| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * I2C adapter for the IMG Serial Control Bus (SCB) IP block. |
| 3 | * |
| 4 | * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * There are three ways that this I2C controller can be driven: |
| 11 | * |
| 12 | * - Raw control of the SDA and SCK signals. |
| 13 | * |
| 14 | * This corresponds to MODE_RAW, which takes control of the signals |
| 15 | * directly for a certain number of clock cycles (the INT_TIMING |
| 16 | * interrupt can be used for timing). |
| 17 | * |
| 18 | * - Atomic commands. A low level I2C symbol (such as generate |
| 19 | * start/stop/ack/nack bit, generate byte, receive byte, and receive |
| 20 | * ACK) is given to the hardware, with detection of completion by bits |
| 21 | * in the LINESTAT register. |
| 22 | * |
| 23 | * This mode of operation is used by MODE_ATOMIC, which uses an I2C |
| 24 | * state machine in the interrupt handler to compose/react to I2C |
| 25 | * transactions using atomic mode commands, and also by MODE_SEQUENCE, |
| 26 | * which emits a simple fixed sequence of atomic mode commands. |
| 27 | * |
| 28 | * Due to software control, the use of atomic commands usually results |
| 29 | * in suboptimal use of the bus, with gaps between the I2C symbols while |
| 30 | * the driver decides what to do next. |
| 31 | * |
| 32 | * - Automatic mode. A bus address, and whether to read/write is |
| 33 | * specified, and the hardware takes care of the I2C state machine, |
| 34 | * using a FIFO to send/receive bytes of data to an I2C slave. The |
| 35 | * driver just has to keep the FIFO drained or filled in response to the |
| 36 | * appropriate FIFO interrupts. |
| 37 | * |
| 38 | * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals |
| 39 | * with control of repeated start bits between I2C messages. |
| 40 | * |
| 41 | * Use of automatic mode and the FIFO can make much more efficient use |
| 42 | * of the bus compared to individual atomic commands, with potentially |
| 43 | * no wasted time between I2C symbols or I2C messages. |
| 44 | * |
| 45 | * In most cases MODE_AUTOMATIC is used, however if any of the messages in |
| 46 | * a transaction are zero byte writes (e.g. used by i2cdetect for probing |
| 47 | * the bus), MODE_ATOMIC must be used since automatic mode is normally |
| 48 | * started by the writing of data into the FIFO. |
| 49 | * |
| 50 | * The other modes are used in specific circumstances where MODE_ATOMIC and |
| 51 | * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus |
| 52 | * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure |
| 53 | * it is in a sane state. |
| 54 | * |
| 55 | * Notice that the driver implements a timer-based timeout mechanism. |
| 56 | * The reason for this mechanism is to reduce the number of interrupts |
| 57 | * received in automatic mode. |
| 58 | * |
| 59 | * The driver would get a slave event and transaction done interrupts for |
| 60 | * each atomic mode command that gets completed. However, these events are |
| 61 | * not needed in automatic mode, becase those atomic mode commands are |
| 62 | * managed automatically by the hardware. |
| 63 | * |
| 64 | * In practice, normal I2C transactions will be complete well before you |
| 65 | * get the timer interrupt, as the timer is re-scheduled during FIFO |
| 66 | * maintenance and disabled after the transaction is complete. |
| 67 | * |
| 68 | * In this way normal automatic mode operation isn't impacted by |
| 69 | * unnecessary interrupts, but the exceptional abort condition can still be |
| 70 | * detected (with a slight delay). |
| 71 | */ |
| 72 | |
| 73 | #include <linux/bitops.h> |
| 74 | #include <linux/clk.h> |
| 75 | #include <linux/completion.h> |
| 76 | #include <linux/err.h> |
| 77 | #include <linux/i2c.h> |
| 78 | #include <linux/init.h> |
| 79 | #include <linux/interrupt.h> |
| 80 | #include <linux/io.h> |
| 81 | #include <linux/kernel.h> |
| 82 | #include <linux/module.h> |
| 83 | #include <linux/of_platform.h> |
| 84 | #include <linux/platform_device.h> |
| 85 | #include <linux/pm_runtime.h> |
| 86 | #include <linux/slab.h> |
| 87 | #include <linux/timer.h> |
| 88 | |
| 89 | /* Register offsets */ |
| 90 | |
| 91 | #define SCB_STATUS_REG 0x00 |
| 92 | #define SCB_OVERRIDE_REG 0x04 |
| 93 | #define SCB_READ_ADDR_REG 0x08 |
| 94 | #define SCB_READ_COUNT_REG 0x0c |
| 95 | #define SCB_WRITE_ADDR_REG 0x10 |
| 96 | #define SCB_READ_DATA_REG 0x14 |
| 97 | #define SCB_WRITE_DATA_REG 0x18 |
| 98 | #define SCB_FIFO_STATUS_REG 0x1c |
| 99 | #define SCB_CONTROL_SOFT_RESET 0x1f |
| 100 | #define SCB_CLK_SET_REG 0x3c |
| 101 | #define SCB_INT_STATUS_REG 0x40 |
| 102 | #define SCB_INT_CLEAR_REG 0x44 |
| 103 | #define SCB_INT_MASK_REG 0x48 |
| 104 | #define SCB_CONTROL_REG 0x4c |
| 105 | #define SCB_TIME_TPL_REG 0x50 |
| 106 | #define SCB_TIME_TPH_REG 0x54 |
| 107 | #define SCB_TIME_TP2S_REG 0x58 |
| 108 | #define SCB_TIME_TBI_REG 0x60 |
| 109 | #define SCB_TIME_TSL_REG 0x64 |
| 110 | #define SCB_TIME_TDL_REG 0x68 |
| 111 | #define SCB_TIME_TSDL_REG 0x6c |
| 112 | #define SCB_TIME_TSDH_REG 0x70 |
| 113 | #define SCB_READ_XADDR_REG 0x74 |
| 114 | #define SCB_WRITE_XADDR_REG 0x78 |
| 115 | #define SCB_WRITE_COUNT_REG 0x7c |
| 116 | #define SCB_CORE_REV_REG 0x80 |
| 117 | #define SCB_TIME_TCKH_REG 0x84 |
| 118 | #define SCB_TIME_TCKL_REG 0x88 |
| 119 | #define SCB_FIFO_FLUSH_REG 0x8c |
| 120 | #define SCB_READ_FIFO_REG 0x94 |
| 121 | #define SCB_CLEAR_REG 0x98 |
| 122 | |
| 123 | /* SCB_CONTROL_REG bits */ |
| 124 | |
| 125 | #define SCB_CONTROL_CLK_ENABLE 0x1e0 |
| 126 | #define SCB_CONTROL_TRANSACTION_HALT 0x200 |
| 127 | |
| 128 | #define FIFO_READ_FULL BIT(0) |
| 129 | #define FIFO_READ_EMPTY BIT(1) |
| 130 | #define FIFO_WRITE_FULL BIT(2) |
| 131 | #define FIFO_WRITE_EMPTY BIT(3) |
| 132 | |
| 133 | /* SCB_CLK_SET_REG bits */ |
| 134 | #define SCB_FILT_DISABLE BIT(31) |
| 135 | #define SCB_FILT_BYPASS BIT(30) |
| 136 | #define SCB_FILT_INC_MASK 0x7f |
| 137 | #define SCB_FILT_INC_SHIFT 16 |
| 138 | #define SCB_INC_MASK 0x7f |
| 139 | #define SCB_INC_SHIFT 8 |
| 140 | |
| 141 | /* SCB_INT_*_REG bits */ |
| 142 | |
| 143 | #define INT_BUS_INACTIVE BIT(0) |
| 144 | #define INT_UNEXPECTED_START BIT(1) |
| 145 | #define INT_SCLK_LOW_TIMEOUT BIT(2) |
| 146 | #define INT_SDAT_LOW_TIMEOUT BIT(3) |
| 147 | #define INT_WRITE_ACK_ERR BIT(4) |
| 148 | #define INT_ADDR_ACK_ERR BIT(5) |
| 149 | #define INT_FIFO_FULL BIT(9) |
| 150 | #define INT_FIFO_FILLING BIT(10) |
| 151 | #define INT_FIFO_EMPTY BIT(11) |
| 152 | #define INT_FIFO_EMPTYING BIT(12) |
| 153 | #define INT_TRANSACTION_DONE BIT(15) |
| 154 | #define INT_SLAVE_EVENT BIT(16) |
| 155 | #define INT_MASTER_HALTED BIT(17) |
| 156 | #define INT_TIMING BIT(18) |
| 157 | #define INT_STOP_DETECTED BIT(19) |
| 158 | |
| 159 | #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING) |
| 160 | |
| 161 | /* Level interrupts need clearing after handling instead of before */ |
| 162 | #define INT_LEVEL 0x01e00 |
| 163 | |
| 164 | /* Don't allow any interrupts while the clock may be off */ |
| 165 | #define INT_ENABLE_MASK_INACTIVE 0x00000 |
| 166 | |
| 167 | /* Interrupt masks for the different driver modes */ |
| 168 | |
| 169 | #define INT_ENABLE_MASK_RAW INT_TIMING |
| 170 | |
| 171 | #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \ |
| 172 | INT_SLAVE_EVENT | \ |
| 173 | INT_ADDR_ACK_ERR | \ |
| 174 | INT_WRITE_ACK_ERR) |
| 175 | |
| 176 | #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \ |
| 177 | INT_ADDR_ACK_ERR | \ |
| 178 | INT_WRITE_ACK_ERR | \ |
| 179 | INT_FIFO_FULL | \ |
| 180 | INT_FIFO_FILLING | \ |
| 181 | INT_FIFO_EMPTY | \ |
| 182 | INT_MASTER_HALTED | \ |
| 183 | INT_STOP_DETECTED) |
| 184 | |
| 185 | #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \ |
| 186 | INT_ADDR_ACK_ERR | \ |
| 187 | INT_WRITE_ACK_ERR) |
| 188 | |
| 189 | /* SCB_STATUS_REG fields */ |
| 190 | |
| 191 | #define LINESTAT_SCLK_LINE_STATUS BIT(0) |
| 192 | #define LINESTAT_SCLK_EN BIT(1) |
| 193 | #define LINESTAT_SDAT_LINE_STATUS BIT(2) |
| 194 | #define LINESTAT_SDAT_EN BIT(3) |
| 195 | #define LINESTAT_DET_START_STATUS BIT(4) |
| 196 | #define LINESTAT_DET_STOP_STATUS BIT(5) |
| 197 | #define LINESTAT_DET_ACK_STATUS BIT(6) |
| 198 | #define LINESTAT_DET_NACK_STATUS BIT(7) |
| 199 | #define LINESTAT_BUS_IDLE BIT(8) |
| 200 | #define LINESTAT_T_DONE_STATUS BIT(9) |
| 201 | #define LINESTAT_SCLK_OUT_STATUS BIT(10) |
| 202 | #define LINESTAT_SDAT_OUT_STATUS BIT(11) |
| 203 | #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12) |
| 204 | #define LINESTAT_START_BIT_DET BIT(13) |
| 205 | #define LINESTAT_STOP_BIT_DET BIT(14) |
| 206 | #define LINESTAT_ACK_DET BIT(15) |
| 207 | #define LINESTAT_NACK_DET BIT(16) |
| 208 | #define LINESTAT_INPUT_HELD_V BIT(17) |
| 209 | #define LINESTAT_ABORT_DET BIT(18) |
| 210 | #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET) |
| 211 | #define LINESTAT_INPUT_DATA 0xff000000 |
| 212 | #define LINESTAT_INPUT_DATA_SHIFT 24 |
| 213 | |
| 214 | #define LINESTAT_CLEAR_SHIFT 13 |
| 215 | #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT) |
| 216 | |
| 217 | /* SCB_OVERRIDE_REG fields */ |
| 218 | |
| 219 | #define OVERRIDE_SCLK_OVR BIT(0) |
| 220 | #define OVERRIDE_SCLKEN_OVR BIT(1) |
| 221 | #define OVERRIDE_SDAT_OVR BIT(2) |
| 222 | #define OVERRIDE_SDATEN_OVR BIT(3) |
| 223 | #define OVERRIDE_MASTER BIT(9) |
| 224 | #define OVERRIDE_LINE_OVR_EN BIT(10) |
| 225 | #define OVERRIDE_DIRECT BIT(11) |
| 226 | #define OVERRIDE_CMD_SHIFT 4 |
| 227 | #define OVERRIDE_CMD_MASK 0x1f |
| 228 | #define OVERRIDE_DATA_SHIFT 24 |
| 229 | |
| 230 | #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| 231 | OVERRIDE_SCLKEN_OVR) |
| 232 | #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \ |
| 233 | OVERRIDE_SCLKEN_OVR | \ |
| 234 | OVERRIDE_SCLK_OVR) |
| 235 | #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| 236 | OVERRIDE_SDATEN_OVR) |
| 237 | #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \ |
| 238 | OVERRIDE_SDATEN_OVR | \ |
| 239 | OVERRIDE_SDAT_OVR) |
| 240 | |
| 241 | /* OVERRIDE_CMD values */ |
| 242 | |
| 243 | #define CMD_PAUSE 0x00 |
| 244 | #define CMD_GEN_DATA 0x01 |
| 245 | #define CMD_GEN_START 0x02 |
| 246 | #define CMD_GEN_STOP 0x03 |
| 247 | #define CMD_GEN_ACK 0x04 |
| 248 | #define CMD_GEN_NACK 0x05 |
| 249 | #define CMD_RET_DATA 0x08 |
| 250 | #define CMD_RET_ACK 0x09 |
| 251 | |
| 252 | /* Fixed timing values */ |
| 253 | |
| 254 | #define TIMEOUT_TBI 0x0 |
| 255 | #define TIMEOUT_TSL 0xffff |
| 256 | #define TIMEOUT_TDL 0x0 |
| 257 | |
| 258 | /* Transaction timeout */ |
| 259 | |
| 260 | #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000)) |
| 261 | |
| 262 | /* |
| 263 | * Worst incs are 1 (innacurate) and 16*256 (irregular). |
| 264 | * So a sensible inc is the logarithmic mean: 64 (2^6), which is |
| 265 | * in the middle of the valid range (0-127). |
| 266 | */ |
| 267 | #define SCB_OPT_INC 64 |
| 268 | |
| 269 | /* Setup the clock enable filtering for 25 ns */ |
| 270 | #define SCB_FILT_GLITCH 25 |
| 271 | |
| 272 | /* |
| 273 | * Bits to return from interrupt handler functions for different modes. |
| 274 | * This delays completion until we've finished with the registers, so that the |
| 275 | * function waiting for completion can safely disable the clock to save power. |
| 276 | */ |
| 277 | #define ISR_COMPLETE_M BIT(31) |
| 278 | #define ISR_FATAL_M BIT(30) |
| 279 | #define ISR_WAITSTOP BIT(29) |
| 280 | #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */ |
| 281 | #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err))) |
| 282 | #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M) |
| 283 | |
| 284 | #define IMG_I2C_PM_TIMEOUT 1000 /* ms */ |
| 285 | |
| 286 | enum img_i2c_mode { |
| 287 | MODE_INACTIVE, |
| 288 | MODE_RAW, |
| 289 | MODE_ATOMIC, |
| 290 | MODE_AUTOMATIC, |
| 291 | MODE_SEQUENCE, |
| 292 | MODE_FATAL, |
| 293 | MODE_WAITSTOP, |
| 294 | MODE_SUSPEND, |
| 295 | }; |
| 296 | |
| 297 | /* Timing parameters for i2c modes (in ns) */ |
| 298 | struct img_i2c_timings { |
| 299 | const char *name; |
| 300 | unsigned int max_bitrate; |
| 301 | unsigned int tckh, tckl, tsdh, tsdl; |
| 302 | unsigned int tp2s, tpl, tph; |
| 303 | }; |
| 304 | |
| 305 | /* The timings array must be ordered from slower to faster */ |
| 306 | static struct img_i2c_timings timings[] = { |
| 307 | /* Standard mode */ |
| 308 | { |
| 309 | .name = "standard", |
| 310 | .max_bitrate = 100000, |
| 311 | .tckh = 4000, |
| 312 | .tckl = 4700, |
| 313 | .tsdh = 4700, |
| 314 | .tsdl = 8700, |
| 315 | .tp2s = 4700, |
| 316 | .tpl = 4700, |
| 317 | .tph = 4000, |
| 318 | }, |
| 319 | /* Fast mode */ |
| 320 | { |
| 321 | .name = "fast", |
| 322 | .max_bitrate = 400000, |
| 323 | .tckh = 600, |
| 324 | .tckl = 1300, |
| 325 | .tsdh = 600, |
| 326 | .tsdl = 1200, |
| 327 | .tp2s = 1300, |
| 328 | .tpl = 600, |
| 329 | .tph = 600, |
| 330 | }, |
| 331 | }; |
| 332 | |
| 333 | /* Reset dance */ |
| 334 | static u8 img_i2c_reset_seq[] = { CMD_GEN_START, |
| 335 | CMD_GEN_DATA, 0xff, |
| 336 | CMD_RET_ACK, |
| 337 | CMD_GEN_START, |
| 338 | CMD_GEN_STOP, |
| 339 | 0 }; |
| 340 | /* Just issue a stop (after an abort condition) */ |
| 341 | static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP, |
| 342 | 0 }; |
| 343 | |
| 344 | /* We're interested in different interrupts depending on the mode */ |
| 345 | static unsigned int img_i2c_int_enable_by_mode[] = { |
| 346 | [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE, |
| 347 | [MODE_RAW] = INT_ENABLE_MASK_RAW, |
| 348 | [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC, |
| 349 | [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC, |
| 350 | [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC, |
| 351 | [MODE_FATAL] = 0, |
| 352 | [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP, |
| 353 | [MODE_SUSPEND] = 0, |
| 354 | }; |
| 355 | |
| 356 | /* Atomic command names */ |
| 357 | static const char * const img_i2c_atomic_cmd_names[] = { |
| 358 | [CMD_PAUSE] = "PAUSE", |
| 359 | [CMD_GEN_DATA] = "GEN_DATA", |
| 360 | [CMD_GEN_START] = "GEN_START", |
| 361 | [CMD_GEN_STOP] = "GEN_STOP", |
| 362 | [CMD_GEN_ACK] = "GEN_ACK", |
| 363 | [CMD_GEN_NACK] = "GEN_NACK", |
| 364 | [CMD_RET_DATA] = "RET_DATA", |
| 365 | [CMD_RET_ACK] = "RET_ACK", |
| 366 | }; |
| 367 | |
| 368 | struct img_i2c { |
| 369 | struct i2c_adapter adap; |
| 370 | |
| 371 | void __iomem *base; |
| 372 | |
| 373 | /* |
| 374 | * The scb core clock is used to get the input frequency, and to disable |
| 375 | * it after every set of transactions to save some power. |
| 376 | */ |
| 377 | struct clk *scb_clk, *sys_clk; |
| 378 | unsigned int bitrate; |
| 379 | bool need_wr_rd_fence; |
| 380 | |
| 381 | /* state */ |
| 382 | struct completion msg_complete; |
| 383 | spinlock_t lock; /* lock before doing anything with the state */ |
| 384 | struct i2c_msg msg; |
| 385 | |
| 386 | /* After the last transaction, wait for a stop bit */ |
| 387 | bool last_msg; |
| 388 | int msg_status; |
| 389 | |
| 390 | enum img_i2c_mode mode; |
| 391 | u32 int_enable; /* depends on mode */ |
| 392 | u32 line_status; /* line status over command */ |
| 393 | |
| 394 | /* |
| 395 | * To avoid slave event interrupts in automatic mode, use a timer to |
| 396 | * poll the abort condition if we don't get an interrupt for too long. |
| 397 | */ |
| 398 | struct timer_list check_timer; |
| 399 | bool t_halt; |
| 400 | |
| 401 | /* atomic mode state */ |
| 402 | bool at_t_done; |
| 403 | bool at_slave_event; |
| 404 | int at_cur_cmd; |
| 405 | u8 at_cur_data; |
| 406 | |
| 407 | /* Sequence: either reset or stop. See img_i2c_sequence. */ |
| 408 | u8 *seq; |
| 409 | |
| 410 | /* raw mode */ |
| 411 | unsigned int raw_timeout; |
| 412 | }; |
| 413 | |
| 414 | static int img_i2c_runtime_suspend(struct device *dev); |
| 415 | static int img_i2c_runtime_resume(struct device *dev); |
| 416 | |
| 417 | static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value) |
| 418 | { |
| 419 | writel(value, i2c->base + offset); |
| 420 | } |
| 421 | |
| 422 | static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset) |
| 423 | { |
| 424 | return readl(i2c->base + offset); |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * The code to read from the master read fifo, and write to the master |
| 429 | * write fifo, checks a bit in an SCB register before every byte to |
| 430 | * ensure that the fifo is not full (write fifo) or empty (read fifo). |
| 431 | * Due to clock domain crossing inside the SCB block the updated value |
| 432 | * of this bit is only visible after 2 cycles. |
| 433 | * |
| 434 | * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only |
| 435 | * revision register), and it's called after reading from or writing to the |
| 436 | * fifos to ensure that subsequent reads of the fifo status bits do not read |
| 437 | * stale values. |
| 438 | */ |
| 439 | static void img_i2c_wr_rd_fence(struct img_i2c *i2c) |
| 440 | { |
| 441 | if (i2c->need_wr_rd_fence) { |
| 442 | img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| 443 | img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode) |
| 448 | { |
| 449 | i2c->mode = mode; |
| 450 | i2c->int_enable = img_i2c_int_enable_by_mode[mode]; |
| 451 | i2c->line_status = 0; |
| 452 | } |
| 453 | |
| 454 | static void img_i2c_raw_op(struct img_i2c *i2c) |
| 455 | { |
| 456 | i2c->raw_timeout = 0; |
| 457 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| 458 | OVERRIDE_SCLKEN_OVR | |
| 459 | OVERRIDE_SDATEN_OVR | |
| 460 | OVERRIDE_MASTER | |
| 461 | OVERRIDE_LINE_OVR_EN | |
| 462 | OVERRIDE_DIRECT | |
| 463 | ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| 464 | (i2c->at_cur_data << OVERRIDE_DATA_SHIFT)); |
| 465 | } |
| 466 | |
| 467 | static const char *img_i2c_atomic_op_name(unsigned int cmd) |
| 468 | { |
| 469 | if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names))) |
| 470 | return "UNKNOWN"; |
| 471 | return img_i2c_atomic_cmd_names[cmd]; |
| 472 | } |
| 473 | |
| 474 | /* Send a single atomic mode command to the hardware */ |
| 475 | static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data) |
| 476 | { |
| 477 | i2c->at_cur_cmd = cmd; |
| 478 | i2c->at_cur_data = data; |
| 479 | |
| 480 | /* work around lack of data setup time when generating data */ |
| 481 | if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) { |
| 482 | u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 483 | |
| 484 | if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) { |
| 485 | /* hold the data line down for a moment */ |
| 486 | img_i2c_switch_mode(i2c, MODE_RAW); |
| 487 | img_i2c_raw_op(i2c); |
| 488 | return; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | dev_dbg(i2c->adap.dev.parent, |
| 493 | "atomic cmd=%s (%d) data=%#x\n", |
| 494 | img_i2c_atomic_op_name(cmd), cmd, data); |
| 495 | i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK); |
| 496 | i2c->at_slave_event = false; |
| 497 | i2c->line_status = 0; |
| 498 | |
| 499 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| 500 | ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| 501 | OVERRIDE_MASTER | |
| 502 | OVERRIDE_DIRECT | |
| 503 | (data << OVERRIDE_DATA_SHIFT)); |
| 504 | } |
| 505 | |
| 506 | /* Start a transaction in atomic mode */ |
| 507 | static void img_i2c_atomic_start(struct img_i2c *i2c) |
| 508 | { |
| 509 | img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| 510 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 511 | img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00); |
| 512 | } |
| 513 | |
| 514 | static void img_i2c_soft_reset(struct img_i2c *i2c) |
| 515 | { |
| 516 | i2c->t_halt = false; |
| 517 | img_i2c_writel(i2c, SCB_CONTROL_REG, 0); |
| 518 | img_i2c_writel(i2c, SCB_CONTROL_REG, |
| 519 | SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET); |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * Enable or release transaction halt for control of repeated starts. |
| 524 | * In version 3.3 of the IP when transaction halt is set, an interrupt |
| 525 | * will be generated after each byte of a transfer instead of after |
| 526 | * every transfer but before the stop bit. |
| 527 | * Due to this behaviour we have to be careful that every time we |
| 528 | * release the transaction halt we have to re-enable it straight away |
| 529 | * so that we only process a single byte, not doing so will result in |
| 530 | * all remaining bytes been processed and a stop bit being issued, |
| 531 | * which will prevent us having a repeated start. |
| 532 | */ |
| 533 | static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt) |
| 534 | { |
| 535 | u32 val; |
| 536 | |
| 537 | if (i2c->t_halt == t_halt) |
| 538 | return; |
| 539 | i2c->t_halt = t_halt; |
| 540 | val = img_i2c_readl(i2c, SCB_CONTROL_REG); |
| 541 | if (t_halt) |
| 542 | val |= SCB_CONTROL_TRANSACTION_HALT; |
| 543 | else |
| 544 | val &= ~SCB_CONTROL_TRANSACTION_HALT; |
| 545 | img_i2c_writel(i2c, SCB_CONTROL_REG, val); |
| 546 | } |
| 547 | |
| 548 | /* Drain data from the FIFO into the buffer (automatic mode) */ |
| 549 | static void img_i2c_read_fifo(struct img_i2c *i2c) |
| 550 | { |
| 551 | while (i2c->msg.len) { |
| 552 | u32 fifo_status; |
| 553 | u8 data; |
| 554 | |
| 555 | img_i2c_wr_rd_fence(i2c); |
| 556 | fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| 557 | if (fifo_status & FIFO_READ_EMPTY) |
| 558 | break; |
| 559 | |
| 560 | data = img_i2c_readl(i2c, SCB_READ_DATA_REG); |
| 561 | *i2c->msg.buf = data; |
| 562 | |
| 563 | img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff); |
| 564 | i2c->msg.len--; |
| 565 | i2c->msg.buf++; |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | /* Fill the FIFO with data from the buffer (automatic mode) */ |
| 570 | static void img_i2c_write_fifo(struct img_i2c *i2c) |
| 571 | { |
| 572 | while (i2c->msg.len) { |
| 573 | u32 fifo_status; |
| 574 | |
| 575 | img_i2c_wr_rd_fence(i2c); |
| 576 | fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| 577 | if (fifo_status & FIFO_WRITE_FULL) |
| 578 | break; |
| 579 | |
| 580 | img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf); |
| 581 | i2c->msg.len--; |
| 582 | i2c->msg.buf++; |
| 583 | } |
| 584 | |
| 585 | /* Disable fifo emptying interrupt if nothing more to write */ |
| 586 | if (!i2c->msg.len) |
| 587 | i2c->int_enable &= ~INT_FIFO_EMPTYING; |
| 588 | } |
| 589 | |
| 590 | /* Start a read transaction in automatic mode */ |
| 591 | static void img_i2c_read(struct img_i2c *i2c) |
| 592 | { |
| 593 | img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| 594 | if (!i2c->last_msg) |
| 595 | i2c->int_enable |= INT_SLAVE_EVENT; |
| 596 | |
| 597 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 598 | img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr); |
| 599 | img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len); |
| 600 | |
| 601 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 602 | } |
| 603 | |
| 604 | /* Start a write transaction in automatic mode */ |
| 605 | static void img_i2c_write(struct img_i2c *i2c) |
| 606 | { |
| 607 | img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| 608 | if (!i2c->last_msg) |
| 609 | i2c->int_enable |= INT_SLAVE_EVENT; |
| 610 | |
| 611 | img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr); |
| 612 | img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len); |
| 613 | |
| 614 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 615 | img_i2c_write_fifo(i2c); |
| 616 | |
| 617 | /* img_i2c_write_fifo() may modify int_enable */ |
| 618 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 619 | } |
| 620 | |
| 621 | /* |
| 622 | * Indicate that the transaction is complete. This is called from the |
| 623 | * ISR to wake up the waiting thread, after which the ISR must not |
| 624 | * access any more SCB registers. |
| 625 | */ |
| 626 | static void img_i2c_complete_transaction(struct img_i2c *i2c, int status) |
| 627 | { |
| 628 | img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| 629 | if (status) { |
| 630 | i2c->msg_status = status; |
| 631 | img_i2c_transaction_halt(i2c, false); |
| 632 | } |
| 633 | complete(&i2c->msg_complete); |
| 634 | } |
| 635 | |
| 636 | static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c, |
| 637 | u32 int_status, u32 line_status) |
| 638 | { |
| 639 | /* Stay in raw mode for this, so we don't just loop infinitely */ |
| 640 | img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data); |
| 641 | img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status, |
| 646 | u32 line_status) |
| 647 | { |
| 648 | if (int_status & INT_TIMING) { |
| 649 | if (i2c->raw_timeout == 0) |
| 650 | return img_i2c_raw_atomic_delay_handler(i2c, |
| 651 | int_status, line_status); |
| 652 | --i2c->raw_timeout; |
| 653 | } |
| 654 | return 0; |
| 655 | } |
| 656 | |
| 657 | static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status) |
| 658 | { |
| 659 | static const unsigned int continue_bits[] = { |
| 660 | [CMD_GEN_START] = LINESTAT_START_BIT_DET, |
| 661 | [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V, |
| 662 | [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET, |
| 663 | [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V, |
| 664 | [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET, |
| 665 | }; |
| 666 | int next_cmd = -1; |
| 667 | u8 next_data = 0x00; |
| 668 | |
| 669 | if (int_status & INT_SLAVE_EVENT) |
| 670 | i2c->at_slave_event = true; |
| 671 | if (int_status & INT_TRANSACTION_DONE) |
| 672 | i2c->at_t_done = true; |
| 673 | |
| 674 | if (!i2c->at_slave_event || !i2c->at_t_done) |
| 675 | return 0; |
| 676 | |
| 677 | /* wait if no continue bits are set */ |
| 678 | if (i2c->at_cur_cmd >= 0 && |
| 679 | i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) { |
| 680 | unsigned int cont_bits = continue_bits[i2c->at_cur_cmd]; |
| 681 | |
| 682 | if (cont_bits) { |
| 683 | cont_bits |= LINESTAT_ABORT_DET; |
| 684 | if (!(i2c->line_status & cont_bits)) |
| 685 | return 0; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | /* follow the sequence of commands in i2c->seq */ |
| 690 | next_cmd = *i2c->seq; |
| 691 | /* stop on a nil */ |
| 692 | if (!next_cmd) { |
| 693 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| 694 | return ISR_COMPLETE(0); |
| 695 | } |
| 696 | /* when generating data, the next byte is the data */ |
| 697 | if (next_cmd == CMD_GEN_DATA) { |
| 698 | ++i2c->seq; |
| 699 | next_data = *i2c->seq; |
| 700 | } |
| 701 | ++i2c->seq; |
| 702 | img_i2c_atomic_op(i2c, next_cmd, next_data); |
| 703 | |
| 704 | return 0; |
| 705 | } |
| 706 | |
| 707 | static void img_i2c_reset_start(struct img_i2c *i2c) |
| 708 | { |
| 709 | /* Initiate the magic dance */ |
| 710 | img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| 711 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 712 | i2c->seq = img_i2c_reset_seq; |
| 713 | i2c->at_slave_event = true; |
| 714 | i2c->at_t_done = true; |
| 715 | i2c->at_cur_cmd = -1; |
| 716 | |
| 717 | /* img_i2c_reset_seq isn't empty so the following won't fail */ |
| 718 | img_i2c_sequence(i2c, 0); |
| 719 | } |
| 720 | |
| 721 | static void img_i2c_stop_start(struct img_i2c *i2c) |
| 722 | { |
| 723 | /* Initiate a stop bit sequence */ |
| 724 | img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| 725 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 726 | i2c->seq = img_i2c_stop_seq; |
| 727 | i2c->at_slave_event = true; |
| 728 | i2c->at_t_done = true; |
| 729 | i2c->at_cur_cmd = -1; |
| 730 | |
| 731 | /* img_i2c_stop_seq isn't empty so the following won't fail */ |
| 732 | img_i2c_sequence(i2c, 0); |
| 733 | } |
| 734 | |
| 735 | static unsigned int img_i2c_atomic(struct img_i2c *i2c, |
| 736 | u32 int_status, |
| 737 | u32 line_status) |
| 738 | { |
| 739 | int next_cmd = -1; |
| 740 | u8 next_data = 0x00; |
| 741 | |
| 742 | if (int_status & INT_SLAVE_EVENT) |
| 743 | i2c->at_slave_event = true; |
| 744 | if (int_status & INT_TRANSACTION_DONE) |
| 745 | i2c->at_t_done = true; |
| 746 | |
| 747 | if (!i2c->at_slave_event || !i2c->at_t_done) |
| 748 | goto next_atomic_cmd; |
| 749 | if (i2c->line_status & LINESTAT_ABORT_DET) { |
| 750 | dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| 751 | next_cmd = CMD_GEN_STOP; |
| 752 | i2c->msg_status = -EIO; |
| 753 | goto next_atomic_cmd; |
| 754 | } |
| 755 | |
| 756 | /* i2c->at_cur_cmd may have completed */ |
| 757 | switch (i2c->at_cur_cmd) { |
| 758 | case CMD_GEN_START: |
| 759 | next_cmd = CMD_GEN_DATA; |
| 760 | next_data = i2c_8bit_addr_from_msg(&i2c->msg); |
| 761 | break; |
| 762 | case CMD_GEN_DATA: |
| 763 | if (i2c->line_status & LINESTAT_INPUT_HELD_V) |
| 764 | next_cmd = CMD_RET_ACK; |
| 765 | break; |
| 766 | case CMD_RET_ACK: |
| 767 | if (i2c->line_status & LINESTAT_ACK_DET || |
| 768 | (i2c->line_status & LINESTAT_NACK_DET && |
| 769 | i2c->msg.flags & I2C_M_IGNORE_NAK)) { |
| 770 | if (i2c->msg.len == 0) { |
| 771 | next_cmd = CMD_GEN_STOP; |
| 772 | } else if (i2c->msg.flags & I2C_M_RD) { |
| 773 | next_cmd = CMD_RET_DATA; |
| 774 | } else { |
| 775 | next_cmd = CMD_GEN_DATA; |
| 776 | next_data = *i2c->msg.buf; |
| 777 | --i2c->msg.len; |
| 778 | ++i2c->msg.buf; |
| 779 | } |
| 780 | } else if (i2c->line_status & LINESTAT_NACK_DET) { |
| 781 | i2c->msg_status = -EIO; |
| 782 | next_cmd = CMD_GEN_STOP; |
| 783 | } |
| 784 | break; |
| 785 | case CMD_RET_DATA: |
| 786 | if (i2c->line_status & LINESTAT_INPUT_HELD_V) { |
| 787 | *i2c->msg.buf = (i2c->line_status & |
| 788 | LINESTAT_INPUT_DATA) |
| 789 | >> LINESTAT_INPUT_DATA_SHIFT; |
| 790 | --i2c->msg.len; |
| 791 | ++i2c->msg.buf; |
| 792 | if (i2c->msg.len) |
| 793 | next_cmd = CMD_GEN_ACK; |
| 794 | else |
| 795 | next_cmd = CMD_GEN_NACK; |
| 796 | } |
| 797 | break; |
| 798 | case CMD_GEN_ACK: |
| 799 | if (i2c->line_status & LINESTAT_ACK_DET) { |
| 800 | next_cmd = CMD_RET_DATA; |
| 801 | } else { |
| 802 | i2c->msg_status = -EIO; |
| 803 | next_cmd = CMD_GEN_STOP; |
| 804 | } |
| 805 | break; |
| 806 | case CMD_GEN_NACK: |
| 807 | next_cmd = CMD_GEN_STOP; |
| 808 | break; |
| 809 | case CMD_GEN_STOP: |
| 810 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| 811 | return ISR_COMPLETE(0); |
| 812 | default: |
| 813 | dev_err(i2c->adap.dev.parent, "bad atomic command %d\n", |
| 814 | i2c->at_cur_cmd); |
| 815 | i2c->msg_status = -EIO; |
| 816 | next_cmd = CMD_GEN_STOP; |
| 817 | break; |
| 818 | } |
| 819 | |
| 820 | next_atomic_cmd: |
| 821 | if (next_cmd != -1) { |
| 822 | /* don't actually stop unless we're the last transaction */ |
| 823 | if (next_cmd == CMD_GEN_STOP && !i2c->msg_status && |
| 824 | !i2c->last_msg) |
| 825 | return ISR_COMPLETE(0); |
| 826 | img_i2c_atomic_op(i2c, next_cmd, next_data); |
| 827 | } |
| 828 | return 0; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Timer function to check if something has gone wrong in automatic mode (so we |
| 833 | * don't have to handle so many interrupts just to catch an exception). |
| 834 | */ |
| 835 | static void img_i2c_check_timer(struct timer_list *t) |
| 836 | { |
| 837 | struct img_i2c *i2c = from_timer(i2c, t, check_timer); |
| 838 | unsigned long flags; |
| 839 | unsigned int line_status; |
| 840 | |
| 841 | spin_lock_irqsave(&i2c->lock, flags); |
| 842 | line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 843 | |
| 844 | /* check for an abort condition */ |
| 845 | if (line_status & LINESTAT_ABORT_DET) { |
| 846 | dev_dbg(i2c->adap.dev.parent, |
| 847 | "abort condition detected by check timer\n"); |
| 848 | /* enable slave event interrupt mask to trigger irq */ |
| 849 | img_i2c_writel(i2c, SCB_INT_MASK_REG, |
| 850 | i2c->int_enable | INT_SLAVE_EVENT); |
| 851 | } |
| 852 | |
| 853 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 854 | } |
| 855 | |
| 856 | static unsigned int img_i2c_auto(struct img_i2c *i2c, |
| 857 | unsigned int int_status, |
| 858 | unsigned int line_status) |
| 859 | { |
| 860 | if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR)) |
| 861 | return ISR_COMPLETE(EIO); |
| 862 | |
| 863 | if (line_status & LINESTAT_ABORT_DET) { |
| 864 | dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| 865 | /* empty the read fifo */ |
| 866 | if ((i2c->msg.flags & I2C_M_RD) && |
| 867 | (int_status & INT_FIFO_FULL_FILLING)) |
| 868 | img_i2c_read_fifo(i2c); |
| 869 | /* use atomic mode and try to force a stop bit */ |
| 870 | i2c->msg_status = -EIO; |
| 871 | img_i2c_stop_start(i2c); |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | /* Enable transaction halt on start bit */ |
| 876 | if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) { |
| 877 | img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| 878 | /* we're no longer interested in the slave event */ |
| 879 | i2c->int_enable &= ~INT_SLAVE_EVENT; |
| 880 | } |
| 881 | |
| 882 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 883 | |
| 884 | if (int_status & INT_STOP_DETECTED) { |
| 885 | /* Drain remaining data in FIFO and complete transaction */ |
| 886 | if (i2c->msg.flags & I2C_M_RD) |
| 887 | img_i2c_read_fifo(i2c); |
| 888 | return ISR_COMPLETE(0); |
| 889 | } |
| 890 | |
| 891 | if (i2c->msg.flags & I2C_M_RD) { |
| 892 | if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) { |
| 893 | img_i2c_read_fifo(i2c); |
| 894 | if (i2c->msg.len == 0) |
| 895 | return ISR_WAITSTOP; |
| 896 | } |
| 897 | } else { |
| 898 | if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) { |
| 899 | if ((int_status & INT_FIFO_EMPTY) && |
| 900 | i2c->msg.len == 0) |
| 901 | return ISR_WAITSTOP; |
| 902 | img_i2c_write_fifo(i2c); |
| 903 | } |
| 904 | } |
| 905 | if (int_status & INT_MASTER_HALTED) { |
| 906 | /* |
| 907 | * Release and then enable transaction halt, to |
| 908 | * allow only a single byte to proceed. |
| 909 | */ |
| 910 | img_i2c_transaction_halt(i2c, false); |
| 911 | img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| 912 | } |
| 913 | |
| 914 | return 0; |
| 915 | } |
| 916 | |
| 917 | static irqreturn_t img_i2c_isr(int irq, void *dev_id) |
| 918 | { |
| 919 | struct img_i2c *i2c = (struct img_i2c *)dev_id; |
| 920 | u32 int_status, line_status; |
| 921 | /* We handle transaction completion AFTER accessing registers */ |
| 922 | unsigned int hret; |
| 923 | |
| 924 | /* Read interrupt status register. */ |
| 925 | int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG); |
| 926 | /* Clear detected interrupts. */ |
| 927 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status); |
| 928 | |
| 929 | /* |
| 930 | * Read line status and clear it until it actually is clear. We have |
| 931 | * to be careful not to lose any line status bits that get latched. |
| 932 | */ |
| 933 | line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 934 | if (line_status & LINESTAT_LATCHED) { |
| 935 | img_i2c_writel(i2c, SCB_CLEAR_REG, |
| 936 | (line_status & LINESTAT_LATCHED) |
| 937 | >> LINESTAT_CLEAR_SHIFT); |
| 938 | img_i2c_wr_rd_fence(i2c); |
| 939 | } |
| 940 | |
| 941 | spin_lock(&i2c->lock); |
| 942 | |
| 943 | /* Keep track of line status bits received */ |
| 944 | i2c->line_status &= ~LINESTAT_INPUT_DATA; |
| 945 | i2c->line_status |= line_status; |
| 946 | |
| 947 | /* |
| 948 | * Certain interrupts indicate that sclk low timeout is not |
| 949 | * a problem. If any of these are set, just continue. |
| 950 | */ |
| 951 | if ((int_status & INT_SCLK_LOW_TIMEOUT) && |
| 952 | !(int_status & (INT_SLAVE_EVENT | |
| 953 | INT_FIFO_EMPTY | |
| 954 | INT_FIFO_FULL))) { |
| 955 | dev_crit(i2c->adap.dev.parent, |
| 956 | "fatal: clock low timeout occurred %s addr 0x%02x\n", |
| 957 | (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing", |
| 958 | i2c->msg.addr); |
| 959 | hret = ISR_FATAL(EIO); |
| 960 | goto out; |
| 961 | } |
| 962 | |
| 963 | if (i2c->mode == MODE_ATOMIC) |
| 964 | hret = img_i2c_atomic(i2c, int_status, line_status); |
| 965 | else if (i2c->mode == MODE_AUTOMATIC) |
| 966 | hret = img_i2c_auto(i2c, int_status, line_status); |
| 967 | else if (i2c->mode == MODE_SEQUENCE) |
| 968 | hret = img_i2c_sequence(i2c, int_status); |
| 969 | else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) && |
| 970 | (line_status & LINESTAT_STOP_BIT_DET)) |
| 971 | hret = ISR_COMPLETE(0); |
| 972 | else if (i2c->mode == MODE_RAW) |
| 973 | hret = img_i2c_raw(i2c, int_status, line_status); |
| 974 | else |
| 975 | hret = 0; |
| 976 | |
| 977 | /* Clear detected level interrupts. */ |
| 978 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL); |
| 979 | |
| 980 | out: |
| 981 | if (hret & ISR_WAITSTOP) { |
| 982 | /* |
| 983 | * Only wait for stop on last message. |
| 984 | * Also we may already have detected the stop bit. |
| 985 | */ |
| 986 | if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET) |
| 987 | hret = ISR_COMPLETE(0); |
| 988 | else |
| 989 | img_i2c_switch_mode(i2c, MODE_WAITSTOP); |
| 990 | } |
| 991 | |
| 992 | /* now we've finished using regs, handle transaction completion */ |
| 993 | if (hret & ISR_COMPLETE_M) { |
| 994 | int status = -(hret & ISR_STATUS_M); |
| 995 | |
| 996 | img_i2c_complete_transaction(i2c, status); |
| 997 | if (hret & ISR_FATAL_M) |
| 998 | img_i2c_switch_mode(i2c, MODE_FATAL); |
| 999 | } |
| 1000 | |
| 1001 | /* Enable interrupts (int_enable may be altered by changing mode) */ |
| 1002 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 1003 | |
| 1004 | spin_unlock(&i2c->lock); |
| 1005 | |
| 1006 | return IRQ_HANDLED; |
| 1007 | } |
| 1008 | |
| 1009 | /* Force a bus reset sequence and wait for it to complete */ |
| 1010 | static int img_i2c_reset_bus(struct img_i2c *i2c) |
| 1011 | { |
| 1012 | unsigned long flags; |
| 1013 | unsigned long time_left; |
| 1014 | |
| 1015 | spin_lock_irqsave(&i2c->lock, flags); |
| 1016 | reinit_completion(&i2c->msg_complete); |
| 1017 | img_i2c_reset_start(i2c); |
| 1018 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 1019 | |
| 1020 | time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| 1021 | IMG_I2C_TIMEOUT); |
| 1022 | if (time_left == 0) |
| 1023 | return -ETIMEDOUT; |
| 1024 | return 0; |
| 1025 | } |
| 1026 | |
| 1027 | static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, |
| 1028 | int num) |
| 1029 | { |
| 1030 | struct img_i2c *i2c = i2c_get_adapdata(adap); |
| 1031 | bool atomic = false; |
| 1032 | int i, ret; |
| 1033 | unsigned long time_left; |
| 1034 | |
| 1035 | if (i2c->mode == MODE_SUSPEND) { |
| 1036 | WARN(1, "refusing to service transaction in suspended state\n"); |
| 1037 | return -EIO; |
| 1038 | } |
| 1039 | |
| 1040 | if (i2c->mode == MODE_FATAL) |
| 1041 | return -EIO; |
| 1042 | |
| 1043 | for (i = 0; i < num; i++) { |
| 1044 | /* |
| 1045 | * 0 byte reads are not possible because the slave could try |
| 1046 | * and pull the data line low, preventing a stop bit. |
| 1047 | */ |
| 1048 | if (!msgs[i].len && msgs[i].flags & I2C_M_RD) |
| 1049 | return -EIO; |
| 1050 | /* |
| 1051 | * 0 byte writes are possible and used for probing, but we |
| 1052 | * cannot do them in automatic mode, so use atomic mode |
| 1053 | * instead. |
| 1054 | * |
| 1055 | * Also, the I2C_M_IGNORE_NAK mode can only be implemented |
| 1056 | * in atomic mode. |
| 1057 | */ |
| 1058 | if (!msgs[i].len || |
| 1059 | (msgs[i].flags & I2C_M_IGNORE_NAK)) |
| 1060 | atomic = true; |
| 1061 | } |
| 1062 | |
| 1063 | ret = pm_runtime_get_sync(adap->dev.parent); |
| 1064 | if (ret < 0) |
| 1065 | return ret; |
| 1066 | |
| 1067 | for (i = 0; i < num; i++) { |
| 1068 | struct i2c_msg *msg = &msgs[i]; |
| 1069 | unsigned long flags; |
| 1070 | |
| 1071 | spin_lock_irqsave(&i2c->lock, flags); |
| 1072 | |
| 1073 | /* |
| 1074 | * Make a copy of the message struct. We mustn't modify the |
| 1075 | * original or we'll confuse drivers and i2c-dev. |
| 1076 | */ |
| 1077 | i2c->msg = *msg; |
| 1078 | i2c->msg_status = 0; |
| 1079 | |
| 1080 | /* |
| 1081 | * After the last message we must have waited for a stop bit. |
| 1082 | * Not waiting can cause problems when the clock is disabled |
| 1083 | * before the stop bit is sent, and the linux I2C interface |
| 1084 | * requires separate transfers not to joined with repeated |
| 1085 | * start. |
| 1086 | */ |
| 1087 | i2c->last_msg = (i == num - 1); |
| 1088 | reinit_completion(&i2c->msg_complete); |
| 1089 | |
| 1090 | /* |
| 1091 | * Clear line status and all interrupts before starting a |
| 1092 | * transfer, as we may have unserviced interrupts from |
| 1093 | * previous transfers that might be handled in the context |
| 1094 | * of the new transfer. |
| 1095 | */ |
| 1096 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); |
| 1097 | img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); |
| 1098 | |
| 1099 | if (atomic) { |
| 1100 | img_i2c_atomic_start(i2c); |
| 1101 | } else { |
| 1102 | /* |
| 1103 | * Enable transaction halt if not the last message in |
| 1104 | * the queue so that we can control repeated starts. |
| 1105 | */ |
| 1106 | img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| 1107 | |
| 1108 | if (msg->flags & I2C_M_RD) |
| 1109 | img_i2c_read(i2c); |
| 1110 | else |
| 1111 | img_i2c_write(i2c); |
| 1112 | |
| 1113 | /* |
| 1114 | * Release and then enable transaction halt, to |
| 1115 | * allow only a single byte to proceed. |
| 1116 | * This doesn't have an effect on the initial transfer |
| 1117 | * but will allow the following transfers to start |
| 1118 | * processing if the previous transfer was marked as |
| 1119 | * complete while the i2c block was halted. |
| 1120 | */ |
| 1121 | img_i2c_transaction_halt(i2c, false); |
| 1122 | img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| 1123 | } |
| 1124 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 1125 | |
| 1126 | time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| 1127 | IMG_I2C_TIMEOUT); |
| 1128 | del_timer_sync(&i2c->check_timer); |
| 1129 | |
| 1130 | if (time_left == 0) { |
| 1131 | dev_err(adap->dev.parent, "i2c transfer timed out\n"); |
| 1132 | i2c->msg_status = -ETIMEDOUT; |
| 1133 | break; |
| 1134 | } |
| 1135 | |
| 1136 | if (i2c->msg_status) |
| 1137 | break; |
| 1138 | } |
| 1139 | |
| 1140 | pm_runtime_mark_last_busy(adap->dev.parent); |
| 1141 | pm_runtime_put_autosuspend(adap->dev.parent); |
| 1142 | |
| 1143 | return i2c->msg_status ? i2c->msg_status : num; |
| 1144 | } |
| 1145 | |
| 1146 | static u32 img_i2c_func(struct i2c_adapter *adap) |
| 1147 | { |
| 1148 | return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| 1149 | } |
| 1150 | |
| 1151 | static const struct i2c_algorithm img_i2c_algo = { |
| 1152 | .master_xfer = img_i2c_xfer, |
| 1153 | .functionality = img_i2c_func, |
| 1154 | }; |
| 1155 | |
| 1156 | static int img_i2c_init(struct img_i2c *i2c) |
| 1157 | { |
| 1158 | unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh; |
| 1159 | unsigned int i, data, prescale, inc, int_bitrate, filt; |
| 1160 | struct img_i2c_timings timing; |
| 1161 | u32 rev; |
| 1162 | int ret; |
| 1163 | |
| 1164 | ret = pm_runtime_get_sync(i2c->adap.dev.parent); |
| 1165 | if (ret < 0) |
| 1166 | return ret; |
| 1167 | |
| 1168 | rev = img_i2c_readl(i2c, SCB_CORE_REV_REG); |
| 1169 | if ((rev & 0x00ffffff) < 0x00020200) { |
| 1170 | dev_info(i2c->adap.dev.parent, |
| 1171 | "Unknown hardware revision (%d.%d.%d.%d)\n", |
| 1172 | (rev >> 24) & 0xff, (rev >> 16) & 0xff, |
| 1173 | (rev >> 8) & 0xff, rev & 0xff); |
| 1174 | pm_runtime_mark_last_busy(i2c->adap.dev.parent); |
| 1175 | pm_runtime_put_autosuspend(i2c->adap.dev.parent); |
| 1176 | return -EINVAL; |
| 1177 | } |
| 1178 | |
| 1179 | /* Fencing enabled by default. */ |
| 1180 | i2c->need_wr_rd_fence = true; |
| 1181 | |
| 1182 | /* Determine what mode we're in from the bitrate */ |
| 1183 | timing = timings[0]; |
| 1184 | for (i = 0; i < ARRAY_SIZE(timings); i++) { |
| 1185 | if (i2c->bitrate <= timings[i].max_bitrate) { |
| 1186 | timing = timings[i]; |
| 1187 | break; |
| 1188 | } |
| 1189 | } |
| 1190 | if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) { |
| 1191 | dev_warn(i2c->adap.dev.parent, |
| 1192 | "requested bitrate (%u) is higher than the max bitrate supported (%u)\n", |
| 1193 | i2c->bitrate, |
| 1194 | timings[ARRAY_SIZE(timings) - 1].max_bitrate); |
| 1195 | timing = timings[ARRAY_SIZE(timings) - 1]; |
| 1196 | i2c->bitrate = timing.max_bitrate; |
| 1197 | } |
| 1198 | |
| 1199 | bitrate_khz = i2c->bitrate / 1000; |
| 1200 | clk_khz = clk_get_rate(i2c->scb_clk) / 1000; |
| 1201 | |
| 1202 | /* Find the prescale that would give us that inc (approx delay = 0) */ |
| 1203 | prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz); |
| 1204 | prescale = clamp_t(unsigned int, prescale, 1, 8); |
| 1205 | clk_khz /= prescale; |
| 1206 | |
| 1207 | /* Setup the clock increment value */ |
| 1208 | inc = (256 * 16 * bitrate_khz) / clk_khz; |
| 1209 | |
| 1210 | /* |
| 1211 | * The clock generation logic allows to filter glitches on the bus. |
| 1212 | * This filter is able to remove bus glitches shorter than 50ns. |
| 1213 | * If the clock enable rate is greater than 20 MHz, no filtering |
| 1214 | * is required, so we need to disable it. |
| 1215 | * If it's between the 20-40 MHz range, there's no need to divide |
| 1216 | * the clock to get a filter. |
| 1217 | */ |
| 1218 | if (clk_khz < 20000) { |
| 1219 | filt = SCB_FILT_DISABLE; |
| 1220 | } else if (clk_khz < 40000) { |
| 1221 | filt = SCB_FILT_BYPASS; |
| 1222 | } else { |
| 1223 | /* Calculate filter clock */ |
| 1224 | filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH)); |
| 1225 | |
| 1226 | /* Scale up if needed */ |
| 1227 | if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH)) |
| 1228 | inc++; |
| 1229 | |
| 1230 | if (filt > SCB_FILT_INC_MASK) |
| 1231 | filt = SCB_FILT_INC_MASK; |
| 1232 | |
| 1233 | filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT; |
| 1234 | } |
| 1235 | data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1); |
| 1236 | img_i2c_writel(i2c, SCB_CLK_SET_REG, data); |
| 1237 | |
| 1238 | /* Obtain the clock period of the fx16 clock in ns */ |
| 1239 | clk_period = (256 * 1000000) / (clk_khz * inc); |
| 1240 | |
| 1241 | /* Calculate the bitrate in terms of internal clock pulses */ |
| 1242 | int_bitrate = 1000000 / (bitrate_khz * clk_period); |
| 1243 | if ((1000000 % (bitrate_khz * clk_period)) >= |
| 1244 | ((bitrate_khz * clk_period) / 2)) |
| 1245 | int_bitrate++; |
| 1246 | |
| 1247 | /* |
| 1248 | * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL |
| 1249 | * values from there if they don't meet minimum timing requirements |
| 1250 | */ |
| 1251 | tckh = int_bitrate / 2; |
| 1252 | tckl = int_bitrate - tckh; |
| 1253 | |
| 1254 | /* Adjust TCKH and TCKL values */ |
| 1255 | data = DIV_ROUND_UP(timing.tckl, clk_period); |
| 1256 | |
| 1257 | if (tckl < data) { |
| 1258 | tckl = data; |
| 1259 | tckh = int_bitrate - tckl; |
| 1260 | } |
| 1261 | |
| 1262 | if (tckh > 0) |
| 1263 | --tckh; |
| 1264 | |
| 1265 | if (tckl > 0) |
| 1266 | --tckl; |
| 1267 | |
| 1268 | img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh); |
| 1269 | img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl); |
| 1270 | |
| 1271 | /* Setup TSDH value */ |
| 1272 | tsdh = DIV_ROUND_UP(timing.tsdh, clk_period); |
| 1273 | |
| 1274 | if (tsdh > 1) |
| 1275 | data = tsdh - 1; |
| 1276 | else |
| 1277 | data = 0x01; |
| 1278 | img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data); |
| 1279 | |
| 1280 | /* This value is used later */ |
| 1281 | tsdh = data; |
| 1282 | |
| 1283 | /* Setup TPL value */ |
| 1284 | data = timing.tpl / clk_period; |
| 1285 | if (data > 0) |
| 1286 | --data; |
| 1287 | img_i2c_writel(i2c, SCB_TIME_TPL_REG, data); |
| 1288 | |
| 1289 | /* Setup TPH value */ |
| 1290 | data = timing.tph / clk_period; |
| 1291 | if (data > 0) |
| 1292 | --data; |
| 1293 | img_i2c_writel(i2c, SCB_TIME_TPH_REG, data); |
| 1294 | |
| 1295 | /* Setup TSDL value to TPL + TSDH + 2 */ |
| 1296 | img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2); |
| 1297 | |
| 1298 | /* Setup TP2S value */ |
| 1299 | data = timing.tp2s / clk_period; |
| 1300 | if (data > 0) |
| 1301 | --data; |
| 1302 | img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data); |
| 1303 | |
| 1304 | img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI); |
| 1305 | img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL); |
| 1306 | img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL); |
| 1307 | |
| 1308 | /* Take module out of soft reset and enable clocks */ |
| 1309 | img_i2c_soft_reset(i2c); |
| 1310 | |
| 1311 | /* Disable all interrupts */ |
| 1312 | img_i2c_writel(i2c, SCB_INT_MASK_REG, 0); |
| 1313 | |
| 1314 | /* Clear all interrupts */ |
| 1315 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); |
| 1316 | |
| 1317 | /* Clear the scb_line_status events */ |
| 1318 | img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); |
| 1319 | |
| 1320 | /* Enable interrupts */ |
| 1321 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 1322 | |
| 1323 | /* Perform a synchronous sequence to reset the bus */ |
| 1324 | ret = img_i2c_reset_bus(i2c); |
| 1325 | |
| 1326 | pm_runtime_mark_last_busy(i2c->adap.dev.parent); |
| 1327 | pm_runtime_put_autosuspend(i2c->adap.dev.parent); |
| 1328 | |
| 1329 | return ret; |
| 1330 | } |
| 1331 | |
| 1332 | static int img_i2c_probe(struct platform_device *pdev) |
| 1333 | { |
| 1334 | struct device_node *node = pdev->dev.of_node; |
| 1335 | struct img_i2c *i2c; |
| 1336 | struct resource *res; |
| 1337 | int irq, ret; |
| 1338 | u32 val; |
| 1339 | |
| 1340 | i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL); |
| 1341 | if (!i2c) |
| 1342 | return -ENOMEM; |
| 1343 | |
| 1344 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1345 | i2c->base = devm_ioremap_resource(&pdev->dev, res); |
| 1346 | if (IS_ERR(i2c->base)) |
| 1347 | return PTR_ERR(i2c->base); |
| 1348 | |
| 1349 | irq = platform_get_irq(pdev, 0); |
| 1350 | if (irq < 0) { |
| 1351 | dev_err(&pdev->dev, "can't get irq number\n"); |
| 1352 | return irq; |
| 1353 | } |
| 1354 | |
| 1355 | i2c->sys_clk = devm_clk_get(&pdev->dev, "sys"); |
| 1356 | if (IS_ERR(i2c->sys_clk)) { |
| 1357 | dev_err(&pdev->dev, "can't get system clock\n"); |
| 1358 | return PTR_ERR(i2c->sys_clk); |
| 1359 | } |
| 1360 | |
| 1361 | i2c->scb_clk = devm_clk_get(&pdev->dev, "scb"); |
| 1362 | if (IS_ERR(i2c->scb_clk)) { |
| 1363 | dev_err(&pdev->dev, "can't get core clock\n"); |
| 1364 | return PTR_ERR(i2c->scb_clk); |
| 1365 | } |
| 1366 | |
| 1367 | ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0, |
| 1368 | pdev->name, i2c); |
| 1369 | if (ret) { |
| 1370 | dev_err(&pdev->dev, "can't request irq %d\n", irq); |
| 1371 | return ret; |
| 1372 | } |
| 1373 | |
| 1374 | /* Set up the exception check timer */ |
| 1375 | timer_setup(&i2c->check_timer, img_i2c_check_timer, 0); |
| 1376 | |
| 1377 | i2c->bitrate = timings[0].max_bitrate; |
| 1378 | if (!of_property_read_u32(node, "clock-frequency", &val)) |
| 1379 | i2c->bitrate = val; |
| 1380 | |
| 1381 | i2c_set_adapdata(&i2c->adap, i2c); |
| 1382 | i2c->adap.dev.parent = &pdev->dev; |
| 1383 | i2c->adap.dev.of_node = node; |
| 1384 | i2c->adap.owner = THIS_MODULE; |
| 1385 | i2c->adap.algo = &img_i2c_algo; |
| 1386 | i2c->adap.retries = 5; |
| 1387 | i2c->adap.nr = pdev->id; |
| 1388 | snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C"); |
| 1389 | |
| 1390 | img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| 1391 | spin_lock_init(&i2c->lock); |
| 1392 | init_completion(&i2c->msg_complete); |
| 1393 | |
| 1394 | platform_set_drvdata(pdev, i2c); |
| 1395 | |
| 1396 | pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT); |
| 1397 | pm_runtime_use_autosuspend(&pdev->dev); |
| 1398 | pm_runtime_enable(&pdev->dev); |
| 1399 | if (!pm_runtime_enabled(&pdev->dev)) { |
| 1400 | ret = img_i2c_runtime_resume(&pdev->dev); |
| 1401 | if (ret) |
| 1402 | return ret; |
| 1403 | } |
| 1404 | |
| 1405 | ret = img_i2c_init(i2c); |
| 1406 | if (ret) |
| 1407 | goto rpm_disable; |
| 1408 | |
| 1409 | ret = i2c_add_numbered_adapter(&i2c->adap); |
| 1410 | if (ret < 0) |
| 1411 | goto rpm_disable; |
| 1412 | |
| 1413 | return 0; |
| 1414 | |
| 1415 | rpm_disable: |
| 1416 | if (!pm_runtime_enabled(&pdev->dev)) |
| 1417 | img_i2c_runtime_suspend(&pdev->dev); |
| 1418 | pm_runtime_disable(&pdev->dev); |
| 1419 | pm_runtime_dont_use_autosuspend(&pdev->dev); |
| 1420 | return ret; |
| 1421 | } |
| 1422 | |
| 1423 | static int img_i2c_remove(struct platform_device *dev) |
| 1424 | { |
| 1425 | struct img_i2c *i2c = platform_get_drvdata(dev); |
| 1426 | |
| 1427 | i2c_del_adapter(&i2c->adap); |
| 1428 | pm_runtime_disable(&dev->dev); |
| 1429 | if (!pm_runtime_status_suspended(&dev->dev)) |
| 1430 | img_i2c_runtime_suspend(&dev->dev); |
| 1431 | |
| 1432 | return 0; |
| 1433 | } |
| 1434 | |
| 1435 | static int img_i2c_runtime_suspend(struct device *dev) |
| 1436 | { |
| 1437 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1438 | |
| 1439 | clk_disable_unprepare(i2c->scb_clk); |
| 1440 | clk_disable_unprepare(i2c->sys_clk); |
| 1441 | |
| 1442 | return 0; |
| 1443 | } |
| 1444 | |
| 1445 | static int img_i2c_runtime_resume(struct device *dev) |
| 1446 | { |
| 1447 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1448 | int ret; |
| 1449 | |
| 1450 | ret = clk_prepare_enable(i2c->sys_clk); |
| 1451 | if (ret) { |
| 1452 | dev_err(dev, "Unable to enable sys clock\n"); |
| 1453 | return ret; |
| 1454 | } |
| 1455 | |
| 1456 | ret = clk_prepare_enable(i2c->scb_clk); |
| 1457 | if (ret) { |
| 1458 | dev_err(dev, "Unable to enable scb clock\n"); |
| 1459 | clk_disable_unprepare(i2c->sys_clk); |
| 1460 | return ret; |
| 1461 | } |
| 1462 | |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | #ifdef CONFIG_PM_SLEEP |
| 1467 | static int img_i2c_suspend(struct device *dev) |
| 1468 | { |
| 1469 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1470 | int ret; |
| 1471 | |
| 1472 | ret = pm_runtime_force_suspend(dev); |
| 1473 | if (ret) |
| 1474 | return ret; |
| 1475 | |
| 1476 | img_i2c_switch_mode(i2c, MODE_SUSPEND); |
| 1477 | |
| 1478 | return 0; |
| 1479 | } |
| 1480 | |
| 1481 | static int img_i2c_resume(struct device *dev) |
| 1482 | { |
| 1483 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1484 | int ret; |
| 1485 | |
| 1486 | ret = pm_runtime_force_resume(dev); |
| 1487 | if (ret) |
| 1488 | return ret; |
| 1489 | |
| 1490 | img_i2c_init(i2c); |
| 1491 | |
| 1492 | return 0; |
| 1493 | } |
| 1494 | #endif /* CONFIG_PM_SLEEP */ |
| 1495 | |
| 1496 | static const struct dev_pm_ops img_i2c_pm = { |
| 1497 | SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend, |
| 1498 | img_i2c_runtime_resume, |
| 1499 | NULL) |
| 1500 | SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume) |
| 1501 | }; |
| 1502 | |
| 1503 | static const struct of_device_id img_scb_i2c_match[] = { |
| 1504 | { .compatible = "img,scb-i2c" }, |
| 1505 | { } |
| 1506 | }; |
| 1507 | MODULE_DEVICE_TABLE(of, img_scb_i2c_match); |
| 1508 | |
| 1509 | static struct platform_driver img_scb_i2c_driver = { |
| 1510 | .driver = { |
| 1511 | .name = "img-i2c-scb", |
| 1512 | .of_match_table = img_scb_i2c_match, |
| 1513 | .pm = &img_i2c_pm, |
| 1514 | }, |
| 1515 | .probe = img_i2c_probe, |
| 1516 | .remove = img_i2c_remove, |
| 1517 | }; |
| 1518 | module_platform_driver(img_scb_i2c_driver); |
| 1519 | |
| 1520 | MODULE_AUTHOR("James Hogan <jhogan@kernel.org>"); |
| 1521 | MODULE_DESCRIPTION("IMG host I2C driver"); |
| 1522 | MODULE_LICENSE("GPL v2"); |