| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2008, 2009 Intel Corporation | 
|  | 3 | * Authors: Andi Kleen, Fengguang Wu | 
|  | 4 | * | 
|  | 5 | * This software may be redistributed and/or modified under the terms of | 
|  | 6 | * the GNU General Public License ("GPL") version 2 only as published by the | 
|  | 7 | * Free Software Foundation. | 
|  | 8 | * | 
|  | 9 | * High level machine check handler. Handles pages reported by the | 
|  | 10 | * hardware as being corrupted usually due to a multi-bit ECC memory or cache | 
|  | 11 | * failure. | 
|  | 12 | * | 
|  | 13 | * In addition there is a "soft offline" entry point that allows stop using | 
|  | 14 | * not-yet-corrupted-by-suspicious pages without killing anything. | 
|  | 15 | * | 
|  | 16 | * Handles page cache pages in various states.	The tricky part | 
|  | 17 | * here is that we can access any page asynchronously in respect to | 
|  | 18 | * other VM users, because memory failures could happen anytime and | 
|  | 19 | * anywhere. This could violate some of their assumptions. This is why | 
|  | 20 | * this code has to be extremely careful. Generally it tries to use | 
|  | 21 | * normal locking rules, as in get the standard locks, even if that means | 
|  | 22 | * the error handling takes potentially a long time. | 
|  | 23 | * | 
|  | 24 | * It can be very tempting to add handling for obscure cases here. | 
|  | 25 | * In general any code for handling new cases should only be added iff: | 
|  | 26 | * - You know how to test it. | 
|  | 27 | * - You have a test that can be added to mce-test | 
|  | 28 | *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ | 
|  | 29 | * - The case actually shows up as a frequent (top 10) page state in | 
|  | 30 | *   tools/vm/page-types when running a real workload. | 
|  | 31 | * | 
|  | 32 | * There are several operations here with exponential complexity because | 
|  | 33 | * of unsuitable VM data structures. For example the operation to map back | 
|  | 34 | * from RMAP chains to processes has to walk the complete process list and | 
|  | 35 | * has non linear complexity with the number. But since memory corruptions | 
|  | 36 | * are rare we hope to get away with this. This avoids impacting the core | 
|  | 37 | * VM. | 
|  | 38 | */ | 
|  | 39 | #include <linux/kernel.h> | 
|  | 40 | #include <linux/mm.h> | 
|  | 41 | #include <linux/page-flags.h> | 
|  | 42 | #include <linux/kernel-page-flags.h> | 
|  | 43 | #include <linux/sched/signal.h> | 
|  | 44 | #include <linux/sched/task.h> | 
|  | 45 | #include <linux/ksm.h> | 
|  | 46 | #include <linux/rmap.h> | 
|  | 47 | #include <linux/export.h> | 
|  | 48 | #include <linux/pagemap.h> | 
|  | 49 | #include <linux/swap.h> | 
|  | 50 | #include <linux/backing-dev.h> | 
|  | 51 | #include <linux/migrate.h> | 
|  | 52 | #include <linux/suspend.h> | 
|  | 53 | #include <linux/slab.h> | 
|  | 54 | #include <linux/swapops.h> | 
|  | 55 | #include <linux/hugetlb.h> | 
|  | 56 | #include <linux/memory_hotplug.h> | 
|  | 57 | #include <linux/mm_inline.h> | 
|  | 58 | #include <linux/memremap.h> | 
|  | 59 | #include <linux/kfifo.h> | 
|  | 60 | #include <linux/ratelimit.h> | 
|  | 61 | #include <linux/page-isolation.h> | 
|  | 62 | #include "internal.h" | 
|  | 63 | #include "ras/ras_event.h" | 
|  | 64 |  | 
|  | 65 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 
|  | 66 |  | 
|  | 67 | int sysctl_memory_failure_recovery __read_mostly = 1; | 
|  | 68 |  | 
|  | 69 | atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
|  | 70 |  | 
|  | 71 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) | 
|  | 72 |  | 
|  | 73 | u32 hwpoison_filter_enable = 0; | 
|  | 74 | u32 hwpoison_filter_dev_major = ~0U; | 
|  | 75 | u32 hwpoison_filter_dev_minor = ~0U; | 
|  | 76 | u64 hwpoison_filter_flags_mask; | 
|  | 77 | u64 hwpoison_filter_flags_value; | 
|  | 78 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
|  | 79 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
|  | 80 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
|  | 81 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
|  | 82 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
|  | 83 |  | 
|  | 84 | static int hwpoison_filter_dev(struct page *p) | 
|  | 85 | { | 
|  | 86 | struct address_space *mapping; | 
|  | 87 | dev_t dev; | 
|  | 88 |  | 
|  | 89 | if (hwpoison_filter_dev_major == ~0U && | 
|  | 90 | hwpoison_filter_dev_minor == ~0U) | 
|  | 91 | return 0; | 
|  | 92 |  | 
|  | 93 | /* | 
|  | 94 | * page_mapping() does not accept slab pages. | 
|  | 95 | */ | 
|  | 96 | if (PageSlab(p)) | 
|  | 97 | return -EINVAL; | 
|  | 98 |  | 
|  | 99 | mapping = page_mapping(p); | 
|  | 100 | if (mapping == NULL || mapping->host == NULL) | 
|  | 101 | return -EINVAL; | 
|  | 102 |  | 
|  | 103 | dev = mapping->host->i_sb->s_dev; | 
|  | 104 | if (hwpoison_filter_dev_major != ~0U && | 
|  | 105 | hwpoison_filter_dev_major != MAJOR(dev)) | 
|  | 106 | return -EINVAL; | 
|  | 107 | if (hwpoison_filter_dev_minor != ~0U && | 
|  | 108 | hwpoison_filter_dev_minor != MINOR(dev)) | 
|  | 109 | return -EINVAL; | 
|  | 110 |  | 
|  | 111 | return 0; | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | static int hwpoison_filter_flags(struct page *p) | 
|  | 115 | { | 
|  | 116 | if (!hwpoison_filter_flags_mask) | 
|  | 117 | return 0; | 
|  | 118 |  | 
|  | 119 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
|  | 120 | hwpoison_filter_flags_value) | 
|  | 121 | return 0; | 
|  | 122 | else | 
|  | 123 | return -EINVAL; | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | /* | 
|  | 127 | * This allows stress tests to limit test scope to a collection of tasks | 
|  | 128 | * by putting them under some memcg. This prevents killing unrelated/important | 
|  | 129 | * processes such as /sbin/init. Note that the target task may share clean | 
|  | 130 | * pages with init (eg. libc text), which is harmless. If the target task | 
|  | 131 | * share _dirty_ pages with another task B, the test scheme must make sure B | 
|  | 132 | * is also included in the memcg. At last, due to race conditions this filter | 
|  | 133 | * can only guarantee that the page either belongs to the memcg tasks, or is | 
|  | 134 | * a freed page. | 
|  | 135 | */ | 
|  | 136 | #ifdef CONFIG_MEMCG | 
|  | 137 | u64 hwpoison_filter_memcg; | 
|  | 138 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
|  | 139 | static int hwpoison_filter_task(struct page *p) | 
|  | 140 | { | 
|  | 141 | if (!hwpoison_filter_memcg) | 
|  | 142 | return 0; | 
|  | 143 |  | 
|  | 144 | if (page_cgroup_ino(p) != hwpoison_filter_memcg) | 
|  | 145 | return -EINVAL; | 
|  | 146 |  | 
|  | 147 | return 0; | 
|  | 148 | } | 
|  | 149 | #else | 
|  | 150 | static int hwpoison_filter_task(struct page *p) { return 0; } | 
|  | 151 | #endif | 
|  | 152 |  | 
|  | 153 | int hwpoison_filter(struct page *p) | 
|  | 154 | { | 
|  | 155 | if (!hwpoison_filter_enable) | 
|  | 156 | return 0; | 
|  | 157 |  | 
|  | 158 | if (hwpoison_filter_dev(p)) | 
|  | 159 | return -EINVAL; | 
|  | 160 |  | 
|  | 161 | if (hwpoison_filter_flags(p)) | 
|  | 162 | return -EINVAL; | 
|  | 163 |  | 
|  | 164 | if (hwpoison_filter_task(p)) | 
|  | 165 | return -EINVAL; | 
|  | 166 |  | 
|  | 167 | return 0; | 
|  | 168 | } | 
|  | 169 | #else | 
|  | 170 | int hwpoison_filter(struct page *p) | 
|  | 171 | { | 
|  | 172 | return 0; | 
|  | 173 | } | 
|  | 174 | #endif | 
|  | 175 |  | 
|  | 176 | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
|  | 177 |  | 
|  | 178 | /* | 
|  | 179 | * Kill all processes that have a poisoned page mapped and then isolate | 
|  | 180 | * the page. | 
|  | 181 | * | 
|  | 182 | * General strategy: | 
|  | 183 | * Find all processes having the page mapped and kill them. | 
|  | 184 | * But we keep a page reference around so that the page is not | 
|  | 185 | * actually freed yet. | 
|  | 186 | * Then stash the page away | 
|  | 187 | * | 
|  | 188 | * There's no convenient way to get back to mapped processes | 
|  | 189 | * from the VMAs. So do a brute-force search over all | 
|  | 190 | * running processes. | 
|  | 191 | * | 
|  | 192 | * Remember that machine checks are not common (or rather | 
|  | 193 | * if they are common you have other problems), so this shouldn't | 
|  | 194 | * be a performance issue. | 
|  | 195 | * | 
|  | 196 | * Also there are some races possible while we get from the | 
|  | 197 | * error detection to actually handle it. | 
|  | 198 | */ | 
|  | 199 |  | 
|  | 200 | struct to_kill { | 
|  | 201 | struct list_head nd; | 
|  | 202 | struct task_struct *tsk; | 
|  | 203 | unsigned long addr; | 
|  | 204 | short size_shift; | 
|  | 205 | }; | 
|  | 206 |  | 
|  | 207 | /* | 
|  | 208 | * Send all the processes who have the page mapped a signal. | 
|  | 209 | * ``action optional'' if they are not immediately affected by the error | 
|  | 210 | * ``action required'' if error happened in current execution context | 
|  | 211 | */ | 
|  | 212 | static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) | 
|  | 213 | { | 
|  | 214 | struct task_struct *t = tk->tsk; | 
|  | 215 | short addr_lsb = tk->size_shift; | 
|  | 216 | int ret; | 
|  | 217 |  | 
|  | 218 | pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", | 
|  | 219 | pfn, t->comm, t->pid); | 
|  | 220 |  | 
|  | 221 | if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { | 
|  | 222 | ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, | 
|  | 223 | addr_lsb, current); | 
|  | 224 | } else { | 
|  | 225 | /* | 
|  | 226 | * Don't use force here, it's convenient if the signal | 
|  | 227 | * can be temporarily blocked. | 
|  | 228 | * This could cause a loop when the user sets SIGBUS | 
|  | 229 | * to SIG_IGN, but hopefully no one will do that? | 
|  | 230 | */ | 
|  | 231 | ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, | 
|  | 232 | addr_lsb, t);  /* synchronous? */ | 
|  | 233 | } | 
|  | 234 | if (ret < 0) | 
|  | 235 | pr_info("Memory failure: Error sending signal to %s:%d: %d\n", | 
|  | 236 | t->comm, t->pid, ret); | 
|  | 237 | return ret; | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | /* | 
|  | 241 | * When a unknown page type is encountered drain as many buffers as possible | 
|  | 242 | * in the hope to turn the page into a LRU or free page, which we can handle. | 
|  | 243 | */ | 
|  | 244 | void shake_page(struct page *p, int access) | 
|  | 245 | { | 
|  | 246 | if (PageHuge(p)) | 
|  | 247 | return; | 
|  | 248 |  | 
|  | 249 | if (!PageSlab(p)) { | 
|  | 250 | lru_add_drain_all(); | 
|  | 251 | if (PageLRU(p)) | 
|  | 252 | return; | 
|  | 253 | drain_all_pages(page_zone(p)); | 
|  | 254 | if (PageLRU(p) || is_free_buddy_page(p)) | 
|  | 255 | return; | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* | 
|  | 259 | * Only call shrink_node_slabs here (which would also shrink | 
|  | 260 | * other caches) if access is not potentially fatal. | 
|  | 261 | */ | 
|  | 262 | if (access) | 
|  | 263 | drop_slab_node(page_to_nid(p)); | 
|  | 264 | } | 
|  | 265 | EXPORT_SYMBOL_GPL(shake_page); | 
|  | 266 |  | 
|  | 267 | static unsigned long dev_pagemap_mapping_shift(struct page *page, | 
|  | 268 | struct vm_area_struct *vma) | 
|  | 269 | { | 
|  | 270 | unsigned long address = vma_address(page, vma); | 
|  | 271 | pgd_t *pgd; | 
|  | 272 | p4d_t *p4d; | 
|  | 273 | pud_t *pud; | 
|  | 274 | pmd_t *pmd; | 
|  | 275 | pte_t *pte; | 
|  | 276 |  | 
|  | 277 | pgd = pgd_offset(vma->vm_mm, address); | 
|  | 278 | if (!pgd_present(*pgd)) | 
|  | 279 | return 0; | 
|  | 280 | p4d = p4d_offset(pgd, address); | 
|  | 281 | if (!p4d_present(*p4d)) | 
|  | 282 | return 0; | 
|  | 283 | pud = pud_offset(p4d, address); | 
|  | 284 | if (!pud_present(*pud)) | 
|  | 285 | return 0; | 
|  | 286 | if (pud_devmap(*pud)) | 
|  | 287 | return PUD_SHIFT; | 
|  | 288 | pmd = pmd_offset(pud, address); | 
|  | 289 | if (!pmd_present(*pmd)) | 
|  | 290 | return 0; | 
|  | 291 | if (pmd_devmap(*pmd)) | 
|  | 292 | return PMD_SHIFT; | 
|  | 293 | pte = pte_offset_map(pmd, address); | 
|  | 294 | if (!pte_present(*pte)) | 
|  | 295 | return 0; | 
|  | 296 | if (pte_devmap(*pte)) | 
|  | 297 | return PAGE_SHIFT; | 
|  | 298 | return 0; | 
|  | 299 | } | 
|  | 300 |  | 
|  | 301 | /* | 
|  | 302 | * Failure handling: if we can't find or can't kill a process there's | 
|  | 303 | * not much we can do.	We just print a message and ignore otherwise. | 
|  | 304 | */ | 
|  | 305 |  | 
|  | 306 | /* | 
|  | 307 | * Schedule a process for later kill. | 
|  | 308 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
|  | 309 | * TBD would GFP_NOIO be enough? | 
|  | 310 | */ | 
|  | 311 | static void add_to_kill(struct task_struct *tsk, struct page *p, | 
|  | 312 | struct vm_area_struct *vma, | 
|  | 313 | struct list_head *to_kill, | 
|  | 314 | struct to_kill **tkc) | 
|  | 315 | { | 
|  | 316 | struct to_kill *tk; | 
|  | 317 |  | 
|  | 318 | if (*tkc) { | 
|  | 319 | tk = *tkc; | 
|  | 320 | *tkc = NULL; | 
|  | 321 | } else { | 
|  | 322 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
|  | 323 | if (!tk) { | 
|  | 324 | pr_err("Memory failure: Out of memory while machine check handling\n"); | 
|  | 325 | return; | 
|  | 326 | } | 
|  | 327 | } | 
|  | 328 | tk->addr = page_address_in_vma(p, vma); | 
|  | 329 | if (is_zone_device_page(p)) | 
|  | 330 | tk->size_shift = dev_pagemap_mapping_shift(p, vma); | 
|  | 331 | else | 
|  | 332 | tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * Send SIGKILL if "tk->addr == -EFAULT". Also, as | 
|  | 336 | * "tk->size_shift" is always non-zero for !is_zone_device_page(), | 
|  | 337 | * so "tk->size_shift == 0" effectively checks no mapping on | 
|  | 338 | * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times | 
|  | 339 | * to a process' address space, it's possible not all N VMAs | 
|  | 340 | * contain mappings for the page, but at least one VMA does. | 
|  | 341 | * Only deliver SIGBUS with payload derived from the VMA that | 
|  | 342 | * has a mapping for the page. | 
|  | 343 | */ | 
|  | 344 | if (tk->addr == -EFAULT) { | 
|  | 345 | pr_info("Memory failure: Unable to find user space address %lx in %s\n", | 
|  | 346 | page_to_pfn(p), tsk->comm); | 
|  | 347 | } else if (tk->size_shift == 0) { | 
|  | 348 | kfree(tk); | 
|  | 349 | return; | 
|  | 350 | } | 
|  | 351 | get_task_struct(tsk); | 
|  | 352 | tk->tsk = tsk; | 
|  | 353 | list_add_tail(&tk->nd, to_kill); | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | /* | 
|  | 357 | * Kill the processes that have been collected earlier. | 
|  | 358 | * | 
|  | 359 | * Only do anything when DOIT is set, otherwise just free the list | 
|  | 360 | * (this is used for clean pages which do not need killing) | 
|  | 361 | * Also when FAIL is set do a force kill because something went | 
|  | 362 | * wrong earlier. | 
|  | 363 | */ | 
|  | 364 | static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, | 
|  | 365 | unsigned long pfn, int flags) | 
|  | 366 | { | 
|  | 367 | struct to_kill *tk, *next; | 
|  | 368 |  | 
|  | 369 | list_for_each_entry_safe (tk, next, to_kill, nd) { | 
|  | 370 | if (forcekill) { | 
|  | 371 | /* | 
|  | 372 | * In case something went wrong with munmapping | 
|  | 373 | * make sure the process doesn't catch the | 
|  | 374 | * signal and then access the memory. Just kill it. | 
|  | 375 | */ | 
|  | 376 | if (fail || tk->addr == -EFAULT) { | 
|  | 377 | pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
|  | 378 | pfn, tk->tsk->comm, tk->tsk->pid); | 
|  | 379 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, | 
|  | 380 | tk->tsk, PIDTYPE_PID); | 
|  | 381 | } | 
|  | 382 |  | 
|  | 383 | /* | 
|  | 384 | * In theory the process could have mapped | 
|  | 385 | * something else on the address in-between. We could | 
|  | 386 | * check for that, but we need to tell the | 
|  | 387 | * process anyways. | 
|  | 388 | */ | 
|  | 389 | else if (kill_proc(tk, pfn, flags) < 0) | 
|  | 390 | pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", | 
|  | 391 | pfn, tk->tsk->comm, tk->tsk->pid); | 
|  | 392 | } | 
|  | 393 | put_task_struct(tk->tsk); | 
|  | 394 | kfree(tk); | 
|  | 395 | } | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | /* | 
|  | 399 | * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) | 
|  | 400 | * on behalf of the thread group. Return task_struct of the (first found) | 
|  | 401 | * dedicated thread if found, and return NULL otherwise. | 
|  | 402 | * | 
|  | 403 | * We already hold read_lock(&tasklist_lock) in the caller, so we don't | 
|  | 404 | * have to call rcu_read_lock/unlock() in this function. | 
|  | 405 | */ | 
|  | 406 | static struct task_struct *find_early_kill_thread(struct task_struct *tsk) | 
|  | 407 | { | 
|  | 408 | struct task_struct *t; | 
|  | 409 |  | 
|  | 410 | for_each_thread(tsk, t) | 
|  | 411 | if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) | 
|  | 412 | return t; | 
|  | 413 | return NULL; | 
|  | 414 | } | 
|  | 415 |  | 
|  | 416 | /* | 
|  | 417 | * Determine whether a given process is "early kill" process which expects | 
|  | 418 | * to be signaled when some page under the process is hwpoisoned. | 
|  | 419 | * Return task_struct of the dedicated thread (main thread unless explicitly | 
|  | 420 | * specified) if the process is "early kill," and otherwise returns NULL. | 
|  | 421 | */ | 
|  | 422 | static struct task_struct *task_early_kill(struct task_struct *tsk, | 
|  | 423 | int force_early) | 
|  | 424 | { | 
|  | 425 | struct task_struct *t; | 
|  | 426 | if (!tsk->mm) | 
|  | 427 | return NULL; | 
|  | 428 | if (force_early) | 
|  | 429 | return tsk; | 
|  | 430 | t = find_early_kill_thread(tsk); | 
|  | 431 | if (t) | 
|  | 432 | return t; | 
|  | 433 | if (sysctl_memory_failure_early_kill) | 
|  | 434 | return tsk; | 
|  | 435 | return NULL; | 
|  | 436 | } | 
|  | 437 |  | 
|  | 438 | /* | 
|  | 439 | * Collect processes when the error hit an anonymous page. | 
|  | 440 | */ | 
|  | 441 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | 
|  | 442 | struct to_kill **tkc, int force_early) | 
|  | 443 | { | 
|  | 444 | struct vm_area_struct *vma; | 
|  | 445 | struct task_struct *tsk; | 
|  | 446 | struct anon_vma *av; | 
|  | 447 | pgoff_t pgoff; | 
|  | 448 |  | 
|  | 449 | av = page_lock_anon_vma_read(page); | 
|  | 450 | if (av == NULL)	/* Not actually mapped anymore */ | 
|  | 451 | return; | 
|  | 452 |  | 
|  | 453 | pgoff = page_to_pgoff(page); | 
|  | 454 | read_lock(&tasklist_lock); | 
|  | 455 | for_each_process (tsk) { | 
|  | 456 | struct anon_vma_chain *vmac; | 
|  | 457 | struct task_struct *t = task_early_kill(tsk, force_early); | 
|  | 458 |  | 
|  | 459 | if (!t) | 
|  | 460 | continue; | 
|  | 461 | anon_vma_interval_tree_foreach(vmac, &av->rb_root, | 
|  | 462 | pgoff, pgoff) { | 
|  | 463 | vma = vmac->vma; | 
|  | 464 | if (!page_mapped_in_vma(page, vma)) | 
|  | 465 | continue; | 
|  | 466 | if (vma->vm_mm == t->mm) | 
|  | 467 | add_to_kill(t, page, vma, to_kill, tkc); | 
|  | 468 | } | 
|  | 469 | } | 
|  | 470 | read_unlock(&tasklist_lock); | 
|  | 471 | page_unlock_anon_vma_read(av); | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | /* | 
|  | 475 | * Collect processes when the error hit a file mapped page. | 
|  | 476 | */ | 
|  | 477 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | 
|  | 478 | struct to_kill **tkc, int force_early) | 
|  | 479 | { | 
|  | 480 | struct vm_area_struct *vma; | 
|  | 481 | struct task_struct *tsk; | 
|  | 482 | struct address_space *mapping = page->mapping; | 
|  | 483 |  | 
|  | 484 | i_mmap_lock_read(mapping); | 
|  | 485 | read_lock(&tasklist_lock); | 
|  | 486 | for_each_process(tsk) { | 
|  | 487 | pgoff_t pgoff = page_to_pgoff(page); | 
|  | 488 | struct task_struct *t = task_early_kill(tsk, force_early); | 
|  | 489 |  | 
|  | 490 | if (!t) | 
|  | 491 | continue; | 
|  | 492 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, | 
|  | 493 | pgoff) { | 
|  | 494 | /* | 
|  | 495 | * Send early kill signal to tasks where a vma covers | 
|  | 496 | * the page but the corrupted page is not necessarily | 
|  | 497 | * mapped it in its pte. | 
|  | 498 | * Assume applications who requested early kill want | 
|  | 499 | * to be informed of all such data corruptions. | 
|  | 500 | */ | 
|  | 501 | if (vma->vm_mm == t->mm) | 
|  | 502 | add_to_kill(t, page, vma, to_kill, tkc); | 
|  | 503 | } | 
|  | 504 | } | 
|  | 505 | read_unlock(&tasklist_lock); | 
|  | 506 | i_mmap_unlock_read(mapping); | 
|  | 507 | } | 
|  | 508 |  | 
|  | 509 | /* | 
|  | 510 | * Collect the processes who have the corrupted page mapped to kill. | 
|  | 511 | * This is done in two steps for locking reasons. | 
|  | 512 | * First preallocate one tokill structure outside the spin locks, | 
|  | 513 | * so that we can kill at least one process reasonably reliable. | 
|  | 514 | */ | 
|  | 515 | static void collect_procs(struct page *page, struct list_head *tokill, | 
|  | 516 | int force_early) | 
|  | 517 | { | 
|  | 518 | struct to_kill *tk; | 
|  | 519 |  | 
|  | 520 | if (!page->mapping) | 
|  | 521 | return; | 
|  | 522 |  | 
|  | 523 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | 
|  | 524 | if (!tk) | 
|  | 525 | return; | 
|  | 526 | if (PageAnon(page)) | 
|  | 527 | collect_procs_anon(page, tokill, &tk, force_early); | 
|  | 528 | else | 
|  | 529 | collect_procs_file(page, tokill, &tk, force_early); | 
|  | 530 | kfree(tk); | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | static const char *action_name[] = { | 
|  | 534 | [MF_IGNORED] = "Ignored", | 
|  | 535 | [MF_FAILED] = "Failed", | 
|  | 536 | [MF_DELAYED] = "Delayed", | 
|  | 537 | [MF_RECOVERED] = "Recovered", | 
|  | 538 | }; | 
|  | 539 |  | 
|  | 540 | static const char * const action_page_types[] = { | 
|  | 541 | [MF_MSG_KERNEL]			= "reserved kernel page", | 
|  | 542 | [MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page", | 
|  | 543 | [MF_MSG_SLAB]			= "kernel slab page", | 
|  | 544 | [MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking", | 
|  | 545 | [MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned", | 
|  | 546 | [MF_MSG_HUGE]			= "huge page", | 
|  | 547 | [MF_MSG_FREE_HUGE]		= "free huge page", | 
|  | 548 | [MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page", | 
|  | 549 | [MF_MSG_UNMAP_FAILED]		= "unmapping failed page", | 
|  | 550 | [MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page", | 
|  | 551 | [MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page", | 
|  | 552 | [MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page", | 
|  | 553 | [MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page", | 
|  | 554 | [MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page", | 
|  | 555 | [MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page", | 
|  | 556 | [MF_MSG_DIRTY_LRU]		= "dirty LRU page", | 
|  | 557 | [MF_MSG_CLEAN_LRU]		= "clean LRU page", | 
|  | 558 | [MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page", | 
|  | 559 | [MF_MSG_BUDDY]			= "free buddy page", | 
|  | 560 | [MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)", | 
|  | 561 | [MF_MSG_DAX]			= "dax page", | 
|  | 562 | [MF_MSG_UNKNOWN]		= "unknown page", | 
|  | 563 | }; | 
|  | 564 |  | 
|  | 565 | /* | 
|  | 566 | * XXX: It is possible that a page is isolated from LRU cache, | 
|  | 567 | * and then kept in swap cache or failed to remove from page cache. | 
|  | 568 | * The page count will stop it from being freed by unpoison. | 
|  | 569 | * Stress tests should be aware of this memory leak problem. | 
|  | 570 | */ | 
|  | 571 | static int delete_from_lru_cache(struct page *p) | 
|  | 572 | { | 
|  | 573 | if (!isolate_lru_page(p)) { | 
|  | 574 | /* | 
|  | 575 | * Clear sensible page flags, so that the buddy system won't | 
|  | 576 | * complain when the page is unpoison-and-freed. | 
|  | 577 | */ | 
|  | 578 | ClearPageActive(p); | 
|  | 579 | ClearPageUnevictable(p); | 
|  | 580 |  | 
|  | 581 | /* | 
|  | 582 | * Poisoned page might never drop its ref count to 0 so we have | 
|  | 583 | * to uncharge it manually from its memcg. | 
|  | 584 | */ | 
|  | 585 | mem_cgroup_uncharge(p); | 
|  | 586 |  | 
|  | 587 | /* | 
|  | 588 | * drop the page count elevated by isolate_lru_page() | 
|  | 589 | */ | 
|  | 590 | put_page(p); | 
|  | 591 | return 0; | 
|  | 592 | } | 
|  | 593 | return -EIO; | 
|  | 594 | } | 
|  | 595 |  | 
|  | 596 | static int truncate_error_page(struct page *p, unsigned long pfn, | 
|  | 597 | struct address_space *mapping) | 
|  | 598 | { | 
|  | 599 | int ret = MF_FAILED; | 
|  | 600 |  | 
|  | 601 | if (mapping->a_ops->error_remove_page) { | 
|  | 602 | int err = mapping->a_ops->error_remove_page(mapping, p); | 
|  | 603 |  | 
|  | 604 | if (err != 0) { | 
|  | 605 | pr_info("Memory failure: %#lx: Failed to punch page: %d\n", | 
|  | 606 | pfn, err); | 
|  | 607 | } else if (page_has_private(p) && | 
|  | 608 | !try_to_release_page(p, GFP_NOIO)) { | 
|  | 609 | pr_info("Memory failure: %#lx: failed to release buffers\n", | 
|  | 610 | pfn); | 
|  | 611 | } else { | 
|  | 612 | ret = MF_RECOVERED; | 
|  | 613 | } | 
|  | 614 | } else { | 
|  | 615 | /* | 
|  | 616 | * If the file system doesn't support it just invalidate | 
|  | 617 | * This fails on dirty or anything with private pages | 
|  | 618 | */ | 
|  | 619 | if (invalidate_inode_page(p)) | 
|  | 620 | ret = MF_RECOVERED; | 
|  | 621 | else | 
|  | 622 | pr_info("Memory failure: %#lx: Failed to invalidate\n", | 
|  | 623 | pfn); | 
|  | 624 | } | 
|  | 625 |  | 
|  | 626 | return ret; | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | /* | 
|  | 630 | * Error hit kernel page. | 
|  | 631 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
|  | 632 | * could be more sophisticated. | 
|  | 633 | */ | 
|  | 634 | static int me_kernel(struct page *p, unsigned long pfn) | 
|  | 635 | { | 
|  | 636 | return MF_IGNORED; | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | /* | 
|  | 640 | * Page in unknown state. Do nothing. | 
|  | 641 | */ | 
|  | 642 | static int me_unknown(struct page *p, unsigned long pfn) | 
|  | 643 | { | 
|  | 644 | pr_err("Memory failure: %#lx: Unknown page state\n", pfn); | 
|  | 645 | return MF_FAILED; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | /* | 
|  | 649 | * Clean (or cleaned) page cache page. | 
|  | 650 | */ | 
|  | 651 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | 
|  | 652 | { | 
|  | 653 | struct address_space *mapping; | 
|  | 654 |  | 
|  | 655 | delete_from_lru_cache(p); | 
|  | 656 |  | 
|  | 657 | /* | 
|  | 658 | * For anonymous pages we're done the only reference left | 
|  | 659 | * should be the one m_f() holds. | 
|  | 660 | */ | 
|  | 661 | if (PageAnon(p)) | 
|  | 662 | return MF_RECOVERED; | 
|  | 663 |  | 
|  | 664 | /* | 
|  | 665 | * Now truncate the page in the page cache. This is really | 
|  | 666 | * more like a "temporary hole punch" | 
|  | 667 | * Don't do this for block devices when someone else | 
|  | 668 | * has a reference, because it could be file system metadata | 
|  | 669 | * and that's not safe to truncate. | 
|  | 670 | */ | 
|  | 671 | mapping = page_mapping(p); | 
|  | 672 | if (!mapping) { | 
|  | 673 | /* | 
|  | 674 | * Page has been teared down in the meanwhile | 
|  | 675 | */ | 
|  | 676 | return MF_FAILED; | 
|  | 677 | } | 
|  | 678 |  | 
|  | 679 | /* | 
|  | 680 | * Truncation is a bit tricky. Enable it per file system for now. | 
|  | 681 | * | 
|  | 682 | * Open: to take i_mutex or not for this? Right now we don't. | 
|  | 683 | */ | 
|  | 684 | return truncate_error_page(p, pfn, mapping); | 
|  | 685 | } | 
|  | 686 |  | 
|  | 687 | /* | 
|  | 688 | * Dirty pagecache page | 
|  | 689 | * Issues: when the error hit a hole page the error is not properly | 
|  | 690 | * propagated. | 
|  | 691 | */ | 
|  | 692 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | 
|  | 693 | { | 
|  | 694 | struct address_space *mapping = page_mapping(p); | 
|  | 695 |  | 
|  | 696 | SetPageError(p); | 
|  | 697 | /* TBD: print more information about the file. */ | 
|  | 698 | if (mapping) { | 
|  | 699 | /* | 
|  | 700 | * IO error will be reported by write(), fsync(), etc. | 
|  | 701 | * who check the mapping. | 
|  | 702 | * This way the application knows that something went | 
|  | 703 | * wrong with its dirty file data. | 
|  | 704 | * | 
|  | 705 | * There's one open issue: | 
|  | 706 | * | 
|  | 707 | * The EIO will be only reported on the next IO | 
|  | 708 | * operation and then cleared through the IO map. | 
|  | 709 | * Normally Linux has two mechanisms to pass IO error | 
|  | 710 | * first through the AS_EIO flag in the address space | 
|  | 711 | * and then through the PageError flag in the page. | 
|  | 712 | * Since we drop pages on memory failure handling the | 
|  | 713 | * only mechanism open to use is through AS_AIO. | 
|  | 714 | * | 
|  | 715 | * This has the disadvantage that it gets cleared on | 
|  | 716 | * the first operation that returns an error, while | 
|  | 717 | * the PageError bit is more sticky and only cleared | 
|  | 718 | * when the page is reread or dropped.  If an | 
|  | 719 | * application assumes it will always get error on | 
|  | 720 | * fsync, but does other operations on the fd before | 
|  | 721 | * and the page is dropped between then the error | 
|  | 722 | * will not be properly reported. | 
|  | 723 | * | 
|  | 724 | * This can already happen even without hwpoisoned | 
|  | 725 | * pages: first on metadata IO errors (which only | 
|  | 726 | * report through AS_EIO) or when the page is dropped | 
|  | 727 | * at the wrong time. | 
|  | 728 | * | 
|  | 729 | * So right now we assume that the application DTRT on | 
|  | 730 | * the first EIO, but we're not worse than other parts | 
|  | 731 | * of the kernel. | 
|  | 732 | */ | 
|  | 733 | mapping_set_error(mapping, -EIO); | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | return me_pagecache_clean(p, pfn); | 
|  | 737 | } | 
|  | 738 |  | 
|  | 739 | /* | 
|  | 740 | * Clean and dirty swap cache. | 
|  | 741 | * | 
|  | 742 | * Dirty swap cache page is tricky to handle. The page could live both in page | 
|  | 743 | * cache and swap cache(ie. page is freshly swapped in). So it could be | 
|  | 744 | * referenced concurrently by 2 types of PTEs: | 
|  | 745 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
|  | 746 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | 
|  | 747 | * and then | 
|  | 748 | *      - clear dirty bit to prevent IO | 
|  | 749 | *      - remove from LRU | 
|  | 750 | *      - but keep in the swap cache, so that when we return to it on | 
|  | 751 | *        a later page fault, we know the application is accessing | 
|  | 752 | *        corrupted data and shall be killed (we installed simple | 
|  | 753 | *        interception code in do_swap_page to catch it). | 
|  | 754 | * | 
|  | 755 | * Clean swap cache pages can be directly isolated. A later page fault will | 
|  | 756 | * bring in the known good data from disk. | 
|  | 757 | */ | 
|  | 758 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | 
|  | 759 | { | 
|  | 760 | ClearPageDirty(p); | 
|  | 761 | /* Trigger EIO in shmem: */ | 
|  | 762 | ClearPageUptodate(p); | 
|  | 763 |  | 
|  | 764 | if (!delete_from_lru_cache(p)) | 
|  | 765 | return MF_DELAYED; | 
|  | 766 | else | 
|  | 767 | return MF_FAILED; | 
|  | 768 | } | 
|  | 769 |  | 
|  | 770 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | 
|  | 771 | { | 
|  | 772 | delete_from_swap_cache(p); | 
|  | 773 |  | 
|  | 774 | if (!delete_from_lru_cache(p)) | 
|  | 775 | return MF_RECOVERED; | 
|  | 776 | else | 
|  | 777 | return MF_FAILED; | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | /* | 
|  | 781 | * Huge pages. Needs work. | 
|  | 782 | * Issues: | 
|  | 783 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) | 
|  | 784 | *   To narrow down kill region to one page, we need to break up pmd. | 
|  | 785 | */ | 
|  | 786 | static int me_huge_page(struct page *p, unsigned long pfn) | 
|  | 787 | { | 
|  | 788 | int res = 0; | 
|  | 789 | struct page *hpage = compound_head(p); | 
|  | 790 | struct address_space *mapping; | 
|  | 791 |  | 
|  | 792 | if (!PageHuge(hpage)) | 
|  | 793 | return MF_DELAYED; | 
|  | 794 |  | 
|  | 795 | mapping = page_mapping(hpage); | 
|  | 796 | if (mapping) { | 
|  | 797 | res = truncate_error_page(hpage, pfn, mapping); | 
|  | 798 | } else { | 
|  | 799 | unlock_page(hpage); | 
|  | 800 | /* | 
|  | 801 | * migration entry prevents later access on error anonymous | 
|  | 802 | * hugepage, so we can free and dissolve it into buddy to | 
|  | 803 | * save healthy subpages. | 
|  | 804 | */ | 
|  | 805 | if (PageAnon(hpage)) | 
|  | 806 | put_page(hpage); | 
|  | 807 | dissolve_free_huge_page(p); | 
|  | 808 | res = MF_RECOVERED; | 
|  | 809 | lock_page(hpage); | 
|  | 810 | } | 
|  | 811 |  | 
|  | 812 | return res; | 
|  | 813 | } | 
|  | 814 |  | 
|  | 815 | /* | 
|  | 816 | * Various page states we can handle. | 
|  | 817 | * | 
|  | 818 | * A page state is defined by its current page->flags bits. | 
|  | 819 | * The table matches them in order and calls the right handler. | 
|  | 820 | * | 
|  | 821 | * This is quite tricky because we can access page at any time | 
|  | 822 | * in its live cycle, so all accesses have to be extremely careful. | 
|  | 823 | * | 
|  | 824 | * This is not complete. More states could be added. | 
|  | 825 | * For any missing state don't attempt recovery. | 
|  | 826 | */ | 
|  | 827 |  | 
|  | 828 | #define dirty		(1UL << PG_dirty) | 
|  | 829 | #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked)) | 
|  | 830 | #define unevict		(1UL << PG_unevictable) | 
|  | 831 | #define mlock		(1UL << PG_mlocked) | 
|  | 832 | #define writeback	(1UL << PG_writeback) | 
|  | 833 | #define lru		(1UL << PG_lru) | 
|  | 834 | #define head		(1UL << PG_head) | 
|  | 835 | #define slab		(1UL << PG_slab) | 
|  | 836 | #define reserved	(1UL << PG_reserved) | 
|  | 837 |  | 
|  | 838 | static struct page_state { | 
|  | 839 | unsigned long mask; | 
|  | 840 | unsigned long res; | 
|  | 841 | enum mf_action_page_type type; | 
|  | 842 | int (*action)(struct page *p, unsigned long pfn); | 
|  | 843 | } error_states[] = { | 
|  | 844 | { reserved,	reserved,	MF_MSG_KERNEL,	me_kernel }, | 
|  | 845 | /* | 
|  | 846 | * free pages are specially detected outside this table: | 
|  | 847 | * PG_buddy pages only make a small fraction of all free pages. | 
|  | 848 | */ | 
|  | 849 |  | 
|  | 850 | /* | 
|  | 851 | * Could in theory check if slab page is free or if we can drop | 
|  | 852 | * currently unused objects without touching them. But just | 
|  | 853 | * treat it as standard kernel for now. | 
|  | 854 | */ | 
|  | 855 | { slab,		slab,		MF_MSG_SLAB,	me_kernel }, | 
|  | 856 |  | 
|  | 857 | { head,		head,		MF_MSG_HUGE,		me_huge_page }, | 
|  | 858 |  | 
|  | 859 | { sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty }, | 
|  | 860 | { sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean }, | 
|  | 861 |  | 
|  | 862 | { mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty }, | 
|  | 863 | { mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean }, | 
|  | 864 |  | 
|  | 865 | { unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty }, | 
|  | 866 | { unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean }, | 
|  | 867 |  | 
|  | 868 | { lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty }, | 
|  | 869 | { lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean }, | 
|  | 870 |  | 
|  | 871 | /* | 
|  | 872 | * Catchall entry: must be at end. | 
|  | 873 | */ | 
|  | 874 | { 0,		0,		MF_MSG_UNKNOWN,	me_unknown }, | 
|  | 875 | }; | 
|  | 876 |  | 
|  | 877 | #undef dirty | 
|  | 878 | #undef sc | 
|  | 879 | #undef unevict | 
|  | 880 | #undef mlock | 
|  | 881 | #undef writeback | 
|  | 882 | #undef lru | 
|  | 883 | #undef head | 
|  | 884 | #undef slab | 
|  | 885 | #undef reserved | 
|  | 886 |  | 
|  | 887 | /* | 
|  | 888 | * "Dirty/Clean" indication is not 100% accurate due to the possibility of | 
|  | 889 | * setting PG_dirty outside page lock. See also comment above set_page_dirty(). | 
|  | 890 | */ | 
|  | 891 | static void action_result(unsigned long pfn, enum mf_action_page_type type, | 
|  | 892 | enum mf_result result) | 
|  | 893 | { | 
|  | 894 | trace_memory_failure_event(pfn, type, result); | 
|  | 895 |  | 
|  | 896 | pr_err("Memory failure: %#lx: recovery action for %s: %s\n", | 
|  | 897 | pfn, action_page_types[type], action_name[result]); | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | static int page_action(struct page_state *ps, struct page *p, | 
|  | 901 | unsigned long pfn) | 
|  | 902 | { | 
|  | 903 | int result; | 
|  | 904 | int count; | 
|  | 905 |  | 
|  | 906 | result = ps->action(p, pfn); | 
|  | 907 |  | 
|  | 908 | count = page_count(p) - 1; | 
|  | 909 | if (ps->action == me_swapcache_dirty && result == MF_DELAYED) | 
|  | 910 | count--; | 
|  | 911 | if (count > 0) { | 
|  | 912 | pr_err("Memory failure: %#lx: %s still referenced by %d users\n", | 
|  | 913 | pfn, action_page_types[ps->type], count); | 
|  | 914 | result = MF_FAILED; | 
|  | 915 | } | 
|  | 916 | action_result(pfn, ps->type, result); | 
|  | 917 |  | 
|  | 918 | /* Could do more checks here if page looks ok */ | 
|  | 919 | /* | 
|  | 920 | * Could adjust zone counters here to correct for the missing page. | 
|  | 921 | */ | 
|  | 922 |  | 
|  | 923 | return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; | 
|  | 924 | } | 
|  | 925 |  | 
|  | 926 | /** | 
|  | 927 | * get_hwpoison_page() - Get refcount for memory error handling: | 
|  | 928 | * @page:	raw error page (hit by memory error) | 
|  | 929 | * | 
|  | 930 | * Return: return 0 if failed to grab the refcount, otherwise true (some | 
|  | 931 | * non-zero value.) | 
|  | 932 | */ | 
|  | 933 | int get_hwpoison_page(struct page *page) | 
|  | 934 | { | 
|  | 935 | struct page *head = compound_head(page); | 
|  | 936 |  | 
|  | 937 | if (!PageHuge(head) && PageTransHuge(head)) { | 
|  | 938 | /* | 
|  | 939 | * Non anonymous thp exists only in allocation/free time. We | 
|  | 940 | * can't handle such a case correctly, so let's give it up. | 
|  | 941 | * This should be better than triggering BUG_ON when kernel | 
|  | 942 | * tries to touch the "partially handled" page. | 
|  | 943 | */ | 
|  | 944 | if (!PageAnon(head)) { | 
|  | 945 | pr_err("Memory failure: %#lx: non anonymous thp\n", | 
|  | 946 | page_to_pfn(page)); | 
|  | 947 | return 0; | 
|  | 948 | } | 
|  | 949 | } | 
|  | 950 |  | 
|  | 951 | if (get_page_unless_zero(head)) { | 
|  | 952 | if (head == compound_head(page)) | 
|  | 953 | return 1; | 
|  | 954 |  | 
|  | 955 | pr_info("Memory failure: %#lx cannot catch tail\n", | 
|  | 956 | page_to_pfn(page)); | 
|  | 957 | put_page(head); | 
|  | 958 | } | 
|  | 959 |  | 
|  | 960 | return 0; | 
|  | 961 | } | 
|  | 962 | EXPORT_SYMBOL_GPL(get_hwpoison_page); | 
|  | 963 |  | 
|  | 964 | /* | 
|  | 965 | * Do all that is necessary to remove user space mappings. Unmap | 
|  | 966 | * the pages and send SIGBUS to the processes if the data was dirty. | 
|  | 967 | */ | 
|  | 968 | static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, | 
|  | 969 | int flags, struct page **hpagep) | 
|  | 970 | { | 
|  | 971 | enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | 
|  | 972 | struct address_space *mapping; | 
|  | 973 | LIST_HEAD(tokill); | 
|  | 974 | bool unmap_success; | 
|  | 975 | int kill = 1, forcekill; | 
|  | 976 | struct page *hpage = *hpagep; | 
|  | 977 | bool mlocked = PageMlocked(hpage); | 
|  | 978 |  | 
|  | 979 | /* | 
|  | 980 | * Here we are interested only in user-mapped pages, so skip any | 
|  | 981 | * other types of pages. | 
|  | 982 | */ | 
|  | 983 | if (PageReserved(p) || PageSlab(p)) | 
|  | 984 | return true; | 
|  | 985 | if (!(PageLRU(hpage) || PageHuge(p))) | 
|  | 986 | return true; | 
|  | 987 |  | 
|  | 988 | /* | 
|  | 989 | * This check implies we don't kill processes if their pages | 
|  | 990 | * are in the swap cache early. Those are always late kills. | 
|  | 991 | */ | 
|  | 992 | if (!page_mapped(hpage)) | 
|  | 993 | return true; | 
|  | 994 |  | 
|  | 995 | if (PageKsm(p)) { | 
|  | 996 | pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); | 
|  | 997 | return false; | 
|  | 998 | } | 
|  | 999 |  | 
|  | 1000 | if (PageSwapCache(p)) { | 
|  | 1001 | pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", | 
|  | 1002 | pfn); | 
|  | 1003 | ttu |= TTU_IGNORE_HWPOISON; | 
|  | 1004 | } | 
|  | 1005 |  | 
|  | 1006 | /* | 
|  | 1007 | * Propagate the dirty bit from PTEs to struct page first, because we | 
|  | 1008 | * need this to decide if we should kill or just drop the page. | 
|  | 1009 | * XXX: the dirty test could be racy: set_page_dirty() may not always | 
|  | 1010 | * be called inside page lock (it's recommended but not enforced). | 
|  | 1011 | */ | 
|  | 1012 | mapping = page_mapping(hpage); | 
|  | 1013 | if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && | 
|  | 1014 | mapping_cap_writeback_dirty(mapping)) { | 
|  | 1015 | if (page_mkclean(hpage)) { | 
|  | 1016 | SetPageDirty(hpage); | 
|  | 1017 | } else { | 
|  | 1018 | kill = 0; | 
|  | 1019 | ttu |= TTU_IGNORE_HWPOISON; | 
|  | 1020 | pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", | 
|  | 1021 | pfn); | 
|  | 1022 | } | 
|  | 1023 | } | 
|  | 1024 |  | 
|  | 1025 | /* | 
|  | 1026 | * First collect all the processes that have the page | 
|  | 1027 | * mapped in dirty form.  This has to be done before try_to_unmap, | 
|  | 1028 | * because ttu takes the rmap data structures down. | 
|  | 1029 | * | 
|  | 1030 | * Error handling: We ignore errors here because | 
|  | 1031 | * there's nothing that can be done. | 
|  | 1032 | */ | 
|  | 1033 | if (kill) | 
|  | 1034 | collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); | 
|  | 1035 |  | 
|  | 1036 | unmap_success = try_to_unmap(hpage, ttu); | 
|  | 1037 | if (!unmap_success) | 
|  | 1038 | pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", | 
|  | 1039 | pfn, page_mapcount(hpage)); | 
|  | 1040 |  | 
|  | 1041 | /* | 
|  | 1042 | * try_to_unmap() might put mlocked page in lru cache, so call | 
|  | 1043 | * shake_page() again to ensure that it's flushed. | 
|  | 1044 | */ | 
|  | 1045 | if (mlocked) | 
|  | 1046 | shake_page(hpage, 0); | 
|  | 1047 |  | 
|  | 1048 | /* | 
|  | 1049 | * Now that the dirty bit has been propagated to the | 
|  | 1050 | * struct page and all unmaps done we can decide if | 
|  | 1051 | * killing is needed or not.  Only kill when the page | 
|  | 1052 | * was dirty or the process is not restartable, | 
|  | 1053 | * otherwise the tokill list is merely | 
|  | 1054 | * freed.  When there was a problem unmapping earlier | 
|  | 1055 | * use a more force-full uncatchable kill to prevent | 
|  | 1056 | * any accesses to the poisoned memory. | 
|  | 1057 | */ | 
|  | 1058 | forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); | 
|  | 1059 | kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); | 
|  | 1060 |  | 
|  | 1061 | return unmap_success; | 
|  | 1062 | } | 
|  | 1063 |  | 
|  | 1064 | static int identify_page_state(unsigned long pfn, struct page *p, | 
|  | 1065 | unsigned long page_flags) | 
|  | 1066 | { | 
|  | 1067 | struct page_state *ps; | 
|  | 1068 |  | 
|  | 1069 | /* | 
|  | 1070 | * The first check uses the current page flags which may not have any | 
|  | 1071 | * relevant information. The second check with the saved page flags is | 
|  | 1072 | * carried out only if the first check can't determine the page status. | 
|  | 1073 | */ | 
|  | 1074 | for (ps = error_states;; ps++) | 
|  | 1075 | if ((p->flags & ps->mask) == ps->res) | 
|  | 1076 | break; | 
|  | 1077 |  | 
|  | 1078 | page_flags |= (p->flags & (1UL << PG_dirty)); | 
|  | 1079 |  | 
|  | 1080 | if (!ps->mask) | 
|  | 1081 | for (ps = error_states;; ps++) | 
|  | 1082 | if ((page_flags & ps->mask) == ps->res) | 
|  | 1083 | break; | 
|  | 1084 | return page_action(ps, p, pfn); | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | static int memory_failure_hugetlb(unsigned long pfn, int flags) | 
|  | 1088 | { | 
|  | 1089 | struct page *p = pfn_to_page(pfn); | 
|  | 1090 | struct page *head = compound_head(p); | 
|  | 1091 | int res; | 
|  | 1092 | unsigned long page_flags; | 
|  | 1093 |  | 
|  | 1094 | if (TestSetPageHWPoison(head)) { | 
|  | 1095 | pr_err("Memory failure: %#lx: already hardware poisoned\n", | 
|  | 1096 | pfn); | 
|  | 1097 | return 0; | 
|  | 1098 | } | 
|  | 1099 |  | 
|  | 1100 | num_poisoned_pages_inc(); | 
|  | 1101 |  | 
|  | 1102 | if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { | 
|  | 1103 | /* | 
|  | 1104 | * Check "filter hit" and "race with other subpage." | 
|  | 1105 | */ | 
|  | 1106 | lock_page(head); | 
|  | 1107 | if (PageHWPoison(head)) { | 
|  | 1108 | if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) | 
|  | 1109 | || (p != head && TestSetPageHWPoison(head))) { | 
|  | 1110 | num_poisoned_pages_dec(); | 
|  | 1111 | unlock_page(head); | 
|  | 1112 | return 0; | 
|  | 1113 | } | 
|  | 1114 | } | 
|  | 1115 | unlock_page(head); | 
|  | 1116 | dissolve_free_huge_page(p); | 
|  | 1117 | action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); | 
|  | 1118 | return 0; | 
|  | 1119 | } | 
|  | 1120 |  | 
|  | 1121 | lock_page(head); | 
|  | 1122 | page_flags = head->flags; | 
|  | 1123 |  | 
|  | 1124 | if (!PageHWPoison(head)) { | 
|  | 1125 | pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); | 
|  | 1126 | num_poisoned_pages_dec(); | 
|  | 1127 | unlock_page(head); | 
|  | 1128 | put_hwpoison_page(head); | 
|  | 1129 | return 0; | 
|  | 1130 | } | 
|  | 1131 |  | 
|  | 1132 | /* | 
|  | 1133 | * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so | 
|  | 1134 | * simply disable it. In order to make it work properly, we need | 
|  | 1135 | * make sure that: | 
|  | 1136 | *  - conversion of a pud that maps an error hugetlb into hwpoison | 
|  | 1137 | *    entry properly works, and | 
|  | 1138 | *  - other mm code walking over page table is aware of pud-aligned | 
|  | 1139 | *    hwpoison entries. | 
|  | 1140 | */ | 
|  | 1141 | if (huge_page_size(page_hstate(head)) > PMD_SIZE) { | 
|  | 1142 | action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); | 
|  | 1143 | res = -EBUSY; | 
|  | 1144 | goto out; | 
|  | 1145 | } | 
|  | 1146 |  | 
|  | 1147 | if (!hwpoison_user_mappings(p, pfn, flags, &head)) { | 
|  | 1148 | action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); | 
|  | 1149 | res = -EBUSY; | 
|  | 1150 | goto out; | 
|  | 1151 | } | 
|  | 1152 |  | 
|  | 1153 | res = identify_page_state(pfn, p, page_flags); | 
|  | 1154 | out: | 
|  | 1155 | unlock_page(head); | 
|  | 1156 | return res; | 
|  | 1157 | } | 
|  | 1158 |  | 
|  | 1159 | static int memory_failure_dev_pagemap(unsigned long pfn, int flags, | 
|  | 1160 | struct dev_pagemap *pgmap) | 
|  | 1161 | { | 
|  | 1162 | struct page *page = pfn_to_page(pfn); | 
|  | 1163 | const bool unmap_success = true; | 
|  | 1164 | unsigned long size = 0; | 
|  | 1165 | struct to_kill *tk; | 
|  | 1166 | LIST_HEAD(tokill); | 
|  | 1167 | int rc = -EBUSY; | 
|  | 1168 | loff_t start; | 
|  | 1169 |  | 
|  | 1170 | /* | 
|  | 1171 | * Prevent the inode from being freed while we are interrogating | 
|  | 1172 | * the address_space, typically this would be handled by | 
|  | 1173 | * lock_page(), but dax pages do not use the page lock. This | 
|  | 1174 | * also prevents changes to the mapping of this pfn until | 
|  | 1175 | * poison signaling is complete. | 
|  | 1176 | */ | 
|  | 1177 | if (!dax_lock_mapping_entry(page)) | 
|  | 1178 | goto out; | 
|  | 1179 |  | 
|  | 1180 | if (hwpoison_filter(page)) { | 
|  | 1181 | rc = 0; | 
|  | 1182 | goto unlock; | 
|  | 1183 | } | 
|  | 1184 |  | 
|  | 1185 | switch (pgmap->type) { | 
|  | 1186 | case MEMORY_DEVICE_PRIVATE: | 
|  | 1187 | case MEMORY_DEVICE_PUBLIC: | 
|  | 1188 | /* | 
|  | 1189 | * TODO: Handle HMM pages which may need coordination | 
|  | 1190 | * with device-side memory. | 
|  | 1191 | */ | 
|  | 1192 | goto unlock; | 
|  | 1193 | default: | 
|  | 1194 | break; | 
|  | 1195 | } | 
|  | 1196 |  | 
|  | 1197 | /* | 
|  | 1198 | * Use this flag as an indication that the dax page has been | 
|  | 1199 | * remapped UC to prevent speculative consumption of poison. | 
|  | 1200 | */ | 
|  | 1201 | SetPageHWPoison(page); | 
|  | 1202 |  | 
|  | 1203 | /* | 
|  | 1204 | * Unlike System-RAM there is no possibility to swap in a | 
|  | 1205 | * different physical page at a given virtual address, so all | 
|  | 1206 | * userspace consumption of ZONE_DEVICE memory necessitates | 
|  | 1207 | * SIGBUS (i.e. MF_MUST_KILL) | 
|  | 1208 | */ | 
|  | 1209 | flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | 
|  | 1210 | collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); | 
|  | 1211 |  | 
|  | 1212 | list_for_each_entry(tk, &tokill, nd) | 
|  | 1213 | if (tk->size_shift) | 
|  | 1214 | size = max(size, 1UL << tk->size_shift); | 
|  | 1215 | if (size) { | 
|  | 1216 | /* | 
|  | 1217 | * Unmap the largest mapping to avoid breaking up | 
|  | 1218 | * device-dax mappings which are constant size. The | 
|  | 1219 | * actual size of the mapping being torn down is | 
|  | 1220 | * communicated in siginfo, see kill_proc() | 
|  | 1221 | */ | 
|  | 1222 | start = (page->index << PAGE_SHIFT) & ~(size - 1); | 
|  | 1223 | unmap_mapping_range(page->mapping, start, start + size, 0); | 
|  | 1224 | } | 
|  | 1225 | kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); | 
|  | 1226 | rc = 0; | 
|  | 1227 | unlock: | 
|  | 1228 | dax_unlock_mapping_entry(page); | 
|  | 1229 | out: | 
|  | 1230 | /* drop pgmap ref acquired in caller */ | 
|  | 1231 | put_dev_pagemap(pgmap); | 
|  | 1232 | action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); | 
|  | 1233 | return rc; | 
|  | 1234 | } | 
|  | 1235 |  | 
|  | 1236 | /** | 
|  | 1237 | * memory_failure - Handle memory failure of a page. | 
|  | 1238 | * @pfn: Page Number of the corrupted page | 
|  | 1239 | * @flags: fine tune action taken | 
|  | 1240 | * | 
|  | 1241 | * This function is called by the low level machine check code | 
|  | 1242 | * of an architecture when it detects hardware memory corruption | 
|  | 1243 | * of a page. It tries its best to recover, which includes | 
|  | 1244 | * dropping pages, killing processes etc. | 
|  | 1245 | * | 
|  | 1246 | * The function is primarily of use for corruptions that | 
|  | 1247 | * happen outside the current execution context (e.g. when | 
|  | 1248 | * detected by a background scrubber) | 
|  | 1249 | * | 
|  | 1250 | * Must run in process context (e.g. a work queue) with interrupts | 
|  | 1251 | * enabled and no spinlocks hold. | 
|  | 1252 | */ | 
|  | 1253 | int memory_failure(unsigned long pfn, int flags) | 
|  | 1254 | { | 
|  | 1255 | struct page *p; | 
|  | 1256 | struct page *hpage; | 
|  | 1257 | struct page *orig_head; | 
|  | 1258 | struct dev_pagemap *pgmap; | 
|  | 1259 | int res; | 
|  | 1260 | unsigned long page_flags; | 
|  | 1261 |  | 
|  | 1262 | if (!sysctl_memory_failure_recovery) | 
|  | 1263 | panic("Memory failure on page %lx", pfn); | 
|  | 1264 |  | 
|  | 1265 | p = pfn_to_online_page(pfn); | 
|  | 1266 | if (!p) { | 
|  | 1267 | if (pfn_valid(pfn)) { | 
|  | 1268 | pgmap = get_dev_pagemap(pfn, NULL); | 
|  | 1269 | if (pgmap) | 
|  | 1270 | return memory_failure_dev_pagemap(pfn, flags, | 
|  | 1271 | pgmap); | 
|  | 1272 | } | 
|  | 1273 | pr_err("Memory failure: %#lx: memory outside kernel control\n", | 
|  | 1274 | pfn); | 
|  | 1275 | return -ENXIO; | 
|  | 1276 | } | 
|  | 1277 |  | 
|  | 1278 | if (PageHuge(p)) | 
|  | 1279 | return memory_failure_hugetlb(pfn, flags); | 
|  | 1280 | if (TestSetPageHWPoison(p)) { | 
|  | 1281 | pr_err("Memory failure: %#lx: already hardware poisoned\n", | 
|  | 1282 | pfn); | 
|  | 1283 | return 0; | 
|  | 1284 | } | 
|  | 1285 |  | 
|  | 1286 | orig_head = hpage = compound_head(p); | 
|  | 1287 | num_poisoned_pages_inc(); | 
|  | 1288 |  | 
|  | 1289 | /* | 
|  | 1290 | * We need/can do nothing about count=0 pages. | 
|  | 1291 | * 1) it's a free page, and therefore in safe hand: | 
|  | 1292 | *    prep_new_page() will be the gate keeper. | 
|  | 1293 | * 2) it's part of a non-compound high order page. | 
|  | 1294 | *    Implies some kernel user: cannot stop them from | 
|  | 1295 | *    R/W the page; let's pray that the page has been | 
|  | 1296 | *    used and will be freed some time later. | 
|  | 1297 | * In fact it's dangerous to directly bump up page count from 0, | 
|  | 1298 | * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. | 
|  | 1299 | */ | 
|  | 1300 | if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { | 
|  | 1301 | if (is_free_buddy_page(p)) { | 
|  | 1302 | action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); | 
|  | 1303 | return 0; | 
|  | 1304 | } else { | 
|  | 1305 | action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); | 
|  | 1306 | return -EBUSY; | 
|  | 1307 | } | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | if (PageTransHuge(hpage)) { | 
|  | 1311 | lock_page(p); | 
|  | 1312 | if (!PageAnon(p) || unlikely(split_huge_page(p))) { | 
|  | 1313 | unlock_page(p); | 
|  | 1314 | if (!PageAnon(p)) | 
|  | 1315 | pr_err("Memory failure: %#lx: non anonymous thp\n", | 
|  | 1316 | pfn); | 
|  | 1317 | else | 
|  | 1318 | pr_err("Memory failure: %#lx: thp split failed\n", | 
|  | 1319 | pfn); | 
|  | 1320 | if (TestClearPageHWPoison(p)) | 
|  | 1321 | num_poisoned_pages_dec(); | 
|  | 1322 | put_hwpoison_page(p); | 
|  | 1323 | return -EBUSY; | 
|  | 1324 | } | 
|  | 1325 | unlock_page(p); | 
|  | 1326 | VM_BUG_ON_PAGE(!page_count(p), p); | 
|  | 1327 | hpage = compound_head(p); | 
|  | 1328 | } | 
|  | 1329 |  | 
|  | 1330 | /* | 
|  | 1331 | * We ignore non-LRU pages for good reasons. | 
|  | 1332 | * - PG_locked is only well defined for LRU pages and a few others | 
|  | 1333 | * - to avoid races with __SetPageLocked() | 
|  | 1334 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
|  | 1335 | * The check (unnecessarily) ignores LRU pages being isolated and | 
|  | 1336 | * walked by the page reclaim code, however that's not a big loss. | 
|  | 1337 | */ | 
|  | 1338 | shake_page(p, 0); | 
|  | 1339 | /* shake_page could have turned it free. */ | 
|  | 1340 | if (!PageLRU(p) && is_free_buddy_page(p)) { | 
|  | 1341 | if (flags & MF_COUNT_INCREASED) | 
|  | 1342 | action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); | 
|  | 1343 | else | 
|  | 1344 | action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); | 
|  | 1345 | return 0; | 
|  | 1346 | } | 
|  | 1347 |  | 
|  | 1348 | lock_page(p); | 
|  | 1349 |  | 
|  | 1350 | /* | 
|  | 1351 | * The page could have changed compound pages during the locking. | 
|  | 1352 | * If this happens just bail out. | 
|  | 1353 | */ | 
|  | 1354 | if (PageCompound(p) && compound_head(p) != orig_head) { | 
|  | 1355 | action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); | 
|  | 1356 | res = -EBUSY; | 
|  | 1357 | goto out; | 
|  | 1358 | } | 
|  | 1359 |  | 
|  | 1360 | /* | 
|  | 1361 | * We use page flags to determine what action should be taken, but | 
|  | 1362 | * the flags can be modified by the error containment action.  One | 
|  | 1363 | * example is an mlocked page, where PG_mlocked is cleared by | 
|  | 1364 | * page_remove_rmap() in try_to_unmap_one(). So to determine page status | 
|  | 1365 | * correctly, we save a copy of the page flags at this time. | 
|  | 1366 | */ | 
|  | 1367 | if (PageHuge(p)) | 
|  | 1368 | page_flags = hpage->flags; | 
|  | 1369 | else | 
|  | 1370 | page_flags = p->flags; | 
|  | 1371 |  | 
|  | 1372 | /* | 
|  | 1373 | * unpoison always clear PG_hwpoison inside page lock | 
|  | 1374 | */ | 
|  | 1375 | if (!PageHWPoison(p)) { | 
|  | 1376 | pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); | 
|  | 1377 | num_poisoned_pages_dec(); | 
|  | 1378 | unlock_page(p); | 
|  | 1379 | put_hwpoison_page(p); | 
|  | 1380 | return 0; | 
|  | 1381 | } | 
|  | 1382 | if (hwpoison_filter(p)) { | 
|  | 1383 | if (TestClearPageHWPoison(p)) | 
|  | 1384 | num_poisoned_pages_dec(); | 
|  | 1385 | unlock_page(p); | 
|  | 1386 | put_hwpoison_page(p); | 
|  | 1387 | return 0; | 
|  | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | if (!PageTransTail(p) && !PageLRU(p)) | 
|  | 1391 | goto identify_page_state; | 
|  | 1392 |  | 
|  | 1393 | /* | 
|  | 1394 | * It's very difficult to mess with pages currently under IO | 
|  | 1395 | * and in many cases impossible, so we just avoid it here. | 
|  | 1396 | */ | 
|  | 1397 | wait_on_page_writeback(p); | 
|  | 1398 |  | 
|  | 1399 | /* | 
|  | 1400 | * Now take care of user space mappings. | 
|  | 1401 | * Abort on fail: __delete_from_page_cache() assumes unmapped page. | 
|  | 1402 | * | 
|  | 1403 | * When the raw error page is thp tail page, hpage points to the raw | 
|  | 1404 | * page after thp split. | 
|  | 1405 | */ | 
|  | 1406 | if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { | 
|  | 1407 | action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); | 
|  | 1408 | res = -EBUSY; | 
|  | 1409 | goto out; | 
|  | 1410 | } | 
|  | 1411 |  | 
|  | 1412 | /* | 
|  | 1413 | * Torn down by someone else? | 
|  | 1414 | */ | 
|  | 1415 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | 
|  | 1416 | action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); | 
|  | 1417 | res = -EBUSY; | 
|  | 1418 | goto out; | 
|  | 1419 | } | 
|  | 1420 |  | 
|  | 1421 | identify_page_state: | 
|  | 1422 | res = identify_page_state(pfn, p, page_flags); | 
|  | 1423 | out: | 
|  | 1424 | unlock_page(p); | 
|  | 1425 | return res; | 
|  | 1426 | } | 
|  | 1427 | EXPORT_SYMBOL_GPL(memory_failure); | 
|  | 1428 |  | 
|  | 1429 | #define MEMORY_FAILURE_FIFO_ORDER	4 | 
|  | 1430 | #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER) | 
|  | 1431 |  | 
|  | 1432 | struct memory_failure_entry { | 
|  | 1433 | unsigned long pfn; | 
|  | 1434 | int flags; | 
|  | 1435 | }; | 
|  | 1436 |  | 
|  | 1437 | struct memory_failure_cpu { | 
|  | 1438 | DECLARE_KFIFO(fifo, struct memory_failure_entry, | 
|  | 1439 | MEMORY_FAILURE_FIFO_SIZE); | 
|  | 1440 | spinlock_t lock; | 
|  | 1441 | struct work_struct work; | 
|  | 1442 | }; | 
|  | 1443 |  | 
|  | 1444 | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); | 
|  | 1445 |  | 
|  | 1446 | /** | 
|  | 1447 | * memory_failure_queue - Schedule handling memory failure of a page. | 
|  | 1448 | * @pfn: Page Number of the corrupted page | 
|  | 1449 | * @flags: Flags for memory failure handling | 
|  | 1450 | * | 
|  | 1451 | * This function is called by the low level hardware error handler | 
|  | 1452 | * when it detects hardware memory corruption of a page. It schedules | 
|  | 1453 | * the recovering of error page, including dropping pages, killing | 
|  | 1454 | * processes etc. | 
|  | 1455 | * | 
|  | 1456 | * The function is primarily of use for corruptions that | 
|  | 1457 | * happen outside the current execution context (e.g. when | 
|  | 1458 | * detected by a background scrubber) | 
|  | 1459 | * | 
|  | 1460 | * Can run in IRQ context. | 
|  | 1461 | */ | 
|  | 1462 | void memory_failure_queue(unsigned long pfn, int flags) | 
|  | 1463 | { | 
|  | 1464 | struct memory_failure_cpu *mf_cpu; | 
|  | 1465 | unsigned long proc_flags; | 
|  | 1466 | struct memory_failure_entry entry = { | 
|  | 1467 | .pfn =		pfn, | 
|  | 1468 | .flags =	flags, | 
|  | 1469 | }; | 
|  | 1470 |  | 
|  | 1471 | mf_cpu = &get_cpu_var(memory_failure_cpu); | 
|  | 1472 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
|  | 1473 | if (kfifo_put(&mf_cpu->fifo, entry)) | 
|  | 1474 | schedule_work_on(smp_processor_id(), &mf_cpu->work); | 
|  | 1475 | else | 
|  | 1476 | pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", | 
|  | 1477 | pfn); | 
|  | 1478 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
|  | 1479 | put_cpu_var(memory_failure_cpu); | 
|  | 1480 | } | 
|  | 1481 | EXPORT_SYMBOL_GPL(memory_failure_queue); | 
|  | 1482 |  | 
|  | 1483 | static void memory_failure_work_func(struct work_struct *work) | 
|  | 1484 | { | 
|  | 1485 | struct memory_failure_cpu *mf_cpu; | 
|  | 1486 | struct memory_failure_entry entry = { 0, }; | 
|  | 1487 | unsigned long proc_flags; | 
|  | 1488 | int gotten; | 
|  | 1489 |  | 
|  | 1490 | mf_cpu = this_cpu_ptr(&memory_failure_cpu); | 
|  | 1491 | for (;;) { | 
|  | 1492 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
|  | 1493 | gotten = kfifo_get(&mf_cpu->fifo, &entry); | 
|  | 1494 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
|  | 1495 | if (!gotten) | 
|  | 1496 | break; | 
|  | 1497 | if (entry.flags & MF_SOFT_OFFLINE) | 
|  | 1498 | soft_offline_page(pfn_to_page(entry.pfn), entry.flags); | 
|  | 1499 | else | 
|  | 1500 | memory_failure(entry.pfn, entry.flags); | 
|  | 1501 | } | 
|  | 1502 | } | 
|  | 1503 |  | 
|  | 1504 | static int __init memory_failure_init(void) | 
|  | 1505 | { | 
|  | 1506 | struct memory_failure_cpu *mf_cpu; | 
|  | 1507 | int cpu; | 
|  | 1508 |  | 
|  | 1509 | for_each_possible_cpu(cpu) { | 
|  | 1510 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | 
|  | 1511 | spin_lock_init(&mf_cpu->lock); | 
|  | 1512 | INIT_KFIFO(mf_cpu->fifo); | 
|  | 1513 | INIT_WORK(&mf_cpu->work, memory_failure_work_func); | 
|  | 1514 | } | 
|  | 1515 |  | 
|  | 1516 | return 0; | 
|  | 1517 | } | 
|  | 1518 | core_initcall(memory_failure_init); | 
|  | 1519 |  | 
|  | 1520 | #define unpoison_pr_info(fmt, pfn, rs)			\ | 
|  | 1521 | ({							\ | 
|  | 1522 | if (__ratelimit(rs))				\ | 
|  | 1523 | pr_info(fmt, pfn);			\ | 
|  | 1524 | }) | 
|  | 1525 |  | 
|  | 1526 | /** | 
|  | 1527 | * unpoison_memory - Unpoison a previously poisoned page | 
|  | 1528 | * @pfn: Page number of the to be unpoisoned page | 
|  | 1529 | * | 
|  | 1530 | * Software-unpoison a page that has been poisoned by | 
|  | 1531 | * memory_failure() earlier. | 
|  | 1532 | * | 
|  | 1533 | * This is only done on the software-level, so it only works | 
|  | 1534 | * for linux injected failures, not real hardware failures | 
|  | 1535 | * | 
|  | 1536 | * Returns 0 for success, otherwise -errno. | 
|  | 1537 | */ | 
|  | 1538 | int unpoison_memory(unsigned long pfn) | 
|  | 1539 | { | 
|  | 1540 | struct page *page; | 
|  | 1541 | struct page *p; | 
|  | 1542 | int freeit = 0; | 
|  | 1543 | static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | 1544 | DEFAULT_RATELIMIT_BURST); | 
|  | 1545 |  | 
|  | 1546 | if (!pfn_valid(pfn)) | 
|  | 1547 | return -ENXIO; | 
|  | 1548 |  | 
|  | 1549 | p = pfn_to_page(pfn); | 
|  | 1550 | page = compound_head(p); | 
|  | 1551 |  | 
|  | 1552 | if (!PageHWPoison(p)) { | 
|  | 1553 | unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", | 
|  | 1554 | pfn, &unpoison_rs); | 
|  | 1555 | return 0; | 
|  | 1556 | } | 
|  | 1557 |  | 
|  | 1558 | if (page_count(page) > 1) { | 
|  | 1559 | unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", | 
|  | 1560 | pfn, &unpoison_rs); | 
|  | 1561 | return 0; | 
|  | 1562 | } | 
|  | 1563 |  | 
|  | 1564 | if (page_mapped(page)) { | 
|  | 1565 | unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", | 
|  | 1566 | pfn, &unpoison_rs); | 
|  | 1567 | return 0; | 
|  | 1568 | } | 
|  | 1569 |  | 
|  | 1570 | if (page_mapping(page)) { | 
|  | 1571 | unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", | 
|  | 1572 | pfn, &unpoison_rs); | 
|  | 1573 | return 0; | 
|  | 1574 | } | 
|  | 1575 |  | 
|  | 1576 | /* | 
|  | 1577 | * unpoison_memory() can encounter thp only when the thp is being | 
|  | 1578 | * worked by memory_failure() and the page lock is not held yet. | 
|  | 1579 | * In such case, we yield to memory_failure() and make unpoison fail. | 
|  | 1580 | */ | 
|  | 1581 | if (!PageHuge(page) && PageTransHuge(page)) { | 
|  | 1582 | unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", | 
|  | 1583 | pfn, &unpoison_rs); | 
|  | 1584 | return 0; | 
|  | 1585 | } | 
|  | 1586 |  | 
|  | 1587 | if (!get_hwpoison_page(p)) { | 
|  | 1588 | if (TestClearPageHWPoison(p)) | 
|  | 1589 | num_poisoned_pages_dec(); | 
|  | 1590 | unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", | 
|  | 1591 | pfn, &unpoison_rs); | 
|  | 1592 | return 0; | 
|  | 1593 | } | 
|  | 1594 |  | 
|  | 1595 | lock_page(page); | 
|  | 1596 | /* | 
|  | 1597 | * This test is racy because PG_hwpoison is set outside of page lock. | 
|  | 1598 | * That's acceptable because that won't trigger kernel panic. Instead, | 
|  | 1599 | * the PG_hwpoison page will be caught and isolated on the entrance to | 
|  | 1600 | * the free buddy page pool. | 
|  | 1601 | */ | 
|  | 1602 | if (TestClearPageHWPoison(page)) { | 
|  | 1603 | unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", | 
|  | 1604 | pfn, &unpoison_rs); | 
|  | 1605 | num_poisoned_pages_dec(); | 
|  | 1606 | freeit = 1; | 
|  | 1607 | } | 
|  | 1608 | unlock_page(page); | 
|  | 1609 |  | 
|  | 1610 | put_hwpoison_page(page); | 
|  | 1611 | if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) | 
|  | 1612 | put_hwpoison_page(page); | 
|  | 1613 |  | 
|  | 1614 | return 0; | 
|  | 1615 | } | 
|  | 1616 | EXPORT_SYMBOL(unpoison_memory); | 
|  | 1617 |  | 
|  | 1618 | static struct page *new_page(struct page *p, unsigned long private) | 
|  | 1619 | { | 
|  | 1620 | int nid = page_to_nid(p); | 
|  | 1621 |  | 
|  | 1622 | return new_page_nodemask(p, nid, &node_states[N_MEMORY]); | 
|  | 1623 | } | 
|  | 1624 |  | 
|  | 1625 | /* | 
|  | 1626 | * Safely get reference count of an arbitrary page. | 
|  | 1627 | * Returns 0 for a free page, -EIO for a zero refcount page | 
|  | 1628 | * that is not free, and 1 for any other page type. | 
|  | 1629 | * For 1 the page is returned with increased page count, otherwise not. | 
|  | 1630 | */ | 
|  | 1631 | static int __get_any_page(struct page *p, unsigned long pfn, int flags) | 
|  | 1632 | { | 
|  | 1633 | int ret; | 
|  | 1634 |  | 
|  | 1635 | if (flags & MF_COUNT_INCREASED) | 
|  | 1636 | return 1; | 
|  | 1637 |  | 
|  | 1638 | /* | 
|  | 1639 | * When the target page is a free hugepage, just remove it | 
|  | 1640 | * from free hugepage list. | 
|  | 1641 | */ | 
|  | 1642 | if (!get_hwpoison_page(p)) { | 
|  | 1643 | if (PageHuge(p)) { | 
|  | 1644 | pr_info("%s: %#lx free huge page\n", __func__, pfn); | 
|  | 1645 | ret = 0; | 
|  | 1646 | } else if (is_free_buddy_page(p)) { | 
|  | 1647 | pr_info("%s: %#lx free buddy page\n", __func__, pfn); | 
|  | 1648 | ret = 0; | 
|  | 1649 | } else { | 
|  | 1650 | pr_info("%s: %#lx: unknown zero refcount page type %lx\n", | 
|  | 1651 | __func__, pfn, p->flags); | 
|  | 1652 | ret = -EIO; | 
|  | 1653 | } | 
|  | 1654 | } else { | 
|  | 1655 | /* Not a free page */ | 
|  | 1656 | ret = 1; | 
|  | 1657 | } | 
|  | 1658 | return ret; | 
|  | 1659 | } | 
|  | 1660 |  | 
|  | 1661 | static int get_any_page(struct page *page, unsigned long pfn, int flags) | 
|  | 1662 | { | 
|  | 1663 | int ret = __get_any_page(page, pfn, flags); | 
|  | 1664 |  | 
|  | 1665 | if (ret == 1 && !PageHuge(page) && | 
|  | 1666 | !PageLRU(page) && !__PageMovable(page)) { | 
|  | 1667 | /* | 
|  | 1668 | * Try to free it. | 
|  | 1669 | */ | 
|  | 1670 | put_hwpoison_page(page); | 
|  | 1671 | shake_page(page, 1); | 
|  | 1672 |  | 
|  | 1673 | /* | 
|  | 1674 | * Did it turn free? | 
|  | 1675 | */ | 
|  | 1676 | ret = __get_any_page(page, pfn, 0); | 
|  | 1677 | if (ret == 1 && !PageLRU(page)) { | 
|  | 1678 | /* Drop page reference which is from __get_any_page() */ | 
|  | 1679 | put_hwpoison_page(page); | 
|  | 1680 | pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", | 
|  | 1681 | pfn, page->flags, &page->flags); | 
|  | 1682 | return -EIO; | 
|  | 1683 | } | 
|  | 1684 | } | 
|  | 1685 | return ret; | 
|  | 1686 | } | 
|  | 1687 |  | 
|  | 1688 | static int soft_offline_huge_page(struct page *page, int flags) | 
|  | 1689 | { | 
|  | 1690 | int ret; | 
|  | 1691 | unsigned long pfn = page_to_pfn(page); | 
|  | 1692 | struct page *hpage = compound_head(page); | 
|  | 1693 | LIST_HEAD(pagelist); | 
|  | 1694 |  | 
|  | 1695 | /* | 
|  | 1696 | * This double-check of PageHWPoison is to avoid the race with | 
|  | 1697 | * memory_failure(). See also comment in __soft_offline_page(). | 
|  | 1698 | */ | 
|  | 1699 | lock_page(hpage); | 
|  | 1700 | if (PageHWPoison(hpage)) { | 
|  | 1701 | unlock_page(hpage); | 
|  | 1702 | put_hwpoison_page(hpage); | 
|  | 1703 | pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); | 
|  | 1704 | return -EBUSY; | 
|  | 1705 | } | 
|  | 1706 | unlock_page(hpage); | 
|  | 1707 |  | 
|  | 1708 | ret = isolate_huge_page(hpage, &pagelist); | 
|  | 1709 | /* | 
|  | 1710 | * get_any_page() and isolate_huge_page() takes a refcount each, | 
|  | 1711 | * so need to drop one here. | 
|  | 1712 | */ | 
|  | 1713 | put_hwpoison_page(hpage); | 
|  | 1714 | if (!ret) { | 
|  | 1715 | pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); | 
|  | 1716 | return -EBUSY; | 
|  | 1717 | } | 
|  | 1718 |  | 
|  | 1719 | ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, | 
|  | 1720 | MIGRATE_SYNC, MR_MEMORY_FAILURE); | 
|  | 1721 | if (ret) { | 
|  | 1722 | pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", | 
|  | 1723 | pfn, ret, page->flags, &page->flags); | 
|  | 1724 | if (!list_empty(&pagelist)) | 
|  | 1725 | putback_movable_pages(&pagelist); | 
|  | 1726 | if (ret > 0) | 
|  | 1727 | ret = -EIO; | 
|  | 1728 | } else { | 
|  | 1729 | /* | 
|  | 1730 | * We set PG_hwpoison only when the migration source hugepage | 
|  | 1731 | * was successfully dissolved, because otherwise hwpoisoned | 
|  | 1732 | * hugepage remains on free hugepage list, then userspace will | 
|  | 1733 | * find it as SIGBUS by allocation failure. That's not expected | 
|  | 1734 | * in soft-offlining. | 
|  | 1735 | */ | 
|  | 1736 | ret = dissolve_free_huge_page(page); | 
|  | 1737 | if (!ret) { | 
|  | 1738 | if (set_hwpoison_free_buddy_page(page)) | 
|  | 1739 | num_poisoned_pages_inc(); | 
|  | 1740 | else | 
|  | 1741 | ret = -EBUSY; | 
|  | 1742 | } | 
|  | 1743 | } | 
|  | 1744 | return ret; | 
|  | 1745 | } | 
|  | 1746 |  | 
|  | 1747 | static int __soft_offline_page(struct page *page, int flags) | 
|  | 1748 | { | 
|  | 1749 | int ret; | 
|  | 1750 | unsigned long pfn = page_to_pfn(page); | 
|  | 1751 |  | 
|  | 1752 | /* | 
|  | 1753 | * Check PageHWPoison again inside page lock because PageHWPoison | 
|  | 1754 | * is set by memory_failure() outside page lock. Note that | 
|  | 1755 | * memory_failure() also double-checks PageHWPoison inside page lock, | 
|  | 1756 | * so there's no race between soft_offline_page() and memory_failure(). | 
|  | 1757 | */ | 
|  | 1758 | lock_page(page); | 
|  | 1759 | wait_on_page_writeback(page); | 
|  | 1760 | if (PageHWPoison(page)) { | 
|  | 1761 | unlock_page(page); | 
|  | 1762 | put_hwpoison_page(page); | 
|  | 1763 | pr_info("soft offline: %#lx page already poisoned\n", pfn); | 
|  | 1764 | return -EBUSY; | 
|  | 1765 | } | 
|  | 1766 | /* | 
|  | 1767 | * Try to invalidate first. This should work for | 
|  | 1768 | * non dirty unmapped page cache pages. | 
|  | 1769 | */ | 
|  | 1770 | ret = invalidate_inode_page(page); | 
|  | 1771 | unlock_page(page); | 
|  | 1772 | /* | 
|  | 1773 | * RED-PEN would be better to keep it isolated here, but we | 
|  | 1774 | * would need to fix isolation locking first. | 
|  | 1775 | */ | 
|  | 1776 | if (ret == 1) { | 
|  | 1777 | put_hwpoison_page(page); | 
|  | 1778 | pr_info("soft_offline: %#lx: invalidated\n", pfn); | 
|  | 1779 | SetPageHWPoison(page); | 
|  | 1780 | num_poisoned_pages_inc(); | 
|  | 1781 | return 0; | 
|  | 1782 | } | 
|  | 1783 |  | 
|  | 1784 | /* | 
|  | 1785 | * Simple invalidation didn't work. | 
|  | 1786 | * Try to migrate to a new page instead. migrate.c | 
|  | 1787 | * handles a large number of cases for us. | 
|  | 1788 | */ | 
|  | 1789 | if (PageLRU(page)) | 
|  | 1790 | ret = isolate_lru_page(page); | 
|  | 1791 | else | 
|  | 1792 | ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); | 
|  | 1793 | /* | 
|  | 1794 | * Drop page reference which is came from get_any_page() | 
|  | 1795 | * successful isolate_lru_page() already took another one. | 
|  | 1796 | */ | 
|  | 1797 | put_hwpoison_page(page); | 
|  | 1798 | if (!ret) { | 
|  | 1799 | LIST_HEAD(pagelist); | 
|  | 1800 | /* | 
|  | 1801 | * After isolated lru page, the PageLRU will be cleared, | 
|  | 1802 | * so use !__PageMovable instead for LRU page's mapping | 
|  | 1803 | * cannot have PAGE_MAPPING_MOVABLE. | 
|  | 1804 | */ | 
|  | 1805 | if (!__PageMovable(page)) | 
|  | 1806 | inc_node_page_state(page, NR_ISOLATED_ANON + | 
|  | 1807 | page_is_file_cache(page)); | 
|  | 1808 | list_add(&page->lru, &pagelist); | 
|  | 1809 | ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, | 
|  | 1810 | MIGRATE_SYNC, MR_MEMORY_FAILURE); | 
|  | 1811 | if (ret) { | 
|  | 1812 | if (!list_empty(&pagelist)) | 
|  | 1813 | putback_movable_pages(&pagelist); | 
|  | 1814 |  | 
|  | 1815 | pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", | 
|  | 1816 | pfn, ret, page->flags, &page->flags); | 
|  | 1817 | if (ret > 0) | 
|  | 1818 | ret = -EIO; | 
|  | 1819 | } | 
|  | 1820 | } else { | 
|  | 1821 | pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", | 
|  | 1822 | pfn, ret, page_count(page), page->flags, &page->flags); | 
|  | 1823 | } | 
|  | 1824 | return ret; | 
|  | 1825 | } | 
|  | 1826 |  | 
|  | 1827 | static int soft_offline_in_use_page(struct page *page, int flags) | 
|  | 1828 | { | 
|  | 1829 | int ret; | 
|  | 1830 | int mt; | 
|  | 1831 | struct page *hpage = compound_head(page); | 
|  | 1832 |  | 
|  | 1833 | if (!PageHuge(page) && PageTransHuge(hpage)) { | 
|  | 1834 | lock_page(page); | 
|  | 1835 | if (!PageAnon(page) || unlikely(split_huge_page(page))) { | 
|  | 1836 | unlock_page(page); | 
|  | 1837 | if (!PageAnon(page)) | 
|  | 1838 | pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); | 
|  | 1839 | else | 
|  | 1840 | pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); | 
|  | 1841 | put_hwpoison_page(page); | 
|  | 1842 | return -EBUSY; | 
|  | 1843 | } | 
|  | 1844 | unlock_page(page); | 
|  | 1845 | } | 
|  | 1846 |  | 
|  | 1847 | /* | 
|  | 1848 | * Setting MIGRATE_ISOLATE here ensures that the page will be linked | 
|  | 1849 | * to free list immediately (not via pcplist) when released after | 
|  | 1850 | * successful page migration. Otherwise we can't guarantee that the | 
|  | 1851 | * page is really free after put_page() returns, so | 
|  | 1852 | * set_hwpoison_free_buddy_page() highly likely fails. | 
|  | 1853 | */ | 
|  | 1854 | mt = get_pageblock_migratetype(page); | 
|  | 1855 | set_pageblock_migratetype(page, MIGRATE_ISOLATE); | 
|  | 1856 | if (PageHuge(page)) | 
|  | 1857 | ret = soft_offline_huge_page(page, flags); | 
|  | 1858 | else | 
|  | 1859 | ret = __soft_offline_page(page, flags); | 
|  | 1860 | set_pageblock_migratetype(page, mt); | 
|  | 1861 | return ret; | 
|  | 1862 | } | 
|  | 1863 |  | 
|  | 1864 | static int soft_offline_free_page(struct page *page) | 
|  | 1865 | { | 
|  | 1866 | int rc = dissolve_free_huge_page(page); | 
|  | 1867 |  | 
|  | 1868 | if (!rc) { | 
|  | 1869 | if (set_hwpoison_free_buddy_page(page)) | 
|  | 1870 | num_poisoned_pages_inc(); | 
|  | 1871 | else | 
|  | 1872 | rc = -EBUSY; | 
|  | 1873 | } | 
|  | 1874 | return rc; | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | /** | 
|  | 1878 | * soft_offline_page - Soft offline a page. | 
|  | 1879 | * @page: page to offline | 
|  | 1880 | * @flags: flags. Same as memory_failure(). | 
|  | 1881 | * | 
|  | 1882 | * Returns 0 on success, otherwise negated errno. | 
|  | 1883 | * | 
|  | 1884 | * Soft offline a page, by migration or invalidation, | 
|  | 1885 | * without killing anything. This is for the case when | 
|  | 1886 | * a page is not corrupted yet (so it's still valid to access), | 
|  | 1887 | * but has had a number of corrected errors and is better taken | 
|  | 1888 | * out. | 
|  | 1889 | * | 
|  | 1890 | * The actual policy on when to do that is maintained by | 
|  | 1891 | * user space. | 
|  | 1892 | * | 
|  | 1893 | * This should never impact any application or cause data loss, | 
|  | 1894 | * however it might take some time. | 
|  | 1895 | * | 
|  | 1896 | * This is not a 100% solution for all memory, but tries to be | 
|  | 1897 | * ``good enough'' for the majority of memory. | 
|  | 1898 | */ | 
|  | 1899 | int soft_offline_page(struct page *page, int flags) | 
|  | 1900 | { | 
|  | 1901 | int ret; | 
|  | 1902 | unsigned long pfn = page_to_pfn(page); | 
|  | 1903 |  | 
|  | 1904 | if (is_zone_device_page(page)) { | 
|  | 1905 | pr_debug_ratelimited("soft_offline: %#lx page is device page\n", | 
|  | 1906 | pfn); | 
|  | 1907 | if (flags & MF_COUNT_INCREASED) | 
|  | 1908 | put_page(page); | 
|  | 1909 | return -EIO; | 
|  | 1910 | } | 
|  | 1911 |  | 
|  | 1912 | if (PageHWPoison(page)) { | 
|  | 1913 | pr_info("soft offline: %#lx page already poisoned\n", pfn); | 
|  | 1914 | if (flags & MF_COUNT_INCREASED) | 
|  | 1915 | put_hwpoison_page(page); | 
|  | 1916 | return -EBUSY; | 
|  | 1917 | } | 
|  | 1918 |  | 
|  | 1919 | get_online_mems(); | 
|  | 1920 | ret = get_any_page(page, pfn, flags); | 
|  | 1921 | put_online_mems(); | 
|  | 1922 |  | 
|  | 1923 | if (ret > 0) | 
|  | 1924 | ret = soft_offline_in_use_page(page, flags); | 
|  | 1925 | else if (ret == 0) | 
|  | 1926 | ret = soft_offline_free_page(page); | 
|  | 1927 |  | 
|  | 1928 | return ret; | 
|  | 1929 | } |