 | 	u64		len) | 
 | 948 | { | 
 | 949 | 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, | 
 | 950 | 				     len, true); | 
 | 951 | } | 
 | 952 |  | 
 | 953 | STATIC int | 
 | 954 | xfs_file_open( | 
 | 955 | 	struct inode	*inode, | 
 | 956 | 	struct file	*file) | 
 | 957 | { | 
 | 958 | 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) | 
 | 959 | 		return -EFBIG; | 
 | 960 | 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) | 
 | 961 | 		return -EIO; | 
 | 962 | 	file->f_mode |= FMODE_NOWAIT; | 
 | 963 | 	return 0; | 
 | 964 | } | 
 | 965 |  | 
 | 966 | STATIC int | 
 | 967 | xfs_dir_open( | 
 | 968 | 	struct inode	*inode, | 
 | 969 | 	struct file	*file) | 
 | 970 | { | 
 | 971 | 	struct xfs_inode *ip = XFS_I(inode); | 
 | 972 | 	int		mode; | 
 | 973 | 	int		error; | 
 | 974 |  | 
 | 975 | 	error = xfs_file_open(inode, file); | 
 | 976 | 	if (error) | 
 | 977 | 		return error; | 
 | 978 |  | 
 | 979 | 	/* | 
 | 980 | 	 * If there are any blocks, read-ahead block 0 as we're almost | 
 | 981 | 	 * certain to have the next operation be a read there. | 
 | 982 | 	 */ | 
 | 983 | 	mode = xfs_ilock_data_map_shared(ip); | 
 | 984 | 	if (ip->i_d.di_nextents > 0) | 
 | 985 | 		error = xfs_dir3_data_readahead(ip, 0, -1); | 
 | 986 | 	xfs_iunlock(ip, mode); | 
 | 987 | 	return error; | 
 | 988 | } | 
 | 989 |  | 
 | 990 | STATIC int | 
 | 991 | xfs_file_release( | 
 | 992 | 	struct inode	*inode, | 
 | 993 | 	struct file	*filp) | 
 | 994 | { | 
 | 995 | 	return xfs_release(XFS_I(inode)); | 
 | 996 | } | 
 | 997 |  | 
 | 998 | STATIC int | 
 | 999 | xfs_file_readdir( | 
 | 1000 | 	struct file	*file, | 
 | 1001 | 	struct dir_context *ctx) | 
 | 1002 | { | 
 | 1003 | 	struct inode	*inode = file_inode(file); | 
 | 1004 | 	xfs_inode_t	*ip = XFS_I(inode); | 
 | 1005 | 	size_t		bufsize; | 
 | 1006 |  | 
 | 1007 | 	/* | 
 | 1008 | 	 * The Linux API doesn't pass down the total size of the buffer | 
 | 1009 | 	 * we read into down to the filesystem.  With the filldir concept | 
 | 1010 | 	 * it's not needed for correct information, but the XFS dir2 leaf | 
 | 1011 | 	 * code wants an estimate of the buffer size to calculate it's | 
 | 1012 | 	 * readahead window and size the buffers used for mapping to | 
 | 1013 | 	 * physical blocks. | 
 | 1014 | 	 * | 
 | 1015 | 	 * Try to give it an estimate that's good enough, maybe at some | 
 | 1016 | 	 * point we can change the ->readdir prototype to include the | 
 | 1017 | 	 * buffer size.  For now we use the current glibc buffer size. | 
 | 1018 | 	 */ | 
 | 1019 | 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); | 
 | 1020 |  | 
 | 1021 | 	return xfs_readdir(NULL, ip, ctx, bufsize); | 
 | 1022 | } | 
 | 1023 |  | 
 | 1024 | STATIC loff_t | 
 | 1025 | xfs_file_llseek( | 
 | 1026 | 	struct file	*file, | 
 | 1027 | 	loff_t		offset, | 
 | 1028 | 	int		whence) | 
 | 1029 | { | 
 | 1030 | 	struct inode		*inode = file->f_mapping->host; | 
 | 1031 |  | 
 | 1032 | 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) | 
 | 1033 | 		return -EIO; | 
 | 1034 |  | 
 | 1035 | 	switch (whence) { | 
 | 1036 | 	default: | 
 | 1037 | 		return generic_file_llseek(file, offset, whence); | 
 | 1038 | 	case SEEK_HOLE: | 
 | 1039 | 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); | 
 | 1040 | 		break; | 
 | 1041 | 	case SEEK_DATA: | 
 | 1042 | 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); | 
 | 1043 | 		break; | 
 | 1044 | 	} | 
 | 1045 |  | 
 | 1046 | 	if (offset < 0) | 
 | 1047 | 		return offset; | 
 | 1048 | 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | 
 | 1049 | } | 
 | 1050 |  | 
 | 1051 | /* | 
 | 1052 |  * Locking for serialisation of IO during page faults. This results in a lock | 
 | 1053 |  * ordering of: | 
 | 1054 |  * | 
 | 1055 |  * mmap_sem (MM) | 
 | 1056 |  *   sb_start_pagefault(vfs, freeze) | 
 | 1057 |  *     i_mmaplock (XFS - truncate serialisation) | 
 | 1058 |  *       page_lock (MM) | 
 | 1059 |  *         i_lock (XFS - extent map serialisation) | 
 | 1060 |  */ | 
 | 1061 | static vm_fault_t | 
 | 1062 | __xfs_filemap_fault( | 
 | 1063 | 	struct vm_fault		*vmf, | 
 | 1064 | 	enum page_entry_size	pe_size, | 
 | 1065 | 	bool			write_fault) | 
 | 1066 | { | 
 | 1067 | 	struct inode		*inode = file_inode(vmf->vma->vm_file); | 
 | 1068 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 1069 | 	vm_fault_t		ret; | 
 | 1070 |  | 
 | 1071 | 	trace_xfs_filemap_fault(ip, pe_size, write_fault); | 
 | 1072 |  | 
 | 1073 | 	if (write_fault) { | 
 | 1074 | 		sb_start_pagefault(inode->i_sb); | 
 | 1075 | 		file_update_time(vmf->vma->vm_file); | 
 | 1076 | 	} | 
 | 1077 |  | 
 | 1078 | 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 1079 | 	if (IS_DAX(inode)) { | 
 | 1080 | 		pfn_t pfn; | 
 | 1081 |  | 
 | 1082 | 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); | 
 | 1083 | 		if (ret & VM_FAULT_NEEDDSYNC) | 
 | 1084 | 			ret = dax_finish_sync_fault(vmf, pe_size, pfn); | 
 | 1085 | 	} else { | 
 | 1086 | 		if (write_fault) | 
 | 1087 | 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); | 
 | 1088 | 		else | 
 | 1089 | 			ret = filemap_fault(vmf); | 
 | 1090 | 	} | 
 | 1091 | 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
 | 1092 |  | 
 | 1093 | 	if (write_fault) | 
 | 1094 | 		sb_end_pagefault(inode->i_sb); | 
 | 1095 | 	return ret; | 
 | 1096 | } | 
 | 1097 |  | 
 | 1098 | static vm_fault_t | 
 | 1099 | xfs_filemap_fault( | 
 | 1100 | 	struct vm_fault		*vmf) | 
 | 1101 | { | 
 | 1102 | 	/* DAX can shortcut the normal fault path on write faults! */ | 
 | 1103 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, | 
 | 1104 | 			IS_DAX(file_inode(vmf->vma->vm_file)) && | 
 | 1105 | 			(vmf->flags & FAULT_FLAG_WRITE)); | 
 | 1106 | } | 
 | 1107 |  | 
 | 1108 | static vm_fault_t | 
 | 1109 | xfs_filemap_huge_fault( | 
 | 1110 | 	struct vm_fault		*vmf, | 
 | 1111 | 	enum page_entry_size	pe_size) | 
 | 1112 | { | 
 | 1113 | 	if (!IS_DAX(file_inode(vmf->vma->vm_file))) | 
 | 1114 | 		return VM_FAULT_FALLBACK; | 
 | 1115 |  | 
 | 1116 | 	/* DAX can shortcut the normal fault path on write faults! */ | 
 | 1117 | 	return __xfs_filemap_fault(vmf, pe_size, | 
 | 1118 | 			(vmf->flags & FAULT_FLAG_WRITE)); | 
 | 1119 | } | 
 | 1120 |  | 
 | 1121 | static vm_fault_t | 
 | 1122 | xfs_filemap_page_mkwrite( | 
 | 1123 | 	struct vm_fault		*vmf) | 
 | 1124 | { | 
 | 1125 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
 | 1126 | } | 
 | 1127 |  | 
 | 1128 | /* | 
 | 1129 |  * pfn_mkwrite was originally intended to ensure we capture time stamp updates | 
 | 1130 |  * on write faults. In reality, it needs to serialise against truncate and | 
 | 1131 |  * prepare memory for writing so handle is as standard write fault. | 
 | 1132 |  */ | 
 | 1133 | static vm_fault_t | 
 | 1134 | xfs_filemap_pfn_mkwrite( | 
 | 1135 | 	struct vm_fault		*vmf) | 
 | 1136 | { | 
 | 1137 |  | 
 | 1138 | 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
 | 1139 | } | 
 | 1140 |  | 
 | 1141 | static const struct vm_operations_struct xfs_file_vm_ops = { | 
 | 1142 | 	.fault		= xfs_filemap_fault, | 
 | 1143 | 	.huge_fault	= xfs_filemap_huge_fault, | 
 | 1144 | 	.map_pages	= filemap_map_pages, | 
 | 1145 | 	.page_mkwrite	= xfs_filemap_page_mkwrite, | 
 | 1146 | 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite, | 
 | 1147 | }; | 
 | 1148 |  | 
 | 1149 | STATIC int | 
 | 1150 | xfs_file_mmap( | 
 | 1151 | 	struct file	*filp, | 
 | 1152 | 	struct vm_area_struct *vma) | 
 | 1153 | { | 
 | 1154 | 	/* | 
 | 1155 | 	 * We don't support synchronous mappings for non-DAX files. At least | 
 | 1156 | 	 * until someone comes with a sensible use case. | 
 | 1157 | 	 */ | 
 | 1158 | 	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) | 
 | 1159 | 		return -EOPNOTSUPP; | 
 | 1160 |  | 
 | 1161 | 	file_accessed(filp); | 
 | 1162 | 	vma->vm_ops = &xfs_file_vm_ops; | 
 | 1163 | 	if (IS_DAX(file_inode(filp))) | 
 | 1164 | 		vma->vm_flags |= VM_HUGEPAGE; | 
 | 1165 | 	return 0; | 
 | 1166 | } | 
 | 1167 |  | 
 | 1168 | const struct file_operations xfs_file_operations = { | 
 | 1169 | 	.llseek		= xfs_file_llseek, | 
 | 1170 | 	.read_iter	= xfs_file_read_iter, | 
 | 1171 | 	.write_iter	= xfs_file_write_iter, | 
 | 1172 | 	.splice_read	= generic_file_splice_read, | 
 | 1173 | 	.splice_write	= iter_file_splice_write, | 
 | 1174 | 	.unlocked_ioctl	= xfs_file_ioctl, | 
 | 1175 | #ifdef CONFIG_COMPAT | 
 | 1176 | 	.compat_ioctl	= xfs_file_compat_ioctl, | 
 | 1177 | #endif | 
 | 1178 | 	.mmap		= xfs_file_mmap, | 
 | 1179 | 	.mmap_supported_flags = MAP_SYNC, | 
 | 1180 | 	.open		= xfs_file_open, | 
 | 1181 | 	.release	= xfs_file_release, | 
 | 1182 | 	.fsync		= xfs_file_fsync, | 
 | 1183 | 	.get_unmapped_area = thp_get_unmapped_area, | 
 | 1184 | 	.fallocate	= xfs_file_fallocate, | 
 | 1185 | 	.clone_file_range = xfs_file_clone_range, | 
 | 1186 | 	.dedupe_file_range = xfs_file_dedupe_range, | 
 | 1187 | }; | 
 | 1188 |  | 
 | 1189 | const struct file_operations xfs_dir_file_operations = { | 
 | 1190 | 	.open		= xfs_dir_open, | 
 | 1191 | 	.read		= generic_read_dir, | 
 | 1192 | 	.iterate_shared	= xfs_file_readdir, | 
 | 1193 | 	.llseek		= generic_file_llseek, | 
 | 1194 | 	.unlocked_ioctl	= xfs_file_ioctl, | 
 | 1195 | #ifdef CONFIG_COMPAT | 
 | 1196 | 	.compat_ioctl	= xfs_file_compat_ioctl, | 
 | 1197 | #endif | 
 | 1198 | 	.fsync		= xfs_dir_fsync, | 
 | 1199 | }; |