blob: 124f41157173ea0c4bc21f90702e877c0b4a6ae5 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/aer.h>
16#include <linux/async.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/blk-mq-pci.h>
20#include <linux/dmi.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/mutex.h>
27#include <linux/once.h>
28#include <linux/pci.h>
29#include <linux/t10-pi.h>
30#include <linux/types.h>
31#include <linux/io-64-nonatomic-lo-hi.h>
32#include <linux/sed-opal.h>
33
34#include "nvme.h"
35
36#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38
39#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41/*
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
44 */
45#define NVME_MAX_KB_SZ 4096
46#define NVME_MAX_SEGS 127
47
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0);
50
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0444);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67static const struct kernel_param_ops io_queue_depth_ops = {
68 .set = io_queue_depth_set,
69 .get = param_get_int,
70};
71
72static int io_queue_depth = 1024;
73module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
75
76struct nvme_dev;
77struct nvme_queue;
78
79static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
80
81/*
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
83 */
84struct nvme_dev {
85 struct nvme_queue *queues;
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
88 u32 __iomem *dbs;
89 struct device *dev;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
92 unsigned online_queues;
93 unsigned max_qid;
94 unsigned int num_vecs;
95 int q_depth;
96 u32 db_stride;
97 void __iomem *bar;
98 unsigned long bar_mapped_size;
99 struct work_struct remove_work;
100 struct mutex shutdown_lock;
101 bool subsystem;
102 void __iomem *cmb;
103 pci_bus_addr_t cmb_bus_addr;
104 u64 cmb_size;
105 u32 cmbsz;
106 u32 cmbloc;
107 struct nvme_ctrl ctrl;
108 struct completion ioq_wait;
109
110 mempool_t *iod_mempool;
111
112 /* shadow doorbell buffer support: */
113 u32 *dbbuf_dbs;
114 dma_addr_t dbbuf_dbs_dma_addr;
115 u32 *dbbuf_eis;
116 dma_addr_t dbbuf_eis_dma_addr;
117
118 /* host memory buffer support: */
119 u64 host_mem_size;
120 u32 nr_host_mem_descs;
121 dma_addr_t host_mem_descs_dma;
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
124};
125
126static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127{
128 int n = 0, ret;
129
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
132 return -EINVAL;
133
134 return param_set_int(val, kp);
135}
136
137static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138{
139 return qid * 2 * stride;
140}
141
142static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143{
144 return (qid * 2 + 1) * stride;
145}
146
147static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148{
149 return container_of(ctrl, struct nvme_dev, ctrl);
150}
151
152/*
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
155 */
156struct nvme_queue {
157 struct device *q_dmadev;
158 struct nvme_dev *dev;
159 spinlock_t sq_lock;
160 struct nvme_command *sq_cmds;
161 struct nvme_command __iomem *sq_cmds_io;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 volatile struct nvme_completion *cqes;
164 struct blk_mq_tags **tags;
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
167 u32 __iomem *q_db;
168 u16 q_depth;
169 s16 cq_vector;
170 u16 sq_tail;
171 u16 cq_head;
172 u16 last_cq_head;
173 u16 qid;
174 u8 cq_phase;
175 u32 *dbbuf_sq_db;
176 u32 *dbbuf_cq_db;
177 u32 *dbbuf_sq_ei;
178 u32 *dbbuf_cq_ei;
179};
180
181/*
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
186 */
187struct nvme_iod {
188 struct nvme_request req;
189 struct nvme_queue *nvmeq;
190 bool use_sgl;
191 int aborted;
192 int npages; /* In the PRP list. 0 means small pool in use */
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
199};
200
201/*
202 * Check we didin't inadvertently grow the command struct
203 */
204static inline void _nvme_check_size(void)
205{
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219}
220
221static inline unsigned int nvme_dbbuf_size(u32 stride)
222{
223 return ((num_possible_cpus() + 1) * 8 * stride);
224}
225
226static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227{
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230 if (dev->dbbuf_dbs)
231 return 0;
232
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
235 GFP_KERNEL);
236 if (!dev->dbbuf_dbs)
237 return -ENOMEM;
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
240 GFP_KERNEL);
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
245 return -ENOMEM;
246 }
247
248 return 0;
249}
250
251static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252{
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
259 }
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
264 }
265}
266
267static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
269{
270 if (!dev->dbbuf_dbs || !qid)
271 return;
272
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277}
278
279static void nvme_dbbuf_set(struct nvme_dev *dev)
280{
281 struct nvme_command c;
282
283 if (!dev->dbbuf_dbs)
284 return;
285
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
295 }
296}
297
298static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299{
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301}
302
303/* Update dbbuf and return true if an MMIO is required */
304static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
306{
307 if (dbbuf_db) {
308 u16 old_value;
309
310 /*
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
313 */
314 wmb();
315
316 old_value = *dbbuf_db;
317 *dbbuf_db = value;
318
319 /*
320 * Ensure that the doorbell is updated before reading the event
321 * index from memory. The controller needs to provide similar
322 * ordering to ensure the envent index is updated before reading
323 * the doorbell.
324 */
325 mb();
326
327 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328 return false;
329 }
330
331 return true;
332}
333
334/*
335 * Max size of iod being embedded in the request payload
336 */
337#define NVME_INT_PAGES 2
338#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
339
340/*
341 * Will slightly overestimate the number of pages needed. This is OK
342 * as it only leads to a small amount of wasted memory for the lifetime of
343 * the I/O.
344 */
345static int nvme_npages(unsigned size, struct nvme_dev *dev)
346{
347 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348 dev->ctrl.page_size);
349 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350}
351
352/*
353 * Calculates the number of pages needed for the SGL segments. For example a 4k
354 * page can accommodate 256 SGL descriptors.
355 */
356static int nvme_pci_npages_sgl(unsigned int num_seg)
357{
358 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
359}
360
361static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362 unsigned int size, unsigned int nseg, bool use_sgl)
363{
364 size_t alloc_size;
365
366 if (use_sgl)
367 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368 else
369 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
370
371 return alloc_size + sizeof(struct scatterlist) * nseg;
372}
373
374static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
375{
376 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377 NVME_INT_BYTES(dev), NVME_INT_PAGES,
378 use_sgl);
379
380 return sizeof(struct nvme_iod) + alloc_size;
381}
382
383static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385{
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[0];
388
389 WARN_ON(hctx_idx != 0);
390 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391 WARN_ON(nvmeq->tags);
392
393 hctx->driver_data = nvmeq;
394 nvmeq->tags = &dev->admin_tagset.tags[0];
395 return 0;
396}
397
398static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
399{
400 struct nvme_queue *nvmeq = hctx->driver_data;
401
402 nvmeq->tags = NULL;
403}
404
405static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406 unsigned int hctx_idx)
407{
408 struct nvme_dev *dev = data;
409 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
410
411 if (!nvmeq->tags)
412 nvmeq->tags = &dev->tagset.tags[hctx_idx];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417}
418
419static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 unsigned int hctx_idx, unsigned int numa_node)
421{
422 struct nvme_dev *dev = set->driver_data;
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426
427 BUG_ON(!nvmeq);
428 iod->nvmeq = nvmeq;
429
430 nvme_req(req)->ctrl = &dev->ctrl;
431 return 0;
432}
433
434static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
435{
436 struct nvme_dev *dev = set->driver_data;
437
438 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
440}
441
442/**
443 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
444 * @nvmeq: The queue to use
445 * @cmd: The command to send
446 */
447static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
448{
449 spin_lock(&nvmeq->sq_lock);
450 if (nvmeq->sq_cmds_io)
451 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
452 sizeof(*cmd));
453 else
454 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
455
456 if (++nvmeq->sq_tail == nvmeq->q_depth)
457 nvmeq->sq_tail = 0;
458 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
459 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
460 writel(nvmeq->sq_tail, nvmeq->q_db);
461 spin_unlock(&nvmeq->sq_lock);
462}
463
464static void **nvme_pci_iod_list(struct request *req)
465{
466 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
468}
469
470static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
471{
472 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
473 int nseg = blk_rq_nr_phys_segments(req);
474 unsigned int avg_seg_size;
475
476 if (nseg == 0)
477 return false;
478
479 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
480
481 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
482 return false;
483 if (!iod->nvmeq->qid)
484 return false;
485 if (!sgl_threshold || avg_seg_size < sgl_threshold)
486 return false;
487 return true;
488}
489
490static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
491{
492 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
493 int nseg = blk_rq_nr_phys_segments(rq);
494 unsigned int size = blk_rq_payload_bytes(rq);
495
496 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
497
498 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
499 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
500 if (!iod->sg)
501 return BLK_STS_RESOURCE;
502 } else {
503 iod->sg = iod->inline_sg;
504 }
505
506 iod->aborted = 0;
507 iod->npages = -1;
508 iod->nents = 0;
509 iod->length = size;
510
511 return BLK_STS_OK;
512}
513
514static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
515{
516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
517 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
518 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
519
520 int i;
521
522 if (iod->npages == 0)
523 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
524 dma_addr);
525
526 for (i = 0; i < iod->npages; i++) {
527 void *addr = nvme_pci_iod_list(req)[i];
528
529 if (iod->use_sgl) {
530 struct nvme_sgl_desc *sg_list = addr;
531
532 next_dma_addr =
533 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
534 } else {
535 __le64 *prp_list = addr;
536
537 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
538 }
539
540 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
541 dma_addr = next_dma_addr;
542 }
543
544 if (iod->sg != iod->inline_sg)
545 mempool_free(iod->sg, dev->iod_mempool);
546}
547
548static void nvme_print_sgl(struct scatterlist *sgl, int nents)
549{
550 int i;
551 struct scatterlist *sg;
552
553 for_each_sg(sgl, sg, nents, i) {
554 dma_addr_t phys = sg_phys(sg);
555 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
556 "dma_address:%pad dma_length:%d\n",
557 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
558 sg_dma_len(sg));
559 }
560}
561
562static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
563 struct request *req, struct nvme_rw_command *cmnd)
564{
565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 struct dma_pool *pool;
567 int length = blk_rq_payload_bytes(req);
568 struct scatterlist *sg = iod->sg;
569 int dma_len = sg_dma_len(sg);
570 u64 dma_addr = sg_dma_address(sg);
571 u32 page_size = dev->ctrl.page_size;
572 int offset = dma_addr & (page_size - 1);
573 __le64 *prp_list;
574 void **list = nvme_pci_iod_list(req);
575 dma_addr_t prp_dma;
576 int nprps, i;
577
578 length -= (page_size - offset);
579 if (length <= 0) {
580 iod->first_dma = 0;
581 goto done;
582 }
583
584 dma_len -= (page_size - offset);
585 if (dma_len) {
586 dma_addr += (page_size - offset);
587 } else {
588 sg = sg_next(sg);
589 dma_addr = sg_dma_address(sg);
590 dma_len = sg_dma_len(sg);
591 }
592
593 if (length <= page_size) {
594 iod->first_dma = dma_addr;
595 goto done;
596 }
597
598 nprps = DIV_ROUND_UP(length, page_size);
599 if (nprps <= (256 / 8)) {
600 pool = dev->prp_small_pool;
601 iod->npages = 0;
602 } else {
603 pool = dev->prp_page_pool;
604 iod->npages = 1;
605 }
606
607 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
608 if (!prp_list) {
609 iod->first_dma = dma_addr;
610 iod->npages = -1;
611 return BLK_STS_RESOURCE;
612 }
613 list[0] = prp_list;
614 iod->first_dma = prp_dma;
615 i = 0;
616 for (;;) {
617 if (i == page_size >> 3) {
618 __le64 *old_prp_list = prp_list;
619 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
620 if (!prp_list)
621 return BLK_STS_RESOURCE;
622 list[iod->npages++] = prp_list;
623 prp_list[0] = old_prp_list[i - 1];
624 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
625 i = 1;
626 }
627 prp_list[i++] = cpu_to_le64(dma_addr);
628 dma_len -= page_size;
629 dma_addr += page_size;
630 length -= page_size;
631 if (length <= 0)
632 break;
633 if (dma_len > 0)
634 continue;
635 if (unlikely(dma_len < 0))
636 goto bad_sgl;
637 sg = sg_next(sg);
638 dma_addr = sg_dma_address(sg);
639 dma_len = sg_dma_len(sg);
640 }
641
642done:
643 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
644 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
645
646 return BLK_STS_OK;
647
648 bad_sgl:
649 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
650 "Invalid SGL for payload:%d nents:%d\n",
651 blk_rq_payload_bytes(req), iod->nents);
652 return BLK_STS_IOERR;
653}
654
655static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
656 struct scatterlist *sg)
657{
658 sge->addr = cpu_to_le64(sg_dma_address(sg));
659 sge->length = cpu_to_le32(sg_dma_len(sg));
660 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
661}
662
663static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
664 dma_addr_t dma_addr, int entries)
665{
666 sge->addr = cpu_to_le64(dma_addr);
667 if (entries < SGES_PER_PAGE) {
668 sge->length = cpu_to_le32(entries * sizeof(*sge));
669 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
670 } else {
671 sge->length = cpu_to_le32(PAGE_SIZE);
672 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
673 }
674}
675
676static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
677 struct request *req, struct nvme_rw_command *cmd, int entries)
678{
679 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
680 struct dma_pool *pool;
681 struct nvme_sgl_desc *sg_list;
682 struct scatterlist *sg = iod->sg;
683 dma_addr_t sgl_dma;
684 int i = 0;
685
686 /* setting the transfer type as SGL */
687 cmd->flags = NVME_CMD_SGL_METABUF;
688
689 if (entries == 1) {
690 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
691 return BLK_STS_OK;
692 }
693
694 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
695 pool = dev->prp_small_pool;
696 iod->npages = 0;
697 } else {
698 pool = dev->prp_page_pool;
699 iod->npages = 1;
700 }
701
702 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
703 if (!sg_list) {
704 iod->npages = -1;
705 return BLK_STS_RESOURCE;
706 }
707
708 nvme_pci_iod_list(req)[0] = sg_list;
709 iod->first_dma = sgl_dma;
710
711 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
712
713 do {
714 if (i == SGES_PER_PAGE) {
715 struct nvme_sgl_desc *old_sg_desc = sg_list;
716 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
717
718 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
719 if (!sg_list)
720 return BLK_STS_RESOURCE;
721
722 i = 0;
723 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
724 sg_list[i++] = *link;
725 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
726 }
727
728 nvme_pci_sgl_set_data(&sg_list[i++], sg);
729 sg = sg_next(sg);
730 } while (--entries > 0);
731
732 return BLK_STS_OK;
733}
734
735static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
736 struct nvme_command *cmnd)
737{
738 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739 struct request_queue *q = req->q;
740 enum dma_data_direction dma_dir = rq_data_dir(req) ?
741 DMA_TO_DEVICE : DMA_FROM_DEVICE;
742 blk_status_t ret = BLK_STS_IOERR;
743 int nr_mapped;
744
745 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
746 iod->nents = blk_rq_map_sg(q, req, iod->sg);
747 if (!iod->nents)
748 goto out;
749
750 ret = BLK_STS_RESOURCE;
751 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
752 DMA_ATTR_NO_WARN);
753 if (!nr_mapped)
754 goto out;
755
756 if (iod->use_sgl)
757 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
758 else
759 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
760
761 if (ret != BLK_STS_OK)
762 goto out_unmap;
763
764 ret = BLK_STS_IOERR;
765 if (blk_integrity_rq(req)) {
766 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
767 goto out_unmap;
768
769 sg_init_table(&iod->meta_sg, 1);
770 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
771 goto out_unmap;
772
773 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
774 goto out_unmap;
775 }
776
777 if (blk_integrity_rq(req))
778 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
779 return BLK_STS_OK;
780
781out_unmap:
782 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783out:
784 return ret;
785}
786
787static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
788{
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 enum dma_data_direction dma_dir = rq_data_dir(req) ?
791 DMA_TO_DEVICE : DMA_FROM_DEVICE;
792
793 if (iod->nents) {
794 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
795 if (blk_integrity_rq(req))
796 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
797 }
798
799 nvme_cleanup_cmd(req);
800 nvme_free_iod(dev, req);
801}
802
803/*
804 * NOTE: ns is NULL when called on the admin queue.
805 */
806static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
807 const struct blk_mq_queue_data *bd)
808{
809 struct nvme_ns *ns = hctx->queue->queuedata;
810 struct nvme_queue *nvmeq = hctx->driver_data;
811 struct nvme_dev *dev = nvmeq->dev;
812 struct request *req = bd->rq;
813 struct nvme_command cmnd;
814 blk_status_t ret;
815
816 /*
817 * We should not need to do this, but we're still using this to
818 * ensure we can drain requests on a dying queue.
819 */
820 if (unlikely(nvmeq->cq_vector < 0))
821 return BLK_STS_IOERR;
822
823 ret = nvme_setup_cmd(ns, req, &cmnd);
824 if (ret)
825 return ret;
826
827 ret = nvme_init_iod(req, dev);
828 if (ret)
829 goto out_free_cmd;
830
831 if (blk_rq_nr_phys_segments(req)) {
832 ret = nvme_map_data(dev, req, &cmnd);
833 if (ret)
834 goto out_cleanup_iod;
835 }
836
837 blk_mq_start_request(req);
838 nvme_submit_cmd(nvmeq, &cmnd);
839 return BLK_STS_OK;
840out_cleanup_iod:
841 nvme_free_iod(dev, req);
842out_free_cmd:
843 nvme_cleanup_cmd(req);
844 return ret;
845}
846
847static void nvme_pci_complete_rq(struct request *req)
848{
849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850
851 nvme_unmap_data(iod->nvmeq->dev, req);
852 nvme_complete_rq(req);
853}
854
855/* We read the CQE phase first to check if the rest of the entry is valid */
856static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
857{
858 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
859 nvmeq->cq_phase;
860}
861
862static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
863{
864 u16 head = nvmeq->cq_head;
865
866 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
867 nvmeq->dbbuf_cq_ei))
868 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
869}
870
871static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
872{
873 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
874 struct request *req;
875
876 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
877 dev_warn(nvmeq->dev->ctrl.device,
878 "invalid id %d completed on queue %d\n",
879 cqe->command_id, le16_to_cpu(cqe->sq_id));
880 return;
881 }
882
883 /*
884 * AEN requests are special as they don't time out and can
885 * survive any kind of queue freeze and often don't respond to
886 * aborts. We don't even bother to allocate a struct request
887 * for them but rather special case them here.
888 */
889 if (unlikely(nvmeq->qid == 0 &&
890 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
891 nvme_complete_async_event(&nvmeq->dev->ctrl,
892 cqe->status, &cqe->result);
893 return;
894 }
895
896 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
897 nvme_end_request(req, cqe->status, cqe->result);
898}
899
900static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
901{
902 while (start != end) {
903 nvme_handle_cqe(nvmeq, start);
904 if (++start == nvmeq->q_depth)
905 start = 0;
906 }
907}
908
909static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
910{
911 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
912 nvmeq->cq_head = 0;
913 nvmeq->cq_phase = !nvmeq->cq_phase;
914 } else {
915 nvmeq->cq_head++;
916 }
917}
918
919static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
920 u16 *end, int tag)
921{
922 bool found = false;
923
924 *start = nvmeq->cq_head;
925 while (!found && nvme_cqe_pending(nvmeq)) {
926 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
927 found = true;
928 nvme_update_cq_head(nvmeq);
929 }
930 *end = nvmeq->cq_head;
931
932 if (*start != *end)
933 nvme_ring_cq_doorbell(nvmeq);
934 return found;
935}
936
937static irqreturn_t nvme_irq(int irq, void *data)
938{
939 struct nvme_queue *nvmeq = data;
940 irqreturn_t ret = IRQ_NONE;
941 u16 start, end;
942
943 spin_lock(&nvmeq->cq_lock);
944 if (nvmeq->cq_head != nvmeq->last_cq_head)
945 ret = IRQ_HANDLED;
946 nvme_process_cq(nvmeq, &start, &end, -1);
947 nvmeq->last_cq_head = nvmeq->cq_head;
948 spin_unlock(&nvmeq->cq_lock);
949
950 if (start != end) {
951 nvme_complete_cqes(nvmeq, start, end);
952 return IRQ_HANDLED;
953 }
954
955 return ret;
956}
957
958static irqreturn_t nvme_irq_check(int irq, void *data)
959{
960 struct nvme_queue *nvmeq = data;
961 if (nvme_cqe_pending(nvmeq))
962 return IRQ_WAKE_THREAD;
963 return IRQ_NONE;
964}
965
966static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
967{
968 u16 start, end;
969 bool found;
970
971 if (!nvme_cqe_pending(nvmeq))
972 return 0;
973
974 spin_lock_irq(&nvmeq->cq_lock);
975 found = nvme_process_cq(nvmeq, &start, &end, tag);
976 spin_unlock_irq(&nvmeq->cq_lock);
977
978 nvme_complete_cqes(nvmeq, start, end);
979 return found;
980}
981
982static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
983{
984 struct nvme_queue *nvmeq = hctx->driver_data;
985
986 return __nvme_poll(nvmeq, tag);
987}
988
989static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
990{
991 struct nvme_dev *dev = to_nvme_dev(ctrl);
992 struct nvme_queue *nvmeq = &dev->queues[0];
993 struct nvme_command c;
994
995 memset(&c, 0, sizeof(c));
996 c.common.opcode = nvme_admin_async_event;
997 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
998 nvme_submit_cmd(nvmeq, &c);
999}
1000
1001static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1002{
1003 struct nvme_command c;
1004
1005 memset(&c, 0, sizeof(c));
1006 c.delete_queue.opcode = opcode;
1007 c.delete_queue.qid = cpu_to_le16(id);
1008
1009 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1010}
1011
1012static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1013 struct nvme_queue *nvmeq, s16 vector)
1014{
1015 struct nvme_command c;
1016 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1017
1018 /*
1019 * Note: we (ab)use the fact that the prp fields survive if no data
1020 * is attached to the request.
1021 */
1022 memset(&c, 0, sizeof(c));
1023 c.create_cq.opcode = nvme_admin_create_cq;
1024 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1025 c.create_cq.cqid = cpu_to_le16(qid);
1026 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1027 c.create_cq.cq_flags = cpu_to_le16(flags);
1028 c.create_cq.irq_vector = cpu_to_le16(vector);
1029
1030 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1031}
1032
1033static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1034 struct nvme_queue *nvmeq)
1035{
1036 struct nvme_ctrl *ctrl = &dev->ctrl;
1037 struct nvme_command c;
1038 int flags = NVME_QUEUE_PHYS_CONTIG;
1039
1040 /*
1041 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1042 * set. Since URGENT priority is zeroes, it makes all queues
1043 * URGENT.
1044 */
1045 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1046 flags |= NVME_SQ_PRIO_MEDIUM;
1047
1048 /*
1049 * Note: we (ab)use the fact that the prp fields survive if no data
1050 * is attached to the request.
1051 */
1052 memset(&c, 0, sizeof(c));
1053 c.create_sq.opcode = nvme_admin_create_sq;
1054 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1055 c.create_sq.sqid = cpu_to_le16(qid);
1056 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1057 c.create_sq.sq_flags = cpu_to_le16(flags);
1058 c.create_sq.cqid = cpu_to_le16(qid);
1059
1060 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1061}
1062
1063static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1064{
1065 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1066}
1067
1068static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1069{
1070 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1071}
1072
1073static void abort_endio(struct request *req, blk_status_t error)
1074{
1075 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1076 struct nvme_queue *nvmeq = iod->nvmeq;
1077
1078 dev_warn(nvmeq->dev->ctrl.device,
1079 "Abort status: 0x%x", nvme_req(req)->status);
1080 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1081 blk_mq_free_request(req);
1082}
1083
1084static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1085{
1086
1087 /* If true, indicates loss of adapter communication, possibly by a
1088 * NVMe Subsystem reset.
1089 */
1090 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1091
1092 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1093 switch (dev->ctrl.state) {
1094 case NVME_CTRL_RESETTING:
1095 case NVME_CTRL_CONNECTING:
1096 return false;
1097 default:
1098 break;
1099 }
1100
1101 /* We shouldn't reset unless the controller is on fatal error state
1102 * _or_ if we lost the communication with it.
1103 */
1104 if (!(csts & NVME_CSTS_CFS) && !nssro)
1105 return false;
1106
1107 return true;
1108}
1109
1110static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1111{
1112 /* Read a config register to help see what died. */
1113 u16 pci_status;
1114 int result;
1115
1116 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1117 &pci_status);
1118 if (result == PCIBIOS_SUCCESSFUL)
1119 dev_warn(dev->ctrl.device,
1120 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1121 csts, pci_status);
1122 else
1123 dev_warn(dev->ctrl.device,
1124 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1125 csts, result);
1126}
1127
1128static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1129{
1130 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1131 struct nvme_queue *nvmeq = iod->nvmeq;
1132 struct nvme_dev *dev = nvmeq->dev;
1133 struct request *abort_req;
1134 struct nvme_command cmd;
1135 bool shutdown = false;
1136 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1137
1138 /* If PCI error recovery process is happening, we cannot reset or
1139 * the recovery mechanism will surely fail.
1140 */
1141 mb();
1142 if (pci_channel_offline(to_pci_dev(dev->dev)))
1143 return BLK_EH_RESET_TIMER;
1144
1145 /*
1146 * Reset immediately if the controller is failed
1147 */
1148 if (nvme_should_reset(dev, csts)) {
1149 nvme_warn_reset(dev, csts);
1150 nvme_dev_disable(dev, false);
1151 nvme_reset_ctrl(&dev->ctrl);
1152 return BLK_EH_DONE;
1153 }
1154
1155 /*
1156 * Did we miss an interrupt?
1157 */
1158 if (__nvme_poll(nvmeq, req->tag)) {
1159 dev_warn(dev->ctrl.device,
1160 "I/O %d QID %d timeout, completion polled\n",
1161 req->tag, nvmeq->qid);
1162 return BLK_EH_DONE;
1163 }
1164
1165 /*
1166 * Shutdown immediately if controller times out while starting. The
1167 * reset work will see the pci device disabled when it gets the forced
1168 * cancellation error. All outstanding requests are completed on
1169 * shutdown, so we return BLK_EH_DONE.
1170 */
1171 switch (dev->ctrl.state) {
1172 case NVME_CTRL_DELETING:
1173 shutdown = true;
1174 case NVME_CTRL_CONNECTING:
1175 case NVME_CTRL_RESETTING:
1176 dev_warn_ratelimited(dev->ctrl.device,
1177 "I/O %d QID %d timeout, disable controller\n",
1178 req->tag, nvmeq->qid);
1179 nvme_dev_disable(dev, shutdown);
1180 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1181 return BLK_EH_DONE;
1182 default:
1183 break;
1184 }
1185
1186 /*
1187 * Shutdown the controller immediately and schedule a reset if the
1188 * command was already aborted once before and still hasn't been
1189 * returned to the driver, or if this is the admin queue.
1190 */
1191 if (!nvmeq->qid || iod->aborted) {
1192 dev_warn(dev->ctrl.device,
1193 "I/O %d QID %d timeout, reset controller\n",
1194 req->tag, nvmeq->qid);
1195 nvme_dev_disable(dev, false);
1196 nvme_reset_ctrl(&dev->ctrl);
1197
1198 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1199 return BLK_EH_DONE;
1200 }
1201
1202 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1203 atomic_inc(&dev->ctrl.abort_limit);
1204 return BLK_EH_RESET_TIMER;
1205 }
1206 iod->aborted = 1;
1207
1208 memset(&cmd, 0, sizeof(cmd));
1209 cmd.abort.opcode = nvme_admin_abort_cmd;
1210 cmd.abort.cid = req->tag;
1211 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1212
1213 dev_warn(nvmeq->dev->ctrl.device,
1214 "I/O %d QID %d timeout, aborting\n",
1215 req->tag, nvmeq->qid);
1216
1217 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1218 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1219 if (IS_ERR(abort_req)) {
1220 atomic_inc(&dev->ctrl.abort_limit);
1221 return BLK_EH_RESET_TIMER;
1222 }
1223
1224 abort_req->timeout = ADMIN_TIMEOUT;
1225 abort_req->end_io_data = NULL;
1226 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1227
1228 /*
1229 * The aborted req will be completed on receiving the abort req.
1230 * We enable the timer again. If hit twice, it'll cause a device reset,
1231 * as the device then is in a faulty state.
1232 */
1233 return BLK_EH_RESET_TIMER;
1234}
1235
1236static void nvme_free_queue(struct nvme_queue *nvmeq)
1237{
1238 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1239 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1240 if (nvmeq->sq_cmds)
1241 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1242 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1243}
1244
1245static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1246{
1247 int i;
1248
1249 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1250 dev->ctrl.queue_count--;
1251 nvme_free_queue(&dev->queues[i]);
1252 }
1253}
1254
1255/**
1256 * nvme_suspend_queue - put queue into suspended state
1257 * @nvmeq - queue to suspend
1258 */
1259static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1260{
1261 int vector;
1262
1263 spin_lock_irq(&nvmeq->cq_lock);
1264 if (nvmeq->cq_vector == -1) {
1265 spin_unlock_irq(&nvmeq->cq_lock);
1266 return 1;
1267 }
1268 vector = nvmeq->cq_vector;
1269 nvmeq->dev->online_queues--;
1270 nvmeq->cq_vector = -1;
1271 spin_unlock_irq(&nvmeq->cq_lock);
1272
1273 /*
1274 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1275 * having to grab the lock.
1276 */
1277 mb();
1278
1279 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1280 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1281
1282 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1283
1284 return 0;
1285}
1286
1287static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1288{
1289 struct nvme_queue *nvmeq = &dev->queues[0];
1290 u16 start, end;
1291
1292 if (shutdown)
1293 nvme_shutdown_ctrl(&dev->ctrl);
1294 else
1295 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1296
1297 spin_lock_irq(&nvmeq->cq_lock);
1298 nvme_process_cq(nvmeq, &start, &end, -1);
1299 spin_unlock_irq(&nvmeq->cq_lock);
1300
1301 nvme_complete_cqes(nvmeq, start, end);
1302}
1303
1304static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1305 int entry_size)
1306{
1307 int q_depth = dev->q_depth;
1308 unsigned q_size_aligned = roundup(q_depth * entry_size,
1309 dev->ctrl.page_size);
1310
1311 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1312 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1313 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1314 q_depth = div_u64(mem_per_q, entry_size);
1315
1316 /*
1317 * Ensure the reduced q_depth is above some threshold where it
1318 * would be better to map queues in system memory with the
1319 * original depth
1320 */
1321 if (q_depth < 64)
1322 return -ENOMEM;
1323 }
1324
1325 return q_depth;
1326}
1327
1328static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1329 int qid, int depth)
1330{
1331 /* CMB SQEs will be mapped before creation */
1332 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1333 return 0;
1334
1335 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1336 &nvmeq->sq_dma_addr, GFP_KERNEL);
1337 if (!nvmeq->sq_cmds)
1338 return -ENOMEM;
1339 return 0;
1340}
1341
1342static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1343{
1344 struct nvme_queue *nvmeq = &dev->queues[qid];
1345
1346 if (dev->ctrl.queue_count > qid)
1347 return 0;
1348
1349 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1350 &nvmeq->cq_dma_addr, GFP_KERNEL);
1351 if (!nvmeq->cqes)
1352 goto free_nvmeq;
1353
1354 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1355 goto free_cqdma;
1356
1357 nvmeq->q_dmadev = dev->dev;
1358 nvmeq->dev = dev;
1359 spin_lock_init(&nvmeq->sq_lock);
1360 spin_lock_init(&nvmeq->cq_lock);
1361 nvmeq->cq_head = 0;
1362 nvmeq->cq_phase = 1;
1363 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1364 nvmeq->q_depth = depth;
1365 nvmeq->qid = qid;
1366 nvmeq->cq_vector = -1;
1367 dev->ctrl.queue_count++;
1368
1369 return 0;
1370
1371 free_cqdma:
1372 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1373 nvmeq->cq_dma_addr);
1374 free_nvmeq:
1375 return -ENOMEM;
1376}
1377
1378static int queue_request_irq(struct nvme_queue *nvmeq)
1379{
1380 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1381 int nr = nvmeq->dev->ctrl.instance;
1382
1383 if (use_threaded_interrupts) {
1384 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1385 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1386 } else {
1387 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1388 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1389 }
1390}
1391
1392static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1393{
1394 struct nvme_dev *dev = nvmeq->dev;
1395
1396 spin_lock_irq(&nvmeq->cq_lock);
1397 nvmeq->sq_tail = 0;
1398 nvmeq->cq_head = 0;
1399 nvmeq->cq_phase = 1;
1400 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1401 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1402 nvme_dbbuf_init(dev, nvmeq, qid);
1403 dev->online_queues++;
1404 spin_unlock_irq(&nvmeq->cq_lock);
1405}
1406
1407static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1408{
1409 struct nvme_dev *dev = nvmeq->dev;
1410 int result;
1411 s16 vector;
1412
1413 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1414 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1415 dev->ctrl.page_size);
1416 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1417 nvmeq->sq_cmds_io = dev->cmb + offset;
1418 }
1419
1420 /*
1421 * A queue's vector matches the queue identifier unless the controller
1422 * has only one vector available.
1423 */
1424 vector = dev->num_vecs == 1 ? 0 : qid;
1425 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1426 if (result)
1427 return result;
1428
1429 result = adapter_alloc_sq(dev, qid, nvmeq);
1430 if (result < 0)
1431 return result;
1432 else if (result)
1433 goto release_cq;
1434
1435 /*
1436 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1437 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1438 * xxx' warning if the create CQ/SQ command times out.
1439 */
1440 nvmeq->cq_vector = vector;
1441 nvme_init_queue(nvmeq, qid);
1442 result = queue_request_irq(nvmeq);
1443 if (result < 0)
1444 goto release_sq;
1445
1446 return result;
1447
1448release_sq:
1449 nvmeq->cq_vector = -1;
1450 dev->online_queues--;
1451 adapter_delete_sq(dev, qid);
1452release_cq:
1453 adapter_delete_cq(dev, qid);
1454 return result;
1455}
1456
1457static const struct blk_mq_ops nvme_mq_admin_ops = {
1458 .queue_rq = nvme_queue_rq,
1459 .complete = nvme_pci_complete_rq,
1460 .init_hctx = nvme_admin_init_hctx,
1461 .exit_hctx = nvme_admin_exit_hctx,
1462 .init_request = nvme_init_request,
1463 .timeout = nvme_timeout,
1464};
1465
1466static const struct blk_mq_ops nvme_mq_ops = {
1467 .queue_rq = nvme_queue_rq,
1468 .complete = nvme_pci_complete_rq,
1469 .init_hctx = nvme_init_hctx,
1470 .init_request = nvme_init_request,
1471 .map_queues = nvme_pci_map_queues,
1472 .timeout = nvme_timeout,
1473 .poll = nvme_poll,
1474};
1475
1476static void nvme_dev_remove_admin(struct nvme_dev *dev)
1477{
1478 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1479 /*
1480 * If the controller was reset during removal, it's possible
1481 * user requests may be waiting on a stopped queue. Start the
1482 * queue to flush these to completion.
1483 */
1484 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1485 blk_cleanup_queue(dev->ctrl.admin_q);
1486 blk_mq_free_tag_set(&dev->admin_tagset);
1487 }
1488}
1489
1490static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1491{
1492 if (!dev->ctrl.admin_q) {
1493 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1494 dev->admin_tagset.nr_hw_queues = 1;
1495
1496 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1497 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1498 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1499 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1500 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1501 dev->admin_tagset.driver_data = dev;
1502
1503 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1504 return -ENOMEM;
1505 dev->ctrl.admin_tagset = &dev->admin_tagset;
1506
1507 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1508 if (IS_ERR(dev->ctrl.admin_q)) {
1509 blk_mq_free_tag_set(&dev->admin_tagset);
1510 return -ENOMEM;
1511 }
1512 if (!blk_get_queue(dev->ctrl.admin_q)) {
1513 nvme_dev_remove_admin(dev);
1514 dev->ctrl.admin_q = NULL;
1515 return -ENODEV;
1516 }
1517 } else
1518 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1519
1520 return 0;
1521}
1522
1523static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1524{
1525 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1526}
1527
1528static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1529{
1530 struct pci_dev *pdev = to_pci_dev(dev->dev);
1531
1532 if (size <= dev->bar_mapped_size)
1533 return 0;
1534 if (size > pci_resource_len(pdev, 0))
1535 return -ENOMEM;
1536 if (dev->bar)
1537 iounmap(dev->bar);
1538 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1539 if (!dev->bar) {
1540 dev->bar_mapped_size = 0;
1541 return -ENOMEM;
1542 }
1543 dev->bar_mapped_size = size;
1544 dev->dbs = dev->bar + NVME_REG_DBS;
1545
1546 return 0;
1547}
1548
1549static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1550{
1551 int result;
1552 u32 aqa;
1553 struct nvme_queue *nvmeq;
1554
1555 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1556 if (result < 0)
1557 return result;
1558
1559 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1560 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1561
1562 if (dev->subsystem &&
1563 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1564 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1565
1566 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1567 if (result < 0)
1568 return result;
1569
1570 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1571 if (result)
1572 return result;
1573
1574 nvmeq = &dev->queues[0];
1575 aqa = nvmeq->q_depth - 1;
1576 aqa |= aqa << 16;
1577
1578 writel(aqa, dev->bar + NVME_REG_AQA);
1579 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1580 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1581
1582 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1583 if (result)
1584 return result;
1585
1586 nvmeq->cq_vector = 0;
1587 nvme_init_queue(nvmeq, 0);
1588 result = queue_request_irq(nvmeq);
1589 if (result) {
1590 nvmeq->cq_vector = -1;
1591 return result;
1592 }
1593
1594 return result;
1595}
1596
1597static int nvme_create_io_queues(struct nvme_dev *dev)
1598{
1599 unsigned i, max;
1600 int ret = 0;
1601
1602 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1603 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1604 ret = -ENOMEM;
1605 break;
1606 }
1607 }
1608
1609 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1610 for (i = dev->online_queues; i <= max; i++) {
1611 ret = nvme_create_queue(&dev->queues[i], i);
1612 if (ret)
1613 break;
1614 }
1615
1616 /*
1617 * Ignore failing Create SQ/CQ commands, we can continue with less
1618 * than the desired amount of queues, and even a controller without
1619 * I/O queues can still be used to issue admin commands. This might
1620 * be useful to upgrade a buggy firmware for example.
1621 */
1622 return ret >= 0 ? 0 : ret;
1623}
1624
1625static ssize_t nvme_cmb_show(struct device *dev,
1626 struct device_attribute *attr,
1627 char *buf)
1628{
1629 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1630
1631 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1632 ndev->cmbloc, ndev->cmbsz);
1633}
1634static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1635
1636static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1637{
1638 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1639
1640 return 1ULL << (12 + 4 * szu);
1641}
1642
1643static u32 nvme_cmb_size(struct nvme_dev *dev)
1644{
1645 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1646}
1647
1648static void nvme_map_cmb(struct nvme_dev *dev)
1649{
1650 u64 size, offset;
1651 resource_size_t bar_size;
1652 struct pci_dev *pdev = to_pci_dev(dev->dev);
1653 int bar;
1654
1655 if (dev->cmb_size)
1656 return;
1657
1658 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1659 if (!dev->cmbsz)
1660 return;
1661 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1662
1663 if (!use_cmb_sqes)
1664 return;
1665
1666 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1667 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1668 bar = NVME_CMB_BIR(dev->cmbloc);
1669 bar_size = pci_resource_len(pdev, bar);
1670
1671 if (offset > bar_size)
1672 return;
1673
1674 /*
1675 * Controllers may support a CMB size larger than their BAR,
1676 * for example, due to being behind a bridge. Reduce the CMB to
1677 * the reported size of the BAR
1678 */
1679 if (size > bar_size - offset)
1680 size = bar_size - offset;
1681
1682 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1683 if (!dev->cmb)
1684 return;
1685 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1686 dev->cmb_size = size;
1687
1688 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1689 &dev_attr_cmb.attr, NULL))
1690 dev_warn(dev->ctrl.device,
1691 "failed to add sysfs attribute for CMB\n");
1692}
1693
1694static inline void nvme_release_cmb(struct nvme_dev *dev)
1695{
1696 if (dev->cmb) {
1697 iounmap(dev->cmb);
1698 dev->cmb = NULL;
1699 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1700 &dev_attr_cmb.attr, NULL);
1701 dev->cmbsz = 0;
1702 }
1703}
1704
1705static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1706{
1707 u64 dma_addr = dev->host_mem_descs_dma;
1708 struct nvme_command c;
1709 int ret;
1710
1711 memset(&c, 0, sizeof(c));
1712 c.features.opcode = nvme_admin_set_features;
1713 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1714 c.features.dword11 = cpu_to_le32(bits);
1715 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1716 ilog2(dev->ctrl.page_size));
1717 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1718 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1719 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1720
1721 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1722 if (ret) {
1723 dev_warn(dev->ctrl.device,
1724 "failed to set host mem (err %d, flags %#x).\n",
1725 ret, bits);
1726 }
1727 return ret;
1728}
1729
1730static void nvme_free_host_mem(struct nvme_dev *dev)
1731{
1732 int i;
1733
1734 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1735 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1736 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1737
1738 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1739 le64_to_cpu(desc->addr),
1740 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1741 }
1742
1743 kfree(dev->host_mem_desc_bufs);
1744 dev->host_mem_desc_bufs = NULL;
1745 dma_free_coherent(dev->dev,
1746 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1747 dev->host_mem_descs, dev->host_mem_descs_dma);
1748 dev->host_mem_descs = NULL;
1749 dev->nr_host_mem_descs = 0;
1750}
1751
1752static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1753 u32 chunk_size)
1754{
1755 struct nvme_host_mem_buf_desc *descs;
1756 u32 max_entries, len;
1757 dma_addr_t descs_dma;
1758 int i = 0;
1759 void **bufs;
1760 u64 size, tmp;
1761
1762 tmp = (preferred + chunk_size - 1);
1763 do_div(tmp, chunk_size);
1764 max_entries = tmp;
1765
1766 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1767 max_entries = dev->ctrl.hmmaxd;
1768
1769 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1770 &descs_dma, GFP_KERNEL);
1771 if (!descs)
1772 goto out;
1773
1774 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1775 if (!bufs)
1776 goto out_free_descs;
1777
1778 for (size = 0; size < preferred && i < max_entries; size += len) {
1779 dma_addr_t dma_addr;
1780
1781 len = min_t(u64, chunk_size, preferred - size);
1782 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1783 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1784 if (!bufs[i])
1785 break;
1786
1787 descs[i].addr = cpu_to_le64(dma_addr);
1788 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1789 i++;
1790 }
1791
1792 if (!size)
1793 goto out_free_bufs;
1794
1795 dev->nr_host_mem_descs = i;
1796 dev->host_mem_size = size;
1797 dev->host_mem_descs = descs;
1798 dev->host_mem_descs_dma = descs_dma;
1799 dev->host_mem_desc_bufs = bufs;
1800 return 0;
1801
1802out_free_bufs:
1803 while (--i >= 0) {
1804 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1805
1806 dma_free_attrs(dev->dev, size, bufs[i],
1807 le64_to_cpu(descs[i].addr),
1808 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1809 }
1810
1811 kfree(bufs);
1812out_free_descs:
1813 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1814 descs_dma);
1815out:
1816 dev->host_mem_descs = NULL;
1817 return -ENOMEM;
1818}
1819
1820static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1821{
1822 u32 chunk_size;
1823
1824 /* start big and work our way down */
1825 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1826 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1827 chunk_size /= 2) {
1828 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1829 if (!min || dev->host_mem_size >= min)
1830 return 0;
1831 nvme_free_host_mem(dev);
1832 }
1833 }
1834
1835 return -ENOMEM;
1836}
1837
1838static int nvme_setup_host_mem(struct nvme_dev *dev)
1839{
1840 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1841 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1842 u64 min = (u64)dev->ctrl.hmmin * 4096;
1843 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1844 int ret;
1845
1846 preferred = min(preferred, max);
1847 if (min > max) {
1848 dev_warn(dev->ctrl.device,
1849 "min host memory (%lld MiB) above limit (%d MiB).\n",
1850 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1851 nvme_free_host_mem(dev);
1852 return 0;
1853 }
1854
1855 /*
1856 * If we already have a buffer allocated check if we can reuse it.
1857 */
1858 if (dev->host_mem_descs) {
1859 if (dev->host_mem_size >= min)
1860 enable_bits |= NVME_HOST_MEM_RETURN;
1861 else
1862 nvme_free_host_mem(dev);
1863 }
1864
1865 if (!dev->host_mem_descs) {
1866 if (nvme_alloc_host_mem(dev, min, preferred)) {
1867 dev_warn(dev->ctrl.device,
1868 "failed to allocate host memory buffer.\n");
1869 return 0; /* controller must work without HMB */
1870 }
1871
1872 dev_info(dev->ctrl.device,
1873 "allocated %lld MiB host memory buffer.\n",
1874 dev->host_mem_size >> ilog2(SZ_1M));
1875 }
1876
1877 ret = nvme_set_host_mem(dev, enable_bits);
1878 if (ret)
1879 nvme_free_host_mem(dev);
1880 return ret;
1881}
1882
1883static int nvme_setup_io_queues(struct nvme_dev *dev)
1884{
1885 struct nvme_queue *adminq = &dev->queues[0];
1886 struct pci_dev *pdev = to_pci_dev(dev->dev);
1887 int result, nr_io_queues;
1888 unsigned long size;
1889
1890 struct irq_affinity affd = {
1891 .pre_vectors = 1
1892 };
1893
1894 nr_io_queues = num_possible_cpus();
1895 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1896 if (result < 0)
1897 return result;
1898
1899 if (nr_io_queues == 0)
1900 return 0;
1901
1902 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1903 result = nvme_cmb_qdepth(dev, nr_io_queues,
1904 sizeof(struct nvme_command));
1905 if (result > 0)
1906 dev->q_depth = result;
1907 else
1908 nvme_release_cmb(dev);
1909 }
1910
1911 do {
1912 size = db_bar_size(dev, nr_io_queues);
1913 result = nvme_remap_bar(dev, size);
1914 if (!result)
1915 break;
1916 if (!--nr_io_queues)
1917 return -ENOMEM;
1918 } while (1);
1919 adminq->q_db = dev->dbs;
1920
1921 /* Deregister the admin queue's interrupt */
1922 pci_free_irq(pdev, 0, adminq);
1923
1924 /*
1925 * If we enable msix early due to not intx, disable it again before
1926 * setting up the full range we need.
1927 */
1928 pci_free_irq_vectors(pdev);
1929 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1930 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1931 if (result <= 0)
1932 return -EIO;
1933 dev->num_vecs = result;
1934 dev->max_qid = max(result - 1, 1);
1935
1936 /*
1937 * Should investigate if there's a performance win from allocating
1938 * more queues than interrupt vectors; it might allow the submission
1939 * path to scale better, even if the receive path is limited by the
1940 * number of interrupts.
1941 */
1942
1943 result = queue_request_irq(adminq);
1944 if (result) {
1945 adminq->cq_vector = -1;
1946 return result;
1947 }
1948 return nvme_create_io_queues(dev);
1949}
1950
1951static void nvme_del_queue_end(struct request *req, blk_status_t error)
1952{
1953 struct nvme_queue *nvmeq = req->end_io_data;
1954
1955 blk_mq_free_request(req);
1956 complete(&nvmeq->dev->ioq_wait);
1957}
1958
1959static void nvme_del_cq_end(struct request *req, blk_status_t error)
1960{
1961 struct nvme_queue *nvmeq = req->end_io_data;
1962 u16 start, end;
1963
1964 if (!error) {
1965 unsigned long flags;
1966
1967 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1968 nvme_process_cq(nvmeq, &start, &end, -1);
1969 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1970
1971 nvme_complete_cqes(nvmeq, start, end);
1972 }
1973
1974 nvme_del_queue_end(req, error);
1975}
1976
1977static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1978{
1979 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1980 struct request *req;
1981 struct nvme_command cmd;
1982
1983 memset(&cmd, 0, sizeof(cmd));
1984 cmd.delete_queue.opcode = opcode;
1985 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1986
1987 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1988 if (IS_ERR(req))
1989 return PTR_ERR(req);
1990
1991 req->timeout = ADMIN_TIMEOUT;
1992 req->end_io_data = nvmeq;
1993
1994 blk_execute_rq_nowait(q, NULL, req, false,
1995 opcode == nvme_admin_delete_cq ?
1996 nvme_del_cq_end : nvme_del_queue_end);
1997 return 0;
1998}
1999
2000static void nvme_disable_io_queues(struct nvme_dev *dev)
2001{
2002 int pass, queues = dev->online_queues - 1;
2003 unsigned long timeout;
2004 u8 opcode = nvme_admin_delete_sq;
2005
2006 for (pass = 0; pass < 2; pass++) {
2007 int sent = 0, i = queues;
2008
2009 reinit_completion(&dev->ioq_wait);
2010 retry:
2011 timeout = ADMIN_TIMEOUT;
2012 for (; i > 0; i--, sent++)
2013 if (nvme_delete_queue(&dev->queues[i], opcode))
2014 break;
2015
2016 while (sent--) {
2017 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2018 if (timeout == 0)
2019 return;
2020 if (i)
2021 goto retry;
2022 }
2023 opcode = nvme_admin_delete_cq;
2024 }
2025}
2026
2027/*
2028 * return error value only when tagset allocation failed
2029 */
2030static int nvme_dev_add(struct nvme_dev *dev)
2031{
2032 int ret;
2033
2034 if (!dev->ctrl.tagset) {
2035 dev->tagset.ops = &nvme_mq_ops;
2036 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2037 dev->tagset.timeout = NVME_IO_TIMEOUT;
2038 dev->tagset.numa_node = dev_to_node(dev->dev);
2039 dev->tagset.queue_depth =
2040 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2041 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2042 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2043 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2044 nvme_pci_cmd_size(dev, true));
2045 }
2046 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2047 dev->tagset.driver_data = dev;
2048
2049 ret = blk_mq_alloc_tag_set(&dev->tagset);
2050 if (ret) {
2051 dev_warn(dev->ctrl.device,
2052 "IO queues tagset allocation failed %d\n", ret);
2053 return ret;
2054 }
2055 dev->ctrl.tagset = &dev->tagset;
2056
2057 nvme_dbbuf_set(dev);
2058 } else {
2059 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2060
2061 /* Free previously allocated queues that are no longer usable */
2062 nvme_free_queues(dev, dev->online_queues);
2063 }
2064
2065 return 0;
2066}
2067
2068static int nvme_pci_enable(struct nvme_dev *dev)
2069{
2070 int result = -ENOMEM;
2071 struct pci_dev *pdev = to_pci_dev(dev->dev);
2072
2073 if (pci_enable_device_mem(pdev))
2074 return result;
2075
2076 pci_set_master(pdev);
2077
2078 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2079 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2080 goto disable;
2081
2082 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2083 result = -ENODEV;
2084 goto disable;
2085 }
2086
2087 /*
2088 * Some devices and/or platforms don't advertise or work with INTx
2089 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2090 * adjust this later.
2091 */
2092 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2093 if (result < 0)
2094 return result;
2095
2096 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2097
2098 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2099 io_queue_depth);
2100 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2101 dev->dbs = dev->bar + 4096;
2102
2103 /*
2104 * Temporary fix for the Apple controller found in the MacBook8,1 and
2105 * some MacBook7,1 to avoid controller resets and data loss.
2106 */
2107 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2108 dev->q_depth = 2;
2109 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2110 "set queue depth=%u to work around controller resets\n",
2111 dev->q_depth);
2112 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2113 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2114 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2115 dev->q_depth = 64;
2116 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2117 "set queue depth=%u\n", dev->q_depth);
2118 }
2119
2120 nvme_map_cmb(dev);
2121
2122 pci_enable_pcie_error_reporting(pdev);
2123 pci_save_state(pdev);
2124 return 0;
2125
2126 disable:
2127 pci_disable_device(pdev);
2128 return result;
2129}
2130
2131static void nvme_dev_unmap(struct nvme_dev *dev)
2132{
2133 if (dev->bar)
2134 iounmap(dev->bar);
2135 pci_release_mem_regions(to_pci_dev(dev->dev));
2136}
2137
2138static void nvme_pci_disable(struct nvme_dev *dev)
2139{
2140 struct pci_dev *pdev = to_pci_dev(dev->dev);
2141
2142 pci_free_irq_vectors(pdev);
2143
2144 if (pci_is_enabled(pdev)) {
2145 pci_disable_pcie_error_reporting(pdev);
2146 pci_disable_device(pdev);
2147 }
2148}
2149
2150static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2151{
2152 int i;
2153 bool dead = true;
2154 struct pci_dev *pdev = to_pci_dev(dev->dev);
2155
2156 mutex_lock(&dev->shutdown_lock);
2157 if (pci_is_enabled(pdev)) {
2158 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2159
2160 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2161 dev->ctrl.state == NVME_CTRL_RESETTING)
2162 nvme_start_freeze(&dev->ctrl);
2163 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2164 pdev->error_state != pci_channel_io_normal);
2165 }
2166
2167 /*
2168 * Give the controller a chance to complete all entered requests if
2169 * doing a safe shutdown.
2170 */
2171 if (!dead) {
2172 if (shutdown)
2173 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2174 }
2175
2176 nvme_stop_queues(&dev->ctrl);
2177
2178 if (!dead && dev->ctrl.queue_count > 0) {
2179 nvme_disable_io_queues(dev);
2180 nvme_disable_admin_queue(dev, shutdown);
2181 }
2182 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2183 nvme_suspend_queue(&dev->queues[i]);
2184
2185 nvme_pci_disable(dev);
2186
2187 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2188 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2189
2190 /*
2191 * The driver will not be starting up queues again if shutting down so
2192 * must flush all entered requests to their failed completion to avoid
2193 * deadlocking blk-mq hot-cpu notifier.
2194 */
2195 if (shutdown) {
2196 nvme_start_queues(&dev->ctrl);
2197 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2198 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2199 }
2200 mutex_unlock(&dev->shutdown_lock);
2201}
2202
2203static int nvme_setup_prp_pools(struct nvme_dev *dev)
2204{
2205 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2206 PAGE_SIZE, PAGE_SIZE, 0);
2207 if (!dev->prp_page_pool)
2208 return -ENOMEM;
2209
2210 /* Optimisation for I/Os between 4k and 128k */
2211 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2212 256, 256, 0);
2213 if (!dev->prp_small_pool) {
2214 dma_pool_destroy(dev->prp_page_pool);
2215 return -ENOMEM;
2216 }
2217 return 0;
2218}
2219
2220static void nvme_release_prp_pools(struct nvme_dev *dev)
2221{
2222 dma_pool_destroy(dev->prp_page_pool);
2223 dma_pool_destroy(dev->prp_small_pool);
2224}
2225
2226static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2227{
2228 struct nvme_dev *dev = to_nvme_dev(ctrl);
2229
2230 nvme_dbbuf_dma_free(dev);
2231 put_device(dev->dev);
2232 if (dev->tagset.tags)
2233 blk_mq_free_tag_set(&dev->tagset);
2234 if (dev->ctrl.admin_q)
2235 blk_put_queue(dev->ctrl.admin_q);
2236 kfree(dev->queues);
2237 free_opal_dev(dev->ctrl.opal_dev);
2238 mempool_destroy(dev->iod_mempool);
2239 kfree(dev);
2240}
2241
2242static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2243{
2244 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2245
2246 nvme_get_ctrl(&dev->ctrl);
2247 nvme_dev_disable(dev, false);
2248 nvme_kill_queues(&dev->ctrl);
2249 if (!queue_work(nvme_wq, &dev->remove_work))
2250 nvme_put_ctrl(&dev->ctrl);
2251}
2252
2253static void nvme_reset_work(struct work_struct *work)
2254{
2255 struct nvme_dev *dev =
2256 container_of(work, struct nvme_dev, ctrl.reset_work);
2257 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2258 int result;
2259 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2260
2261 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2262 result = -ENODEV;
2263 goto out;
2264 }
2265
2266 /*
2267 * If we're called to reset a live controller first shut it down before
2268 * moving on.
2269 */
2270 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2271 nvme_dev_disable(dev, false);
2272
2273 mutex_lock(&dev->shutdown_lock);
2274 result = nvme_pci_enable(dev);
2275 if (result)
2276 goto out_unlock;
2277
2278 result = nvme_pci_configure_admin_queue(dev);
2279 if (result)
2280 goto out_unlock;
2281
2282 result = nvme_alloc_admin_tags(dev);
2283 if (result)
2284 goto out_unlock;
2285
2286 /*
2287 * Limit the max command size to prevent iod->sg allocations going
2288 * over a single page.
2289 */
2290 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2291 dev->ctrl.max_segments = NVME_MAX_SEGS;
2292 mutex_unlock(&dev->shutdown_lock);
2293
2294 /*
2295 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2296 * initializing procedure here.
2297 */
2298 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2299 dev_warn(dev->ctrl.device,
2300 "failed to mark controller CONNECTING\n");
2301 result = -EBUSY;
2302 goto out;
2303 }
2304
2305 result = nvme_init_identify(&dev->ctrl);
2306 if (result)
2307 goto out;
2308
2309 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2310 if (!dev->ctrl.opal_dev)
2311 dev->ctrl.opal_dev =
2312 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2313 else if (was_suspend)
2314 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2315 } else {
2316 free_opal_dev(dev->ctrl.opal_dev);
2317 dev->ctrl.opal_dev = NULL;
2318 }
2319
2320 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2321 result = nvme_dbbuf_dma_alloc(dev);
2322 if (result)
2323 dev_warn(dev->dev,
2324 "unable to allocate dma for dbbuf\n");
2325 }
2326
2327 if (dev->ctrl.hmpre) {
2328 result = nvme_setup_host_mem(dev);
2329 if (result < 0)
2330 goto out;
2331 }
2332
2333 result = nvme_setup_io_queues(dev);
2334 if (result)
2335 goto out;
2336
2337 /*
2338 * Keep the controller around but remove all namespaces if we don't have
2339 * any working I/O queue.
2340 */
2341 if (dev->online_queues < 2) {
2342 dev_warn(dev->ctrl.device, "IO queues not created\n");
2343 nvme_kill_queues(&dev->ctrl);
2344 nvme_remove_namespaces(&dev->ctrl);
2345 new_state = NVME_CTRL_ADMIN_ONLY;
2346 } else {
2347 nvme_start_queues(&dev->ctrl);
2348 nvme_wait_freeze(&dev->ctrl);
2349 /* hit this only when allocate tagset fails */
2350 if (nvme_dev_add(dev))
2351 new_state = NVME_CTRL_ADMIN_ONLY;
2352 nvme_unfreeze(&dev->ctrl);
2353 }
2354
2355 /*
2356 * If only admin queue live, keep it to do further investigation or
2357 * recovery.
2358 */
2359 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2360 dev_warn(dev->ctrl.device,
2361 "failed to mark controller state %d\n", new_state);
2362 result = -ENODEV;
2363 goto out;
2364 }
2365
2366 nvme_start_ctrl(&dev->ctrl);
2367 return;
2368
2369 out_unlock:
2370 mutex_unlock(&dev->shutdown_lock);
2371 out:
2372 nvme_remove_dead_ctrl(dev, result);
2373}
2374
2375static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2376{
2377 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2378 struct pci_dev *pdev = to_pci_dev(dev->dev);
2379
2380 if (pci_get_drvdata(pdev))
2381 device_release_driver(&pdev->dev);
2382 nvme_put_ctrl(&dev->ctrl);
2383}
2384
2385static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2386{
2387 *val = readl(to_nvme_dev(ctrl)->bar + off);
2388 return 0;
2389}
2390
2391static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2392{
2393 writel(val, to_nvme_dev(ctrl)->bar + off);
2394 return 0;
2395}
2396
2397static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2398{
2399 *val = readq(to_nvme_dev(ctrl)->bar + off);
2400 return 0;
2401}
2402
2403static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2404{
2405 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2406
2407 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2408}
2409
2410static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2411 .name = "pcie",
2412 .module = THIS_MODULE,
2413 .flags = NVME_F_METADATA_SUPPORTED,
2414 .reg_read32 = nvme_pci_reg_read32,
2415 .reg_write32 = nvme_pci_reg_write32,
2416 .reg_read64 = nvme_pci_reg_read64,
2417 .free_ctrl = nvme_pci_free_ctrl,
2418 .submit_async_event = nvme_pci_submit_async_event,
2419 .get_address = nvme_pci_get_address,
2420};
2421
2422static int nvme_dev_map(struct nvme_dev *dev)
2423{
2424 struct pci_dev *pdev = to_pci_dev(dev->dev);
2425
2426 if (pci_request_mem_regions(pdev, "nvme"))
2427 return -ENODEV;
2428
2429 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2430 goto release;
2431
2432 return 0;
2433 release:
2434 pci_release_mem_regions(pdev);
2435 return -ENODEV;
2436}
2437
2438static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2439{
2440 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2441 /*
2442 * Several Samsung devices seem to drop off the PCIe bus
2443 * randomly when APST is on and uses the deepest sleep state.
2444 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2445 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2446 * 950 PRO 256GB", but it seems to be restricted to two Dell
2447 * laptops.
2448 */
2449 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2450 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2451 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2452 return NVME_QUIRK_NO_DEEPEST_PS;
2453 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2454 /*
2455 * Samsung SSD 960 EVO drops off the PCIe bus after system
2456 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2457 * within few minutes after bootup on a Coffee Lake board -
2458 * ASUS PRIME Z370-A
2459 */
2460 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2461 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2462 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2463 return NVME_QUIRK_NO_APST;
2464 }
2465
2466 return 0;
2467}
2468
2469static void nvme_async_probe(void *data, async_cookie_t cookie)
2470{
2471 struct nvme_dev *dev = data;
2472
2473 flush_work(&dev->ctrl.reset_work);
2474 flush_work(&dev->ctrl.scan_work);
2475 nvme_put_ctrl(&dev->ctrl);
2476}
2477
2478static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2479{
2480 int node, result = -ENOMEM;
2481 struct nvme_dev *dev;
2482 unsigned long quirks = id->driver_data;
2483 size_t alloc_size;
2484
2485 node = dev_to_node(&pdev->dev);
2486 if (node == NUMA_NO_NODE)
2487 set_dev_node(&pdev->dev, first_memory_node);
2488
2489 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2490 if (!dev)
2491 return -ENOMEM;
2492
2493 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2494 sizeof(struct nvme_queue), GFP_KERNEL, node);
2495 if (!dev->queues)
2496 goto free;
2497
2498 dev->dev = get_device(&pdev->dev);
2499 pci_set_drvdata(pdev, dev);
2500
2501 result = nvme_dev_map(dev);
2502 if (result)
2503 goto put_pci;
2504
2505 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2506 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2507 mutex_init(&dev->shutdown_lock);
2508 init_completion(&dev->ioq_wait);
2509
2510 result = nvme_setup_prp_pools(dev);
2511 if (result)
2512 goto unmap;
2513
2514 quirks |= check_vendor_combination_bug(pdev);
2515
2516 /*
2517 * Double check that our mempool alloc size will cover the biggest
2518 * command we support.
2519 */
2520 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2521 NVME_MAX_SEGS, true);
2522 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2523
2524 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2525 mempool_kfree,
2526 (void *) alloc_size,
2527 GFP_KERNEL, node);
2528 if (!dev->iod_mempool) {
2529 result = -ENOMEM;
2530 goto release_pools;
2531 }
2532
2533 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2534 quirks);
2535 if (result)
2536 goto release_mempool;
2537
2538 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2539
2540 nvme_reset_ctrl(&dev->ctrl);
2541 nvme_get_ctrl(&dev->ctrl);
2542 async_schedule(nvme_async_probe, dev);
2543
2544 return 0;
2545
2546 release_mempool:
2547 mempool_destroy(dev->iod_mempool);
2548 release_pools:
2549 nvme_release_prp_pools(dev);
2550 unmap:
2551 nvme_dev_unmap(dev);
2552 put_pci:
2553 put_device(dev->dev);
2554 free:
2555 kfree(dev->queues);
2556 kfree(dev);
2557 return result;
2558}
2559
2560static void nvme_reset_prepare(struct pci_dev *pdev)
2561{
2562 struct nvme_dev *dev = pci_get_drvdata(pdev);
2563 nvme_dev_disable(dev, false);
2564}
2565
2566static void nvme_reset_done(struct pci_dev *pdev)
2567{
2568 struct nvme_dev *dev = pci_get_drvdata(pdev);
2569 nvme_reset_ctrl_sync(&dev->ctrl);
2570}
2571
2572static void nvme_shutdown(struct pci_dev *pdev)
2573{
2574 struct nvme_dev *dev = pci_get_drvdata(pdev);
2575 nvme_dev_disable(dev, true);
2576}
2577
2578/*
2579 * The driver's remove may be called on a device in a partially initialized
2580 * state. This function must not have any dependencies on the device state in
2581 * order to proceed.
2582 */
2583static void nvme_remove(struct pci_dev *pdev)
2584{
2585 struct nvme_dev *dev = pci_get_drvdata(pdev);
2586
2587 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2588 pci_set_drvdata(pdev, NULL);
2589
2590 if (!pci_device_is_present(pdev)) {
2591 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2592 nvme_dev_disable(dev, true);
2593 nvme_dev_remove_admin(dev);
2594 }
2595
2596 flush_work(&dev->ctrl.reset_work);
2597 nvme_stop_ctrl(&dev->ctrl);
2598 nvme_remove_namespaces(&dev->ctrl);
2599 nvme_dev_disable(dev, true);
2600 nvme_release_cmb(dev);
2601 nvme_free_host_mem(dev);
2602 nvme_dev_remove_admin(dev);
2603 nvme_free_queues(dev, 0);
2604 nvme_uninit_ctrl(&dev->ctrl);
2605 nvme_release_prp_pools(dev);
2606 nvme_dev_unmap(dev);
2607 nvme_put_ctrl(&dev->ctrl);
2608}
2609
2610#ifdef CONFIG_PM_SLEEP
2611static int nvme_suspend(struct device *dev)
2612{
2613 struct pci_dev *pdev = to_pci_dev(dev);
2614 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2615
2616 nvme_dev_disable(ndev, true);
2617 return 0;
2618}
2619
2620static int nvme_resume(struct device *dev)
2621{
2622 struct pci_dev *pdev = to_pci_dev(dev);
2623 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2624
2625 nvme_reset_ctrl(&ndev->ctrl);
2626 return 0;
2627}
2628#endif
2629
2630static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2631
2632static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2633 pci_channel_state_t state)
2634{
2635 struct nvme_dev *dev = pci_get_drvdata(pdev);
2636
2637 /*
2638 * A frozen channel requires a reset. When detected, this method will
2639 * shutdown the controller to quiesce. The controller will be restarted
2640 * after the slot reset through driver's slot_reset callback.
2641 */
2642 switch (state) {
2643 case pci_channel_io_normal:
2644 return PCI_ERS_RESULT_CAN_RECOVER;
2645 case pci_channel_io_frozen:
2646 dev_warn(dev->ctrl.device,
2647 "frozen state error detected, reset controller\n");
2648 nvme_dev_disable(dev, false);
2649 return PCI_ERS_RESULT_NEED_RESET;
2650 case pci_channel_io_perm_failure:
2651 dev_warn(dev->ctrl.device,
2652 "failure state error detected, request disconnect\n");
2653 return PCI_ERS_RESULT_DISCONNECT;
2654 }
2655 return PCI_ERS_RESULT_NEED_RESET;
2656}
2657
2658static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2659{
2660 struct nvme_dev *dev = pci_get_drvdata(pdev);
2661
2662 dev_info(dev->ctrl.device, "restart after slot reset\n");
2663 pci_restore_state(pdev);
2664 nvme_reset_ctrl(&dev->ctrl);
2665 return PCI_ERS_RESULT_RECOVERED;
2666}
2667
2668static void nvme_error_resume(struct pci_dev *pdev)
2669{
2670 struct nvme_dev *dev = pci_get_drvdata(pdev);
2671
2672 flush_work(&dev->ctrl.reset_work);
2673 pci_cleanup_aer_uncorrect_error_status(pdev);
2674}
2675
2676static const struct pci_error_handlers nvme_err_handler = {
2677 .error_detected = nvme_error_detected,
2678 .slot_reset = nvme_slot_reset,
2679 .resume = nvme_error_resume,
2680 .reset_prepare = nvme_reset_prepare,
2681 .reset_done = nvme_reset_done,
2682};
2683
2684static const struct pci_device_id nvme_id_table[] = {
2685 { PCI_VDEVICE(INTEL, 0x0953),
2686 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2687 NVME_QUIRK_DEALLOCATE_ZEROES, },
2688 { PCI_VDEVICE(INTEL, 0x0a53),
2689 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2690 NVME_QUIRK_DEALLOCATE_ZEROES, },
2691 { PCI_VDEVICE(INTEL, 0x0a54),
2692 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2693 NVME_QUIRK_DEALLOCATE_ZEROES, },
2694 { PCI_VDEVICE(INTEL, 0x0a55),
2695 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2696 NVME_QUIRK_DEALLOCATE_ZEROES, },
2697 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2698 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2699 NVME_QUIRK_MEDIUM_PRIO_SQ },
2700 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2701 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2702 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2703 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2704 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2705 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2706 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2707 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2708 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2709 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2710 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2711 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2712 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2713 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2714 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2715 .driver_data = NVME_QUIRK_LIGHTNVM, },
2716 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2717 .driver_data = NVME_QUIRK_LIGHTNVM, },
2718 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2719 .driver_data = NVME_QUIRK_LIGHTNVM, },
2720 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2721 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2722 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2723 { 0, }
2724};
2725MODULE_DEVICE_TABLE(pci, nvme_id_table);
2726
2727static struct pci_driver nvme_driver = {
2728 .name = "nvme",
2729 .id_table = nvme_id_table,
2730 .probe = nvme_probe,
2731 .remove = nvme_remove,
2732 .shutdown = nvme_shutdown,
2733 .driver = {
2734 .pm = &nvme_dev_pm_ops,
2735 },
2736 .sriov_configure = pci_sriov_configure_simple,
2737 .err_handler = &nvme_err_handler,
2738};
2739
2740static int __init nvme_init(void)
2741{
2742 return pci_register_driver(&nvme_driver);
2743}
2744
2745static void __exit nvme_exit(void)
2746{
2747 pci_unregister_driver(&nvme_driver);
2748 flush_workqueue(nvme_wq);
2749 _nvme_check_size();
2750}
2751
2752MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2753MODULE_LICENSE("GPL");
2754MODULE_VERSION("1.0");
2755module_init(nvme_init);
2756module_exit(nvme_exit);