blob: ba7e976bf6dc9c9b64edffd51af322f26ce91dab [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8#include <linux/errno.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/kmod.h>
13#include <linux/ktime.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/string.h>
17#include <linux/types.h>
18
19#include <drm/drm_edid.h>
20
21#include "cec-priv.h"
22
23static void cec_fill_msg_report_features(struct cec_adapter *adap,
24 struct cec_msg *msg,
25 unsigned int la_idx);
26
27/*
28 * 400 ms is the time it takes for one 16 byte message to be
29 * transferred and 5 is the maximum number of retries. Add
30 * another 100 ms as a margin. So if the transmit doesn't
31 * finish before that time something is really wrong and we
32 * have to time out.
33 *
34 * This is a sign that something it really wrong and a warning
35 * will be issued.
36 */
37#define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
38
39#define call_op(adap, op, arg...) \
40 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
41
42#define call_void_op(adap, op, arg...) \
43 do { \
44 if (adap->ops->op) \
45 adap->ops->op(adap, ## arg); \
46 } while (0)
47
48static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
49{
50 int i;
51
52 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
53 if (adap->log_addrs.log_addr[i] == log_addr)
54 return i;
55 return -1;
56}
57
58static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
59{
60 int i = cec_log_addr2idx(adap, log_addr);
61
62 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
63}
64
65u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
66 unsigned int *offset)
67{
68 unsigned int loc = cec_get_edid_spa_location(edid, size);
69
70 if (offset)
71 *offset = loc;
72 if (loc == 0)
73 return CEC_PHYS_ADDR_INVALID;
74 return (edid[loc] << 8) | edid[loc + 1];
75}
76EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
77
78/*
79 * Queue a new event for this filehandle. If ts == 0, then set it
80 * to the current time.
81 *
82 * We keep a queue of at most max_event events where max_event differs
83 * per event. If the queue becomes full, then drop the oldest event and
84 * keep track of how many events we've dropped.
85 */
86void cec_queue_event_fh(struct cec_fh *fh,
87 const struct cec_event *new_ev, u64 ts)
88{
89 static const u16 max_events[CEC_NUM_EVENTS] = {
90 1, 1, 800, 800, 8, 8, 8, 8
91 };
92 struct cec_event_entry *entry;
93 unsigned int ev_idx = new_ev->event - 1;
94
95 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
96 return;
97
98 if (ts == 0)
99 ts = ktime_get_ns();
100
101 mutex_lock(&fh->lock);
102 if (ev_idx < CEC_NUM_CORE_EVENTS)
103 entry = &fh->core_events[ev_idx];
104 else
105 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
106 if (entry) {
107 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
108 fh->queued_events[ev_idx]) {
109 entry->ev.lost_msgs.lost_msgs +=
110 new_ev->lost_msgs.lost_msgs;
111 goto unlock;
112 }
113 entry->ev = *new_ev;
114 entry->ev.ts = ts;
115
116 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
117 /* Add new msg at the end of the queue */
118 list_add_tail(&entry->list, &fh->events[ev_idx]);
119 fh->queued_events[ev_idx]++;
120 fh->total_queued_events++;
121 goto unlock;
122 }
123
124 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
125 list_add_tail(&entry->list, &fh->events[ev_idx]);
126 /* drop the oldest event */
127 entry = list_first_entry(&fh->events[ev_idx],
128 struct cec_event_entry, list);
129 list_del(&entry->list);
130 kfree(entry);
131 }
132 }
133 /* Mark that events were lost */
134 entry = list_first_entry_or_null(&fh->events[ev_idx],
135 struct cec_event_entry, list);
136 if (entry)
137 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
138
139unlock:
140 mutex_unlock(&fh->lock);
141 wake_up_interruptible(&fh->wait);
142}
143
144/* Queue a new event for all open filehandles. */
145static void cec_queue_event(struct cec_adapter *adap,
146 const struct cec_event *ev)
147{
148 u64 ts = ktime_get_ns();
149 struct cec_fh *fh;
150
151 mutex_lock(&adap->devnode.lock);
152 list_for_each_entry(fh, &adap->devnode.fhs, list)
153 cec_queue_event_fh(fh, ev, ts);
154 mutex_unlock(&adap->devnode.lock);
155}
156
157/* Notify userspace that the CEC pin changed state at the given time. */
158void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
159 bool dropped_events, ktime_t ts)
160{
161 struct cec_event ev = {
162 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
163 CEC_EVENT_PIN_CEC_LOW,
164 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
165 };
166 struct cec_fh *fh;
167
168 mutex_lock(&adap->devnode.lock);
169 list_for_each_entry(fh, &adap->devnode.fhs, list)
170 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
171 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
172 mutex_unlock(&adap->devnode.lock);
173}
174EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
175
176/* Notify userspace that the HPD pin changed state at the given time. */
177void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
178{
179 struct cec_event ev = {
180 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
181 CEC_EVENT_PIN_HPD_LOW,
182 };
183 struct cec_fh *fh;
184
185 mutex_lock(&adap->devnode.lock);
186 list_for_each_entry(fh, &adap->devnode.fhs, list)
187 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
188 mutex_unlock(&adap->devnode.lock);
189}
190EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
191
192/* Notify userspace that the 5V pin changed state at the given time. */
193void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
194{
195 struct cec_event ev = {
196 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
197 CEC_EVENT_PIN_5V_LOW,
198 };
199 struct cec_fh *fh;
200
201 mutex_lock(&adap->devnode.lock);
202 list_for_each_entry(fh, &adap->devnode.fhs, list)
203 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
204 mutex_unlock(&adap->devnode.lock);
205}
206EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
207
208/*
209 * Queue a new message for this filehandle.
210 *
211 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
212 * queue becomes full, then drop the oldest message and keep track
213 * of how many messages we've dropped.
214 */
215static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
216{
217 static const struct cec_event ev_lost_msgs = {
218 .event = CEC_EVENT_LOST_MSGS,
219 .flags = 0,
220 {
221 .lost_msgs = { 1 },
222 },
223 };
224 struct cec_msg_entry *entry;
225
226 mutex_lock(&fh->lock);
227 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
228 if (entry) {
229 entry->msg = *msg;
230 /* Add new msg at the end of the queue */
231 list_add_tail(&entry->list, &fh->msgs);
232
233 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
234 /* All is fine if there is enough room */
235 fh->queued_msgs++;
236 mutex_unlock(&fh->lock);
237 wake_up_interruptible(&fh->wait);
238 return;
239 }
240
241 /*
242 * if the message queue is full, then drop the oldest one and
243 * send a lost message event.
244 */
245 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
246 list_del(&entry->list);
247 kfree(entry);
248 }
249 mutex_unlock(&fh->lock);
250
251 /*
252 * We lost a message, either because kmalloc failed or the queue
253 * was full.
254 */
255 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
256}
257
258/*
259 * Queue the message for those filehandles that are in monitor mode.
260 * If valid_la is true (this message is for us or was sent by us),
261 * then pass it on to any monitoring filehandle. If this message
262 * isn't for us or from us, then only give it to filehandles that
263 * are in MONITOR_ALL mode.
264 *
265 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
266 * set and the CEC adapter was placed in 'monitor all' mode.
267 */
268static void cec_queue_msg_monitor(struct cec_adapter *adap,
269 const struct cec_msg *msg,
270 bool valid_la)
271{
272 struct cec_fh *fh;
273 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
274 CEC_MODE_MONITOR_ALL;
275
276 mutex_lock(&adap->devnode.lock);
277 list_for_each_entry(fh, &adap->devnode.fhs, list) {
278 if (fh->mode_follower >= monitor_mode)
279 cec_queue_msg_fh(fh, msg);
280 }
281 mutex_unlock(&adap->devnode.lock);
282}
283
284/*
285 * Queue the message for follower filehandles.
286 */
287static void cec_queue_msg_followers(struct cec_adapter *adap,
288 const struct cec_msg *msg)
289{
290 struct cec_fh *fh;
291
292 mutex_lock(&adap->devnode.lock);
293 list_for_each_entry(fh, &adap->devnode.fhs, list) {
294 if (fh->mode_follower == CEC_MODE_FOLLOWER)
295 cec_queue_msg_fh(fh, msg);
296 }
297 mutex_unlock(&adap->devnode.lock);
298}
299
300/* Notify userspace of an adapter state change. */
301static void cec_post_state_event(struct cec_adapter *adap)
302{
303 struct cec_event ev = {
304 .event = CEC_EVENT_STATE_CHANGE,
305 };
306
307 ev.state_change.phys_addr = adap->phys_addr;
308 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
309 cec_queue_event(adap, &ev);
310}
311
312/*
313 * A CEC transmit (and a possible wait for reply) completed.
314 * If this was in blocking mode, then complete it, otherwise
315 * queue the message for userspace to dequeue later.
316 *
317 * This function is called with adap->lock held.
318 */
319static void cec_data_completed(struct cec_data *data)
320{
321 /*
322 * Delete this transmit from the filehandle's xfer_list since
323 * we're done with it.
324 *
325 * Note that if the filehandle is closed before this transmit
326 * finished, then the release() function will set data->fh to NULL.
327 * Without that we would be referring to a closed filehandle.
328 */
329 if (data->fh)
330 list_del(&data->xfer_list);
331
332 if (data->blocking) {
333 /*
334 * Someone is blocking so mark the message as completed
335 * and call complete.
336 */
337 data->completed = true;
338 complete(&data->c);
339 } else {
340 /*
341 * No blocking, so just queue the message if needed and
342 * free the memory.
343 */
344 if (data->fh)
345 cec_queue_msg_fh(data->fh, &data->msg);
346 kfree(data);
347 }
348}
349
350/*
351 * A pending CEC transmit needs to be cancelled, either because the CEC
352 * adapter is disabled or the transmit takes an impossibly long time to
353 * finish.
354 *
355 * This function is called with adap->lock held.
356 */
357static void cec_data_cancel(struct cec_data *data, u8 tx_status)
358{
359 /*
360 * It's either the current transmit, or it is a pending
361 * transmit. Take the appropriate action to clear it.
362 */
363 if (data->adap->transmitting == data) {
364 data->adap->transmitting = NULL;
365 } else {
366 list_del_init(&data->list);
367 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
368 if (!WARN_ON(!data->adap->transmit_queue_sz))
369 data->adap->transmit_queue_sz--;
370 }
371
372 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
373 data->msg.rx_ts = ktime_get_ns();
374 data->msg.rx_status = CEC_RX_STATUS_ABORTED;
375 } else {
376 data->msg.tx_ts = ktime_get_ns();
377 data->msg.tx_status |= tx_status |
378 CEC_TX_STATUS_MAX_RETRIES;
379 data->msg.tx_error_cnt++;
380 data->attempts = 0;
381 }
382
383 /* Queue transmitted message for monitoring purposes */
384 cec_queue_msg_monitor(data->adap, &data->msg, 1);
385
386 cec_data_completed(data);
387}
388
389/*
390 * Flush all pending transmits and cancel any pending timeout work.
391 *
392 * This function is called with adap->lock held.
393 */
394static void cec_flush(struct cec_adapter *adap)
395{
396 struct cec_data *data, *n;
397
398 /*
399 * If the adapter is disabled, or we're asked to stop,
400 * then cancel any pending transmits.
401 */
402 while (!list_empty(&adap->transmit_queue)) {
403 data = list_first_entry(&adap->transmit_queue,
404 struct cec_data, list);
405 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
406 }
407 if (adap->transmitting)
408 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
409
410 /* Cancel the pending timeout work. */
411 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
412 if (cancel_delayed_work(&data->work))
413 cec_data_cancel(data, CEC_TX_STATUS_OK);
414 /*
415 * If cancel_delayed_work returned false, then
416 * the cec_wait_timeout function is running,
417 * which will call cec_data_completed. So no
418 * need to do anything special in that case.
419 */
420 }
421 /*
422 * If something went wrong and this counter isn't what it should
423 * be, then this will reset it back to 0. Warn if it is not 0,
424 * since it indicates a bug, either in this framework or in a
425 * CEC driver.
426 */
427 if (WARN_ON(adap->transmit_queue_sz))
428 adap->transmit_queue_sz = 0;
429}
430
431/*
432 * Main CEC state machine
433 *
434 * Wait until the thread should be stopped, or we are not transmitting and
435 * a new transmit message is queued up, in which case we start transmitting
436 * that message. When the adapter finished transmitting the message it will
437 * call cec_transmit_done().
438 *
439 * If the adapter is disabled, then remove all queued messages instead.
440 *
441 * If the current transmit times out, then cancel that transmit.
442 */
443int cec_thread_func(void *_adap)
444{
445 struct cec_adapter *adap = _adap;
446
447 for (;;) {
448 unsigned int signal_free_time;
449 struct cec_data *data;
450 bool timeout = false;
451 u8 attempts;
452
453 if (adap->transmit_in_progress) {
454 int err;
455
456 /*
457 * We are transmitting a message, so add a timeout
458 * to prevent the state machine to get stuck waiting
459 * for this message to finalize and add a check to
460 * see if the adapter is disabled in which case the
461 * transmit should be canceled.
462 */
463 err = wait_event_interruptible_timeout(adap->kthread_waitq,
464 (adap->needs_hpd &&
465 (!adap->is_configured && !adap->is_configuring)) ||
466 kthread_should_stop() ||
467 (!adap->transmit_in_progress &&
468 !list_empty(&adap->transmit_queue)),
469 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
470 timeout = err == 0;
471 } else {
472 /* Otherwise we just wait for something to happen. */
473 wait_event_interruptible(adap->kthread_waitq,
474 kthread_should_stop() ||
475 (!adap->transmit_in_progress &&
476 !list_empty(&adap->transmit_queue)));
477 }
478
479 mutex_lock(&adap->lock);
480
481 if ((adap->needs_hpd &&
482 (!adap->is_configured && !adap->is_configuring)) ||
483 kthread_should_stop()) {
484 cec_flush(adap);
485 goto unlock;
486 }
487
488 if (adap->transmit_in_progress && timeout) {
489 /*
490 * If we timeout, then log that. Normally this does
491 * not happen and it is an indication of a faulty CEC
492 * adapter driver, or the CEC bus is in some weird
493 * state. On rare occasions it can happen if there is
494 * so much traffic on the bus that the adapter was
495 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
496 */
497 if (adap->transmitting) {
498 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
499 adap->transmitting->msg.len,
500 adap->transmitting->msg.msg);
501 /* Just give up on this. */
502 cec_data_cancel(adap->transmitting,
503 CEC_TX_STATUS_TIMEOUT);
504 } else {
505 pr_warn("cec-%s: transmit timed out\n", adap->name);
506 }
507 adap->transmit_in_progress = false;
508 adap->tx_timeouts++;
509 goto unlock;
510 }
511
512 /*
513 * If we are still transmitting, or there is nothing new to
514 * transmit, then just continue waiting.
515 */
516 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
517 goto unlock;
518
519 /* Get a new message to transmit */
520 data = list_first_entry(&adap->transmit_queue,
521 struct cec_data, list);
522 list_del_init(&data->list);
523 if (!WARN_ON(!data->adap->transmit_queue_sz))
524 adap->transmit_queue_sz--;
525
526 /* Make this the current transmitting message */
527 adap->transmitting = data;
528
529 /*
530 * Suggested number of attempts as per the CEC 2.0 spec:
531 * 4 attempts is the default, except for 'secondary poll
532 * messages', i.e. poll messages not sent during the adapter
533 * configuration phase when it allocates logical addresses.
534 */
535 if (data->msg.len == 1 && adap->is_configured)
536 attempts = 2;
537 else
538 attempts = 4;
539
540 /* Set the suggested signal free time */
541 if (data->attempts) {
542 /* should be >= 3 data bit periods for a retry */
543 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
544 } else if (adap->last_initiator !=
545 cec_msg_initiator(&data->msg)) {
546 /* should be >= 5 data bit periods for new initiator */
547 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
548 adap->last_initiator = cec_msg_initiator(&data->msg);
549 } else {
550 /*
551 * should be >= 7 data bit periods for sending another
552 * frame immediately after another.
553 */
554 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
555 }
556 if (data->attempts == 0)
557 data->attempts = attempts;
558
559 /* Tell the adapter to transmit, cancel on error */
560 if (adap->ops->adap_transmit(adap, data->attempts,
561 signal_free_time, &data->msg))
562 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
563 else
564 adap->transmit_in_progress = true;
565
566unlock:
567 mutex_unlock(&adap->lock);
568
569 if (kthread_should_stop())
570 break;
571 }
572 return 0;
573}
574
575/*
576 * Called by the CEC adapter if a transmit finished.
577 */
578void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
579 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
580 u8 error_cnt, ktime_t ts)
581{
582 struct cec_data *data;
583 struct cec_msg *msg;
584 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
585 low_drive_cnt + error_cnt;
586
587 dprintk(2, "%s: status 0x%02x\n", __func__, status);
588 if (attempts_made < 1)
589 attempts_made = 1;
590
591 mutex_lock(&adap->lock);
592 data = adap->transmitting;
593 if (!data) {
594 /*
595 * This might happen if a transmit was issued and the cable is
596 * unplugged while the transmit is ongoing. Ignore this
597 * transmit in that case.
598 */
599 if (!adap->transmit_in_progress)
600 dprintk(1, "%s was called without an ongoing transmit!\n",
601 __func__);
602 adap->transmit_in_progress = false;
603 goto wake_thread;
604 }
605 adap->transmit_in_progress = false;
606
607 msg = &data->msg;
608
609 /* Drivers must fill in the status! */
610 WARN_ON(status == 0);
611 msg->tx_ts = ktime_to_ns(ts);
612 msg->tx_status |= status;
613 msg->tx_arb_lost_cnt += arb_lost_cnt;
614 msg->tx_nack_cnt += nack_cnt;
615 msg->tx_low_drive_cnt += low_drive_cnt;
616 msg->tx_error_cnt += error_cnt;
617
618 /* Mark that we're done with this transmit */
619 adap->transmitting = NULL;
620
621 /*
622 * If there are still retry attempts left and there was an error and
623 * the hardware didn't signal that it retried itself (by setting
624 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
625 */
626 if (data->attempts > attempts_made &&
627 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
628 /* Retry this message */
629 data->attempts -= attempts_made;
630 if (msg->timeout)
631 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
632 msg->len, msg->msg, data->attempts, msg->reply);
633 else
634 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
635 msg->len, msg->msg, data->attempts);
636 /* Add the message in front of the transmit queue */
637 list_add(&data->list, &adap->transmit_queue);
638 adap->transmit_queue_sz++;
639 goto wake_thread;
640 }
641
642 data->attempts = 0;
643
644 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
645 if (!(status & CEC_TX_STATUS_OK))
646 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
647
648 /* Queue transmitted message for monitoring purposes */
649 cec_queue_msg_monitor(adap, msg, 1);
650
651 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
652 msg->timeout) {
653 /*
654 * Queue the message into the wait queue if we want to wait
655 * for a reply.
656 */
657 list_add_tail(&data->list, &adap->wait_queue);
658 schedule_delayed_work(&data->work,
659 msecs_to_jiffies(msg->timeout));
660 } else {
661 /* Otherwise we're done */
662 cec_data_completed(data);
663 }
664
665wake_thread:
666 /*
667 * Wake up the main thread to see if another message is ready
668 * for transmitting or to retry the current message.
669 */
670 wake_up_interruptible(&adap->kthread_waitq);
671 mutex_unlock(&adap->lock);
672}
673EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
674
675void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
676 u8 status, ktime_t ts)
677{
678 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
679 case CEC_TX_STATUS_OK:
680 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
681 return;
682 case CEC_TX_STATUS_ARB_LOST:
683 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
684 return;
685 case CEC_TX_STATUS_NACK:
686 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
687 return;
688 case CEC_TX_STATUS_LOW_DRIVE:
689 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
690 return;
691 case CEC_TX_STATUS_ERROR:
692 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
693 return;
694 default:
695 /* Should never happen */
696 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
697 return;
698 }
699}
700EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
701
702/*
703 * Called when waiting for a reply times out.
704 */
705static void cec_wait_timeout(struct work_struct *work)
706{
707 struct cec_data *data = container_of(work, struct cec_data, work.work);
708 struct cec_adapter *adap = data->adap;
709
710 mutex_lock(&adap->lock);
711 /*
712 * Sanity check in case the timeout and the arrival of the message
713 * happened at the same time.
714 */
715 if (list_empty(&data->list))
716 goto unlock;
717
718 /* Mark the message as timed out */
719 list_del_init(&data->list);
720 data->msg.rx_ts = ktime_get_ns();
721 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
722 cec_data_completed(data);
723unlock:
724 mutex_unlock(&adap->lock);
725}
726
727/*
728 * Transmit a message. The fh argument may be NULL if the transmit is not
729 * associated with a specific filehandle.
730 *
731 * This function is called with adap->lock held.
732 */
733int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
734 struct cec_fh *fh, bool block)
735{
736 struct cec_data *data;
737
738 msg->rx_ts = 0;
739 msg->tx_ts = 0;
740 msg->rx_status = 0;
741 msg->tx_status = 0;
742 msg->tx_arb_lost_cnt = 0;
743 msg->tx_nack_cnt = 0;
744 msg->tx_low_drive_cnt = 0;
745 msg->tx_error_cnt = 0;
746 msg->sequence = 0;
747
748 if (msg->reply && msg->timeout == 0) {
749 /* Make sure the timeout isn't 0. */
750 msg->timeout = 1000;
751 }
752 if (msg->timeout)
753 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
754 else
755 msg->flags = 0;
756
757 if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
758 msg->msg[2] = adap->phys_addr >> 8;
759 msg->msg[3] = adap->phys_addr & 0xff;
760 }
761
762 /* Sanity checks */
763 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
764 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
765 return -EINVAL;
766 }
767
768 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
769
770 if (msg->timeout)
771 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
772 __func__, msg->len, msg->msg, msg->reply,
773 !block ? ", nb" : "");
774 else
775 dprintk(2, "%s: %*ph%s\n",
776 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
777
778 if (msg->timeout && msg->len == 1) {
779 dprintk(1, "%s: can't reply to poll msg\n", __func__);
780 return -EINVAL;
781 }
782 if (msg->len == 1) {
783 if (cec_msg_destination(msg) == 0xf) {
784 dprintk(1, "%s: invalid poll message\n", __func__);
785 return -EINVAL;
786 }
787 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
788 /*
789 * If the destination is a logical address our adapter
790 * has already claimed, then just NACK this.
791 * It depends on the hardware what it will do with a
792 * POLL to itself (some OK this), so it is just as
793 * easy to handle it here so the behavior will be
794 * consistent.
795 */
796 msg->tx_ts = ktime_get_ns();
797 msg->tx_status = CEC_TX_STATUS_NACK |
798 CEC_TX_STATUS_MAX_RETRIES;
799 msg->tx_nack_cnt = 1;
800 msg->sequence = ++adap->sequence;
801 if (!msg->sequence)
802 msg->sequence = ++adap->sequence;
803 return 0;
804 }
805 }
806 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
807 cec_has_log_addr(adap, cec_msg_destination(msg))) {
808 dprintk(1, "%s: destination is the adapter itself\n", __func__);
809 return -EINVAL;
810 }
811 if (msg->len > 1 && adap->is_configured &&
812 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
813 dprintk(1, "%s: initiator has unknown logical address %d\n",
814 __func__, cec_msg_initiator(msg));
815 return -EINVAL;
816 }
817 if (!adap->is_configured && !adap->is_configuring) {
818 if (adap->needs_hpd || msg->msg[0] != 0xf0) {
819 dprintk(1, "%s: adapter is unconfigured\n", __func__);
820 return -ENONET;
821 }
822 if (msg->reply) {
823 dprintk(1, "%s: invalid msg->reply\n", __func__);
824 return -EINVAL;
825 }
826 }
827
828 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
829 dprintk(1, "%s: transmit queue full\n", __func__);
830 return -EBUSY;
831 }
832
833 data = kzalloc(sizeof(*data), GFP_KERNEL);
834 if (!data)
835 return -ENOMEM;
836
837 msg->sequence = ++adap->sequence;
838 if (!msg->sequence)
839 msg->sequence = ++adap->sequence;
840
841 data->msg = *msg;
842 data->fh = fh;
843 data->adap = adap;
844 data->blocking = block;
845
846 init_completion(&data->c);
847 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
848
849 if (fh)
850 list_add_tail(&data->xfer_list, &fh->xfer_list);
851
852 list_add_tail(&data->list, &adap->transmit_queue);
853 adap->transmit_queue_sz++;
854 if (!adap->transmitting)
855 wake_up_interruptible(&adap->kthread_waitq);
856
857 /* All done if we don't need to block waiting for completion */
858 if (!block)
859 return 0;
860
861 /*
862 * Release the lock and wait, retake the lock afterwards.
863 */
864 mutex_unlock(&adap->lock);
865 wait_for_completion_killable(&data->c);
866 if (!data->completed)
867 cancel_delayed_work_sync(&data->work);
868 mutex_lock(&adap->lock);
869
870 /* Cancel the transmit if it was interrupted */
871 if (!data->completed)
872 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
873
874 /* The transmit completed (possibly with an error) */
875 *msg = data->msg;
876 kfree(data);
877 return 0;
878}
879
880/* Helper function to be used by drivers and this framework. */
881int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
882 bool block)
883{
884 int ret;
885
886 mutex_lock(&adap->lock);
887 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
888 mutex_unlock(&adap->lock);
889 return ret;
890}
891EXPORT_SYMBOL_GPL(cec_transmit_msg);
892
893/*
894 * I don't like forward references but without this the low-level
895 * cec_received_msg() function would come after a bunch of high-level
896 * CEC protocol handling functions. That was very confusing.
897 */
898static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
899 bool is_reply);
900
901#define DIRECTED 0x80
902#define BCAST1_4 0x40
903#define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
904#define BCAST (BCAST1_4 | BCAST2_0)
905#define BOTH (BCAST | DIRECTED)
906
907/*
908 * Specify minimum length and whether the message is directed, broadcast
909 * or both. Messages that do not match the criteria are ignored as per
910 * the CEC specification.
911 */
912static const u8 cec_msg_size[256] = {
913 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
914 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
915 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
916 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
917 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
918 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
919 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
920 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
921 [CEC_MSG_STANDBY] = 2 | BOTH,
922 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
923 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
924 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
925 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
926 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
927 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
928 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
929 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
930 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
931 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
932 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
933 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
934 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
935 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
936 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
937 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
938 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
939 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
940 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
941 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
942 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
943 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
944 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
945 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
946 [CEC_MSG_PLAY] = 3 | DIRECTED,
947 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
948 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
949 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
950 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
951 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
952 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
953 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
954 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
955 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
956 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
957 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
958 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
959 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
960 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
961 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
962 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
963 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
964 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
965 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
966 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
967 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
968 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
969 [CEC_MSG_ABORT] = 2 | DIRECTED,
970 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
971 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
972 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
973 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
974 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
975 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
976 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
977 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
978 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
979 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
980 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
981 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
982 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
983 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
984 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
985 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
986 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
987 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
988};
989
990/* Called by the CEC adapter if a message is received */
991void cec_received_msg_ts(struct cec_adapter *adap,
992 struct cec_msg *msg, ktime_t ts)
993{
994 struct cec_data *data;
995 u8 msg_init = cec_msg_initiator(msg);
996 u8 msg_dest = cec_msg_destination(msg);
997 u8 cmd = msg->msg[1];
998 bool is_reply = false;
999 bool valid_la = true;
1000 u8 min_len = 0;
1001
1002 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1003 return;
1004
1005 /*
1006 * Some CEC adapters will receive the messages that they transmitted.
1007 * This test filters out those messages by checking if we are the
1008 * initiator, and just returning in that case.
1009 *
1010 * Note that this won't work if this is an Unregistered device.
1011 *
1012 * It is bad practice if the hardware receives the message that it
1013 * transmitted and luckily most CEC adapters behave correctly in this
1014 * respect.
1015 */
1016 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1017 cec_has_log_addr(adap, msg_init))
1018 return;
1019
1020 msg->rx_ts = ktime_to_ns(ts);
1021 msg->rx_status = CEC_RX_STATUS_OK;
1022 msg->sequence = msg->reply = msg->timeout = 0;
1023 msg->tx_status = 0;
1024 msg->tx_ts = 0;
1025 msg->tx_arb_lost_cnt = 0;
1026 msg->tx_nack_cnt = 0;
1027 msg->tx_low_drive_cnt = 0;
1028 msg->tx_error_cnt = 0;
1029 msg->flags = 0;
1030 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1031
1032 mutex_lock(&adap->lock);
1033 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1034
1035 adap->last_initiator = 0xff;
1036
1037 /* Check if this message was for us (directed or broadcast). */
1038 if (!cec_msg_is_broadcast(msg))
1039 valid_la = cec_has_log_addr(adap, msg_dest);
1040
1041 /*
1042 * Check if the length is not too short or if the message is a
1043 * broadcast message where a directed message was expected or
1044 * vice versa. If so, then the message has to be ignored (according
1045 * to section CEC 7.3 and CEC 12.2).
1046 */
1047 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1048 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1049
1050 min_len = cec_msg_size[cmd] & 0x1f;
1051 if (msg->len < min_len)
1052 valid_la = false;
1053 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1054 valid_la = false;
1055 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1056 valid_la = false;
1057 else if (cec_msg_is_broadcast(msg) &&
1058 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1059 !(dir_fl & BCAST1_4))
1060 valid_la = false;
1061 }
1062 if (valid_la && min_len) {
1063 /* These messages have special length requirements */
1064 switch (cmd) {
1065 case CEC_MSG_TIMER_STATUS:
1066 if (msg->msg[2] & 0x10) {
1067 switch (msg->msg[2] & 0xf) {
1068 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1069 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1070 if (msg->len < 5)
1071 valid_la = false;
1072 break;
1073 }
1074 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1075 if (msg->len < 5)
1076 valid_la = false;
1077 }
1078 break;
1079 case CEC_MSG_RECORD_ON:
1080 switch (msg->msg[2]) {
1081 case CEC_OP_RECORD_SRC_OWN:
1082 break;
1083 case CEC_OP_RECORD_SRC_DIGITAL:
1084 if (msg->len < 10)
1085 valid_la = false;
1086 break;
1087 case CEC_OP_RECORD_SRC_ANALOG:
1088 if (msg->len < 7)
1089 valid_la = false;
1090 break;
1091 case CEC_OP_RECORD_SRC_EXT_PLUG:
1092 if (msg->len < 4)
1093 valid_la = false;
1094 break;
1095 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1096 if (msg->len < 5)
1097 valid_la = false;
1098 break;
1099 }
1100 break;
1101 }
1102 }
1103
1104 /* It's a valid message and not a poll or CDC message */
1105 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1106 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1107
1108 /* The aborted command is in msg[2] */
1109 if (abort)
1110 cmd = msg->msg[2];
1111
1112 /*
1113 * Walk over all transmitted messages that are waiting for a
1114 * reply.
1115 */
1116 list_for_each_entry(data, &adap->wait_queue, list) {
1117 struct cec_msg *dst = &data->msg;
1118
1119 /*
1120 * The *only* CEC message that has two possible replies
1121 * is CEC_MSG_INITIATE_ARC.
1122 * In this case allow either of the two replies.
1123 */
1124 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1125 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1126 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1127 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1128 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1129 dst->reply = cmd;
1130
1131 /* Does the command match? */
1132 if ((abort && cmd != dst->msg[1]) ||
1133 (!abort && cmd != dst->reply))
1134 continue;
1135
1136 /* Does the addressing match? */
1137 if (msg_init != cec_msg_destination(dst) &&
1138 !cec_msg_is_broadcast(dst))
1139 continue;
1140
1141 /* We got a reply */
1142 memcpy(dst->msg, msg->msg, msg->len);
1143 dst->len = msg->len;
1144 dst->rx_ts = msg->rx_ts;
1145 dst->rx_status = msg->rx_status;
1146 if (abort)
1147 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1148 msg->flags = dst->flags;
1149 /* Remove it from the wait_queue */
1150 list_del_init(&data->list);
1151
1152 /* Cancel the pending timeout work */
1153 if (!cancel_delayed_work(&data->work)) {
1154 mutex_unlock(&adap->lock);
1155 flush_scheduled_work();
1156 mutex_lock(&adap->lock);
1157 }
1158 /*
1159 * Mark this as a reply, provided someone is still
1160 * waiting for the answer.
1161 */
1162 if (data->fh)
1163 is_reply = true;
1164 cec_data_completed(data);
1165 break;
1166 }
1167 }
1168 mutex_unlock(&adap->lock);
1169
1170 /* Pass the message on to any monitoring filehandles */
1171 cec_queue_msg_monitor(adap, msg, valid_la);
1172
1173 /* We're done if it is not for us or a poll message */
1174 if (!valid_la || msg->len <= 1)
1175 return;
1176
1177 if (adap->log_addrs.log_addr_mask == 0)
1178 return;
1179
1180 /*
1181 * Process the message on the protocol level. If is_reply is true,
1182 * then cec_receive_notify() won't pass on the reply to the listener(s)
1183 * since that was already done by cec_data_completed() above.
1184 */
1185 cec_receive_notify(adap, msg, is_reply);
1186}
1187EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1188
1189/* Logical Address Handling */
1190
1191/*
1192 * Attempt to claim a specific logical address.
1193 *
1194 * This function is called with adap->lock held.
1195 */
1196static int cec_config_log_addr(struct cec_adapter *adap,
1197 unsigned int idx,
1198 unsigned int log_addr)
1199{
1200 struct cec_log_addrs *las = &adap->log_addrs;
1201 struct cec_msg msg = { };
1202 const unsigned int max_retries = 2;
1203 unsigned int i;
1204 int err;
1205
1206 if (cec_has_log_addr(adap, log_addr))
1207 return 0;
1208
1209 /* Send poll message */
1210 msg.len = 1;
1211 msg.msg[0] = (log_addr << 4) | log_addr;
1212
1213 for (i = 0; i < max_retries; i++) {
1214 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1215
1216 /*
1217 * While trying to poll the physical address was reset
1218 * and the adapter was unconfigured, so bail out.
1219 */
1220 if (!adap->is_configuring)
1221 return -EINTR;
1222
1223 if (err)
1224 return err;
1225
1226 /*
1227 * The message was aborted due to a disconnect or
1228 * unconfigure, just bail out.
1229 */
1230 if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1231 return -EINTR;
1232 if (msg.tx_status & CEC_TX_STATUS_OK)
1233 return 0;
1234 if (msg.tx_status & CEC_TX_STATUS_NACK)
1235 break;
1236 /*
1237 * Retry up to max_retries times if the message was neither
1238 * OKed or NACKed. This can happen due to e.g. a Lost
1239 * Arbitration condition.
1240 */
1241 }
1242
1243 /*
1244 * If we are unable to get an OK or a NACK after max_retries attempts
1245 * (and note that each attempt already consists of four polls), then
1246 * then we assume that something is really weird and that it is not a
1247 * good idea to try and claim this logical address.
1248 */
1249 if (i == max_retries)
1250 return 0;
1251
1252 /*
1253 * Message not acknowledged, so this logical
1254 * address is free to use.
1255 */
1256 err = adap->ops->adap_log_addr(adap, log_addr);
1257 if (err)
1258 return err;
1259
1260 las->log_addr[idx] = log_addr;
1261 las->log_addr_mask |= 1 << log_addr;
1262 adap->phys_addrs[log_addr] = adap->phys_addr;
1263 return 1;
1264}
1265
1266/*
1267 * Unconfigure the adapter: clear all logical addresses and send
1268 * the state changed event.
1269 *
1270 * This function is called with adap->lock held.
1271 */
1272static void cec_adap_unconfigure(struct cec_adapter *adap)
1273{
1274 if (!adap->needs_hpd ||
1275 adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1276 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1277 adap->log_addrs.log_addr_mask = 0;
1278 adap->is_configuring = false;
1279 adap->is_configured = false;
1280 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1281 cec_flush(adap);
1282 wake_up_interruptible(&adap->kthread_waitq);
1283 cec_post_state_event(adap);
1284}
1285
1286/*
1287 * Attempt to claim the required logical addresses.
1288 */
1289static int cec_config_thread_func(void *arg)
1290{
1291 /* The various LAs for each type of device */
1292 static const u8 tv_log_addrs[] = {
1293 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1294 CEC_LOG_ADDR_INVALID
1295 };
1296 static const u8 record_log_addrs[] = {
1297 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1298 CEC_LOG_ADDR_RECORD_3,
1299 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1300 CEC_LOG_ADDR_INVALID
1301 };
1302 static const u8 tuner_log_addrs[] = {
1303 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1304 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1305 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1306 CEC_LOG_ADDR_INVALID
1307 };
1308 static const u8 playback_log_addrs[] = {
1309 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1310 CEC_LOG_ADDR_PLAYBACK_3,
1311 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1312 CEC_LOG_ADDR_INVALID
1313 };
1314 static const u8 audiosystem_log_addrs[] = {
1315 CEC_LOG_ADDR_AUDIOSYSTEM,
1316 CEC_LOG_ADDR_INVALID
1317 };
1318 static const u8 specific_use_log_addrs[] = {
1319 CEC_LOG_ADDR_SPECIFIC,
1320 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1321 CEC_LOG_ADDR_INVALID
1322 };
1323 static const u8 *type2addrs[6] = {
1324 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1325 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1326 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1327 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1328 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1329 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1330 };
1331 static const u16 type2mask[] = {
1332 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1333 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1334 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1335 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1336 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1337 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1338 };
1339 struct cec_adapter *adap = arg;
1340 struct cec_log_addrs *las = &adap->log_addrs;
1341 int err;
1342 int i, j;
1343
1344 mutex_lock(&adap->lock);
1345 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1346 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1347 las->log_addr_mask = 0;
1348
1349 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1350 goto configured;
1351
1352 for (i = 0; i < las->num_log_addrs; i++) {
1353 unsigned int type = las->log_addr_type[i];
1354 const u8 *la_list;
1355 u8 last_la;
1356
1357 /*
1358 * The TV functionality can only map to physical address 0.
1359 * For any other address, try the Specific functionality
1360 * instead as per the spec.
1361 */
1362 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1363 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1364
1365 la_list = type2addrs[type];
1366 last_la = las->log_addr[i];
1367 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1368 if (last_la == CEC_LOG_ADDR_INVALID ||
1369 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1370 !((1 << last_la) & type2mask[type]))
1371 last_la = la_list[0];
1372
1373 err = cec_config_log_addr(adap, i, last_la);
1374 if (err > 0) /* Reused last LA */
1375 continue;
1376
1377 if (err < 0)
1378 goto unconfigure;
1379
1380 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1381 /* Tried this one already, skip it */
1382 if (la_list[j] == last_la)
1383 continue;
1384 /* The backup addresses are CEC 2.0 specific */
1385 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1386 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1387 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1388 continue;
1389
1390 err = cec_config_log_addr(adap, i, la_list[j]);
1391 if (err == 0) /* LA is in use */
1392 continue;
1393 if (err < 0)
1394 goto unconfigure;
1395 /* Done, claimed an LA */
1396 break;
1397 }
1398
1399 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1400 dprintk(1, "could not claim LA %d\n", i);
1401 }
1402
1403 if (adap->log_addrs.log_addr_mask == 0 &&
1404 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1405 goto unconfigure;
1406
1407configured:
1408 if (adap->log_addrs.log_addr_mask == 0) {
1409 /* Fall back to unregistered */
1410 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1411 las->log_addr_mask = 1 << las->log_addr[0];
1412 for (i = 1; i < las->num_log_addrs; i++)
1413 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1414 }
1415 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1416 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1417 adap->is_configured = true;
1418 adap->is_configuring = false;
1419 cec_post_state_event(adap);
1420
1421 /*
1422 * Now post the Report Features and Report Physical Address broadcast
1423 * messages. Note that these are non-blocking transmits, meaning that
1424 * they are just queued up and once adap->lock is unlocked the main
1425 * thread will kick in and start transmitting these.
1426 *
1427 * If after this function is done (but before one or more of these
1428 * messages are actually transmitted) the CEC adapter is unconfigured,
1429 * then any remaining messages will be dropped by the main thread.
1430 */
1431 for (i = 0; i < las->num_log_addrs; i++) {
1432 struct cec_msg msg = {};
1433
1434 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1435 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1436 continue;
1437
1438 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1439
1440 /* Report Features must come first according to CEC 2.0 */
1441 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1442 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1443 cec_fill_msg_report_features(adap, &msg, i);
1444 cec_transmit_msg_fh(adap, &msg, NULL, false);
1445 }
1446
1447 /* Report Physical Address */
1448 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1449 las->primary_device_type[i]);
1450 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1451 las->log_addr[i],
1452 cec_phys_addr_exp(adap->phys_addr));
1453 cec_transmit_msg_fh(adap, &msg, NULL, false);
1454
1455 /* Report Vendor ID */
1456 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1457 cec_msg_device_vendor_id(&msg,
1458 adap->log_addrs.vendor_id);
1459 cec_transmit_msg_fh(adap, &msg, NULL, false);
1460 }
1461 }
1462 adap->kthread_config = NULL;
1463 complete(&adap->config_completion);
1464 mutex_unlock(&adap->lock);
1465 return 0;
1466
1467unconfigure:
1468 for (i = 0; i < las->num_log_addrs; i++)
1469 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1470 cec_adap_unconfigure(adap);
1471 adap->kthread_config = NULL;
1472 mutex_unlock(&adap->lock);
1473 complete(&adap->config_completion);
1474 return 0;
1475}
1476
1477/*
1478 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1479 * logical addresses.
1480 *
1481 * This function is called with adap->lock held.
1482 */
1483static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1484{
1485 if (WARN_ON(adap->is_configuring || adap->is_configured))
1486 return;
1487
1488 init_completion(&adap->config_completion);
1489
1490 /* Ready to kick off the thread */
1491 adap->is_configuring = true;
1492 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1493 "ceccfg-%s", adap->name);
1494 if (IS_ERR(adap->kthread_config)) {
1495 adap->kthread_config = NULL;
1496 } else if (block) {
1497 mutex_unlock(&adap->lock);
1498 wait_for_completion(&adap->config_completion);
1499 mutex_lock(&adap->lock);
1500 }
1501}
1502
1503/* Set a new physical address and send an event notifying userspace of this.
1504 *
1505 * This function is called with adap->lock held.
1506 */
1507void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1508{
1509 if (phys_addr == adap->phys_addr)
1510 return;
1511 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1512 return;
1513
1514 dprintk(1, "new physical address %x.%x.%x.%x\n",
1515 cec_phys_addr_exp(phys_addr));
1516 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1517 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1518 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1519 cec_post_state_event(adap);
1520 cec_adap_unconfigure(adap);
1521 /* Disabling monitor all mode should always succeed */
1522 if (adap->monitor_all_cnt)
1523 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1524 mutex_lock(&adap->devnode.lock);
1525 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1526 WARN_ON(adap->ops->adap_enable(adap, false));
1527 adap->transmit_in_progress = false;
1528 wake_up_interruptible(&adap->kthread_waitq);
1529 }
1530 mutex_unlock(&adap->devnode.lock);
1531 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1532 return;
1533 }
1534
1535 mutex_lock(&adap->devnode.lock);
1536 adap->last_initiator = 0xff;
1537 adap->transmit_in_progress = false;
1538
1539 if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1540 adap->ops->adap_enable(adap, true)) {
1541 mutex_unlock(&adap->devnode.lock);
1542 return;
1543 }
1544
1545 if (adap->monitor_all_cnt &&
1546 call_op(adap, adap_monitor_all_enable, true)) {
1547 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1548 WARN_ON(adap->ops->adap_enable(adap, false));
1549 mutex_unlock(&adap->devnode.lock);
1550 return;
1551 }
1552 mutex_unlock(&adap->devnode.lock);
1553
1554 adap->phys_addr = phys_addr;
1555 cec_post_state_event(adap);
1556 if (adap->log_addrs.num_log_addrs)
1557 cec_claim_log_addrs(adap, block);
1558}
1559
1560void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1561{
1562 if (IS_ERR_OR_NULL(adap))
1563 return;
1564
1565 mutex_lock(&adap->lock);
1566 __cec_s_phys_addr(adap, phys_addr, block);
1567 mutex_unlock(&adap->lock);
1568}
1569EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1570
1571void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1572 const struct edid *edid)
1573{
1574 u16 pa = CEC_PHYS_ADDR_INVALID;
1575
1576 if (edid && edid->extensions)
1577 pa = cec_get_edid_phys_addr((const u8 *)edid,
1578 EDID_LENGTH * (edid->extensions + 1), NULL);
1579 cec_s_phys_addr(adap, pa, false);
1580}
1581EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1582
1583/*
1584 * Called from either the ioctl or a driver to set the logical addresses.
1585 *
1586 * This function is called with adap->lock held.
1587 */
1588int __cec_s_log_addrs(struct cec_adapter *adap,
1589 struct cec_log_addrs *log_addrs, bool block)
1590{
1591 u16 type_mask = 0;
1592 int i;
1593
1594 if (adap->devnode.unregistered)
1595 return -ENODEV;
1596
1597 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1598 cec_adap_unconfigure(adap);
1599 adap->log_addrs.num_log_addrs = 0;
1600 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1601 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1602 adap->log_addrs.osd_name[0] = '\0';
1603 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1604 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1605 return 0;
1606 }
1607
1608 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1609 /*
1610 * Sanitize log_addrs fields if a CDC-Only device is
1611 * requested.
1612 */
1613 log_addrs->num_log_addrs = 1;
1614 log_addrs->osd_name[0] = '\0';
1615 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1616 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1617 /*
1618 * This is just an internal convention since a CDC-Only device
1619 * doesn't have to be a switch. But switches already use
1620 * unregistered, so it makes some kind of sense to pick this
1621 * as the primary device. Since a CDC-Only device never sends
1622 * any 'normal' CEC messages this primary device type is never
1623 * sent over the CEC bus.
1624 */
1625 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1626 log_addrs->all_device_types[0] = 0;
1627 log_addrs->features[0][0] = 0;
1628 log_addrs->features[0][1] = 0;
1629 }
1630
1631 /* Ensure the osd name is 0-terminated */
1632 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1633
1634 /* Sanity checks */
1635 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1636 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1637 return -EINVAL;
1638 }
1639
1640 /*
1641 * Vendor ID is a 24 bit number, so check if the value is
1642 * within the correct range.
1643 */
1644 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1645 (log_addrs->vendor_id & 0xff000000) != 0) {
1646 dprintk(1, "invalid vendor ID\n");
1647 return -EINVAL;
1648 }
1649
1650 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1651 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1652 dprintk(1, "invalid CEC version\n");
1653 return -EINVAL;
1654 }
1655
1656 if (log_addrs->num_log_addrs > 1)
1657 for (i = 0; i < log_addrs->num_log_addrs; i++)
1658 if (log_addrs->log_addr_type[i] ==
1659 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1660 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1661 return -EINVAL;
1662 }
1663
1664 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1665 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1666 u8 *features = log_addrs->features[i];
1667 bool op_is_dev_features = false;
1668 unsigned j;
1669
1670 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1671 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1672 dprintk(1, "duplicate logical address type\n");
1673 return -EINVAL;
1674 }
1675 type_mask |= 1 << log_addrs->log_addr_type[i];
1676 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1677 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1678 /* Record already contains the playback functionality */
1679 dprintk(1, "invalid record + playback combination\n");
1680 return -EINVAL;
1681 }
1682 if (log_addrs->primary_device_type[i] >
1683 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1684 dprintk(1, "unknown primary device type\n");
1685 return -EINVAL;
1686 }
1687 if (log_addrs->primary_device_type[i] == 2) {
1688 dprintk(1, "invalid primary device type\n");
1689 return -EINVAL;
1690 }
1691 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1692 dprintk(1, "unknown logical address type\n");
1693 return -EINVAL;
1694 }
1695 for (j = 0; j < feature_sz; j++) {
1696 if ((features[j] & 0x80) == 0) {
1697 if (op_is_dev_features)
1698 break;
1699 op_is_dev_features = true;
1700 }
1701 }
1702 if (!op_is_dev_features || j == feature_sz) {
1703 dprintk(1, "malformed features\n");
1704 return -EINVAL;
1705 }
1706 /* Zero unused part of the feature array */
1707 memset(features + j + 1, 0, feature_sz - j - 1);
1708 }
1709
1710 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1711 if (log_addrs->num_log_addrs > 2) {
1712 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1713 return -EINVAL;
1714 }
1715 if (log_addrs->num_log_addrs == 2) {
1716 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1717 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1718 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1719 return -EINVAL;
1720 }
1721 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1722 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1723 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1724 return -EINVAL;
1725 }
1726 }
1727 }
1728
1729 /* Zero unused LAs */
1730 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1731 log_addrs->primary_device_type[i] = 0;
1732 log_addrs->log_addr_type[i] = 0;
1733 log_addrs->all_device_types[i] = 0;
1734 memset(log_addrs->features[i], 0,
1735 sizeof(log_addrs->features[i]));
1736 }
1737
1738 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1739 adap->log_addrs = *log_addrs;
1740 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1741 cec_claim_log_addrs(adap, block);
1742 return 0;
1743}
1744
1745int cec_s_log_addrs(struct cec_adapter *adap,
1746 struct cec_log_addrs *log_addrs, bool block)
1747{
1748 int err;
1749
1750 mutex_lock(&adap->lock);
1751 err = __cec_s_log_addrs(adap, log_addrs, block);
1752 mutex_unlock(&adap->lock);
1753 return err;
1754}
1755EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1756
1757/* High-level core CEC message handling */
1758
1759/* Fill in the Report Features message */
1760static void cec_fill_msg_report_features(struct cec_adapter *adap,
1761 struct cec_msg *msg,
1762 unsigned int la_idx)
1763{
1764 const struct cec_log_addrs *las = &adap->log_addrs;
1765 const u8 *features = las->features[la_idx];
1766 bool op_is_dev_features = false;
1767 unsigned int idx;
1768
1769 /* Report Features */
1770 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1771 msg->len = 4;
1772 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1773 msg->msg[2] = adap->log_addrs.cec_version;
1774 msg->msg[3] = las->all_device_types[la_idx];
1775
1776 /* Write RC Profiles first, then Device Features */
1777 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1778 msg->msg[msg->len++] = features[idx];
1779 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1780 if (op_is_dev_features)
1781 break;
1782 op_is_dev_features = true;
1783 }
1784 }
1785}
1786
1787/* Transmit the Feature Abort message */
1788static int cec_feature_abort_reason(struct cec_adapter *adap,
1789 struct cec_msg *msg, u8 reason)
1790{
1791 struct cec_msg tx_msg = { };
1792
1793 /*
1794 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1795 * message!
1796 */
1797 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1798 return 0;
1799 /* Don't Feature Abort messages from 'Unregistered' */
1800 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1801 return 0;
1802 cec_msg_set_reply_to(&tx_msg, msg);
1803 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1804 return cec_transmit_msg(adap, &tx_msg, false);
1805}
1806
1807static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1808{
1809 return cec_feature_abort_reason(adap, msg,
1810 CEC_OP_ABORT_UNRECOGNIZED_OP);
1811}
1812
1813static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1814{
1815 return cec_feature_abort_reason(adap, msg,
1816 CEC_OP_ABORT_REFUSED);
1817}
1818
1819/*
1820 * Called when a CEC message is received. This function will do any
1821 * necessary core processing. The is_reply bool is true if this message
1822 * is a reply to an earlier transmit.
1823 *
1824 * The message is either a broadcast message or a valid directed message.
1825 */
1826static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1827 bool is_reply)
1828{
1829 bool is_broadcast = cec_msg_is_broadcast(msg);
1830 u8 dest_laddr = cec_msg_destination(msg);
1831 u8 init_laddr = cec_msg_initiator(msg);
1832 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1833 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1834 bool from_unregistered = init_laddr == 0xf;
1835 struct cec_msg tx_cec_msg = { };
1836
1837 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1838
1839 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1840 if (cec_is_cdc_only(&adap->log_addrs) &&
1841 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1842 return 0;
1843
1844 if (adap->ops->received) {
1845 /* Allow drivers to process the message first */
1846 if (adap->ops->received(adap, msg) != -ENOMSG)
1847 return 0;
1848 }
1849
1850 /*
1851 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1852 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1853 * handled by the CEC core, even if the passthrough mode is on.
1854 * The others are just ignored if passthrough mode is on.
1855 */
1856 switch (msg->msg[1]) {
1857 case CEC_MSG_GET_CEC_VERSION:
1858 case CEC_MSG_ABORT:
1859 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1860 case CEC_MSG_GIVE_OSD_NAME:
1861 /*
1862 * These messages reply with a directed message, so ignore if
1863 * the initiator is Unregistered.
1864 */
1865 if (!adap->passthrough && from_unregistered)
1866 return 0;
1867 /* Fall through */
1868 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1869 case CEC_MSG_GIVE_FEATURES:
1870 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1871 /*
1872 * Skip processing these messages if the passthrough mode
1873 * is on.
1874 */
1875 if (adap->passthrough)
1876 goto skip_processing;
1877 /* Ignore if addressing is wrong */
1878 if (is_broadcast)
1879 return 0;
1880 break;
1881
1882 case CEC_MSG_USER_CONTROL_PRESSED:
1883 case CEC_MSG_USER_CONTROL_RELEASED:
1884 /* Wrong addressing mode: don't process */
1885 if (is_broadcast || from_unregistered)
1886 goto skip_processing;
1887 break;
1888
1889 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1890 /*
1891 * This message is always processed, regardless of the
1892 * passthrough setting.
1893 *
1894 * Exception: don't process if wrong addressing mode.
1895 */
1896 if (!is_broadcast)
1897 goto skip_processing;
1898 break;
1899
1900 default:
1901 break;
1902 }
1903
1904 cec_msg_set_reply_to(&tx_cec_msg, msg);
1905
1906 switch (msg->msg[1]) {
1907 /* The following messages are processed but still passed through */
1908 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1909 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1910
1911 if (!from_unregistered)
1912 adap->phys_addrs[init_laddr] = pa;
1913 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1914 cec_phys_addr_exp(pa), init_laddr);
1915 break;
1916 }
1917
1918 case CEC_MSG_USER_CONTROL_PRESSED:
1919 if (!(adap->capabilities & CEC_CAP_RC) ||
1920 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1921 break;
1922
1923#ifdef CONFIG_MEDIA_CEC_RC
1924 switch (msg->msg[2]) {
1925 /*
1926 * Play function, this message can have variable length
1927 * depending on the specific play function that is used.
1928 */
1929 case 0x60:
1930 if (msg->len == 2)
1931 rc_keydown(adap->rc, RC_PROTO_CEC,
1932 msg->msg[2], 0);
1933 else
1934 rc_keydown(adap->rc, RC_PROTO_CEC,
1935 msg->msg[2] << 8 | msg->msg[3], 0);
1936 break;
1937 /*
1938 * Other function messages that are not handled.
1939 * Currently the RC framework does not allow to supply an
1940 * additional parameter to a keypress. These "keys" contain
1941 * other information such as channel number, an input number
1942 * etc.
1943 * For the time being these messages are not processed by the
1944 * framework and are simply forwarded to the user space.
1945 */
1946 case 0x56: case 0x57:
1947 case 0x67: case 0x68: case 0x69: case 0x6a:
1948 break;
1949 default:
1950 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
1951 break;
1952 }
1953#endif
1954 break;
1955
1956 case CEC_MSG_USER_CONTROL_RELEASED:
1957 if (!(adap->capabilities & CEC_CAP_RC) ||
1958 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1959 break;
1960#ifdef CONFIG_MEDIA_CEC_RC
1961 rc_keyup(adap->rc);
1962#endif
1963 break;
1964
1965 /*
1966 * The remaining messages are only processed if the passthrough mode
1967 * is off.
1968 */
1969 case CEC_MSG_GET_CEC_VERSION:
1970 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1971 return cec_transmit_msg(adap, &tx_cec_msg, false);
1972
1973 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1974 /* Do nothing for CEC switches using addr 15 */
1975 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1976 return 0;
1977 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1978 return cec_transmit_msg(adap, &tx_cec_msg, false);
1979
1980 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1981 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1982 return cec_feature_abort(adap, msg);
1983 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1984 return cec_transmit_msg(adap, &tx_cec_msg, false);
1985
1986 case CEC_MSG_ABORT:
1987 /* Do nothing for CEC switches */
1988 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1989 return 0;
1990 return cec_feature_refused(adap, msg);
1991
1992 case CEC_MSG_GIVE_OSD_NAME: {
1993 if (adap->log_addrs.osd_name[0] == 0)
1994 return cec_feature_abort(adap, msg);
1995 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1996 return cec_transmit_msg(adap, &tx_cec_msg, false);
1997 }
1998
1999 case CEC_MSG_GIVE_FEATURES:
2000 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2001 return cec_feature_abort(adap, msg);
2002 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2003 return cec_transmit_msg(adap, &tx_cec_msg, false);
2004
2005 default:
2006 /*
2007 * Unprocessed messages are aborted if userspace isn't doing
2008 * any processing either.
2009 */
2010 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2011 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2012 return cec_feature_abort(adap, msg);
2013 break;
2014 }
2015
2016skip_processing:
2017 /* If this was a reply, then we're done, unless otherwise specified */
2018 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2019 return 0;
2020
2021 /*
2022 * Send to the exclusive follower if there is one, otherwise send
2023 * to all followers.
2024 */
2025 if (adap->cec_follower)
2026 cec_queue_msg_fh(adap->cec_follower, msg);
2027 else
2028 cec_queue_msg_followers(adap, msg);
2029 return 0;
2030}
2031
2032/*
2033 * Helper functions to keep track of the 'monitor all' use count.
2034 *
2035 * These functions are called with adap->lock held.
2036 */
2037int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2038{
2039 int ret = 0;
2040
2041 if (adap->monitor_all_cnt == 0)
2042 ret = call_op(adap, adap_monitor_all_enable, 1);
2043 if (ret == 0)
2044 adap->monitor_all_cnt++;
2045 return ret;
2046}
2047
2048void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2049{
2050 adap->monitor_all_cnt--;
2051 if (adap->monitor_all_cnt == 0)
2052 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2053}
2054
2055/*
2056 * Helper functions to keep track of the 'monitor pin' use count.
2057 *
2058 * These functions are called with adap->lock held.
2059 */
2060int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2061{
2062 int ret = 0;
2063
2064 if (adap->monitor_pin_cnt == 0)
2065 ret = call_op(adap, adap_monitor_pin_enable, 1);
2066 if (ret == 0)
2067 adap->monitor_pin_cnt++;
2068 return ret;
2069}
2070
2071void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2072{
2073 adap->monitor_pin_cnt--;
2074 if (adap->monitor_pin_cnt == 0)
2075 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2076}
2077
2078#ifdef CONFIG_DEBUG_FS
2079/*
2080 * Log the current state of the CEC adapter.
2081 * Very useful for debugging.
2082 */
2083int cec_adap_status(struct seq_file *file, void *priv)
2084{
2085 struct cec_adapter *adap = dev_get_drvdata(file->private);
2086 struct cec_data *data;
2087
2088 mutex_lock(&adap->lock);
2089 seq_printf(file, "configured: %d\n", adap->is_configured);
2090 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2091 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2092 cec_phys_addr_exp(adap->phys_addr));
2093 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2094 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2095 if (adap->cec_follower)
2096 seq_printf(file, "has CEC follower%s\n",
2097 adap->passthrough ? " (in passthrough mode)" : "");
2098 if (adap->cec_initiator)
2099 seq_puts(file, "has CEC initiator\n");
2100 if (adap->monitor_all_cnt)
2101 seq_printf(file, "file handles in Monitor All mode: %u\n",
2102 adap->monitor_all_cnt);
2103 if (adap->tx_timeouts) {
2104 seq_printf(file, "transmit timeouts: %u\n",
2105 adap->tx_timeouts);
2106 adap->tx_timeouts = 0;
2107 }
2108 data = adap->transmitting;
2109 if (data)
2110 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2111 data->msg.len, data->msg.msg, data->msg.reply,
2112 data->msg.timeout);
2113 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2114 list_for_each_entry(data, &adap->transmit_queue, list) {
2115 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2116 data->msg.len, data->msg.msg, data->msg.reply,
2117 data->msg.timeout);
2118 }
2119 list_for_each_entry(data, &adap->wait_queue, list) {
2120 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2121 data->msg.len, data->msg.msg, data->msg.reply,
2122 data->msg.timeout);
2123 }
2124
2125 call_void_op(adap, adap_status, file);
2126 mutex_unlock(&adap->lock);
2127 return 0;
2128}
2129#endif