blob: 926eeef42608d5319616c8c346c5dcfaeb06b690 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10#include "dm-uevent.h"
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/sched/signal.h>
16#include <linux/blkpg.h>
17#include <linux/bio.h>
18#include <linux/mempool.h>
19#include <linux/dax.h>
20#include <linux/slab.h>
21#include <linux/idr.h>
22#include <linux/uio.h>
23#include <linux/hdreg.h>
24#include <linux/delay.h>
25#include <linux/wait.h>
26#include <linux/pr.h>
27#include <linux/refcount.h>
28
29#define DM_MSG_PREFIX "core"
30
31/*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36#define DM_COOKIE_LENGTH 24
37
38static const char *_name = DM_NAME;
39
40static unsigned int major = 0;
41static unsigned int _major = 0;
42
43static DEFINE_IDR(_minor_idr);
44
45static DEFINE_SPINLOCK(_minor_lock);
46
47static void do_deferred_remove(struct work_struct *w);
48
49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51static struct workqueue_struct *deferred_remove_workqueue;
52
53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56void dm_issue_global_event(void)
57{
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60}
61
62/*
63 * One of these is allocated (on-stack) per original bio.
64 */
65struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71};
72
73/*
74 * One of these is allocated per clone bio.
75 */
76#define DM_TIO_MAGIC 7282014
77struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85};
86
87/*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91#define DM_IO_MAGIC 5191977
92struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103};
104
105void *dm_per_bio_data(struct bio *bio, size_t data_size)
106{
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111}
112EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115{
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121}
122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125{
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127}
128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130#define MINOR_ALLOCED ((void *)-1)
131
132/*
133 * Bits for the md->flags field.
134 */
135#define DMF_BLOCK_IO_FOR_SUSPEND 0
136#define DMF_SUSPENDED 1
137#define DMF_FROZEN 2
138#define DMF_FREEING 3
139#define DMF_DELETING 4
140#define DMF_NOFLUSH_SUSPENDING 5
141#define DMF_DEFERRED_REMOVE 6
142#define DMF_SUSPENDED_INTERNALLY 7
143
144#define DM_NUMA_NODE NUMA_NO_NODE
145static int dm_numa_node = DM_NUMA_NODE;
146
147/*
148 * For mempools pre-allocation at the table loading time.
149 */
150struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
153};
154
155struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159};
160
161static struct kmem_cache *_rq_tio_cache;
162static struct kmem_cache *_rq_cache;
163
164/*
165 * Bio-based DM's mempools' reserved IOs set by the user.
166 */
167#define RESERVED_BIO_BASED_IOS 16
168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169
170static int __dm_get_module_param_int(int *module_param, int min, int max)
171{
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
175
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
182
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
186 }
187
188 return param;
189}
190
191unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
193{
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
196
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
201
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
205 }
206
207 return param;
208}
209
210unsigned dm_get_reserved_bio_based_ios(void)
211{
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214}
215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216
217static unsigned dm_get_numa_node(void)
218{
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
221}
222
223static int __init local_init(void)
224{
225 int r = -ENOMEM;
226
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
230
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
235
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
239
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
244 }
245
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
250
251 if (!_major)
252 _major = r;
253
254 return 0;
255
256out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258out_uevent_exit:
259 dm_uevent_exit();
260out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
264
265 return r;
266}
267
268static void local_exit(void)
269{
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
272
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
277
278 _major = 0;
279
280 DMINFO("cleaned up");
281}
282
283static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
292};
293
294static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
303};
304
305static int __init dm_init(void)
306{
307 const int count = ARRAY_SIZE(_inits);
308
309 int r, i;
310
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
315 }
316
317 return 0;
318
319 bad:
320 while (i--)
321 _exits[i]();
322
323 return r;
324}
325
326static void __exit dm_exit(void)
327{
328 int i = ARRAY_SIZE(_exits);
329
330 while (i--)
331 _exits[i]();
332
333 /*
334 * Should be empty by this point.
335 */
336 idr_destroy(&_minor_idr);
337}
338
339/*
340 * Block device functions
341 */
342int dm_deleting_md(struct mapped_device *md)
343{
344 return test_bit(DMF_DELETING, &md->flags);
345}
346
347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348{
349 struct mapped_device *md;
350
351 spin_lock(&_minor_lock);
352
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
356
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
361 }
362
363 dm_get(md);
364 atomic_inc(&md->open_count);
365out:
366 spin_unlock(&_minor_lock);
367
368 return md ? 0 : -ENXIO;
369}
370
371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372{
373 struct mapped_device *md;
374
375 spin_lock(&_minor_lock);
376
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
380
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
384
385 dm_put(md);
386out:
387 spin_unlock(&_minor_lock);
388}
389
390int dm_open_count(struct mapped_device *md)
391{
392 return atomic_read(&md->open_count);
393}
394
395/*
396 * Guarantees nothing is using the device before it's deleted.
397 */
398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399{
400 int r = 0;
401
402 spin_lock(&_minor_lock);
403
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
412
413 spin_unlock(&_minor_lock);
414
415 return r;
416}
417
418int dm_cancel_deferred_remove(struct mapped_device *md)
419{
420 int r = 0;
421
422 spin_lock(&_minor_lock);
423
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428
429 spin_unlock(&_minor_lock);
430
431 return r;
432}
433
434static void do_deferred_remove(struct work_struct *w)
435{
436 dm_deferred_remove();
437}
438
439sector_t dm_get_size(struct mapped_device *md)
440{
441 return get_capacity(md->disk);
442}
443
444struct request_queue *dm_get_md_queue(struct mapped_device *md)
445{
446 return md->queue;
447}
448
449struct dm_stats *dm_get_stats(struct mapped_device *md)
450{
451 return &md->stats;
452}
453
454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455{
456 struct mapped_device *md = bdev->bd_disk->private_data;
457
458 return dm_get_geometry(md, geo);
459}
460
461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 struct block_device **bdev)
463 __acquires(md->io_barrier)
464{
465 struct dm_target *tgt;
466 struct dm_table *map;
467 int r;
468
469retry:
470 r = -ENOTTY;
471 map = dm_get_live_table(md, srcu_idx);
472 if (!map || !dm_table_get_size(map))
473 return r;
474
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
477 return r;
478
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
481 return r;
482
483 if (dm_suspended_md(md))
484 return -EAGAIN;
485
486 r = tgt->type->prepare_ioctl(tgt, bdev);
487 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 dm_put_live_table(md, *srcu_idx);
489 msleep(10);
490 goto retry;
491 }
492
493 return r;
494}
495
496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 __releases(md->io_barrier)
498{
499 dm_put_live_table(md, srcu_idx);
500}
501
502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
504{
505 struct mapped_device *md = bdev->bd_disk->private_data;
506 int r, srcu_idx;
507
508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 if (r < 0)
510 goto out;
511
512 if (r > 0) {
513 /*
514 * Target determined this ioctl is being issued against a
515 * subset of the parent bdev; require extra privileges.
516 */
517 if (!capable(CAP_SYS_RAWIO)) {
518 DMWARN_LIMIT(
519 "%s: sending ioctl %x to DM device without required privilege.",
520 current->comm, cmd);
521 r = -ENOIOCTLCMD;
522 goto out;
523 }
524 }
525
526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527out:
528 dm_unprepare_ioctl(md, srcu_idx);
529 return r;
530}
531
532static void start_io_acct(struct dm_io *io);
533
534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535{
536 struct dm_io *io;
537 struct dm_target_io *tio;
538 struct bio *clone;
539
540 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
541 if (!clone)
542 return NULL;
543
544 tio = container_of(clone, struct dm_target_io, clone);
545 tio->inside_dm_io = true;
546 tio->io = NULL;
547
548 io = container_of(tio, struct dm_io, tio);
549 io->magic = DM_IO_MAGIC;
550 io->status = 0;
551 atomic_set(&io->io_count, 1);
552 io->orig_bio = bio;
553 io->md = md;
554 spin_lock_init(&io->endio_lock);
555
556 start_io_acct(io);
557
558 return io;
559}
560
561static void free_io(struct mapped_device *md, struct dm_io *io)
562{
563 bio_put(&io->tio.clone);
564}
565
566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 unsigned target_bio_nr, gfp_t gfp_mask)
568{
569 struct dm_target_io *tio;
570
571 if (!ci->io->tio.io) {
572 /* the dm_target_io embedded in ci->io is available */
573 tio = &ci->io->tio;
574 } else {
575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
576 if (!clone)
577 return NULL;
578
579 tio = container_of(clone, struct dm_target_io, clone);
580 tio->inside_dm_io = false;
581 }
582
583 tio->magic = DM_TIO_MAGIC;
584 tio->io = ci->io;
585 tio->ti = ti;
586 tio->target_bio_nr = target_bio_nr;
587
588 return tio;
589}
590
591static void free_tio(struct dm_target_io *tio)
592{
593 if (tio->inside_dm_io)
594 return;
595 bio_put(&tio->clone);
596}
597
598int md_in_flight(struct mapped_device *md)
599{
600 return atomic_read(&md->pending[READ]) +
601 atomic_read(&md->pending[WRITE]);
602}
603
604static void start_io_acct(struct dm_io *io)
605{
606 struct mapped_device *md = io->md;
607 struct bio *bio = io->orig_bio;
608 int rw = bio_data_dir(bio);
609
610 io->start_time = jiffies;
611
612 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
613 &dm_disk(md)->part0);
614
615 atomic_set(&dm_disk(md)->part0.in_flight[rw],
616 atomic_inc_return(&md->pending[rw]));
617
618 if (unlikely(dm_stats_used(&md->stats)))
619 dm_stats_account_io(&md->stats, bio_data_dir(bio),
620 bio->bi_iter.bi_sector, bio_sectors(bio),
621 false, 0, &io->stats_aux);
622}
623
624static void end_io_acct(struct dm_io *io)
625{
626 struct mapped_device *md = io->md;
627 struct bio *bio = io->orig_bio;
628 unsigned long duration = jiffies - io->start_time;
629 int pending;
630 int rw = bio_data_dir(bio);
631
632 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
633 io->start_time);
634
635 if (unlikely(dm_stats_used(&md->stats)))
636 dm_stats_account_io(&md->stats, bio_data_dir(bio),
637 bio->bi_iter.bi_sector, bio_sectors(bio),
638 true, duration, &io->stats_aux);
639
640 /*
641 * After this is decremented the bio must not be touched if it is
642 * a flush.
643 */
644 pending = atomic_dec_return(&md->pending[rw]);
645 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
646 pending += atomic_read(&md->pending[rw^0x1]);
647
648 /* nudge anyone waiting on suspend queue */
649 if (!pending)
650 wake_up(&md->wait);
651}
652
653/*
654 * Add the bio to the list of deferred io.
655 */
656static void queue_io(struct mapped_device *md, struct bio *bio)
657{
658 unsigned long flags;
659
660 spin_lock_irqsave(&md->deferred_lock, flags);
661 bio_list_add(&md->deferred, bio);
662 spin_unlock_irqrestore(&md->deferred_lock, flags);
663 queue_work(md->wq, &md->work);
664}
665
666/*
667 * Everyone (including functions in this file), should use this
668 * function to access the md->map field, and make sure they call
669 * dm_put_live_table() when finished.
670 */
671struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
672{
673 *srcu_idx = srcu_read_lock(&md->io_barrier);
674
675 return srcu_dereference(md->map, &md->io_barrier);
676}
677
678void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
679{
680 srcu_read_unlock(&md->io_barrier, srcu_idx);
681}
682
683void dm_sync_table(struct mapped_device *md)
684{
685 synchronize_srcu(&md->io_barrier);
686 synchronize_rcu_expedited();
687}
688
689/*
690 * A fast alternative to dm_get_live_table/dm_put_live_table.
691 * The caller must not block between these two functions.
692 */
693static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
694{
695 rcu_read_lock();
696 return rcu_dereference(md->map);
697}
698
699static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
700{
701 rcu_read_unlock();
702}
703
704static char *_dm_claim_ptr = "I belong to device-mapper";
705
706/*
707 * Open a table device so we can use it as a map destination.
708 */
709static int open_table_device(struct table_device *td, dev_t dev,
710 struct mapped_device *md)
711{
712 struct block_device *bdev;
713
714 int r;
715
716 BUG_ON(td->dm_dev.bdev);
717
718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
719 if (IS_ERR(bdev))
720 return PTR_ERR(bdev);
721
722 r = bd_link_disk_holder(bdev, dm_disk(md));
723 if (r) {
724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 return r;
726 }
727
728 td->dm_dev.bdev = bdev;
729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 return 0;
731}
732
733/*
734 * Close a table device that we've been using.
735 */
736static void close_table_device(struct table_device *td, struct mapped_device *md)
737{
738 if (!td->dm_dev.bdev)
739 return;
740
741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 put_dax(td->dm_dev.dax_dev);
744 td->dm_dev.bdev = NULL;
745 td->dm_dev.dax_dev = NULL;
746}
747
748static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 fmode_t mode) {
750 struct table_device *td;
751
752 list_for_each_entry(td, l, list)
753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 return td;
755
756 return NULL;
757}
758
759int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 struct dm_dev **result) {
761 int r;
762 struct table_device *td;
763
764 mutex_lock(&md->table_devices_lock);
765 td = find_table_device(&md->table_devices, dev, mode);
766 if (!td) {
767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 if (!td) {
769 mutex_unlock(&md->table_devices_lock);
770 return -ENOMEM;
771 }
772
773 td->dm_dev.mode = mode;
774 td->dm_dev.bdev = NULL;
775
776 if ((r = open_table_device(td, dev, md))) {
777 mutex_unlock(&md->table_devices_lock);
778 kfree(td);
779 return r;
780 }
781
782 format_dev_t(td->dm_dev.name, dev);
783
784 refcount_set(&td->count, 1);
785 list_add(&td->list, &md->table_devices);
786 } else {
787 refcount_inc(&td->count);
788 }
789 mutex_unlock(&md->table_devices_lock);
790
791 *result = &td->dm_dev;
792 return 0;
793}
794EXPORT_SYMBOL_GPL(dm_get_table_device);
795
796void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
797{
798 struct table_device *td = container_of(d, struct table_device, dm_dev);
799
800 mutex_lock(&md->table_devices_lock);
801 if (refcount_dec_and_test(&td->count)) {
802 close_table_device(td, md);
803 list_del(&td->list);
804 kfree(td);
805 }
806 mutex_unlock(&md->table_devices_lock);
807}
808EXPORT_SYMBOL(dm_put_table_device);
809
810static void free_table_devices(struct list_head *devices)
811{
812 struct list_head *tmp, *next;
813
814 list_for_each_safe(tmp, next, devices) {
815 struct table_device *td = list_entry(tmp, struct table_device, list);
816
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td->dm_dev.name, refcount_read(&td->count));
819 kfree(td);
820 }
821}
822
823/*
824 * Get the geometry associated with a dm device
825 */
826int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
827{
828 *geo = md->geometry;
829
830 return 0;
831}
832
833/*
834 * Set the geometry of a device.
835 */
836int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
837{
838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
839
840 if (geo->start > sz) {
841 DMWARN("Start sector is beyond the geometry limits.");
842 return -EINVAL;
843 }
844
845 md->geometry = *geo;
846
847 return 0;
848}
849
850static int __noflush_suspending(struct mapped_device *md)
851{
852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
853}
854
855/*
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
858 */
859static void dec_pending(struct dm_io *io, blk_status_t error)
860{
861 unsigned long flags;
862 blk_status_t io_error;
863 struct bio *bio;
864 struct mapped_device *md = io->md;
865
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error)) {
868 spin_lock_irqsave(&io->endio_lock, flags);
869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 io->status = error;
871 spin_unlock_irqrestore(&io->endio_lock, flags);
872 }
873
874 if (atomic_dec_and_test(&io->io_count)) {
875 if (io->status == BLK_STS_DM_REQUEUE) {
876 /*
877 * Target requested pushing back the I/O.
878 */
879 spin_lock_irqsave(&md->deferred_lock, flags);
880 if (__noflush_suspending(md))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 else
884 /* noflush suspend was interrupted. */
885 io->status = BLK_STS_IOERR;
886 spin_unlock_irqrestore(&md->deferred_lock, flags);
887 }
888
889 io_error = io->status;
890 bio = io->orig_bio;
891 end_io_acct(io);
892 free_io(md, io);
893
894 if (io_error == BLK_STS_DM_REQUEUE)
895 return;
896
897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
898 /*
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
901 */
902 bio->bi_opf &= ~REQ_PREFLUSH;
903 queue_io(md, bio);
904 } else {
905 /* done with normal IO or empty flush */
906 if (io_error)
907 bio->bi_status = io_error;
908 bio_endio(bio);
909 }
910 }
911}
912
913void disable_discard(struct mapped_device *md)
914{
915 struct queue_limits *limits = dm_get_queue_limits(md);
916
917 /* device doesn't really support DISCARD, disable it */
918 limits->max_discard_sectors = 0;
919 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
920}
921
922void disable_write_same(struct mapped_device *md)
923{
924 struct queue_limits *limits = dm_get_queue_limits(md);
925
926 /* device doesn't really support WRITE SAME, disable it */
927 limits->max_write_same_sectors = 0;
928}
929
930void disable_write_zeroes(struct mapped_device *md)
931{
932 struct queue_limits *limits = dm_get_queue_limits(md);
933
934 /* device doesn't really support WRITE ZEROES, disable it */
935 limits->max_write_zeroes_sectors = 0;
936}
937
938static void clone_endio(struct bio *bio)
939{
940 blk_status_t error = bio->bi_status;
941 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
942 struct dm_io *io = tio->io;
943 struct mapped_device *md = tio->io->md;
944 dm_endio_fn endio = tio->ti->type->end_io;
945
946 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
947 if (bio_op(bio) == REQ_OP_DISCARD &&
948 !bio->bi_disk->queue->limits.max_discard_sectors)
949 disable_discard(md);
950 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
951 !bio->bi_disk->queue->limits.max_write_same_sectors)
952 disable_write_same(md);
953 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
954 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
955 disable_write_zeroes(md);
956 }
957
958 if (endio) {
959 int r = endio(tio->ti, bio, &error);
960 switch (r) {
961 case DM_ENDIO_REQUEUE:
962 error = BLK_STS_DM_REQUEUE;
963 /*FALLTHRU*/
964 case DM_ENDIO_DONE:
965 break;
966 case DM_ENDIO_INCOMPLETE:
967 /* The target will handle the io */
968 return;
969 default:
970 DMWARN("unimplemented target endio return value: %d", r);
971 BUG();
972 }
973 }
974
975 free_tio(tio);
976 dec_pending(io, error);
977}
978
979/*
980 * Return maximum size of I/O possible at the supplied sector up to the current
981 * target boundary.
982 */
983static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
984{
985 sector_t target_offset = dm_target_offset(ti, sector);
986
987 return ti->len - target_offset;
988}
989
990static sector_t max_io_len(sector_t sector, struct dm_target *ti)
991{
992 sector_t len = max_io_len_target_boundary(sector, ti);
993 sector_t offset, max_len;
994
995 /*
996 * Does the target need to split even further?
997 */
998 if (ti->max_io_len) {
999 offset = dm_target_offset(ti, sector);
1000 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1001 max_len = sector_div(offset, ti->max_io_len);
1002 else
1003 max_len = offset & (ti->max_io_len - 1);
1004 max_len = ti->max_io_len - max_len;
1005
1006 if (len > max_len)
1007 len = max_len;
1008 }
1009
1010 return len;
1011}
1012
1013int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1014{
1015 if (len > UINT_MAX) {
1016 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1017 (unsigned long long)len, UINT_MAX);
1018 ti->error = "Maximum size of target IO is too large";
1019 return -EINVAL;
1020 }
1021
1022 ti->max_io_len = (uint32_t) len;
1023
1024 return 0;
1025}
1026EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1027
1028static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1029 sector_t sector, int *srcu_idx)
1030 __acquires(md->io_barrier)
1031{
1032 struct dm_table *map;
1033 struct dm_target *ti;
1034
1035 map = dm_get_live_table(md, srcu_idx);
1036 if (!map)
1037 return NULL;
1038
1039 ti = dm_table_find_target(map, sector);
1040 if (!dm_target_is_valid(ti))
1041 return NULL;
1042
1043 return ti;
1044}
1045
1046static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1047 long nr_pages, void **kaddr, pfn_t *pfn)
1048{
1049 struct mapped_device *md = dax_get_private(dax_dev);
1050 sector_t sector = pgoff * PAGE_SECTORS;
1051 struct dm_target *ti;
1052 long len, ret = -EIO;
1053 int srcu_idx;
1054
1055 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056
1057 if (!ti)
1058 goto out;
1059 if (!ti->type->direct_access)
1060 goto out;
1061 len = max_io_len(sector, ti) / PAGE_SECTORS;
1062 if (len < 1)
1063 goto out;
1064 nr_pages = min(len, nr_pages);
1065 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1066
1067 out:
1068 dm_put_live_table(md, srcu_idx);
1069
1070 return ret;
1071}
1072
1073static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1074 void *addr, size_t bytes, struct iov_iter *i)
1075{
1076 struct mapped_device *md = dax_get_private(dax_dev);
1077 sector_t sector = pgoff * PAGE_SECTORS;
1078 struct dm_target *ti;
1079 long ret = 0;
1080 int srcu_idx;
1081
1082 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1083
1084 if (!ti)
1085 goto out;
1086 if (!ti->type->dax_copy_from_iter) {
1087 ret = copy_from_iter(addr, bytes, i);
1088 goto out;
1089 }
1090 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1091 out:
1092 dm_put_live_table(md, srcu_idx);
1093
1094 return ret;
1095}
1096
1097static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1098 void *addr, size_t bytes, struct iov_iter *i)
1099{
1100 struct mapped_device *md = dax_get_private(dax_dev);
1101 sector_t sector = pgoff * PAGE_SECTORS;
1102 struct dm_target *ti;
1103 long ret = 0;
1104 int srcu_idx;
1105
1106 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1107
1108 if (!ti)
1109 goto out;
1110 if (!ti->type->dax_copy_to_iter) {
1111 ret = copy_to_iter(addr, bytes, i);
1112 goto out;
1113 }
1114 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1115 out:
1116 dm_put_live_table(md, srcu_idx);
1117
1118 return ret;
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine. It is
1123 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1124 *
1125 * dm_accept_partial_bio informs the dm that the target only wants to process
1126 * additional n_sectors sectors of the bio and the rest of the data should be
1127 * sent in a next bio.
1128 *
1129 * A diagram that explains the arithmetics:
1130 * +--------------------+---------------+-------+
1131 * | 1 | 2 | 3 |
1132 * +--------------------+---------------+-------+
1133 *
1134 * <-------------- *tio->len_ptr --------------->
1135 * <------- bi_size ------->
1136 * <-- n_sectors -->
1137 *
1138 * Region 1 was already iterated over with bio_advance or similar function.
1139 * (it may be empty if the target doesn't use bio_advance)
1140 * Region 2 is the remaining bio size that the target wants to process.
1141 * (it may be empty if region 1 is non-empty, although there is no reason
1142 * to make it empty)
1143 * The target requires that region 3 is to be sent in the next bio.
1144 *
1145 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1146 * the partially processed part (the sum of regions 1+2) must be the same for all
1147 * copies of the bio.
1148 */
1149void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1150{
1151 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1152 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1153 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1154 BUG_ON(bi_size > *tio->len_ptr);
1155 BUG_ON(n_sectors > bi_size);
1156 *tio->len_ptr -= bi_size - n_sectors;
1157 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1158}
1159EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1160
1161/*
1162 * The zone descriptors obtained with a zone report indicate zone positions
1163 * within the target backing device, regardless of that device is a partition
1164 * and regardless of the target mapping start sector on the device or partition.
1165 * The zone descriptors start sector and write pointer position must be adjusted
1166 * to match their relative position within the dm device.
1167 * A target may call dm_remap_zone_report() after completion of a
1168 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained from the
1169 * backing device.
1170 */
1171void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1172{
1173#ifdef CONFIG_BLK_DEV_ZONED
1174 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1175 struct bio *report_bio = tio->io->orig_bio;
1176 struct blk_zone_report_hdr *hdr = NULL;
1177 struct blk_zone *zone;
1178 unsigned int nr_rep = 0;
1179 unsigned int ofst;
1180 sector_t part_offset;
1181 struct bio_vec bvec;
1182 struct bvec_iter iter;
1183 void *addr;
1184
1185 if (bio->bi_status)
1186 return;
1187
1188 /*
1189 * bio sector was incremented by the request size on completion. Taking
1190 * into account the original request sector, the target start offset on
1191 * the backing device and the target mapping offset (ti->begin), the
1192 * start sector of the backing device. The partition offset is always 0
1193 * if the target uses a whole device.
1194 */
1195 part_offset = bio->bi_iter.bi_sector + ti->begin - (start + bio_end_sector(report_bio));
1196
1197 /*
1198 * Remap the start sector of the reported zones. For sequential zones,
1199 * also remap the write pointer position.
1200 */
1201 bio_for_each_segment(bvec, report_bio, iter) {
1202 addr = kmap_atomic(bvec.bv_page);
1203
1204 /* Remember the report header in the first page */
1205 if (!hdr) {
1206 hdr = addr;
1207 ofst = sizeof(struct blk_zone_report_hdr);
1208 } else
1209 ofst = 0;
1210
1211 /* Set zones start sector */
1212 while (hdr->nr_zones && ofst < bvec.bv_len) {
1213 zone = addr + ofst;
1214 zone->start -= part_offset;
1215 if (zone->start >= start + ti->len) {
1216 hdr->nr_zones = 0;
1217 break;
1218 }
1219 zone->start = zone->start + ti->begin - start;
1220 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1221 if (zone->cond == BLK_ZONE_COND_FULL)
1222 zone->wp = zone->start + zone->len;
1223 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1224 zone->wp = zone->start;
1225 else
1226 zone->wp = zone->wp + ti->begin - start - part_offset;
1227 }
1228 ofst += sizeof(struct blk_zone);
1229 hdr->nr_zones--;
1230 nr_rep++;
1231 }
1232
1233 if (addr != hdr)
1234 kunmap_atomic(addr);
1235
1236 if (!hdr->nr_zones)
1237 break;
1238 }
1239
1240 if (hdr) {
1241 hdr->nr_zones = nr_rep;
1242 kunmap_atomic(hdr);
1243 }
1244
1245 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1246
1247#else /* !CONFIG_BLK_DEV_ZONED */
1248 bio->bi_status = BLK_STS_NOTSUPP;
1249#endif
1250}
1251EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1252
1253static blk_qc_t __map_bio(struct dm_target_io *tio)
1254{
1255 int r;
1256 sector_t sector;
1257 struct bio *clone = &tio->clone;
1258 struct dm_io *io = tio->io;
1259 struct mapped_device *md = io->md;
1260 struct dm_target *ti = tio->ti;
1261 blk_qc_t ret = BLK_QC_T_NONE;
1262
1263 clone->bi_end_io = clone_endio;
1264
1265 /*
1266 * Map the clone. If r == 0 we don't need to do
1267 * anything, the target has assumed ownership of
1268 * this io.
1269 */
1270 atomic_inc(&io->io_count);
1271 sector = clone->bi_iter.bi_sector;
1272
1273 r = ti->type->map(ti, clone);
1274 switch (r) {
1275 case DM_MAPIO_SUBMITTED:
1276 break;
1277 case DM_MAPIO_REMAPPED:
1278 /* the bio has been remapped so dispatch it */
1279 trace_block_bio_remap(clone->bi_disk->queue, clone,
1280 bio_dev(io->orig_bio), sector);
1281 if (md->type == DM_TYPE_NVME_BIO_BASED)
1282 ret = direct_make_request(clone);
1283 else
1284 ret = generic_make_request(clone);
1285 break;
1286 case DM_MAPIO_KILL:
1287 free_tio(tio);
1288 dec_pending(io, BLK_STS_IOERR);
1289 break;
1290 case DM_MAPIO_REQUEUE:
1291 free_tio(tio);
1292 dec_pending(io, BLK_STS_DM_REQUEUE);
1293 break;
1294 default:
1295 DMWARN("unimplemented target map return value: %d", r);
1296 BUG();
1297 }
1298
1299 return ret;
1300}
1301
1302static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1303{
1304 bio->bi_iter.bi_sector = sector;
1305 bio->bi_iter.bi_size = to_bytes(len);
1306}
1307
1308/*
1309 * Creates a bio that consists of range of complete bvecs.
1310 */
1311static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1312 sector_t sector, unsigned len)
1313{
1314 struct bio *clone = &tio->clone;
1315
1316 __bio_clone_fast(clone, bio);
1317
1318 bio_crypt_clone(clone, bio, GFP_NOIO);
1319
1320 if (unlikely(bio_integrity(bio) != NULL)) {
1321 int r;
1322 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1323 !dm_target_passes_integrity(tio->ti->type))) {
1324 DMWARN("%s: the target %s doesn't support integrity data.",
1325 dm_device_name(tio->io->md),
1326 tio->ti->type->name);
1327 return -EIO;
1328 }
1329
1330 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1331 if (r < 0)
1332 return r;
1333 }
1334
1335 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1336 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1337 clone->bi_iter.bi_size = to_bytes(len);
1338
1339 if (unlikely(bio_integrity(bio) != NULL))
1340 bio_integrity_trim(clone);
1341
1342 return 0;
1343}
1344
1345static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1346 struct dm_target *ti, unsigned num_bios)
1347{
1348 struct dm_target_io *tio;
1349 int try;
1350
1351 if (!num_bios)
1352 return;
1353
1354 if (num_bios == 1) {
1355 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1356 bio_list_add(blist, &tio->clone);
1357 return;
1358 }
1359
1360 for (try = 0; try < 2; try++) {
1361 int bio_nr;
1362 struct bio *bio;
1363
1364 if (try)
1365 mutex_lock(&ci->io->md->table_devices_lock);
1366 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1367 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1368 if (!tio)
1369 break;
1370
1371 bio_list_add(blist, &tio->clone);
1372 }
1373 if (try)
1374 mutex_unlock(&ci->io->md->table_devices_lock);
1375 if (bio_nr == num_bios)
1376 return;
1377
1378 while ((bio = bio_list_pop(blist))) {
1379 tio = container_of(bio, struct dm_target_io, clone);
1380 free_tio(tio);
1381 }
1382 }
1383}
1384
1385static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1386 struct dm_target_io *tio, unsigned *len)
1387{
1388 struct bio *clone = &tio->clone;
1389
1390 tio->len_ptr = len;
1391
1392 __bio_clone_fast(clone, ci->bio);
1393 if (len)
1394 bio_setup_sector(clone, ci->sector, *len);
1395
1396 return __map_bio(tio);
1397}
1398
1399static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1400 unsigned num_bios, unsigned *len)
1401{
1402 struct bio_list blist = BIO_EMPTY_LIST;
1403 struct bio *bio;
1404 struct dm_target_io *tio;
1405
1406 alloc_multiple_bios(&blist, ci, ti, num_bios);
1407
1408 while ((bio = bio_list_pop(&blist))) {
1409 tio = container_of(bio, struct dm_target_io, clone);
1410 (void) __clone_and_map_simple_bio(ci, tio, len);
1411 }
1412}
1413
1414static int __send_empty_flush(struct clone_info *ci)
1415{
1416 unsigned target_nr = 0;
1417 struct dm_target *ti;
1418
1419 BUG_ON(bio_has_data(ci->bio));
1420 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1421 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1422
1423 return 0;
1424}
1425
1426static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1427 sector_t sector, unsigned *len)
1428{
1429 struct bio *bio = ci->bio;
1430 struct dm_target_io *tio;
1431 int r;
1432
1433 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1434 tio->len_ptr = len;
1435 r = clone_bio(tio, bio, sector, *len);
1436 if (r < 0) {
1437 free_tio(tio);
1438 return r;
1439 }
1440 (void) __map_bio(tio);
1441
1442 return 0;
1443}
1444
1445typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1446
1447static unsigned get_num_discard_bios(struct dm_target *ti)
1448{
1449 return ti->num_discard_bios;
1450}
1451
1452static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1453{
1454 return ti->num_secure_erase_bios;
1455}
1456
1457static unsigned get_num_write_same_bios(struct dm_target *ti)
1458{
1459 return ti->num_write_same_bios;
1460}
1461
1462static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1463{
1464 return ti->num_write_zeroes_bios;
1465}
1466
1467typedef bool (*is_split_required_fn)(struct dm_target *ti);
1468
1469static bool is_split_required_for_discard(struct dm_target *ti)
1470{
1471 return ti->split_discard_bios;
1472}
1473
1474static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1475 get_num_bios_fn get_num_bios,
1476 is_split_required_fn is_split_required)
1477{
1478 unsigned len;
1479 unsigned num_bios;
1480
1481 /*
1482 * Even though the device advertised support for this type of
1483 * request, that does not mean every target supports it, and
1484 * reconfiguration might also have changed that since the
1485 * check was performed.
1486 */
1487 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1488 if (!num_bios)
1489 return -EOPNOTSUPP;
1490
1491 if (is_split_required && !is_split_required(ti))
1492 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1493 else
1494 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1495
1496 __send_duplicate_bios(ci, ti, num_bios, &len);
1497
1498 ci->sector += len;
1499 ci->sector_count -= len;
1500
1501 return 0;
1502}
1503
1504static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1505{
1506 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1507 is_split_required_for_discard);
1508}
1509
1510static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1511{
1512 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1513}
1514
1515static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1516{
1517 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1518}
1519
1520static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1521{
1522 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1523}
1524
1525static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1526 int *result)
1527{
1528 struct bio *bio = ci->bio;
1529
1530 if (bio_op(bio) == REQ_OP_DISCARD)
1531 *result = __send_discard(ci, ti);
1532 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1533 *result = __send_secure_erase(ci, ti);
1534 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1535 *result = __send_write_same(ci, ti);
1536 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1537 *result = __send_write_zeroes(ci, ti);
1538 else
1539 return false;
1540
1541 return true;
1542}
1543
1544/*
1545 * Select the correct strategy for processing a non-flush bio.
1546 */
1547static int __split_and_process_non_flush(struct clone_info *ci)
1548{
1549 struct bio *bio = ci->bio;
1550 struct dm_target *ti;
1551 unsigned len;
1552 int r;
1553
1554 ti = dm_table_find_target(ci->map, ci->sector);
1555 if (!dm_target_is_valid(ti))
1556 return -EIO;
1557
1558 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1559 return r;
1560
1561 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1562 len = ci->sector_count;
1563 else
1564 len = min_t(sector_t, max_io_len(ci->sector, ti),
1565 ci->sector_count);
1566
1567 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1568 if (r < 0)
1569 return r;
1570
1571 ci->sector += len;
1572 ci->sector_count -= len;
1573
1574 return 0;
1575}
1576
1577static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1578 struct dm_table *map, struct bio *bio)
1579{
1580 ci->map = map;
1581 ci->io = alloc_io(md, bio);
1582 ci->sector = bio->bi_iter.bi_sector;
1583}
1584
1585/*
1586 * Entry point to split a bio into clones and submit them to the targets.
1587 */
1588static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1589 struct dm_table *map, struct bio *bio)
1590{
1591 struct clone_info ci;
1592 blk_qc_t ret = BLK_QC_T_NONE;
1593 int error = 0;
1594
1595 if (unlikely(!map)) {
1596 bio_io_error(bio);
1597 return ret;
1598 }
1599
1600 blk_queue_split(md->queue, &bio);
1601
1602 init_clone_info(&ci, md, map, bio);
1603
1604 if (bio->bi_opf & REQ_PREFLUSH) {
1605 ci.bio = &ci.io->md->flush_bio;
1606 ci.sector_count = 0;
1607 error = __send_empty_flush(&ci);
1608 /* dec_pending submits any data associated with flush */
1609 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1610 ci.bio = bio;
1611 ci.sector_count = 0;
1612 error = __split_and_process_non_flush(&ci);
1613 } else {
1614 ci.bio = bio;
1615 ci.sector_count = bio_sectors(bio);
1616 while (ci.sector_count && !error) {
1617 error = __split_and_process_non_flush(&ci);
1618 if (current->bio_list && ci.sector_count && !error) {
1619 /*
1620 * Remainder must be passed to generic_make_request()
1621 * so that it gets handled *after* bios already submitted
1622 * have been completely processed.
1623 * We take a clone of the original to store in
1624 * ci.io->orig_bio to be used by end_io_acct() and
1625 * for dec_pending to use for completion handling.
1626 * As this path is not used for REQ_OP_ZONE_REPORT,
1627 * the usage of io->orig_bio in dm_remap_zone_report()
1628 * won't be affected by this reassignment.
1629 */
1630 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1631 GFP_NOIO, &md->queue->bio_split);
1632 ci.io->orig_bio = b;
1633 bio_chain(b, bio);
1634 ret = generic_make_request(bio);
1635 break;
1636 }
1637 }
1638 }
1639
1640 /* drop the extra reference count */
1641 dec_pending(ci.io, errno_to_blk_status(error));
1642 return ret;
1643}
1644
1645/*
1646 * Optimized variant of __split_and_process_bio that leverages the
1647 * fact that targets that use it do _not_ have a need to split bios.
1648 */
1649static blk_qc_t __process_bio(struct mapped_device *md,
1650 struct dm_table *map, struct bio *bio)
1651{
1652 struct clone_info ci;
1653 blk_qc_t ret = BLK_QC_T_NONE;
1654 int error = 0;
1655
1656 if (unlikely(!map)) {
1657 bio_io_error(bio);
1658 return ret;
1659 }
1660
1661 init_clone_info(&ci, md, map, bio);
1662
1663 if (bio->bi_opf & REQ_PREFLUSH) {
1664 ci.bio = &ci.io->md->flush_bio;
1665 ci.sector_count = 0;
1666 error = __send_empty_flush(&ci);
1667 /* dec_pending submits any data associated with flush */
1668 } else {
1669 struct dm_target *ti = md->immutable_target;
1670 struct dm_target_io *tio;
1671
1672 /*
1673 * Defend against IO still getting in during teardown
1674 * - as was seen for a time with nvme-fcloop
1675 */
1676 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1677 error = -EIO;
1678 goto out;
1679 }
1680
1681 ci.bio = bio;
1682 ci.sector_count = bio_sectors(bio);
1683 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1684 goto out;
1685
1686 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1687 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1688 }
1689out:
1690 /* drop the extra reference count */
1691 dec_pending(ci.io, errno_to_blk_status(error));
1692 return ret;
1693}
1694
1695typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1696
1697static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1698 process_bio_fn process_bio)
1699{
1700 struct mapped_device *md = q->queuedata;
1701 blk_qc_t ret = BLK_QC_T_NONE;
1702 int srcu_idx;
1703 struct dm_table *map;
1704
1705 map = dm_get_live_table(md, &srcu_idx);
1706
1707 /* if we're suspended, we have to queue this io for later */
1708 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1709 dm_put_live_table(md, srcu_idx);
1710
1711 if (!(bio->bi_opf & REQ_RAHEAD))
1712 queue_io(md, bio);
1713 else
1714 bio_io_error(bio);
1715 return ret;
1716 }
1717
1718 ret = process_bio(md, map, bio);
1719
1720 dm_put_live_table(md, srcu_idx);
1721 return ret;
1722}
1723
1724/*
1725 * The request function that remaps the bio to one target and
1726 * splits off any remainder.
1727 */
1728static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1729{
1730 return __dm_make_request(q, bio, __split_and_process_bio);
1731}
1732
1733static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1734{
1735 return __dm_make_request(q, bio, __process_bio);
1736}
1737
1738static int dm_any_congested(void *congested_data, int bdi_bits)
1739{
1740 int r = bdi_bits;
1741 struct mapped_device *md = congested_data;
1742 struct dm_table *map;
1743
1744 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1745 if (dm_request_based(md)) {
1746 /*
1747 * With request-based DM we only need to check the
1748 * top-level queue for congestion.
1749 */
1750 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1751 } else {
1752 map = dm_get_live_table_fast(md);
1753 if (map)
1754 r = dm_table_any_congested(map, bdi_bits);
1755 dm_put_live_table_fast(md);
1756 }
1757 }
1758
1759 return r;
1760}
1761
1762/*-----------------------------------------------------------------
1763 * An IDR is used to keep track of allocated minor numbers.
1764 *---------------------------------------------------------------*/
1765static void free_minor(int minor)
1766{
1767 spin_lock(&_minor_lock);
1768 idr_remove(&_minor_idr, minor);
1769 spin_unlock(&_minor_lock);
1770}
1771
1772/*
1773 * See if the device with a specific minor # is free.
1774 */
1775static int specific_minor(int minor)
1776{
1777 int r;
1778
1779 if (minor >= (1 << MINORBITS))
1780 return -EINVAL;
1781
1782 idr_preload(GFP_KERNEL);
1783 spin_lock(&_minor_lock);
1784
1785 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1786
1787 spin_unlock(&_minor_lock);
1788 idr_preload_end();
1789 if (r < 0)
1790 return r == -ENOSPC ? -EBUSY : r;
1791 return 0;
1792}
1793
1794static int next_free_minor(int *minor)
1795{
1796 int r;
1797
1798 idr_preload(GFP_KERNEL);
1799 spin_lock(&_minor_lock);
1800
1801 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1802
1803 spin_unlock(&_minor_lock);
1804 idr_preload_end();
1805 if (r < 0)
1806 return r;
1807 *minor = r;
1808 return 0;
1809}
1810
1811static const struct block_device_operations dm_blk_dops;
1812static const struct dax_operations dm_dax_ops;
1813
1814static void dm_wq_work(struct work_struct *work);
1815
1816static void dm_init_normal_md_queue(struct mapped_device *md)
1817{
1818 md->use_blk_mq = false;
1819
1820 /*
1821 * Initialize aspects of queue that aren't relevant for blk-mq
1822 */
1823 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1824}
1825
1826static void cleanup_mapped_device(struct mapped_device *md)
1827{
1828 if (md->wq)
1829 destroy_workqueue(md->wq);
1830 if (md->kworker_task)
1831 kthread_stop(md->kworker_task);
1832 bioset_exit(&md->bs);
1833 bioset_exit(&md->io_bs);
1834
1835 if (md->dax_dev) {
1836 kill_dax(md->dax_dev);
1837 put_dax(md->dax_dev);
1838 md->dax_dev = NULL;
1839 }
1840
1841 if (md->disk) {
1842 spin_lock(&_minor_lock);
1843 md->disk->private_data = NULL;
1844 spin_unlock(&_minor_lock);
1845 del_gendisk(md->disk);
1846 put_disk(md->disk);
1847 }
1848
1849 if (md->queue)
1850 blk_cleanup_queue(md->queue);
1851
1852 cleanup_srcu_struct(&md->io_barrier);
1853
1854 if (md->bdev) {
1855 bdput(md->bdev);
1856 md->bdev = NULL;
1857 }
1858
1859 mutex_destroy(&md->suspend_lock);
1860 mutex_destroy(&md->type_lock);
1861 mutex_destroy(&md->table_devices_lock);
1862
1863 dm_mq_cleanup_mapped_device(md);
1864}
1865
1866/*
1867 * Allocate and initialise a blank device with a given minor.
1868 */
1869static struct mapped_device *alloc_dev(int minor)
1870{
1871 int r, numa_node_id = dm_get_numa_node();
1872 struct dax_device *dax_dev = NULL;
1873 struct mapped_device *md;
1874 void *old_md;
1875
1876 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1877 if (!md) {
1878 DMWARN("unable to allocate device, out of memory.");
1879 return NULL;
1880 }
1881
1882 if (!try_module_get(THIS_MODULE))
1883 goto bad_module_get;
1884
1885 /* get a minor number for the dev */
1886 if (minor == DM_ANY_MINOR)
1887 r = next_free_minor(&minor);
1888 else
1889 r = specific_minor(minor);
1890 if (r < 0)
1891 goto bad_minor;
1892
1893 r = init_srcu_struct(&md->io_barrier);
1894 if (r < 0)
1895 goto bad_io_barrier;
1896
1897 md->numa_node_id = numa_node_id;
1898 md->use_blk_mq = dm_use_blk_mq_default();
1899 md->init_tio_pdu = false;
1900 md->type = DM_TYPE_NONE;
1901 mutex_init(&md->suspend_lock);
1902 mutex_init(&md->type_lock);
1903 mutex_init(&md->table_devices_lock);
1904 spin_lock_init(&md->deferred_lock);
1905 atomic_set(&md->holders, 1);
1906 atomic_set(&md->open_count, 0);
1907 atomic_set(&md->event_nr, 0);
1908 atomic_set(&md->uevent_seq, 0);
1909 INIT_LIST_HEAD(&md->uevent_list);
1910 INIT_LIST_HEAD(&md->table_devices);
1911 spin_lock_init(&md->uevent_lock);
1912
1913 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1914 if (!md->queue)
1915 goto bad;
1916 md->queue->queuedata = md;
1917 md->queue->backing_dev_info->congested_data = md;
1918
1919 md->disk = alloc_disk_node(1, md->numa_node_id);
1920 if (!md->disk)
1921 goto bad;
1922
1923 atomic_set(&md->pending[0], 0);
1924 atomic_set(&md->pending[1], 0);
1925 init_waitqueue_head(&md->wait);
1926 INIT_WORK(&md->work, dm_wq_work);
1927 init_waitqueue_head(&md->eventq);
1928 init_completion(&md->kobj_holder.completion);
1929 md->kworker_task = NULL;
1930
1931 md->disk->major = _major;
1932 md->disk->first_minor = minor;
1933 md->disk->fops = &dm_blk_dops;
1934 md->disk->queue = md->queue;
1935 md->disk->private_data = md;
1936 sprintf(md->disk->disk_name, "dm-%d", minor);
1937
1938 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1939 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1940 if (!dax_dev)
1941 goto bad;
1942 }
1943 md->dax_dev = dax_dev;
1944
1945 add_disk_no_queue_reg(md->disk);
1946 format_dev_t(md->name, MKDEV(_major, minor));
1947
1948 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1949 if (!md->wq)
1950 goto bad;
1951
1952 md->bdev = bdget_disk(md->disk, 0);
1953 if (!md->bdev)
1954 goto bad;
1955
1956 bio_init(&md->flush_bio, NULL, 0);
1957 bio_set_dev(&md->flush_bio, md->bdev);
1958 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1959
1960 dm_stats_init(&md->stats);
1961
1962 /* Populate the mapping, nobody knows we exist yet */
1963 spin_lock(&_minor_lock);
1964 old_md = idr_replace(&_minor_idr, md, minor);
1965 spin_unlock(&_minor_lock);
1966
1967 BUG_ON(old_md != MINOR_ALLOCED);
1968
1969 return md;
1970
1971bad:
1972 cleanup_mapped_device(md);
1973bad_io_barrier:
1974 free_minor(minor);
1975bad_minor:
1976 module_put(THIS_MODULE);
1977bad_module_get:
1978 kvfree(md);
1979 return NULL;
1980}
1981
1982static void unlock_fs(struct mapped_device *md);
1983
1984static void free_dev(struct mapped_device *md)
1985{
1986 int minor = MINOR(disk_devt(md->disk));
1987
1988 unlock_fs(md);
1989
1990 cleanup_mapped_device(md);
1991
1992 free_table_devices(&md->table_devices);
1993 dm_stats_cleanup(&md->stats);
1994 free_minor(minor);
1995
1996 module_put(THIS_MODULE);
1997 kvfree(md);
1998}
1999
2000static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2001{
2002 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2003 int ret = 0;
2004
2005 if (dm_table_bio_based(t)) {
2006 /*
2007 * The md may already have mempools that need changing.
2008 * If so, reload bioset because front_pad may have changed
2009 * because a different table was loaded.
2010 */
2011 bioset_exit(&md->bs);
2012 bioset_exit(&md->io_bs);
2013
2014 } else if (bioset_initialized(&md->bs)) {
2015 /*
2016 * There's no need to reload with request-based dm
2017 * because the size of front_pad doesn't change.
2018 * Note for future: If you are to reload bioset,
2019 * prep-ed requests in the queue may refer
2020 * to bio from the old bioset, so you must walk
2021 * through the queue to unprep.
2022 */
2023 goto out;
2024 }
2025
2026 BUG_ON(!p ||
2027 bioset_initialized(&md->bs) ||
2028 bioset_initialized(&md->io_bs));
2029
2030 ret = bioset_init_from_src(&md->bs, &p->bs);
2031 if (ret)
2032 goto out;
2033 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2034 if (ret)
2035 bioset_exit(&md->bs);
2036out:
2037 /* mempool bind completed, no longer need any mempools in the table */
2038 dm_table_free_md_mempools(t);
2039 return ret;
2040}
2041
2042/*
2043 * Bind a table to the device.
2044 */
2045static void event_callback(void *context)
2046{
2047 unsigned long flags;
2048 LIST_HEAD(uevents);
2049 struct mapped_device *md = (struct mapped_device *) context;
2050
2051 spin_lock_irqsave(&md->uevent_lock, flags);
2052 list_splice_init(&md->uevent_list, &uevents);
2053 spin_unlock_irqrestore(&md->uevent_lock, flags);
2054
2055 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2056
2057 atomic_inc(&md->event_nr);
2058 wake_up(&md->eventq);
2059 dm_issue_global_event();
2060}
2061
2062/*
2063 * Protected by md->suspend_lock obtained by dm_swap_table().
2064 */
2065static void __set_size(struct mapped_device *md, sector_t size)
2066{
2067 lockdep_assert_held(&md->suspend_lock);
2068
2069 set_capacity(md->disk, size);
2070
2071 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2072}
2073
2074/*
2075 * Returns old map, which caller must destroy.
2076 */
2077static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2078 struct queue_limits *limits)
2079{
2080 struct dm_table *old_map;
2081 struct request_queue *q = md->queue;
2082 bool request_based = dm_table_request_based(t);
2083 sector_t size;
2084 int ret;
2085
2086 lockdep_assert_held(&md->suspend_lock);
2087
2088 size = dm_table_get_size(t);
2089
2090 /*
2091 * Wipe any geometry if the size of the table changed.
2092 */
2093 if (size != dm_get_size(md))
2094 memset(&md->geometry, 0, sizeof(md->geometry));
2095
2096 __set_size(md, size);
2097
2098 dm_table_event_callback(t, event_callback, md);
2099
2100 /*
2101 * The queue hasn't been stopped yet, if the old table type wasn't
2102 * for request-based during suspension. So stop it to prevent
2103 * I/O mapping before resume.
2104 * This must be done before setting the queue restrictions,
2105 * because request-based dm may be run just after the setting.
2106 */
2107 if (request_based)
2108 dm_stop_queue(q);
2109
2110 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2111 /*
2112 * Leverage the fact that request-based DM targets and
2113 * NVMe bio based targets are immutable singletons
2114 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2115 * and __process_bio.
2116 */
2117 md->immutable_target = dm_table_get_immutable_target(t);
2118 }
2119
2120 ret = __bind_mempools(md, t);
2121 if (ret) {
2122 old_map = ERR_PTR(ret);
2123 goto out;
2124 }
2125
2126 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2127 rcu_assign_pointer(md->map, (void *)t);
2128 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2129
2130 dm_table_set_restrictions(t, q, limits);
2131 if (old_map)
2132 dm_sync_table(md);
2133
2134out:
2135 return old_map;
2136}
2137
2138/*
2139 * Returns unbound table for the caller to free.
2140 */
2141static struct dm_table *__unbind(struct mapped_device *md)
2142{
2143 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2144
2145 if (!map)
2146 return NULL;
2147
2148 dm_table_event_callback(map, NULL, NULL);
2149 RCU_INIT_POINTER(md->map, NULL);
2150 dm_sync_table(md);
2151
2152 return map;
2153}
2154
2155/*
2156 * Constructor for a new device.
2157 */
2158int dm_create(int minor, struct mapped_device **result)
2159{
2160 int r;
2161 struct mapped_device *md;
2162
2163 md = alloc_dev(minor);
2164 if (!md)
2165 return -ENXIO;
2166
2167 r = dm_sysfs_init(md);
2168 if (r) {
2169 free_dev(md);
2170 return r;
2171 }
2172
2173 *result = md;
2174 return 0;
2175}
2176
2177/*
2178 * Functions to manage md->type.
2179 * All are required to hold md->type_lock.
2180 */
2181void dm_lock_md_type(struct mapped_device *md)
2182{
2183 mutex_lock(&md->type_lock);
2184}
2185
2186void dm_unlock_md_type(struct mapped_device *md)
2187{
2188 mutex_unlock(&md->type_lock);
2189}
2190
2191void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2192{
2193 BUG_ON(!mutex_is_locked(&md->type_lock));
2194 md->type = type;
2195}
2196
2197enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2198{
2199 return md->type;
2200}
2201
2202struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2203{
2204 return md->immutable_target_type;
2205}
2206
2207/*
2208 * The queue_limits are only valid as long as you have a reference
2209 * count on 'md'.
2210 */
2211struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2212{
2213 BUG_ON(!atomic_read(&md->holders));
2214 return &md->queue->limits;
2215}
2216EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2217
2218/*
2219 * Setup the DM device's queue based on md's type
2220 */
2221int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2222{
2223 int r;
2224 struct queue_limits limits;
2225 enum dm_queue_mode type = dm_get_md_type(md);
2226
2227 switch (type) {
2228 case DM_TYPE_REQUEST_BASED:
2229 dm_init_normal_md_queue(md);
2230 r = dm_old_init_request_queue(md, t);
2231 if (r) {
2232 DMERR("Cannot initialize queue for request-based mapped device");
2233 return r;
2234 }
2235 break;
2236 case DM_TYPE_MQ_REQUEST_BASED:
2237 r = dm_mq_init_request_queue(md, t);
2238 if (r) {
2239 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2240 return r;
2241 }
2242 break;
2243 case DM_TYPE_BIO_BASED:
2244 case DM_TYPE_DAX_BIO_BASED:
2245 dm_init_normal_md_queue(md);
2246 blk_queue_make_request(md->queue, dm_make_request);
2247 break;
2248 case DM_TYPE_NVME_BIO_BASED:
2249 dm_init_normal_md_queue(md);
2250 blk_queue_make_request(md->queue, dm_make_request_nvme);
2251 break;
2252 case DM_TYPE_NONE:
2253 WARN_ON_ONCE(true);
2254 break;
2255 }
2256
2257 r = dm_calculate_queue_limits(t, &limits);
2258 if (r) {
2259 DMERR("Cannot calculate initial queue limits");
2260 return r;
2261 }
2262 dm_table_set_restrictions(t, md->queue, &limits);
2263 blk_register_queue(md->disk);
2264
2265 return 0;
2266}
2267
2268struct mapped_device *dm_get_md(dev_t dev)
2269{
2270 struct mapped_device *md;
2271 unsigned minor = MINOR(dev);
2272
2273 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2274 return NULL;
2275
2276 spin_lock(&_minor_lock);
2277
2278 md = idr_find(&_minor_idr, minor);
2279 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2280 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2281 md = NULL;
2282 goto out;
2283 }
2284 dm_get(md);
2285out:
2286 spin_unlock(&_minor_lock);
2287
2288 return md;
2289}
2290EXPORT_SYMBOL_GPL(dm_get_md);
2291
2292void *dm_get_mdptr(struct mapped_device *md)
2293{
2294 return md->interface_ptr;
2295}
2296
2297void dm_set_mdptr(struct mapped_device *md, void *ptr)
2298{
2299 md->interface_ptr = ptr;
2300}
2301
2302void dm_get(struct mapped_device *md)
2303{
2304 atomic_inc(&md->holders);
2305 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2306}
2307
2308int dm_hold(struct mapped_device *md)
2309{
2310 spin_lock(&_minor_lock);
2311 if (test_bit(DMF_FREEING, &md->flags)) {
2312 spin_unlock(&_minor_lock);
2313 return -EBUSY;
2314 }
2315 dm_get(md);
2316 spin_unlock(&_minor_lock);
2317 return 0;
2318}
2319EXPORT_SYMBOL_GPL(dm_hold);
2320
2321const char *dm_device_name(struct mapped_device *md)
2322{
2323 return md->name;
2324}
2325EXPORT_SYMBOL_GPL(dm_device_name);
2326
2327static void __dm_destroy(struct mapped_device *md, bool wait)
2328{
2329 struct dm_table *map;
2330 int srcu_idx;
2331
2332 might_sleep();
2333
2334 spin_lock(&_minor_lock);
2335 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2336 set_bit(DMF_FREEING, &md->flags);
2337 spin_unlock(&_minor_lock);
2338
2339 blk_set_queue_dying(md->queue);
2340
2341 if (dm_request_based(md) && md->kworker_task)
2342 kthread_flush_worker(&md->kworker);
2343
2344 /*
2345 * Take suspend_lock so that presuspend and postsuspend methods
2346 * do not race with internal suspend.
2347 */
2348 mutex_lock(&md->suspend_lock);
2349 map = dm_get_live_table(md, &srcu_idx);
2350 if (!dm_suspended_md(md)) {
2351 dm_table_presuspend_targets(map);
2352 dm_table_postsuspend_targets(map);
2353 }
2354 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2355 dm_put_live_table(md, srcu_idx);
2356 mutex_unlock(&md->suspend_lock);
2357
2358 /*
2359 * Rare, but there may be I/O requests still going to complete,
2360 * for example. Wait for all references to disappear.
2361 * No one should increment the reference count of the mapped_device,
2362 * after the mapped_device state becomes DMF_FREEING.
2363 */
2364 if (wait)
2365 while (atomic_read(&md->holders))
2366 msleep(1);
2367 else if (atomic_read(&md->holders))
2368 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2369 dm_device_name(md), atomic_read(&md->holders));
2370
2371 dm_sysfs_exit(md);
2372 dm_table_destroy(__unbind(md));
2373 free_dev(md);
2374}
2375
2376void dm_destroy(struct mapped_device *md)
2377{
2378 __dm_destroy(md, true);
2379}
2380
2381void dm_destroy_immediate(struct mapped_device *md)
2382{
2383 __dm_destroy(md, false);
2384}
2385
2386void dm_put(struct mapped_device *md)
2387{
2388 atomic_dec(&md->holders);
2389}
2390EXPORT_SYMBOL_GPL(dm_put);
2391
2392static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2393{
2394 int r = 0;
2395 DEFINE_WAIT(wait);
2396
2397 while (1) {
2398 prepare_to_wait(&md->wait, &wait, task_state);
2399
2400 if (!md_in_flight(md))
2401 break;
2402
2403 if (signal_pending_state(task_state, current)) {
2404 r = -EINTR;
2405 break;
2406 }
2407
2408 io_schedule();
2409 }
2410 finish_wait(&md->wait, &wait);
2411
2412 return r;
2413}
2414
2415/*
2416 * Process the deferred bios
2417 */
2418static void dm_wq_work(struct work_struct *work)
2419{
2420 struct mapped_device *md = container_of(work, struct mapped_device,
2421 work);
2422 struct bio *c;
2423 int srcu_idx;
2424 struct dm_table *map;
2425
2426 map = dm_get_live_table(md, &srcu_idx);
2427
2428 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2429 spin_lock_irq(&md->deferred_lock);
2430 c = bio_list_pop(&md->deferred);
2431 spin_unlock_irq(&md->deferred_lock);
2432
2433 if (!c)
2434 break;
2435
2436 if (dm_request_based(md))
2437 generic_make_request(c);
2438 else
2439 __split_and_process_bio(md, map, c);
2440 }
2441
2442 dm_put_live_table(md, srcu_idx);
2443}
2444
2445static void dm_queue_flush(struct mapped_device *md)
2446{
2447 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2448 smp_mb__after_atomic();
2449 queue_work(md->wq, &md->work);
2450}
2451
2452/*
2453 * Swap in a new table, returning the old one for the caller to destroy.
2454 */
2455struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2456{
2457 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2458 struct queue_limits limits;
2459 int r;
2460
2461 mutex_lock(&md->suspend_lock);
2462
2463 /* device must be suspended */
2464 if (!dm_suspended_md(md))
2465 goto out;
2466
2467 /*
2468 * If the new table has no data devices, retain the existing limits.
2469 * This helps multipath with queue_if_no_path if all paths disappear,
2470 * then new I/O is queued based on these limits, and then some paths
2471 * reappear.
2472 */
2473 if (dm_table_has_no_data_devices(table)) {
2474 live_map = dm_get_live_table_fast(md);
2475 if (live_map)
2476 limits = md->queue->limits;
2477 dm_put_live_table_fast(md);
2478 }
2479
2480 if (!live_map) {
2481 r = dm_calculate_queue_limits(table, &limits);
2482 if (r) {
2483 map = ERR_PTR(r);
2484 goto out;
2485 }
2486 }
2487
2488 map = __bind(md, table, &limits);
2489 dm_issue_global_event();
2490
2491out:
2492 mutex_unlock(&md->suspend_lock);
2493 return map;
2494}
2495
2496/*
2497 * Functions to lock and unlock any filesystem running on the
2498 * device.
2499 */
2500static int lock_fs(struct mapped_device *md)
2501{
2502 int r;
2503
2504 WARN_ON(md->frozen_sb);
2505
2506 md->frozen_sb = freeze_bdev(md->bdev);
2507 if (IS_ERR(md->frozen_sb)) {
2508 r = PTR_ERR(md->frozen_sb);
2509 md->frozen_sb = NULL;
2510 return r;
2511 }
2512
2513 set_bit(DMF_FROZEN, &md->flags);
2514
2515 return 0;
2516}
2517
2518static void unlock_fs(struct mapped_device *md)
2519{
2520 if (!test_bit(DMF_FROZEN, &md->flags))
2521 return;
2522
2523 thaw_bdev(md->bdev, md->frozen_sb);
2524 md->frozen_sb = NULL;
2525 clear_bit(DMF_FROZEN, &md->flags);
2526}
2527
2528/*
2529 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2530 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2531 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2532 *
2533 * If __dm_suspend returns 0, the device is completely quiescent
2534 * now. There is no request-processing activity. All new requests
2535 * are being added to md->deferred list.
2536 */
2537static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2538 unsigned suspend_flags, long task_state,
2539 int dmf_suspended_flag)
2540{
2541 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2542 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2543 int r;
2544
2545 lockdep_assert_held(&md->suspend_lock);
2546
2547 /*
2548 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2549 * This flag is cleared before dm_suspend returns.
2550 */
2551 if (noflush)
2552 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2553 else
2554 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2555
2556 /*
2557 * This gets reverted if there's an error later and the targets
2558 * provide the .presuspend_undo hook.
2559 */
2560 dm_table_presuspend_targets(map);
2561
2562 /*
2563 * Flush I/O to the device.
2564 * Any I/O submitted after lock_fs() may not be flushed.
2565 * noflush takes precedence over do_lockfs.
2566 * (lock_fs() flushes I/Os and waits for them to complete.)
2567 */
2568 if (!noflush && do_lockfs) {
2569 r = lock_fs(md);
2570 if (r) {
2571 dm_table_presuspend_undo_targets(map);
2572 return r;
2573 }
2574 }
2575
2576 /*
2577 * Here we must make sure that no processes are submitting requests
2578 * to target drivers i.e. no one may be executing
2579 * __split_and_process_bio. This is called from dm_request and
2580 * dm_wq_work.
2581 *
2582 * To get all processes out of __split_and_process_bio in dm_request,
2583 * we take the write lock. To prevent any process from reentering
2584 * __split_and_process_bio from dm_request and quiesce the thread
2585 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2586 * flush_workqueue(md->wq).
2587 */
2588 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2589 if (map)
2590 synchronize_srcu(&md->io_barrier);
2591
2592 /*
2593 * Stop md->queue before flushing md->wq in case request-based
2594 * dm defers requests to md->wq from md->queue.
2595 */
2596 if (dm_request_based(md)) {
2597 dm_stop_queue(md->queue);
2598 if (md->kworker_task)
2599 kthread_flush_worker(&md->kworker);
2600 }
2601
2602 flush_workqueue(md->wq);
2603
2604 /*
2605 * At this point no more requests are entering target request routines.
2606 * We call dm_wait_for_completion to wait for all existing requests
2607 * to finish.
2608 */
2609 r = dm_wait_for_completion(md, task_state);
2610 if (!r)
2611 set_bit(dmf_suspended_flag, &md->flags);
2612
2613 if (noflush)
2614 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2615 if (map)
2616 synchronize_srcu(&md->io_barrier);
2617
2618 /* were we interrupted ? */
2619 if (r < 0) {
2620 dm_queue_flush(md);
2621
2622 if (dm_request_based(md))
2623 dm_start_queue(md->queue);
2624
2625 unlock_fs(md);
2626 dm_table_presuspend_undo_targets(map);
2627 /* pushback list is already flushed, so skip flush */
2628 }
2629
2630 return r;
2631}
2632
2633/*
2634 * We need to be able to change a mapping table under a mounted
2635 * filesystem. For example we might want to move some data in
2636 * the background. Before the table can be swapped with
2637 * dm_bind_table, dm_suspend must be called to flush any in
2638 * flight bios and ensure that any further io gets deferred.
2639 */
2640/*
2641 * Suspend mechanism in request-based dm.
2642 *
2643 * 1. Flush all I/Os by lock_fs() if needed.
2644 * 2. Stop dispatching any I/O by stopping the request_queue.
2645 * 3. Wait for all in-flight I/Os to be completed or requeued.
2646 *
2647 * To abort suspend, start the request_queue.
2648 */
2649int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2650{
2651 struct dm_table *map = NULL;
2652 int r = 0;
2653
2654retry:
2655 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656
2657 if (dm_suspended_md(md)) {
2658 r = -EINVAL;
2659 goto out_unlock;
2660 }
2661
2662 if (dm_suspended_internally_md(md)) {
2663 /* already internally suspended, wait for internal resume */
2664 mutex_unlock(&md->suspend_lock);
2665 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2666 if (r)
2667 return r;
2668 goto retry;
2669 }
2670
2671 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2672
2673 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2674 if (r)
2675 goto out_unlock;
2676
2677 dm_table_postsuspend_targets(map);
2678
2679out_unlock:
2680 mutex_unlock(&md->suspend_lock);
2681 return r;
2682}
2683
2684static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2685{
2686 if (map) {
2687 int r = dm_table_resume_targets(map);
2688 if (r)
2689 return r;
2690 }
2691
2692 dm_queue_flush(md);
2693
2694 /*
2695 * Flushing deferred I/Os must be done after targets are resumed
2696 * so that mapping of targets can work correctly.
2697 * Request-based dm is queueing the deferred I/Os in its request_queue.
2698 */
2699 if (dm_request_based(md))
2700 dm_start_queue(md->queue);
2701
2702 unlock_fs(md);
2703
2704 return 0;
2705}
2706
2707int dm_resume(struct mapped_device *md)
2708{
2709 int r;
2710 struct dm_table *map = NULL;
2711
2712retry:
2713 r = -EINVAL;
2714 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2715
2716 if (!dm_suspended_md(md))
2717 goto out;
2718
2719 if (dm_suspended_internally_md(md)) {
2720 /* already internally suspended, wait for internal resume */
2721 mutex_unlock(&md->suspend_lock);
2722 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2723 if (r)
2724 return r;
2725 goto retry;
2726 }
2727
2728 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2729 if (!map || !dm_table_get_size(map))
2730 goto out;
2731
2732 r = __dm_resume(md, map);
2733 if (r)
2734 goto out;
2735
2736 clear_bit(DMF_SUSPENDED, &md->flags);
2737out:
2738 mutex_unlock(&md->suspend_lock);
2739
2740 return r;
2741}
2742
2743/*
2744 * Internal suspend/resume works like userspace-driven suspend. It waits
2745 * until all bios finish and prevents issuing new bios to the target drivers.
2746 * It may be used only from the kernel.
2747 */
2748
2749static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2750{
2751 struct dm_table *map = NULL;
2752
2753 lockdep_assert_held(&md->suspend_lock);
2754
2755 if (md->internal_suspend_count++)
2756 return; /* nested internal suspend */
2757
2758 if (dm_suspended_md(md)) {
2759 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2760 return; /* nest suspend */
2761 }
2762
2763 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2764
2765 /*
2766 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2767 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2768 * would require changing .presuspend to return an error -- avoid this
2769 * until there is a need for more elaborate variants of internal suspend.
2770 */
2771 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2772 DMF_SUSPENDED_INTERNALLY);
2773
2774 dm_table_postsuspend_targets(map);
2775}
2776
2777static void __dm_internal_resume(struct mapped_device *md)
2778{
2779 BUG_ON(!md->internal_suspend_count);
2780
2781 if (--md->internal_suspend_count)
2782 return; /* resume from nested internal suspend */
2783
2784 if (dm_suspended_md(md))
2785 goto done; /* resume from nested suspend */
2786
2787 /*
2788 * NOTE: existing callers don't need to call dm_table_resume_targets
2789 * (which may fail -- so best to avoid it for now by passing NULL map)
2790 */
2791 (void) __dm_resume(md, NULL);
2792
2793done:
2794 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2795 smp_mb__after_atomic();
2796 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2797}
2798
2799void dm_internal_suspend_noflush(struct mapped_device *md)
2800{
2801 mutex_lock(&md->suspend_lock);
2802 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2803 mutex_unlock(&md->suspend_lock);
2804}
2805EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2806
2807void dm_internal_resume(struct mapped_device *md)
2808{
2809 mutex_lock(&md->suspend_lock);
2810 __dm_internal_resume(md);
2811 mutex_unlock(&md->suspend_lock);
2812}
2813EXPORT_SYMBOL_GPL(dm_internal_resume);
2814
2815/*
2816 * Fast variants of internal suspend/resume hold md->suspend_lock,
2817 * which prevents interaction with userspace-driven suspend.
2818 */
2819
2820void dm_internal_suspend_fast(struct mapped_device *md)
2821{
2822 mutex_lock(&md->suspend_lock);
2823 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2824 return;
2825
2826 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2827 synchronize_srcu(&md->io_barrier);
2828 flush_workqueue(md->wq);
2829 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2830}
2831EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2832
2833void dm_internal_resume_fast(struct mapped_device *md)
2834{
2835 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2836 goto done;
2837
2838 dm_queue_flush(md);
2839
2840done:
2841 mutex_unlock(&md->suspend_lock);
2842}
2843EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2844
2845/*-----------------------------------------------------------------
2846 * Event notification.
2847 *---------------------------------------------------------------*/
2848int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2849 unsigned cookie)
2850{
2851 char udev_cookie[DM_COOKIE_LENGTH];
2852 char *envp[] = { udev_cookie, NULL };
2853
2854 if (!cookie)
2855 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2856 else {
2857 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2858 DM_COOKIE_ENV_VAR_NAME, cookie);
2859 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2860 action, envp);
2861 }
2862}
2863
2864uint32_t dm_next_uevent_seq(struct mapped_device *md)
2865{
2866 return atomic_add_return(1, &md->uevent_seq);
2867}
2868
2869uint32_t dm_get_event_nr(struct mapped_device *md)
2870{
2871 return atomic_read(&md->event_nr);
2872}
2873
2874int dm_wait_event(struct mapped_device *md, int event_nr)
2875{
2876 return wait_event_interruptible(md->eventq,
2877 (event_nr != atomic_read(&md->event_nr)));
2878}
2879
2880void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2881{
2882 unsigned long flags;
2883
2884 spin_lock_irqsave(&md->uevent_lock, flags);
2885 list_add(elist, &md->uevent_list);
2886 spin_unlock_irqrestore(&md->uevent_lock, flags);
2887}
2888
2889/*
2890 * The gendisk is only valid as long as you have a reference
2891 * count on 'md'.
2892 */
2893struct gendisk *dm_disk(struct mapped_device *md)
2894{
2895 return md->disk;
2896}
2897EXPORT_SYMBOL_GPL(dm_disk);
2898
2899struct kobject *dm_kobject(struct mapped_device *md)
2900{
2901 return &md->kobj_holder.kobj;
2902}
2903
2904struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2905{
2906 struct mapped_device *md;
2907
2908 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2909
2910 spin_lock(&_minor_lock);
2911 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2912 md = NULL;
2913 goto out;
2914 }
2915 dm_get(md);
2916out:
2917 spin_unlock(&_minor_lock);
2918
2919 return md;
2920}
2921
2922int dm_suspended_md(struct mapped_device *md)
2923{
2924 return test_bit(DMF_SUSPENDED, &md->flags);
2925}
2926
2927int dm_suspended_internally_md(struct mapped_device *md)
2928{
2929 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2930}
2931
2932int dm_test_deferred_remove_flag(struct mapped_device *md)
2933{
2934 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2935}
2936
2937int dm_suspended(struct dm_target *ti)
2938{
2939 return dm_suspended_md(dm_table_get_md(ti->table));
2940}
2941EXPORT_SYMBOL_GPL(dm_suspended);
2942
2943int dm_noflush_suspending(struct dm_target *ti)
2944{
2945 return __noflush_suspending(dm_table_get_md(ti->table));
2946}
2947EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2948
2949struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2950 unsigned integrity, unsigned per_io_data_size,
2951 unsigned min_pool_size)
2952{
2953 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2954 unsigned int pool_size = 0;
2955 unsigned int front_pad, io_front_pad;
2956 int ret;
2957
2958 if (!pools)
2959 return NULL;
2960
2961 switch (type) {
2962 case DM_TYPE_BIO_BASED:
2963 case DM_TYPE_DAX_BIO_BASED:
2964 case DM_TYPE_NVME_BIO_BASED:
2965 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2966 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2967 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2968 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2969 if (ret)
2970 goto out;
2971 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2972 goto out;
2973 break;
2974 case DM_TYPE_REQUEST_BASED:
2975 case DM_TYPE_MQ_REQUEST_BASED:
2976 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2977 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2978 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2979 break;
2980 default:
2981 BUG();
2982 }
2983
2984 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2985 if (ret)
2986 goto out;
2987
2988 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2989 goto out;
2990
2991 return pools;
2992
2993out:
2994 dm_free_md_mempools(pools);
2995
2996 return NULL;
2997}
2998
2999void dm_free_md_mempools(struct dm_md_mempools *pools)
3000{
3001 if (!pools)
3002 return;
3003
3004 bioset_exit(&pools->bs);
3005 bioset_exit(&pools->io_bs);
3006
3007 kfree(pools);
3008}
3009
3010struct dm_pr {
3011 u64 old_key;
3012 u64 new_key;
3013 u32 flags;
3014 bool fail_early;
3015};
3016
3017static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3018 void *data)
3019{
3020 struct mapped_device *md = bdev->bd_disk->private_data;
3021 struct dm_table *table;
3022 struct dm_target *ti;
3023 int ret = -ENOTTY, srcu_idx;
3024
3025 table = dm_get_live_table(md, &srcu_idx);
3026 if (!table || !dm_table_get_size(table))
3027 goto out;
3028
3029 /* We only support devices that have a single target */
3030 if (dm_table_get_num_targets(table) != 1)
3031 goto out;
3032 ti = dm_table_get_target(table, 0);
3033
3034 ret = -EINVAL;
3035 if (!ti->type->iterate_devices)
3036 goto out;
3037
3038 ret = ti->type->iterate_devices(ti, fn, data);
3039out:
3040 dm_put_live_table(md, srcu_idx);
3041 return ret;
3042}
3043
3044/*
3045 * For register / unregister we need to manually call out to every path.
3046 */
3047static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3048 sector_t start, sector_t len, void *data)
3049{
3050 struct dm_pr *pr = data;
3051 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3052
3053 if (!ops || !ops->pr_register)
3054 return -EOPNOTSUPP;
3055 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3056}
3057
3058static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3059 u32 flags)
3060{
3061 struct dm_pr pr = {
3062 .old_key = old_key,
3063 .new_key = new_key,
3064 .flags = flags,
3065 .fail_early = true,
3066 };
3067 int ret;
3068
3069 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3070 if (ret && new_key) {
3071 /* unregister all paths if we failed to register any path */
3072 pr.old_key = new_key;
3073 pr.new_key = 0;
3074 pr.flags = 0;
3075 pr.fail_early = false;
3076 dm_call_pr(bdev, __dm_pr_register, &pr);
3077 }
3078
3079 return ret;
3080}
3081
3082static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3083 u32 flags)
3084{
3085 struct mapped_device *md = bdev->bd_disk->private_data;
3086 const struct pr_ops *ops;
3087 int r, srcu_idx;
3088
3089 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3090 if (r < 0)
3091 goto out;
3092
3093 ops = bdev->bd_disk->fops->pr_ops;
3094 if (ops && ops->pr_reserve)
3095 r = ops->pr_reserve(bdev, key, type, flags);
3096 else
3097 r = -EOPNOTSUPP;
3098out:
3099 dm_unprepare_ioctl(md, srcu_idx);
3100 return r;
3101}
3102
3103static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3104{
3105 struct mapped_device *md = bdev->bd_disk->private_data;
3106 const struct pr_ops *ops;
3107 int r, srcu_idx;
3108
3109 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3110 if (r < 0)
3111 goto out;
3112
3113 ops = bdev->bd_disk->fops->pr_ops;
3114 if (ops && ops->pr_release)
3115 r = ops->pr_release(bdev, key, type);
3116 else
3117 r = -EOPNOTSUPP;
3118out:
3119 dm_unprepare_ioctl(md, srcu_idx);
3120 return r;
3121}
3122
3123static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3124 enum pr_type type, bool abort)
3125{
3126 struct mapped_device *md = bdev->bd_disk->private_data;
3127 const struct pr_ops *ops;
3128 int r, srcu_idx;
3129
3130 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3131 if (r < 0)
3132 goto out;
3133
3134 ops = bdev->bd_disk->fops->pr_ops;
3135 if (ops && ops->pr_preempt)
3136 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3137 else
3138 r = -EOPNOTSUPP;
3139out:
3140 dm_unprepare_ioctl(md, srcu_idx);
3141 return r;
3142}
3143
3144static int dm_pr_clear(struct block_device *bdev, u64 key)
3145{
3146 struct mapped_device *md = bdev->bd_disk->private_data;
3147 const struct pr_ops *ops;
3148 int r, srcu_idx;
3149
3150 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3151 if (r < 0)
3152 goto out;
3153
3154 ops = bdev->bd_disk->fops->pr_ops;
3155 if (ops && ops->pr_clear)
3156 r = ops->pr_clear(bdev, key);
3157 else
3158 r = -EOPNOTSUPP;
3159out:
3160 dm_unprepare_ioctl(md, srcu_idx);
3161 return r;
3162}
3163
3164static const struct pr_ops dm_pr_ops = {
3165 .pr_register = dm_pr_register,
3166 .pr_reserve = dm_pr_reserve,
3167 .pr_release = dm_pr_release,
3168 .pr_preempt = dm_pr_preempt,
3169 .pr_clear = dm_pr_clear,
3170};
3171
3172static const struct block_device_operations dm_blk_dops = {
3173 .open = dm_blk_open,
3174 .release = dm_blk_close,
3175 .ioctl = dm_blk_ioctl,
3176 .getgeo = dm_blk_getgeo,
3177 .pr_ops = &dm_pr_ops,
3178 .owner = THIS_MODULE
3179};
3180
3181static const struct dax_operations dm_dax_ops = {
3182 .direct_access = dm_dax_direct_access,
3183 .copy_from_iter = dm_dax_copy_from_iter,
3184 .copy_to_iter = dm_dax_copy_to_iter,
3185};
3186
3187/*
3188 * module hooks
3189 */
3190module_init(dm_init);
3191module_exit(dm_exit);
3192
3193module_param(major, uint, 0);
3194MODULE_PARM_DESC(major, "The major number of the device mapper");
3195
3196module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3197MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3198
3199module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3200MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3201
3202MODULE_DESCRIPTION(DM_NAME " driver");
3203MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3204MODULE_LICENSE("GPL");