blob: ee3bae8b9dcd69fd4757b41d72e73234e71f72f2 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/uio.h>
23#include <linux/iocontext.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
30#include <linux/cgroup.h>
31#include <linux/blk-cgroup.h>
32#include <linux/blk-crypto.h>
33
34#include <trace/events/block.h>
35#include "blk.h"
36#include "blk-rq-qos.h"
37
38/*
39 * Test patch to inline a certain number of bi_io_vec's inside the bio
40 * itself, to shrink a bio data allocation from two mempool calls to one
41 */
42#define BIO_INLINE_VECS 4
43
44/*
45 * if you change this list, also change bvec_alloc or things will
46 * break badly! cannot be bigger than what you can fit into an
47 * unsigned short
48 */
49#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
50static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
51 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
52};
53#undef BV
54
55/*
56 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
57 * IO code that does not need private memory pools.
58 */
59struct bio_set fs_bio_set;
60EXPORT_SYMBOL(fs_bio_set);
61
62/*
63 * Our slab pool management
64 */
65struct bio_slab {
66 struct kmem_cache *slab;
67 unsigned int slab_ref;
68 unsigned int slab_size;
69 char name[8];
70};
71static DEFINE_MUTEX(bio_slab_lock);
72static struct bio_slab *bio_slabs;
73static unsigned int bio_slab_nr, bio_slab_max;
74
75static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
76{
77 unsigned int sz = sizeof(struct bio) + extra_size;
78 struct kmem_cache *slab = NULL;
79 struct bio_slab *bslab, *new_bio_slabs;
80 unsigned int new_bio_slab_max;
81 unsigned int i, entry = -1;
82
83 mutex_lock(&bio_slab_lock);
84
85 i = 0;
86 while (i < bio_slab_nr) {
87 bslab = &bio_slabs[i];
88
89 if (!bslab->slab && entry == -1)
90 entry = i;
91 else if (bslab->slab_size == sz) {
92 slab = bslab->slab;
93 bslab->slab_ref++;
94 break;
95 }
96 i++;
97 }
98
99 if (slab)
100 goto out_unlock;
101
102 if (bio_slab_nr == bio_slab_max && entry == -1) {
103 new_bio_slab_max = bio_slab_max << 1;
104 new_bio_slabs = krealloc(bio_slabs,
105 new_bio_slab_max * sizeof(struct bio_slab),
106 GFP_KERNEL);
107 if (!new_bio_slabs)
108 goto out_unlock;
109 bio_slab_max = new_bio_slab_max;
110 bio_slabs = new_bio_slabs;
111 }
112 if (entry == -1)
113 entry = bio_slab_nr++;
114
115 bslab = &bio_slabs[entry];
116
117 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
118 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
119 SLAB_HWCACHE_ALIGN, NULL);
120 if (!slab)
121 goto out_unlock;
122
123 bslab->slab = slab;
124 bslab->slab_ref = 1;
125 bslab->slab_size = sz;
126out_unlock:
127 mutex_unlock(&bio_slab_lock);
128 return slab;
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
134 unsigned int i;
135
136 mutex_lock(&bio_slab_lock);
137
138 for (i = 0; i < bio_slab_nr; i++) {
139 if (bs->bio_slab == bio_slabs[i].slab) {
140 bslab = &bio_slabs[i];
141 break;
142 }
143 }
144
145 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
146 goto out;
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 kmem_cache_destroy(bslab->slab);
154 bslab->slab = NULL;
155
156out:
157 mutex_unlock(&bio_slab_lock);
158}
159
160unsigned int bvec_nr_vecs(unsigned short idx)
161{
162 return bvec_slabs[--idx].nr_vecs;
163}
164
165void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
166{
167 if (!idx)
168 return;
169 idx--;
170
171 BIO_BUG_ON(idx >= BVEC_POOL_NR);
172
173 if (idx == BVEC_POOL_MAX) {
174 mempool_free(bv, pool);
175 } else {
176 struct biovec_slab *bvs = bvec_slabs + idx;
177
178 kmem_cache_free(bvs->slab, bv);
179 }
180}
181
182struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
183 mempool_t *pool)
184{
185 struct bio_vec *bvl;
186
187 /*
188 * see comment near bvec_array define!
189 */
190 switch (nr) {
191 case 1:
192 *idx = 0;
193 break;
194 case 2 ... 4:
195 *idx = 1;
196 break;
197 case 5 ... 16:
198 *idx = 2;
199 break;
200 case 17 ... 64:
201 *idx = 3;
202 break;
203 case 65 ... 128:
204 *idx = 4;
205 break;
206 case 129 ... BIO_MAX_PAGES:
207 *idx = 5;
208 break;
209 default:
210 return NULL;
211 }
212
213 /*
214 * idx now points to the pool we want to allocate from. only the
215 * 1-vec entry pool is mempool backed.
216 */
217 if (*idx == BVEC_POOL_MAX) {
218fallback:
219 bvl = mempool_alloc(pool, gfp_mask);
220 } else {
221 struct biovec_slab *bvs = bvec_slabs + *idx;
222 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
223
224 /*
225 * Make this allocation restricted and don't dump info on
226 * allocation failures, since we'll fallback to the mempool
227 * in case of failure.
228 */
229 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
230
231 /*
232 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
233 * is set, retry with the 1-entry mempool
234 */
235 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
236 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
237 *idx = BVEC_POOL_MAX;
238 goto fallback;
239 }
240 }
241
242 (*idx)++;
243 return bvl;
244}
245
246void bio_uninit(struct bio *bio)
247{
248 bio_disassociate_task(bio);
249
250 bio_crypt_free_ctx(bio);
251}
252EXPORT_SYMBOL(bio_uninit);
253
254static void bio_free(struct bio *bio)
255{
256 struct bio_set *bs = bio->bi_pool;
257 void *p;
258
259 bio_uninit(bio);
260
261 if (bs) {
262 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
263
264 /*
265 * If we have front padding, adjust the bio pointer before freeing
266 */
267 p = bio;
268 p -= bs->front_pad;
269
270 mempool_free(p, &bs->bio_pool);
271 } else {
272 /* Bio was allocated by bio_kmalloc() */
273 kfree(bio);
274 }
275}
276
277/*
278 * Users of this function have their own bio allocation. Subsequently,
279 * they must remember to pair any call to bio_init() with bio_uninit()
280 * when IO has completed, or when the bio is released.
281 */
282void bio_init(struct bio *bio, struct bio_vec *table,
283 unsigned short max_vecs)
284{
285 memset(bio, 0, sizeof(*bio));
286 atomic_set(&bio->__bi_remaining, 1);
287 atomic_set(&bio->__bi_cnt, 1);
288
289 bio->bi_io_vec = table;
290 bio->bi_max_vecs = max_vecs;
291}
292EXPORT_SYMBOL(bio_init);
293
294/**
295 * bio_reset - reinitialize a bio
296 * @bio: bio to reset
297 *
298 * Description:
299 * After calling bio_reset(), @bio will be in the same state as a freshly
300 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
301 * preserved are the ones that are initialized by bio_alloc_bioset(). See
302 * comment in struct bio.
303 */
304void bio_reset(struct bio *bio)
305{
306 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
307
308 bio_uninit(bio);
309
310 memset(bio, 0, BIO_RESET_BYTES);
311 bio->bi_flags = flags;
312 atomic_set(&bio->__bi_remaining, 1);
313}
314EXPORT_SYMBOL(bio_reset);
315
316static struct bio *__bio_chain_endio(struct bio *bio)
317{
318 struct bio *parent = bio->bi_private;
319
320 if (!parent->bi_status)
321 parent->bi_status = bio->bi_status;
322 bio_put(bio);
323 return parent;
324}
325
326static void bio_chain_endio(struct bio *bio)
327{
328 bio_endio(__bio_chain_endio(bio));
329}
330
331/**
332 * bio_chain - chain bio completions
333 * @bio: the target bio
334 * @parent: the @bio's parent bio
335 *
336 * The caller won't have a bi_end_io called when @bio completes - instead,
337 * @parent's bi_end_io won't be called until both @parent and @bio have
338 * completed; the chained bio will also be freed when it completes.
339 *
340 * The caller must not set bi_private or bi_end_io in @bio.
341 */
342void bio_chain(struct bio *bio, struct bio *parent)
343{
344 BUG_ON(bio->bi_private || bio->bi_end_io);
345
346 bio->bi_private = parent;
347 bio->bi_end_io = bio_chain_endio;
348 bio_inc_remaining(parent);
349}
350EXPORT_SYMBOL(bio_chain);
351
352static void bio_alloc_rescue(struct work_struct *work)
353{
354 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
355 struct bio *bio;
356
357 while (1) {
358 spin_lock(&bs->rescue_lock);
359 bio = bio_list_pop(&bs->rescue_list);
360 spin_unlock(&bs->rescue_lock);
361
362 if (!bio)
363 break;
364
365 generic_make_request(bio);
366 }
367}
368
369static void punt_bios_to_rescuer(struct bio_set *bs)
370{
371 struct bio_list punt, nopunt;
372 struct bio *bio;
373
374 if (WARN_ON_ONCE(!bs->rescue_workqueue))
375 return;
376 /*
377 * In order to guarantee forward progress we must punt only bios that
378 * were allocated from this bio_set; otherwise, if there was a bio on
379 * there for a stacking driver higher up in the stack, processing it
380 * could require allocating bios from this bio_set, and doing that from
381 * our own rescuer would be bad.
382 *
383 * Since bio lists are singly linked, pop them all instead of trying to
384 * remove from the middle of the list:
385 */
386
387 bio_list_init(&punt);
388 bio_list_init(&nopunt);
389
390 while ((bio = bio_list_pop(&current->bio_list[0])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[0] = nopunt;
393
394 bio_list_init(&nopunt);
395 while ((bio = bio_list_pop(&current->bio_list[1])))
396 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
397 current->bio_list[1] = nopunt;
398
399 spin_lock(&bs->rescue_lock);
400 bio_list_merge(&bs->rescue_list, &punt);
401 spin_unlock(&bs->rescue_lock);
402
403 queue_work(bs->rescue_workqueue, &bs->rescue_work);
404}
405
406/**
407 * bio_alloc_bioset - allocate a bio for I/O
408 * @gfp_mask: the GFP_* mask given to the slab allocator
409 * @nr_iovecs: number of iovecs to pre-allocate
410 * @bs: the bio_set to allocate from.
411 *
412 * Description:
413 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
414 * backed by the @bs's mempool.
415 *
416 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
417 * always be able to allocate a bio. This is due to the mempool guarantees.
418 * To make this work, callers must never allocate more than 1 bio at a time
419 * from this pool. Callers that need to allocate more than 1 bio must always
420 * submit the previously allocated bio for IO before attempting to allocate
421 * a new one. Failure to do so can cause deadlocks under memory pressure.
422 *
423 * Note that when running under generic_make_request() (i.e. any block
424 * driver), bios are not submitted until after you return - see the code in
425 * generic_make_request() that converts recursion into iteration, to prevent
426 * stack overflows.
427 *
428 * This would normally mean allocating multiple bios under
429 * generic_make_request() would be susceptible to deadlocks, but we have
430 * deadlock avoidance code that resubmits any blocked bios from a rescuer
431 * thread.
432 *
433 * However, we do not guarantee forward progress for allocations from other
434 * mempools. Doing multiple allocations from the same mempool under
435 * generic_make_request() should be avoided - instead, use bio_set's front_pad
436 * for per bio allocations.
437 *
438 * RETURNS:
439 * Pointer to new bio on success, NULL on failure.
440 */
441struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
442 struct bio_set *bs)
443{
444 gfp_t saved_gfp = gfp_mask;
445 unsigned front_pad;
446 unsigned inline_vecs;
447 struct bio_vec *bvl = NULL;
448 struct bio *bio;
449 void *p;
450
451 if (!bs) {
452 if (nr_iovecs > UIO_MAXIOV)
453 return NULL;
454
455 p = kmalloc(sizeof(struct bio) +
456 nr_iovecs * sizeof(struct bio_vec),
457 gfp_mask);
458 front_pad = 0;
459 inline_vecs = nr_iovecs;
460 } else {
461 /* should not use nobvec bioset for nr_iovecs > 0 */
462 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
463 nr_iovecs > 0))
464 return NULL;
465 /*
466 * generic_make_request() converts recursion to iteration; this
467 * means if we're running beneath it, any bios we allocate and
468 * submit will not be submitted (and thus freed) until after we
469 * return.
470 *
471 * This exposes us to a potential deadlock if we allocate
472 * multiple bios from the same bio_set() while running
473 * underneath generic_make_request(). If we were to allocate
474 * multiple bios (say a stacking block driver that was splitting
475 * bios), we would deadlock if we exhausted the mempool's
476 * reserve.
477 *
478 * We solve this, and guarantee forward progress, with a rescuer
479 * workqueue per bio_set. If we go to allocate and there are
480 * bios on current->bio_list, we first try the allocation
481 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
482 * bios we would be blocking to the rescuer workqueue before
483 * we retry with the original gfp_flags.
484 */
485
486 if (current->bio_list &&
487 (!bio_list_empty(&current->bio_list[0]) ||
488 !bio_list_empty(&current->bio_list[1])) &&
489 bs->rescue_workqueue)
490 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
491
492 p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 if (!p && gfp_mask != saved_gfp) {
494 punt_bios_to_rescuer(bs);
495 gfp_mask = saved_gfp;
496 p = mempool_alloc(&bs->bio_pool, gfp_mask);
497 }
498
499 front_pad = bs->front_pad;
500 inline_vecs = BIO_INLINE_VECS;
501 }
502
503 if (unlikely(!p))
504 return NULL;
505
506 bio = p + front_pad;
507 bio_init(bio, NULL, 0);
508
509 if (nr_iovecs > inline_vecs) {
510 unsigned long idx = 0;
511
512 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
513 if (!bvl && gfp_mask != saved_gfp) {
514 punt_bios_to_rescuer(bs);
515 gfp_mask = saved_gfp;
516 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
517 }
518
519 if (unlikely(!bvl))
520 goto err_free;
521
522 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
523 } else if (nr_iovecs) {
524 bvl = bio->bi_inline_vecs;
525 }
526
527 bio->bi_pool = bs;
528 bio->bi_max_vecs = nr_iovecs;
529 bio->bi_io_vec = bvl;
530 return bio;
531
532err_free:
533 mempool_free(p, &bs->bio_pool);
534 return NULL;
535}
536EXPORT_SYMBOL(bio_alloc_bioset);
537
538void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
539{
540 unsigned long flags;
541 struct bio_vec bv;
542 struct bvec_iter iter;
543
544 __bio_for_each_segment(bv, bio, iter, start) {
545 char *data = bvec_kmap_irq(&bv, &flags);
546 memset(data, 0, bv.bv_len);
547 flush_dcache_page(bv.bv_page);
548 bvec_kunmap_irq(data, &flags);
549 }
550}
551EXPORT_SYMBOL(zero_fill_bio_iter);
552
553/**
554 * bio_put - release a reference to a bio
555 * @bio: bio to release reference to
556 *
557 * Description:
558 * Put a reference to a &struct bio, either one you have gotten with
559 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
560 **/
561void bio_put(struct bio *bio)
562{
563 if (!bio_flagged(bio, BIO_REFFED))
564 bio_free(bio);
565 else {
566 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
567
568 /*
569 * last put frees it
570 */
571 if (atomic_dec_and_test(&bio->__bi_cnt))
572 bio_free(bio);
573 }
574}
575EXPORT_SYMBOL(bio_put);
576
577inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
578{
579 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
580 blk_recount_segments(q, bio);
581
582 return bio->bi_phys_segments;
583}
584EXPORT_SYMBOL(bio_phys_segments);
585
586/**
587 * __bio_clone_fast - clone a bio that shares the original bio's biovec
588 * @bio: destination bio
589 * @bio_src: bio to clone
590 *
591 * Clone a &bio. Caller will own the returned bio, but not
592 * the actual data it points to. Reference count of returned
593 * bio will be one.
594 *
595 * Caller must ensure that @bio_src is not freed before @bio.
596 */
597void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
598{
599 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
600
601 /*
602 * most users will be overriding ->bi_disk with a new target,
603 * so we don't set nor calculate new physical/hw segment counts here
604 */
605 bio->bi_disk = bio_src->bi_disk;
606 bio->bi_partno = bio_src->bi_partno;
607 bio_set_flag(bio, BIO_CLONED);
608 if (bio_flagged(bio_src, BIO_THROTTLED))
609 bio_set_flag(bio, BIO_THROTTLED);
610 bio->bi_opf = bio_src->bi_opf;
611 bio->bi_ioprio = bio_src->bi_ioprio;
612 bio->bi_write_hint = bio_src->bi_write_hint;
613 bio->bi_iter = bio_src->bi_iter;
614 bio->bi_io_vec = bio_src->bi_io_vec;
615
616 bio_clone_blkcg_association(bio, bio_src);
617}
618EXPORT_SYMBOL(__bio_clone_fast);
619
620/**
621 * bio_clone_fast - clone a bio that shares the original bio's biovec
622 * @bio: bio to clone
623 * @gfp_mask: allocation priority
624 * @bs: bio_set to allocate from
625 *
626 * Like __bio_clone_fast, only also allocates the returned bio
627 */
628struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
629{
630 struct bio *b;
631
632 b = bio_alloc_bioset(gfp_mask, 0, bs);
633 if (!b)
634 return NULL;
635
636 __bio_clone_fast(b, bio);
637
638 bio_crypt_clone(b, bio, gfp_mask);
639
640 if (bio_integrity(bio) &&
641 bio_integrity_clone(b, bio, gfp_mask) < 0) {
642 bio_put(b);
643 return NULL;
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
650/**
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
657 *
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
662 *
663 * This should only be used by REQ_PC bios.
664 */
665int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
667{
668 int retried_segments = 0;
669 struct bio_vec *bvec;
670
671 /*
672 * cloned bio must not modify vec list
673 */
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
676
677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 return 0;
679
680 /*
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
684 */
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
691 bio->bi_iter.bi_size += len;
692 goto done;
693 }
694
695 /*
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
698 */
699 if (bvec_gap_to_prev(q, prev, offset))
700 return 0;
701 }
702
703 if (bio_full(bio))
704 return 0;
705
706 /*
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
709 */
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
717
718 /*
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
721 */
722
723 while (bio->bi_phys_segments > queue_max_segments(q)) {
724
725 if (retried_segments)
726 goto failed;
727
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
730 }
731
732 /* If we may be able to merge these biovecs, force a recount */
733 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
734 bio_clear_flag(bio, BIO_SEG_VALID);
735
736 done:
737 return len;
738
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
747}
748EXPORT_SYMBOL(bio_add_pc_page);
749
750/**
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
756 *
757 * Try to add the data at @page + @off to the last bvec of @bio. This is a
758 * a useful optimisation for file systems with a block size smaller than the
759 * page size.
760 *
761 * Return %true on success or %false on failure.
762 */
763bool __bio_try_merge_page(struct bio *bio, struct page *page,
764 unsigned int len, unsigned int off)
765{
766 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
767 return false;
768
769 if (bio->bi_vcnt > 0) {
770 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
771
772 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
773 bv->bv_len += len;
774 bio->bi_iter.bi_size += len;
775 return true;
776 }
777 }
778 return false;
779}
780EXPORT_SYMBOL_GPL(__bio_try_merge_page);
781
782/**
783 * __bio_add_page - add page to a bio in a new segment
784 * @bio: destination bio
785 * @page: page to add
786 * @len: length of the data to add
787 * @off: offset of the data in @page
788 *
789 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
790 * that @bio has space for another bvec.
791 */
792void __bio_add_page(struct bio *bio, struct page *page,
793 unsigned int len, unsigned int off)
794{
795 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
796
797 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798 WARN_ON_ONCE(bio_full(bio));
799
800 bv->bv_page = page;
801 bv->bv_offset = off;
802 bv->bv_len = len;
803
804 bio->bi_iter.bi_size += len;
805 bio->bi_vcnt++;
806
807 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
808 bio_set_flag(bio, BIO_WORKINGSET);
809}
810EXPORT_SYMBOL_GPL(__bio_add_page);
811
812/**
813 * bio_add_page - attempt to add page to bio
814 * @bio: destination bio
815 * @page: page to add
816 * @len: vec entry length
817 * @offset: vec entry offset
818 *
819 * Attempt to add a page to the bio_vec maplist. This will only fail
820 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
821 */
822int bio_add_page(struct bio *bio, struct page *page,
823 unsigned int len, unsigned int offset)
824{
825 if (!__bio_try_merge_page(bio, page, len, offset)) {
826 if (bio_full(bio))
827 return 0;
828 __bio_add_page(bio, page, len, offset);
829 }
830 return len;
831}
832EXPORT_SYMBOL(bio_add_page);
833
834/**
835 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
836 * @bio: bio to add pages to
837 * @iter: iov iterator describing the region to be mapped
838 *
839 * Pins pages from *iter and appends them to @bio's bvec array. The
840 * pages will have to be released using put_page() when done.
841 * For multi-segment *iter, this function only adds pages from the
842 * the next non-empty segment of the iov iterator.
843 */
844static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
845{
846 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
847 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
848 struct page **pages = (struct page **)bv;
849 size_t offset;
850 ssize_t size;
851
852 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
853 if (unlikely(size <= 0))
854 return size ? size : -EFAULT;
855 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
856
857 /*
858 * Deep magic below: We need to walk the pinned pages backwards
859 * because we are abusing the space allocated for the bio_vecs
860 * for the page array. Because the bio_vecs are larger than the
861 * page pointers by definition this will always work. But it also
862 * means we can't use bio_add_page, so any changes to it's semantics
863 * need to be reflected here as well.
864 */
865 bio->bi_iter.bi_size += size;
866 bio->bi_vcnt += nr_pages;
867
868 while (idx--) {
869 bv[idx].bv_page = pages[idx];
870 bv[idx].bv_len = PAGE_SIZE;
871 bv[idx].bv_offset = 0;
872 }
873
874 bv[0].bv_offset += offset;
875 bv[0].bv_len -= offset;
876 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
877
878 iov_iter_advance(iter, size);
879 return 0;
880}
881
882/**
883 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
884 * @bio: bio to add pages to
885 * @iter: iov iterator describing the region to be mapped
886 *
887 * Pins pages from *iter and appends them to @bio's bvec array. The
888 * pages will have to be released using put_page() when done.
889 * The function tries, but does not guarantee, to pin as many pages as
890 * fit into the bio, or are requested in *iter, whatever is smaller.
891 * If MM encounters an error pinning the requested pages, it stops.
892 * Error is returned only if 0 pages could be pinned.
893 */
894int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
895{
896 unsigned short orig_vcnt = bio->bi_vcnt;
897
898 do {
899 int ret = __bio_iov_iter_get_pages(bio, iter);
900
901 if (unlikely(ret))
902 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
903
904 } while (iov_iter_count(iter) && !bio_full(bio));
905
906 return 0;
907}
908EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
909
910static void submit_bio_wait_endio(struct bio *bio)
911{
912 complete(bio->bi_private);
913}
914
915/**
916 * submit_bio_wait - submit a bio, and wait until it completes
917 * @bio: The &struct bio which describes the I/O
918 *
919 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
920 * bio_endio() on failure.
921 *
922 * WARNING: Unlike to how submit_bio() is usually used, this function does not
923 * result in bio reference to be consumed. The caller must drop the reference
924 * on his own.
925 */
926int submit_bio_wait(struct bio *bio)
927{
928 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
929
930 bio->bi_private = &done;
931 bio->bi_end_io = submit_bio_wait_endio;
932 bio->bi_opf |= REQ_SYNC;
933 submit_bio(bio);
934 wait_for_completion_io(&done);
935
936 return blk_status_to_errno(bio->bi_status);
937}
938EXPORT_SYMBOL(submit_bio_wait);
939
940/**
941 * bio_advance - increment/complete a bio by some number of bytes
942 * @bio: bio to advance
943 * @bytes: number of bytes to complete
944 *
945 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
946 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
947 * be updated on the last bvec as well.
948 *
949 * @bio will then represent the remaining, uncompleted portion of the io.
950 */
951void bio_advance(struct bio *bio, unsigned bytes)
952{
953 if (bio_integrity(bio))
954 bio_integrity_advance(bio, bytes);
955
956 bio_crypt_advance(bio, bytes);
957 bio_advance_iter(bio, &bio->bi_iter, bytes);
958}
959EXPORT_SYMBOL(bio_advance);
960
961void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
962 struct bio *src, struct bvec_iter *src_iter)
963{
964 struct bio_vec src_bv, dst_bv;
965 void *src_p, *dst_p;
966 unsigned bytes;
967
968 while (src_iter->bi_size && dst_iter->bi_size) {
969 src_bv = bio_iter_iovec(src, *src_iter);
970 dst_bv = bio_iter_iovec(dst, *dst_iter);
971
972 bytes = min(src_bv.bv_len, dst_bv.bv_len);
973
974 src_p = kmap_atomic(src_bv.bv_page);
975 dst_p = kmap_atomic(dst_bv.bv_page);
976
977 memcpy(dst_p + dst_bv.bv_offset,
978 src_p + src_bv.bv_offset,
979 bytes);
980
981 kunmap_atomic(dst_p);
982 kunmap_atomic(src_p);
983
984 flush_dcache_page(dst_bv.bv_page);
985
986 bio_advance_iter(src, src_iter, bytes);
987 bio_advance_iter(dst, dst_iter, bytes);
988 }
989}
990EXPORT_SYMBOL(bio_copy_data_iter);
991
992/**
993 * bio_copy_data - copy contents of data buffers from one bio to another
994 * @src: source bio
995 * @dst: destination bio
996 *
997 * Stops when it reaches the end of either @src or @dst - that is, copies
998 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
999 */
1000void bio_copy_data(struct bio *dst, struct bio *src)
1001{
1002 struct bvec_iter src_iter = src->bi_iter;
1003 struct bvec_iter dst_iter = dst->bi_iter;
1004
1005 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1006}
1007EXPORT_SYMBOL(bio_copy_data);
1008
1009/**
1010 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1011 * another
1012 * @src: source bio list
1013 * @dst: destination bio list
1014 *
1015 * Stops when it reaches the end of either the @src list or @dst list - that is,
1016 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1017 * bios).
1018 */
1019void bio_list_copy_data(struct bio *dst, struct bio *src)
1020{
1021 struct bvec_iter src_iter = src->bi_iter;
1022 struct bvec_iter dst_iter = dst->bi_iter;
1023
1024 while (1) {
1025 if (!src_iter.bi_size) {
1026 src = src->bi_next;
1027 if (!src)
1028 break;
1029
1030 src_iter = src->bi_iter;
1031 }
1032
1033 if (!dst_iter.bi_size) {
1034 dst = dst->bi_next;
1035 if (!dst)
1036 break;
1037
1038 dst_iter = dst->bi_iter;
1039 }
1040
1041 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1042 }
1043}
1044EXPORT_SYMBOL(bio_list_copy_data);
1045
1046struct bio_map_data {
1047 int is_our_pages;
1048 struct iov_iter iter;
1049 struct iovec iov[];
1050};
1051
1052static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1053 gfp_t gfp_mask)
1054{
1055 struct bio_map_data *bmd;
1056 if (data->nr_segs > UIO_MAXIOV)
1057 return NULL;
1058
1059 bmd = kmalloc(sizeof(struct bio_map_data) +
1060 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1061 if (!bmd)
1062 return NULL;
1063 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1064 bmd->iter = *data;
1065 bmd->iter.iov = bmd->iov;
1066 return bmd;
1067}
1068
1069/**
1070 * bio_copy_from_iter - copy all pages from iov_iter to bio
1071 * @bio: The &struct bio which describes the I/O as destination
1072 * @iter: iov_iter as source
1073 *
1074 * Copy all pages from iov_iter to bio.
1075 * Returns 0 on success, or error on failure.
1076 */
1077static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1078{
1079 int i;
1080 struct bio_vec *bvec;
1081
1082 bio_for_each_segment_all(bvec, bio, i) {
1083 ssize_t ret;
1084
1085 ret = copy_page_from_iter(bvec->bv_page,
1086 bvec->bv_offset,
1087 bvec->bv_len,
1088 iter);
1089
1090 if (!iov_iter_count(iter))
1091 break;
1092
1093 if (ret < bvec->bv_len)
1094 return -EFAULT;
1095 }
1096
1097 return 0;
1098}
1099
1100/**
1101 * bio_copy_to_iter - copy all pages from bio to iov_iter
1102 * @bio: The &struct bio which describes the I/O as source
1103 * @iter: iov_iter as destination
1104 *
1105 * Copy all pages from bio to iov_iter.
1106 * Returns 0 on success, or error on failure.
1107 */
1108static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1109{
1110 int i;
1111 struct bio_vec *bvec;
1112
1113 bio_for_each_segment_all(bvec, bio, i) {
1114 ssize_t ret;
1115
1116 ret = copy_page_to_iter(bvec->bv_page,
1117 bvec->bv_offset,
1118 bvec->bv_len,
1119 &iter);
1120
1121 if (!iov_iter_count(&iter))
1122 break;
1123
1124 if (ret < bvec->bv_len)
1125 return -EFAULT;
1126 }
1127
1128 return 0;
1129}
1130
1131void bio_free_pages(struct bio *bio)
1132{
1133 struct bio_vec *bvec;
1134 int i;
1135
1136 bio_for_each_segment_all(bvec, bio, i)
1137 __free_page(bvec->bv_page);
1138}
1139EXPORT_SYMBOL(bio_free_pages);
1140
1141/**
1142 * bio_uncopy_user - finish previously mapped bio
1143 * @bio: bio being terminated
1144 *
1145 * Free pages allocated from bio_copy_user_iov() and write back data
1146 * to user space in case of a read.
1147 */
1148int bio_uncopy_user(struct bio *bio)
1149{
1150 struct bio_map_data *bmd = bio->bi_private;
1151 int ret = 0;
1152
1153 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1154 /*
1155 * if we're in a workqueue, the request is orphaned, so
1156 * don't copy into a random user address space, just free
1157 * and return -EINTR so user space doesn't expect any data.
1158 */
1159 if (!current->mm)
1160 ret = -EINTR;
1161 else if (bio_data_dir(bio) == READ)
1162 ret = bio_copy_to_iter(bio, bmd->iter);
1163 if (bmd->is_our_pages)
1164 bio_free_pages(bio);
1165 }
1166 kfree(bmd);
1167 bio_put(bio);
1168 return ret;
1169}
1170
1171/**
1172 * bio_copy_user_iov - copy user data to bio
1173 * @q: destination block queue
1174 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1175 * @iter: iovec iterator
1176 * @gfp_mask: memory allocation flags
1177 *
1178 * Prepares and returns a bio for indirect user io, bouncing data
1179 * to/from kernel pages as necessary. Must be paired with
1180 * call bio_uncopy_user() on io completion.
1181 */
1182struct bio *bio_copy_user_iov(struct request_queue *q,
1183 struct rq_map_data *map_data,
1184 struct iov_iter *iter,
1185 gfp_t gfp_mask)
1186{
1187 struct bio_map_data *bmd;
1188 struct page *page;
1189 struct bio *bio;
1190 int i = 0, ret;
1191 int nr_pages;
1192 unsigned int len = iter->count;
1193 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1194
1195 bmd = bio_alloc_map_data(iter, gfp_mask);
1196 if (!bmd)
1197 return ERR_PTR(-ENOMEM);
1198
1199 /*
1200 * We need to do a deep copy of the iov_iter including the iovecs.
1201 * The caller provided iov might point to an on-stack or otherwise
1202 * shortlived one.
1203 */
1204 bmd->is_our_pages = map_data ? 0 : 1;
1205
1206 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1207 if (nr_pages > BIO_MAX_PAGES)
1208 nr_pages = BIO_MAX_PAGES;
1209
1210 ret = -ENOMEM;
1211 bio = bio_kmalloc(gfp_mask, nr_pages);
1212 if (!bio)
1213 goto out_bmd;
1214
1215 ret = 0;
1216
1217 if (map_data) {
1218 nr_pages = 1 << map_data->page_order;
1219 i = map_data->offset / PAGE_SIZE;
1220 }
1221 while (len) {
1222 unsigned int bytes = PAGE_SIZE;
1223
1224 bytes -= offset;
1225
1226 if (bytes > len)
1227 bytes = len;
1228
1229 if (map_data) {
1230 if (i == map_data->nr_entries * nr_pages) {
1231 ret = -ENOMEM;
1232 break;
1233 }
1234
1235 page = map_data->pages[i / nr_pages];
1236 page += (i % nr_pages);
1237
1238 i++;
1239 } else {
1240 page = alloc_page(q->bounce_gfp | gfp_mask);
1241 if (!page) {
1242 ret = -ENOMEM;
1243 break;
1244 }
1245 }
1246
1247 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1248 if (!map_data)
1249 __free_page(page);
1250 break;
1251 }
1252
1253 len -= bytes;
1254 offset = 0;
1255 }
1256
1257 if (ret)
1258 goto cleanup;
1259
1260 if (map_data)
1261 map_data->offset += bio->bi_iter.bi_size;
1262
1263 /*
1264 * success
1265 */
1266 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1267 (map_data && map_data->from_user)) {
1268 ret = bio_copy_from_iter(bio, iter);
1269 if (ret)
1270 goto cleanup;
1271 } else {
1272 if (bmd->is_our_pages)
1273 zero_fill_bio(bio);
1274 iov_iter_advance(iter, bio->bi_iter.bi_size);
1275 }
1276
1277 bio->bi_private = bmd;
1278 if (map_data && map_data->null_mapped)
1279 bio_set_flag(bio, BIO_NULL_MAPPED);
1280 return bio;
1281cleanup:
1282 if (!map_data)
1283 bio_free_pages(bio);
1284 bio_put(bio);
1285out_bmd:
1286 kfree(bmd);
1287 return ERR_PTR(ret);
1288}
1289
1290/**
1291 * bio_map_user_iov - map user iovec into bio
1292 * @q: the struct request_queue for the bio
1293 * @iter: iovec iterator
1294 * @gfp_mask: memory allocation flags
1295 *
1296 * Map the user space address into a bio suitable for io to a block
1297 * device. Returns an error pointer in case of error.
1298 */
1299struct bio *bio_map_user_iov(struct request_queue *q,
1300 struct iov_iter *iter,
1301 gfp_t gfp_mask)
1302{
1303 int j;
1304 struct bio *bio;
1305 int ret;
1306 struct bio_vec *bvec;
1307
1308 if (!iov_iter_count(iter))
1309 return ERR_PTR(-EINVAL);
1310
1311 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1312 if (!bio)
1313 return ERR_PTR(-ENOMEM);
1314
1315 while (iov_iter_count(iter)) {
1316 struct page **pages;
1317 ssize_t bytes;
1318 size_t offs, added = 0;
1319 int npages;
1320
1321 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1322 if (unlikely(bytes <= 0)) {
1323 ret = bytes ? bytes : -EFAULT;
1324 goto out_unmap;
1325 }
1326
1327 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1328
1329 if (unlikely(offs & queue_dma_alignment(q))) {
1330 ret = -EINVAL;
1331 j = 0;
1332 } else {
1333 for (j = 0; j < npages; j++) {
1334 struct page *page = pages[j];
1335 unsigned int n = PAGE_SIZE - offs;
1336 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1337
1338 if (n > bytes)
1339 n = bytes;
1340
1341 if (!bio_add_pc_page(q, bio, page, n, offs))
1342 break;
1343
1344 /*
1345 * check if vector was merged with previous
1346 * drop page reference if needed
1347 */
1348 if (bio->bi_vcnt == prev_bi_vcnt)
1349 put_page(page);
1350
1351 added += n;
1352 bytes -= n;
1353 offs = 0;
1354 }
1355 iov_iter_advance(iter, added);
1356 }
1357 /*
1358 * release the pages we didn't map into the bio, if any
1359 */
1360 while (j < npages)
1361 put_page(pages[j++]);
1362 kvfree(pages);
1363 /* couldn't stuff something into bio? */
1364 if (bytes)
1365 break;
1366 }
1367
1368 bio_set_flag(bio, BIO_USER_MAPPED);
1369
1370 /*
1371 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1372 * it would normally disappear when its bi_end_io is run.
1373 * however, we need it for the unmap, so grab an extra
1374 * reference to it
1375 */
1376 bio_get(bio);
1377 return bio;
1378
1379 out_unmap:
1380 bio_for_each_segment_all(bvec, bio, j) {
1381 put_page(bvec->bv_page);
1382 }
1383 bio_put(bio);
1384 return ERR_PTR(ret);
1385}
1386
1387static void __bio_unmap_user(struct bio *bio)
1388{
1389 struct bio_vec *bvec;
1390 int i;
1391
1392 /*
1393 * make sure we dirty pages we wrote to
1394 */
1395 bio_for_each_segment_all(bvec, bio, i) {
1396 if (bio_data_dir(bio) == READ)
1397 set_page_dirty_lock(bvec->bv_page);
1398
1399 put_page(bvec->bv_page);
1400 }
1401
1402 bio_put(bio);
1403}
1404
1405/**
1406 * bio_unmap_user - unmap a bio
1407 * @bio: the bio being unmapped
1408 *
1409 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1410 * process context.
1411 *
1412 * bio_unmap_user() may sleep.
1413 */
1414void bio_unmap_user(struct bio *bio)
1415{
1416 __bio_unmap_user(bio);
1417 bio_put(bio);
1418}
1419
1420static void bio_map_kern_endio(struct bio *bio)
1421{
1422 bio_put(bio);
1423}
1424
1425/**
1426 * bio_map_kern - map kernel address into bio
1427 * @q: the struct request_queue for the bio
1428 * @data: pointer to buffer to map
1429 * @len: length in bytes
1430 * @gfp_mask: allocation flags for bio allocation
1431 *
1432 * Map the kernel address into a bio suitable for io to a block
1433 * device. Returns an error pointer in case of error.
1434 */
1435struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1436 gfp_t gfp_mask)
1437{
1438 unsigned long kaddr = (unsigned long)data;
1439 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1440 unsigned long start = kaddr >> PAGE_SHIFT;
1441 const int nr_pages = end - start;
1442 int offset, i;
1443 struct bio *bio;
1444
1445 bio = bio_kmalloc(gfp_mask, nr_pages);
1446 if (!bio)
1447 return ERR_PTR(-ENOMEM);
1448
1449 offset = offset_in_page(kaddr);
1450 for (i = 0; i < nr_pages; i++) {
1451 unsigned int bytes = PAGE_SIZE - offset;
1452
1453 if (len <= 0)
1454 break;
1455
1456 if (bytes > len)
1457 bytes = len;
1458
1459 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1460 offset) < bytes) {
1461 /* we don't support partial mappings */
1462 bio_put(bio);
1463 return ERR_PTR(-EINVAL);
1464 }
1465
1466 data += bytes;
1467 len -= bytes;
1468 offset = 0;
1469 }
1470
1471 bio->bi_end_io = bio_map_kern_endio;
1472 return bio;
1473}
1474EXPORT_SYMBOL(bio_map_kern);
1475
1476static void bio_copy_kern_endio(struct bio *bio)
1477{
1478 bio_free_pages(bio);
1479 bio_put(bio);
1480}
1481
1482static void bio_copy_kern_endio_read(struct bio *bio)
1483{
1484 char *p = bio->bi_private;
1485 struct bio_vec *bvec;
1486 int i;
1487
1488 bio_for_each_segment_all(bvec, bio, i) {
1489 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1490 p += bvec->bv_len;
1491 }
1492
1493 bio_copy_kern_endio(bio);
1494}
1495
1496/**
1497 * bio_copy_kern - copy kernel address into bio
1498 * @q: the struct request_queue for the bio
1499 * @data: pointer to buffer to copy
1500 * @len: length in bytes
1501 * @gfp_mask: allocation flags for bio and page allocation
1502 * @reading: data direction is READ
1503 *
1504 * copy the kernel address into a bio suitable for io to a block
1505 * device. Returns an error pointer in case of error.
1506 */
1507struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1508 gfp_t gfp_mask, int reading)
1509{
1510 unsigned long kaddr = (unsigned long)data;
1511 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 unsigned long start = kaddr >> PAGE_SHIFT;
1513 struct bio *bio;
1514 void *p = data;
1515 int nr_pages = 0;
1516
1517 /*
1518 * Overflow, abort
1519 */
1520 if (end < start)
1521 return ERR_PTR(-EINVAL);
1522
1523 nr_pages = end - start;
1524 bio = bio_kmalloc(gfp_mask, nr_pages);
1525 if (!bio)
1526 return ERR_PTR(-ENOMEM);
1527
1528 while (len) {
1529 struct page *page;
1530 unsigned int bytes = PAGE_SIZE;
1531
1532 if (bytes > len)
1533 bytes = len;
1534
1535 page = alloc_page(q->bounce_gfp | gfp_mask);
1536 if (!page)
1537 goto cleanup;
1538
1539 if (!reading)
1540 memcpy(page_address(page), p, bytes);
1541
1542 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1543 break;
1544
1545 len -= bytes;
1546 p += bytes;
1547 }
1548
1549 if (reading) {
1550 bio->bi_end_io = bio_copy_kern_endio_read;
1551 bio->bi_private = data;
1552 } else {
1553 bio->bi_end_io = bio_copy_kern_endio;
1554 }
1555
1556 return bio;
1557
1558cleanup:
1559 bio_free_pages(bio);
1560 bio_put(bio);
1561 return ERR_PTR(-ENOMEM);
1562}
1563
1564/*
1565 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1566 * for performing direct-IO in BIOs.
1567 *
1568 * The problem is that we cannot run set_page_dirty() from interrupt context
1569 * because the required locks are not interrupt-safe. So what we can do is to
1570 * mark the pages dirty _before_ performing IO. And in interrupt context,
1571 * check that the pages are still dirty. If so, fine. If not, redirty them
1572 * in process context.
1573 *
1574 * We special-case compound pages here: normally this means reads into hugetlb
1575 * pages. The logic in here doesn't really work right for compound pages
1576 * because the VM does not uniformly chase down the head page in all cases.
1577 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1578 * handle them at all. So we skip compound pages here at an early stage.
1579 *
1580 * Note that this code is very hard to test under normal circumstances because
1581 * direct-io pins the pages with get_user_pages(). This makes
1582 * is_page_cache_freeable return false, and the VM will not clean the pages.
1583 * But other code (eg, flusher threads) could clean the pages if they are mapped
1584 * pagecache.
1585 *
1586 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1587 * deferred bio dirtying paths.
1588 */
1589
1590/*
1591 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1592 */
1593void bio_set_pages_dirty(struct bio *bio)
1594{
1595 struct bio_vec *bvec;
1596 int i;
1597
1598 bio_for_each_segment_all(bvec, bio, i) {
1599 if (!PageCompound(bvec->bv_page))
1600 set_page_dirty_lock(bvec->bv_page);
1601 }
1602}
1603EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1604
1605static void bio_release_pages(struct bio *bio)
1606{
1607 struct bio_vec *bvec;
1608 int i;
1609
1610 bio_for_each_segment_all(bvec, bio, i)
1611 put_page(bvec->bv_page);
1612}
1613
1614/*
1615 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1616 * If they are, then fine. If, however, some pages are clean then they must
1617 * have been written out during the direct-IO read. So we take another ref on
1618 * the BIO and re-dirty the pages in process context.
1619 *
1620 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1621 * here on. It will run one put_page() against each page and will run one
1622 * bio_put() against the BIO.
1623 */
1624
1625static void bio_dirty_fn(struct work_struct *work);
1626
1627static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1628static DEFINE_SPINLOCK(bio_dirty_lock);
1629static struct bio *bio_dirty_list;
1630
1631/*
1632 * This runs in process context
1633 */
1634static void bio_dirty_fn(struct work_struct *work)
1635{
1636 struct bio *bio, *next;
1637
1638 spin_lock_irq(&bio_dirty_lock);
1639 next = bio_dirty_list;
1640 bio_dirty_list = NULL;
1641 spin_unlock_irq(&bio_dirty_lock);
1642
1643 while ((bio = next) != NULL) {
1644 next = bio->bi_private;
1645
1646 bio_set_pages_dirty(bio);
1647 bio_release_pages(bio);
1648 bio_put(bio);
1649 }
1650}
1651
1652void bio_check_pages_dirty(struct bio *bio)
1653{
1654 struct bio_vec *bvec;
1655 unsigned long flags;
1656 int i;
1657
1658 bio_for_each_segment_all(bvec, bio, i) {
1659 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1660 goto defer;
1661 }
1662
1663 bio_release_pages(bio);
1664 bio_put(bio);
1665 return;
1666defer:
1667 spin_lock_irqsave(&bio_dirty_lock, flags);
1668 bio->bi_private = bio_dirty_list;
1669 bio_dirty_list = bio;
1670 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1671 schedule_work(&bio_dirty_work);
1672}
1673EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1674
1675void generic_start_io_acct(struct request_queue *q, int op,
1676 unsigned long sectors, struct hd_struct *part)
1677{
1678 const int sgrp = op_stat_group(op);
1679 int cpu = part_stat_lock();
1680
1681 part_round_stats(q, cpu, part);
1682 part_stat_inc(cpu, part, ios[sgrp]);
1683 part_stat_add(cpu, part, sectors[sgrp], sectors);
1684 part_inc_in_flight(q, part, op_is_write(op));
1685
1686 part_stat_unlock();
1687}
1688EXPORT_SYMBOL(generic_start_io_acct);
1689
1690void generic_end_io_acct(struct request_queue *q, int req_op,
1691 struct hd_struct *part, unsigned long start_time)
1692{
1693 unsigned long duration = jiffies - start_time;
1694 const int sgrp = op_stat_group(req_op);
1695 int cpu = part_stat_lock();
1696
1697 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
1698 part_round_stats(q, cpu, part);
1699 part_dec_in_flight(q, part, op_is_write(req_op));
1700
1701 part_stat_unlock();
1702}
1703EXPORT_SYMBOL(generic_end_io_acct);
1704
1705#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1706void bio_flush_dcache_pages(struct bio *bi)
1707{
1708 struct bio_vec bvec;
1709 struct bvec_iter iter;
1710
1711 bio_for_each_segment(bvec, bi, iter)
1712 flush_dcache_page(bvec.bv_page);
1713}
1714EXPORT_SYMBOL(bio_flush_dcache_pages);
1715#endif
1716
1717static inline bool bio_remaining_done(struct bio *bio)
1718{
1719 /*
1720 * If we're not chaining, then ->__bi_remaining is always 1 and
1721 * we always end io on the first invocation.
1722 */
1723 if (!bio_flagged(bio, BIO_CHAIN))
1724 return true;
1725
1726 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1727
1728 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1729 bio_clear_flag(bio, BIO_CHAIN);
1730 return true;
1731 }
1732
1733 return false;
1734}
1735
1736/**
1737 * bio_endio - end I/O on a bio
1738 * @bio: bio
1739 *
1740 * Description:
1741 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1742 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1743 * bio unless they own it and thus know that it has an end_io function.
1744 *
1745 * bio_endio() can be called several times on a bio that has been chained
1746 * using bio_chain(). The ->bi_end_io() function will only be called the
1747 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1748 * generated if BIO_TRACE_COMPLETION is set.
1749 **/
1750void bio_endio(struct bio *bio)
1751{
1752again:
1753 if (!bio_remaining_done(bio))
1754 return;
1755
1756 if (!blk_crypto_endio(bio))
1757 return;
1758
1759 if (!bio_integrity_endio(bio))
1760 return;
1761
1762 if (bio->bi_disk)
1763 rq_qos_done_bio(bio->bi_disk->queue, bio);
1764
1765 /*
1766 * Need to have a real endio function for chained bios, otherwise
1767 * various corner cases will break (like stacking block devices that
1768 * save/restore bi_end_io) - however, we want to avoid unbounded
1769 * recursion and blowing the stack. Tail call optimization would
1770 * handle this, but compiling with frame pointers also disables
1771 * gcc's sibling call optimization.
1772 */
1773 if (bio->bi_end_io == bio_chain_endio) {
1774 bio = __bio_chain_endio(bio);
1775 goto again;
1776 }
1777
1778 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1779 trace_block_bio_complete(bio->bi_disk->queue, bio,
1780 blk_status_to_errno(bio->bi_status));
1781 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1782 }
1783
1784 blk_throtl_bio_endio(bio);
1785 /* release cgroup info */
1786 bio_uninit(bio);
1787 if (bio->bi_end_io)
1788 bio->bi_end_io(bio);
1789}
1790EXPORT_SYMBOL(bio_endio);
1791
1792/**
1793 * bio_split - split a bio
1794 * @bio: bio to split
1795 * @sectors: number of sectors to split from the front of @bio
1796 * @gfp: gfp mask
1797 * @bs: bio set to allocate from
1798 *
1799 * Allocates and returns a new bio which represents @sectors from the start of
1800 * @bio, and updates @bio to represent the remaining sectors.
1801 *
1802 * Unless this is a discard request the newly allocated bio will point
1803 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1804 * @bio is not freed before the split.
1805 */
1806struct bio *bio_split(struct bio *bio, int sectors,
1807 gfp_t gfp, struct bio_set *bs)
1808{
1809 struct bio *split;
1810
1811 BUG_ON(sectors <= 0);
1812 BUG_ON(sectors >= bio_sectors(bio));
1813
1814 split = bio_clone_fast(bio, gfp, bs);
1815 if (!split)
1816 return NULL;
1817
1818 split->bi_iter.bi_size = sectors << 9;
1819
1820 if (bio_integrity(split))
1821 bio_integrity_trim(split);
1822
1823 bio_advance(bio, split->bi_iter.bi_size);
1824 bio->bi_iter.bi_done = 0;
1825
1826 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1827 bio_set_flag(split, BIO_TRACE_COMPLETION);
1828
1829 return split;
1830}
1831EXPORT_SYMBOL(bio_split);
1832
1833/**
1834 * bio_trim - trim a bio
1835 * @bio: bio to trim
1836 * @offset: number of sectors to trim from the front of @bio
1837 * @size: size we want to trim @bio to, in sectors
1838 */
1839void bio_trim(struct bio *bio, int offset, int size)
1840{
1841 /* 'bio' is a cloned bio which we need to trim to match
1842 * the given offset and size.
1843 */
1844
1845 size <<= 9;
1846 if (offset == 0 && size == bio->bi_iter.bi_size)
1847 return;
1848
1849 bio_clear_flag(bio, BIO_SEG_VALID);
1850
1851 bio_advance(bio, offset << 9);
1852
1853 bio->bi_iter.bi_size = size;
1854
1855 if (bio_integrity(bio))
1856 bio_integrity_trim(bio);
1857
1858}
1859EXPORT_SYMBOL_GPL(bio_trim);
1860
1861/*
1862 * create memory pools for biovec's in a bio_set.
1863 * use the global biovec slabs created for general use.
1864 */
1865int biovec_init_pool(mempool_t *pool, int pool_entries)
1866{
1867 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1868
1869 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1870}
1871
1872/*
1873 * bioset_exit - exit a bioset initialized with bioset_init()
1874 *
1875 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1876 * kzalloc()).
1877 */
1878void bioset_exit(struct bio_set *bs)
1879{
1880 if (bs->rescue_workqueue)
1881 destroy_workqueue(bs->rescue_workqueue);
1882 bs->rescue_workqueue = NULL;
1883
1884 mempool_exit(&bs->bio_pool);
1885 mempool_exit(&bs->bvec_pool);
1886
1887 bioset_integrity_free(bs);
1888 if (bs->bio_slab)
1889 bio_put_slab(bs);
1890 bs->bio_slab = NULL;
1891}
1892EXPORT_SYMBOL(bioset_exit);
1893
1894/**
1895 * bioset_init - Initialize a bio_set
1896 * @bs: pool to initialize
1897 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1898 * @front_pad: Number of bytes to allocate in front of the returned bio
1899 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1900 * and %BIOSET_NEED_RESCUER
1901 *
1902 * Description:
1903 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1904 * to ask for a number of bytes to be allocated in front of the bio.
1905 * Front pad allocation is useful for embedding the bio inside
1906 * another structure, to avoid allocating extra data to go with the bio.
1907 * Note that the bio must be embedded at the END of that structure always,
1908 * or things will break badly.
1909 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1910 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1911 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1912 * dispatch queued requests when the mempool runs out of space.
1913 *
1914 */
1915int bioset_init(struct bio_set *bs,
1916 unsigned int pool_size,
1917 unsigned int front_pad,
1918 int flags)
1919{
1920 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1921
1922 bs->front_pad = front_pad;
1923
1924 spin_lock_init(&bs->rescue_lock);
1925 bio_list_init(&bs->rescue_list);
1926 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1927
1928 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1929 if (!bs->bio_slab)
1930 return -ENOMEM;
1931
1932 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1933 goto bad;
1934
1935 if ((flags & BIOSET_NEED_BVECS) &&
1936 biovec_init_pool(&bs->bvec_pool, pool_size))
1937 goto bad;
1938
1939 if (!(flags & BIOSET_NEED_RESCUER))
1940 return 0;
1941
1942 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1943 if (!bs->rescue_workqueue)
1944 goto bad;
1945
1946 return 0;
1947bad:
1948 bioset_exit(bs);
1949 return -ENOMEM;
1950}
1951EXPORT_SYMBOL(bioset_init);
1952
1953/*
1954 * Initialize and setup a new bio_set, based on the settings from
1955 * another bio_set.
1956 */
1957int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1958{
1959 int flags;
1960
1961 flags = 0;
1962 if (src->bvec_pool.min_nr)
1963 flags |= BIOSET_NEED_BVECS;
1964 if (src->rescue_workqueue)
1965 flags |= BIOSET_NEED_RESCUER;
1966
1967 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1968}
1969EXPORT_SYMBOL(bioset_init_from_src);
1970
1971#ifdef CONFIG_BLK_CGROUP
1972
1973#ifdef CONFIG_MEMCG
1974/**
1975 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1976 * @bio: target bio
1977 * @page: the page to lookup the blkcg from
1978 *
1979 * Associate @bio with the blkcg from @page's owning memcg. This works like
1980 * every other associate function wrt references.
1981 */
1982int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1983{
1984 struct cgroup_subsys_state *blkcg_css;
1985
1986 if (unlikely(bio->bi_css))
1987 return -EBUSY;
1988 if (!page->mem_cgroup)
1989 return 0;
1990 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1991 &io_cgrp_subsys);
1992 bio->bi_css = blkcg_css;
1993 return 0;
1994}
1995#endif /* CONFIG_MEMCG */
1996
1997/**
1998 * bio_associate_blkcg - associate a bio with the specified blkcg
1999 * @bio: target bio
2000 * @blkcg_css: css of the blkcg to associate
2001 *
2002 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2003 * treat @bio as if it were issued by a task which belongs to the blkcg.
2004 *
2005 * This function takes an extra reference of @blkcg_css which will be put
2006 * when @bio is released. The caller must own @bio and is responsible for
2007 * synchronizing calls to this function.
2008 */
2009int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2010{
2011 if (unlikely(bio->bi_css))
2012 return -EBUSY;
2013 css_get(blkcg_css);
2014 bio->bi_css = blkcg_css;
2015 return 0;
2016}
2017EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2018
2019/**
2020 * bio_associate_blkg - associate a bio with the specified blkg
2021 * @bio: target bio
2022 * @blkg: the blkg to associate
2023 *
2024 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2025 * blkcg information associated with the @bio, a reference will be taken on the
2026 * @blkg and will be freed when the bio is freed.
2027 */
2028int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2029{
2030 if (unlikely(bio->bi_blkg))
2031 return -EBUSY;
2032 if (!blkg_try_get(blkg))
2033 return -ENODEV;
2034 bio->bi_blkg = blkg;
2035 return 0;
2036}
2037
2038/**
2039 * bio_disassociate_task - undo bio_associate_current()
2040 * @bio: target bio
2041 */
2042void bio_disassociate_task(struct bio *bio)
2043{
2044 if (bio->bi_ioc) {
2045 put_io_context(bio->bi_ioc);
2046 bio->bi_ioc = NULL;
2047 }
2048 if (bio->bi_css) {
2049 css_put(bio->bi_css);
2050 bio->bi_css = NULL;
2051 }
2052 if (bio->bi_blkg) {
2053 blkg_put(bio->bi_blkg);
2054 bio->bi_blkg = NULL;
2055 }
2056}
2057
2058/**
2059 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2060 * @dst: destination bio
2061 * @src: source bio
2062 */
2063void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2064{
2065 if (src->bi_css)
2066 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2067}
2068EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2069#endif /* CONFIG_BLK_CGROUP */
2070
2071static void __init biovec_init_slabs(void)
2072{
2073 int i;
2074
2075 for (i = 0; i < BVEC_POOL_NR; i++) {
2076 int size;
2077 struct biovec_slab *bvs = bvec_slabs + i;
2078
2079 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2080 bvs->slab = NULL;
2081 continue;
2082 }
2083
2084 size = bvs->nr_vecs * sizeof(struct bio_vec);
2085 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2086 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2087 }
2088}
2089
2090static int __init init_bio(void)
2091{
2092 bio_slab_max = 2;
2093 bio_slab_nr = 0;
2094 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2095 GFP_KERNEL);
2096 if (!bio_slabs)
2097 panic("bio: can't allocate bios\n");
2098
2099 bio_integrity_init();
2100 biovec_init_slabs();
2101
2102 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2103 panic("bio: can't allocate bios\n");
2104
2105 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2106 panic("bio: can't create integrity pool\n");
2107
2108 return 0;
2109}
2110subsys_initcall(init_bio);