| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | 4 | */ | 
|  | 5 |  | 
|  | 6 | #include <linux/fs.h> | 
|  | 7 | #include <linux/blkdev.h> | 
|  | 8 | #include <linux/radix-tree.h> | 
|  | 9 | #include <linux/writeback.h> | 
|  | 10 | #include <linux/buffer_head.h> | 
|  | 11 | #include <linux/workqueue.h> | 
|  | 12 | #include <linux/kthread.h> | 
|  | 13 | #include <linux/slab.h> | 
|  | 14 | #include <linux/migrate.h> | 
|  | 15 | #include <linux/ratelimit.h> | 
|  | 16 | #include <linux/uuid.h> | 
|  | 17 | #include <linux/semaphore.h> | 
|  | 18 | #include <linux/error-injection.h> | 
|  | 19 | #include <linux/crc32c.h> | 
|  | 20 | #include <linux/sched/mm.h> | 
|  | 21 | #include <asm/unaligned.h> | 
|  | 22 | #include "ctree.h" | 
|  | 23 | #include "disk-io.h" | 
|  | 24 | #include "transaction.h" | 
|  | 25 | #include "btrfs_inode.h" | 
|  | 26 | #include "volumes.h" | 
|  | 27 | #include "print-tree.h" | 
|  | 28 | #include "locking.h" | 
|  | 29 | #include "tree-log.h" | 
|  | 30 | #include "free-space-cache.h" | 
|  | 31 | #include "free-space-tree.h" | 
|  | 32 | #include "inode-map.h" | 
|  | 33 | #include "check-integrity.h" | 
|  | 34 | #include "rcu-string.h" | 
|  | 35 | #include "dev-replace.h" | 
|  | 36 | #include "raid56.h" | 
|  | 37 | #include "sysfs.h" | 
|  | 38 | #include "qgroup.h" | 
|  | 39 | #include "compression.h" | 
|  | 40 | #include "tree-checker.h" | 
|  | 41 | #include "ref-verify.h" | 
|  | 42 |  | 
|  | 43 | #ifdef CONFIG_X86 | 
|  | 44 | #include <asm/cpufeature.h> | 
|  | 45 | #endif | 
|  | 46 |  | 
|  | 47 | #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\ | 
|  | 48 | BTRFS_HEADER_FLAG_RELOC |\ | 
|  | 49 | BTRFS_SUPER_FLAG_ERROR |\ | 
|  | 50 | BTRFS_SUPER_FLAG_SEEDING |\ | 
|  | 51 | BTRFS_SUPER_FLAG_METADUMP |\ | 
|  | 52 | BTRFS_SUPER_FLAG_METADUMP_V2) | 
|  | 53 |  | 
|  | 54 | static const struct extent_io_ops btree_extent_io_ops; | 
|  | 55 | static void end_workqueue_fn(struct btrfs_work *work); | 
|  | 56 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root); | 
|  | 57 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
|  | 58 | struct btrfs_fs_info *fs_info); | 
|  | 59 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); | 
|  | 60 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | 61 | struct extent_io_tree *dirty_pages, | 
|  | 62 | int mark); | 
|  | 63 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
|  | 64 | struct extent_io_tree *pinned_extents); | 
|  | 65 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); | 
|  | 66 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); | 
|  | 67 |  | 
|  | 68 | /* | 
|  | 69 | * btrfs_end_io_wq structs are used to do processing in task context when an IO | 
|  | 70 | * is complete.  This is used during reads to verify checksums, and it is used | 
|  | 71 | * by writes to insert metadata for new file extents after IO is complete. | 
|  | 72 | */ | 
|  | 73 | struct btrfs_end_io_wq { | 
|  | 74 | struct bio *bio; | 
|  | 75 | bio_end_io_t *end_io; | 
|  | 76 | void *private; | 
|  | 77 | struct btrfs_fs_info *info; | 
|  | 78 | blk_status_t status; | 
|  | 79 | enum btrfs_wq_endio_type metadata; | 
|  | 80 | struct btrfs_work work; | 
|  | 81 | }; | 
|  | 82 |  | 
|  | 83 | static struct kmem_cache *btrfs_end_io_wq_cache; | 
|  | 84 |  | 
|  | 85 | int __init btrfs_end_io_wq_init(void) | 
|  | 86 | { | 
|  | 87 | btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", | 
|  | 88 | sizeof(struct btrfs_end_io_wq), | 
|  | 89 | 0, | 
|  | 90 | SLAB_MEM_SPREAD, | 
|  | 91 | NULL); | 
|  | 92 | if (!btrfs_end_io_wq_cache) | 
|  | 93 | return -ENOMEM; | 
|  | 94 | return 0; | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | void __cold btrfs_end_io_wq_exit(void) | 
|  | 98 | { | 
|  | 99 | kmem_cache_destroy(btrfs_end_io_wq_cache); | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | /* | 
|  | 103 | * async submit bios are used to offload expensive checksumming | 
|  | 104 | * onto the worker threads.  They checksum file and metadata bios | 
|  | 105 | * just before they are sent down the IO stack. | 
|  | 106 | */ | 
|  | 107 | struct async_submit_bio { | 
|  | 108 | void *private_data; | 
|  | 109 | struct bio *bio; | 
|  | 110 | extent_submit_bio_start_t *submit_bio_start; | 
|  | 111 | int mirror_num; | 
|  | 112 | /* | 
|  | 113 | * bio_offset is optional, can be used if the pages in the bio | 
|  | 114 | * can't tell us where in the file the bio should go | 
|  | 115 | */ | 
|  | 116 | u64 bio_offset; | 
|  | 117 | struct btrfs_work work; | 
|  | 118 | blk_status_t status; | 
|  | 119 | }; | 
|  | 120 |  | 
|  | 121 | /* | 
|  | 122 | * Lockdep class keys for extent_buffer->lock's in this root.  For a given | 
|  | 123 | * eb, the lockdep key is determined by the btrfs_root it belongs to and | 
|  | 124 | * the level the eb occupies in the tree. | 
|  | 125 | * | 
|  | 126 | * Different roots are used for different purposes and may nest inside each | 
|  | 127 | * other and they require separate keysets.  As lockdep keys should be | 
|  | 128 | * static, assign keysets according to the purpose of the root as indicated | 
|  | 129 | * by btrfs_root->objectid.  This ensures that all special purpose roots | 
|  | 130 | * have separate keysets. | 
|  | 131 | * | 
|  | 132 | * Lock-nesting across peer nodes is always done with the immediate parent | 
|  | 133 | * node locked thus preventing deadlock.  As lockdep doesn't know this, use | 
|  | 134 | * subclass to avoid triggering lockdep warning in such cases. | 
|  | 135 | * | 
|  | 136 | * The key is set by the readpage_end_io_hook after the buffer has passed | 
|  | 137 | * csum validation but before the pages are unlocked.  It is also set by | 
|  | 138 | * btrfs_init_new_buffer on freshly allocated blocks. | 
|  | 139 | * | 
|  | 140 | * We also add a check to make sure the highest level of the tree is the | 
|  | 141 | * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code | 
|  | 142 | * needs update as well. | 
|  | 143 | */ | 
|  | 144 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | 145 | # if BTRFS_MAX_LEVEL != 8 | 
|  | 146 | #  error | 
|  | 147 | # endif | 
|  | 148 |  | 
|  | 149 | static struct btrfs_lockdep_keyset { | 
|  | 150 | u64			id;		/* root objectid */ | 
|  | 151 | const char		*name_stem;	/* lock name stem */ | 
|  | 152 | char			names[BTRFS_MAX_LEVEL + 1][20]; | 
|  | 153 | struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1]; | 
|  | 154 | } btrfs_lockdep_keysets[] = { | 
|  | 155 | { .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	}, | 
|  | 156 | { .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	}, | 
|  | 157 | { .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	}, | 
|  | 158 | { .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	}, | 
|  | 159 | { .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	}, | 
|  | 160 | { .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	}, | 
|  | 161 | { .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	}, | 
|  | 162 | { .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	}, | 
|  | 163 | { .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	}, | 
|  | 164 | { .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	}, | 
|  | 165 | { .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	}, | 
|  | 166 | { .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" }, | 
|  | 167 | { .id = 0,				.name_stem = "tree"	}, | 
|  | 168 | }; | 
|  | 169 |  | 
|  | 170 | void __init btrfs_init_lockdep(void) | 
|  | 171 | { | 
|  | 172 | int i, j; | 
|  | 173 |  | 
|  | 174 | /* initialize lockdep class names */ | 
|  | 175 | for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { | 
|  | 176 | struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; | 
|  | 177 |  | 
|  | 178 | for (j = 0; j < ARRAY_SIZE(ks->names); j++) | 
|  | 179 | snprintf(ks->names[j], sizeof(ks->names[j]), | 
|  | 180 | "btrfs-%s-%02d", ks->name_stem, j); | 
|  | 181 | } | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, | 
|  | 185 | int level) | 
|  | 186 | { | 
|  | 187 | struct btrfs_lockdep_keyset *ks; | 
|  | 188 |  | 
|  | 189 | BUG_ON(level >= ARRAY_SIZE(ks->keys)); | 
|  | 190 |  | 
|  | 191 | /* find the matching keyset, id 0 is the default entry */ | 
|  | 192 | for (ks = btrfs_lockdep_keysets; ks->id; ks++) | 
|  | 193 | if (ks->id == objectid) | 
|  | 194 | break; | 
|  | 195 |  | 
|  | 196 | lockdep_set_class_and_name(&eb->lock, | 
|  | 197 | &ks->keys[level], ks->names[level]); | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | #endif | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * extents on the btree inode are pretty simple, there's one extent | 
|  | 204 | * that covers the entire device | 
|  | 205 | */ | 
|  | 206 | struct extent_map *btree_get_extent(struct btrfs_inode *inode, | 
|  | 207 | struct page *page, size_t pg_offset, u64 start, u64 len, | 
|  | 208 | int create) | 
|  | 209 | { | 
|  | 210 | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | 211 | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | 212 | struct extent_map *em; | 
|  | 213 | int ret; | 
|  | 214 |  | 
|  | 215 | read_lock(&em_tree->lock); | 
|  | 216 | em = lookup_extent_mapping(em_tree, start, len); | 
|  | 217 | if (em) { | 
|  | 218 | em->bdev = fs_info->fs_devices->latest_bdev; | 
|  | 219 | read_unlock(&em_tree->lock); | 
|  | 220 | goto out; | 
|  | 221 | } | 
|  | 222 | read_unlock(&em_tree->lock); | 
|  | 223 |  | 
|  | 224 | em = alloc_extent_map(); | 
|  | 225 | if (!em) { | 
|  | 226 | em = ERR_PTR(-ENOMEM); | 
|  | 227 | goto out; | 
|  | 228 | } | 
|  | 229 | em->start = 0; | 
|  | 230 | em->len = (u64)-1; | 
|  | 231 | em->block_len = (u64)-1; | 
|  | 232 | em->block_start = 0; | 
|  | 233 | em->bdev = fs_info->fs_devices->latest_bdev; | 
|  | 234 |  | 
|  | 235 | write_lock(&em_tree->lock); | 
|  | 236 | ret = add_extent_mapping(em_tree, em, 0); | 
|  | 237 | if (ret == -EEXIST) { | 
|  | 238 | free_extent_map(em); | 
|  | 239 | em = lookup_extent_mapping(em_tree, start, len); | 
|  | 240 | if (!em) | 
|  | 241 | em = ERR_PTR(-EIO); | 
|  | 242 | } else if (ret) { | 
|  | 243 | free_extent_map(em); | 
|  | 244 | em = ERR_PTR(ret); | 
|  | 245 | } | 
|  | 246 | write_unlock(&em_tree->lock); | 
|  | 247 |  | 
|  | 248 | out: | 
|  | 249 | return em; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | u32 btrfs_csum_data(const char *data, u32 seed, size_t len) | 
|  | 253 | { | 
|  | 254 | return crc32c(seed, data, len); | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | void btrfs_csum_final(u32 crc, u8 *result) | 
|  | 258 | { | 
|  | 259 | put_unaligned_le32(~crc, result); | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | /* | 
|  | 263 | * compute the csum for a btree block, and either verify it or write it | 
|  | 264 | * into the csum field of the block. | 
|  | 265 | */ | 
|  | 266 | static int csum_tree_block(struct btrfs_fs_info *fs_info, | 
|  | 267 | struct extent_buffer *buf, | 
|  | 268 | int verify) | 
|  | 269 | { | 
|  | 270 | u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
|  | 271 | char result[BTRFS_CSUM_SIZE]; | 
|  | 272 | unsigned long len; | 
|  | 273 | unsigned long cur_len; | 
|  | 274 | unsigned long offset = BTRFS_CSUM_SIZE; | 
|  | 275 | char *kaddr; | 
|  | 276 | unsigned long map_start; | 
|  | 277 | unsigned long map_len; | 
|  | 278 | int err; | 
|  | 279 | u32 crc = ~(u32)0; | 
|  | 280 |  | 
|  | 281 | len = buf->len - offset; | 
|  | 282 | while (len > 0) { | 
|  | 283 | err = map_private_extent_buffer(buf, offset, 32, | 
|  | 284 | &kaddr, &map_start, &map_len); | 
|  | 285 | if (err) | 
|  | 286 | return err; | 
|  | 287 | cur_len = min(len, map_len - (offset - map_start)); | 
|  | 288 | crc = btrfs_csum_data(kaddr + offset - map_start, | 
|  | 289 | crc, cur_len); | 
|  | 290 | len -= cur_len; | 
|  | 291 | offset += cur_len; | 
|  | 292 | } | 
|  | 293 | memset(result, 0, BTRFS_CSUM_SIZE); | 
|  | 294 |  | 
|  | 295 | btrfs_csum_final(crc, result); | 
|  | 296 |  | 
|  | 297 | if (verify) { | 
|  | 298 | if (memcmp_extent_buffer(buf, result, 0, csum_size)) { | 
|  | 299 | u32 val; | 
|  | 300 | u32 found = 0; | 
|  | 301 | memcpy(&found, result, csum_size); | 
|  | 302 |  | 
|  | 303 | read_extent_buffer(buf, &val, 0, csum_size); | 
|  | 304 | btrfs_warn_rl(fs_info, | 
|  | 305 | "%s checksum verify failed on %llu wanted %X found %X level %d", | 
|  | 306 | fs_info->sb->s_id, buf->start, | 
|  | 307 | val, found, btrfs_header_level(buf)); | 
|  | 308 | return -EUCLEAN; | 
|  | 309 | } | 
|  | 310 | } else { | 
|  | 311 | write_extent_buffer(buf, result, 0, csum_size); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | return 0; | 
|  | 315 | } | 
|  | 316 |  | 
|  | 317 | /* | 
|  | 318 | * we can't consider a given block up to date unless the transid of the | 
|  | 319 | * block matches the transid in the parent node's pointer.  This is how we | 
|  | 320 | * detect blocks that either didn't get written at all or got written | 
|  | 321 | * in the wrong place. | 
|  | 322 | */ | 
|  | 323 | static int verify_parent_transid(struct extent_io_tree *io_tree, | 
|  | 324 | struct extent_buffer *eb, u64 parent_transid, | 
|  | 325 | int atomic) | 
|  | 326 | { | 
|  | 327 | struct extent_state *cached_state = NULL; | 
|  | 328 | int ret; | 
|  | 329 | bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); | 
|  | 330 |  | 
|  | 331 | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
|  | 332 | return 0; | 
|  | 333 |  | 
|  | 334 | if (atomic) | 
|  | 335 | return -EAGAIN; | 
|  | 336 |  | 
|  | 337 | if (need_lock) { | 
|  | 338 | btrfs_tree_read_lock(eb); | 
|  | 339 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 | lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, | 
|  | 343 | &cached_state); | 
|  | 344 | if (extent_buffer_uptodate(eb) && | 
|  | 345 | btrfs_header_generation(eb) == parent_transid) { | 
|  | 346 | ret = 0; | 
|  | 347 | goto out; | 
|  | 348 | } | 
|  | 349 | btrfs_err_rl(eb->fs_info, | 
|  | 350 | "parent transid verify failed on %llu wanted %llu found %llu", | 
|  | 351 | eb->start, | 
|  | 352 | parent_transid, btrfs_header_generation(eb)); | 
|  | 353 | ret = 1; | 
|  | 354 |  | 
|  | 355 | /* | 
|  | 356 | * Things reading via commit roots that don't have normal protection, | 
|  | 357 | * like send, can have a really old block in cache that may point at a | 
|  | 358 | * block that has been freed and re-allocated.  So don't clear uptodate | 
|  | 359 | * if we find an eb that is under IO (dirty/writeback) because we could | 
|  | 360 | * end up reading in the stale data and then writing it back out and | 
|  | 361 | * making everybody very sad. | 
|  | 362 | */ | 
|  | 363 | if (!extent_buffer_under_io(eb)) | 
|  | 364 | clear_extent_buffer_uptodate(eb); | 
|  | 365 | out: | 
|  | 366 | unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, | 
|  | 367 | &cached_state); | 
|  | 368 | if (need_lock) | 
|  | 369 | btrfs_tree_read_unlock_blocking(eb); | 
|  | 370 | return ret; | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | /* | 
|  | 374 | * Return 0 if the superblock checksum type matches the checksum value of that | 
|  | 375 | * algorithm. Pass the raw disk superblock data. | 
|  | 376 | */ | 
|  | 377 | static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, | 
|  | 378 | char *raw_disk_sb) | 
|  | 379 | { | 
|  | 380 | struct btrfs_super_block *disk_sb = | 
|  | 381 | (struct btrfs_super_block *)raw_disk_sb; | 
|  | 382 | u16 csum_type = btrfs_super_csum_type(disk_sb); | 
|  | 383 | int ret = 0; | 
|  | 384 |  | 
|  | 385 | if (csum_type == BTRFS_CSUM_TYPE_CRC32) { | 
|  | 386 | u32 crc = ~(u32)0; | 
|  | 387 | char result[sizeof(crc)]; | 
|  | 388 |  | 
|  | 389 | /* | 
|  | 390 | * The super_block structure does not span the whole | 
|  | 391 | * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space | 
|  | 392 | * is filled with zeros and is included in the checksum. | 
|  | 393 | */ | 
|  | 394 | crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, | 
|  | 395 | crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); | 
|  | 396 | btrfs_csum_final(crc, result); | 
|  | 397 |  | 
|  | 398 | if (memcmp(raw_disk_sb, result, sizeof(result))) | 
|  | 399 | ret = 1; | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { | 
|  | 403 | btrfs_err(fs_info, "unsupported checksum algorithm %u", | 
|  | 404 | csum_type); | 
|  | 405 | ret = 1; | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | return ret; | 
|  | 409 | } | 
|  | 410 |  | 
|  | 411 | int btrfs_verify_level_key(struct btrfs_fs_info *fs_info, | 
|  | 412 | struct extent_buffer *eb, int level, | 
|  | 413 | struct btrfs_key *first_key, u64 parent_transid) | 
|  | 414 | { | 
|  | 415 | int found_level; | 
|  | 416 | struct btrfs_key found_key; | 
|  | 417 | int ret; | 
|  | 418 |  | 
|  | 419 | found_level = btrfs_header_level(eb); | 
|  | 420 | if (found_level != level) { | 
|  | 421 | #ifdef CONFIG_BTRFS_DEBUG | 
|  | 422 | WARN_ON(1); | 
|  | 423 | btrfs_err(fs_info, | 
|  | 424 | "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", | 
|  | 425 | eb->start, level, found_level); | 
|  | 426 | #endif | 
|  | 427 | return -EIO; | 
|  | 428 | } | 
|  | 429 |  | 
|  | 430 | if (!first_key) | 
|  | 431 | return 0; | 
|  | 432 |  | 
|  | 433 | /* | 
|  | 434 | * For live tree block (new tree blocks in current transaction), | 
|  | 435 | * we need proper lock context to avoid race, which is impossible here. | 
|  | 436 | * So we only checks tree blocks which is read from disk, whose | 
|  | 437 | * generation <= fs_info->last_trans_committed. | 
|  | 438 | */ | 
|  | 439 | if (btrfs_header_generation(eb) > fs_info->last_trans_committed) | 
|  | 440 | return 0; | 
|  | 441 | if (found_level) | 
|  | 442 | btrfs_node_key_to_cpu(eb, &found_key, 0); | 
|  | 443 | else | 
|  | 444 | btrfs_item_key_to_cpu(eb, &found_key, 0); | 
|  | 445 | ret = btrfs_comp_cpu_keys(first_key, &found_key); | 
|  | 446 |  | 
|  | 447 | #ifdef CONFIG_BTRFS_DEBUG | 
|  | 448 | if (ret) { | 
|  | 449 | WARN_ON(1); | 
|  | 450 | btrfs_err(fs_info, | 
|  | 451 | "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", | 
|  | 452 | eb->start, parent_transid, first_key->objectid, | 
|  | 453 | first_key->type, first_key->offset, | 
|  | 454 | found_key.objectid, found_key.type, | 
|  | 455 | found_key.offset); | 
|  | 456 | } | 
|  | 457 | #endif | 
|  | 458 | return ret; | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | /* | 
|  | 462 | * helper to read a given tree block, doing retries as required when | 
|  | 463 | * the checksums don't match and we have alternate mirrors to try. | 
|  | 464 | * | 
|  | 465 | * @parent_transid:	expected transid, skip check if 0 | 
|  | 466 | * @level:		expected level, mandatory check | 
|  | 467 | * @first_key:		expected key of first slot, skip check if NULL | 
|  | 468 | */ | 
|  | 469 | static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, | 
|  | 470 | struct extent_buffer *eb, | 
|  | 471 | u64 parent_transid, int level, | 
|  | 472 | struct btrfs_key *first_key) | 
|  | 473 | { | 
|  | 474 | struct extent_io_tree *io_tree; | 
|  | 475 | int failed = 0; | 
|  | 476 | int ret; | 
|  | 477 | int num_copies = 0; | 
|  | 478 | int mirror_num = 0; | 
|  | 479 | int failed_mirror = 0; | 
|  | 480 |  | 
|  | 481 | io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; | 
|  | 482 | while (1) { | 
|  | 483 | clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | 484 | ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, | 
|  | 485 | mirror_num); | 
|  | 486 | if (!ret) { | 
|  | 487 | if (verify_parent_transid(io_tree, eb, | 
|  | 488 | parent_transid, 0)) | 
|  | 489 | ret = -EIO; | 
|  | 490 | else if (btrfs_verify_level_key(fs_info, eb, level, | 
|  | 491 | first_key, parent_transid)) | 
|  | 492 | ret = -EUCLEAN; | 
|  | 493 | else | 
|  | 494 | break; | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | num_copies = btrfs_num_copies(fs_info, | 
|  | 498 | eb->start, eb->len); | 
|  | 499 | if (num_copies == 1) | 
|  | 500 | break; | 
|  | 501 |  | 
|  | 502 | if (!failed_mirror) { | 
|  | 503 | failed = 1; | 
|  | 504 | failed_mirror = eb->read_mirror; | 
|  | 505 | } | 
|  | 506 |  | 
|  | 507 | mirror_num++; | 
|  | 508 | if (mirror_num == failed_mirror) | 
|  | 509 | mirror_num++; | 
|  | 510 |  | 
|  | 511 | if (mirror_num > num_copies) | 
|  | 512 | break; | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | if (failed && !ret && failed_mirror) | 
|  | 516 | repair_eb_io_failure(fs_info, eb, failed_mirror); | 
|  | 517 |  | 
|  | 518 | return ret; | 
|  | 519 | } | 
|  | 520 |  | 
|  | 521 | /* | 
|  | 522 | * checksum a dirty tree block before IO.  This has extra checks to make sure | 
|  | 523 | * we only fill in the checksum field in the first page of a multi-page block | 
|  | 524 | */ | 
|  | 525 |  | 
|  | 526 | static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) | 
|  | 527 | { | 
|  | 528 | u64 start = page_offset(page); | 
|  | 529 | u64 found_start; | 
|  | 530 | struct extent_buffer *eb; | 
|  | 531 |  | 
|  | 532 | eb = (struct extent_buffer *)page->private; | 
|  | 533 | if (page != eb->pages[0]) | 
|  | 534 | return 0; | 
|  | 535 |  | 
|  | 536 | found_start = btrfs_header_bytenr(eb); | 
|  | 537 | /* | 
|  | 538 | * Please do not consolidate these warnings into a single if. | 
|  | 539 | * It is useful to know what went wrong. | 
|  | 540 | */ | 
|  | 541 | if (WARN_ON(found_start != start)) | 
|  | 542 | return -EUCLEAN; | 
|  | 543 | if (WARN_ON(!PageUptodate(page))) | 
|  | 544 | return -EUCLEAN; | 
|  | 545 |  | 
|  | 546 | ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, | 
|  | 547 | btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); | 
|  | 548 |  | 
|  | 549 | return csum_tree_block(fs_info, eb, 0); | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, | 
|  | 553 | struct extent_buffer *eb) | 
|  | 554 | { | 
|  | 555 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | 556 | u8 fsid[BTRFS_FSID_SIZE]; | 
|  | 557 | int ret = 1; | 
|  | 558 |  | 
|  | 559 | read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); | 
|  | 560 | while (fs_devices) { | 
|  | 561 | if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { | 
|  | 562 | ret = 0; | 
|  | 563 | break; | 
|  | 564 | } | 
|  | 565 | fs_devices = fs_devices->seed; | 
|  | 566 | } | 
|  | 567 | return ret; | 
|  | 568 | } | 
|  | 569 |  | 
|  | 570 | static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, | 
|  | 571 | u64 phy_offset, struct page *page, | 
|  | 572 | u64 start, u64 end, int mirror) | 
|  | 573 | { | 
|  | 574 | u64 found_start; | 
|  | 575 | int found_level; | 
|  | 576 | struct extent_buffer *eb; | 
|  | 577 | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
|  | 578 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 579 | int ret = 0; | 
|  | 580 | int reads_done; | 
|  | 581 |  | 
|  | 582 | if (!page->private) | 
|  | 583 | goto out; | 
|  | 584 |  | 
|  | 585 | eb = (struct extent_buffer *)page->private; | 
|  | 586 |  | 
|  | 587 | /* the pending IO might have been the only thing that kept this buffer | 
|  | 588 | * in memory.  Make sure we have a ref for all this other checks | 
|  | 589 | */ | 
|  | 590 | extent_buffer_get(eb); | 
|  | 591 |  | 
|  | 592 | reads_done = atomic_dec_and_test(&eb->io_pages); | 
|  | 593 | if (!reads_done) | 
|  | 594 | goto err; | 
|  | 595 |  | 
|  | 596 | eb->read_mirror = mirror; | 
|  | 597 | if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { | 
|  | 598 | ret = -EIO; | 
|  | 599 | goto err; | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | found_start = btrfs_header_bytenr(eb); | 
|  | 603 | if (found_start != eb->start) { | 
|  | 604 | btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", | 
|  | 605 | eb->start, found_start); | 
|  | 606 | ret = -EIO; | 
|  | 607 | goto err; | 
|  | 608 | } | 
|  | 609 | if (check_tree_block_fsid(fs_info, eb)) { | 
|  | 610 | btrfs_err_rl(fs_info, "bad fsid on block %llu", | 
|  | 611 | eb->start); | 
|  | 612 | ret = -EIO; | 
|  | 613 | goto err; | 
|  | 614 | } | 
|  | 615 | found_level = btrfs_header_level(eb); | 
|  | 616 | if (found_level >= BTRFS_MAX_LEVEL) { | 
|  | 617 | btrfs_err(fs_info, "bad tree block level %d on %llu", | 
|  | 618 | (int)btrfs_header_level(eb), eb->start); | 
|  | 619 | ret = -EIO; | 
|  | 620 | goto err; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), | 
|  | 624 | eb, found_level); | 
|  | 625 |  | 
|  | 626 | ret = csum_tree_block(fs_info, eb, 1); | 
|  | 627 | if (ret) | 
|  | 628 | goto err; | 
|  | 629 |  | 
|  | 630 | /* | 
|  | 631 | * If this is a leaf block and it is corrupt, set the corrupt bit so | 
|  | 632 | * that we don't try and read the other copies of this block, just | 
|  | 633 | * return -EIO. | 
|  | 634 | */ | 
|  | 635 | if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { | 
|  | 636 | set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | 637 | ret = -EIO; | 
|  | 638 | } | 
|  | 639 |  | 
|  | 640 | if (found_level > 0 && btrfs_check_node(fs_info, eb)) | 
|  | 641 | ret = -EIO; | 
|  | 642 |  | 
|  | 643 | if (!ret) | 
|  | 644 | set_extent_buffer_uptodate(eb); | 
|  | 645 | err: | 
|  | 646 | if (reads_done && | 
|  | 647 | test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) | 
|  | 648 | btree_readahead_hook(eb, ret); | 
|  | 649 |  | 
|  | 650 | if (ret) { | 
|  | 651 | /* | 
|  | 652 | * our io error hook is going to dec the io pages | 
|  | 653 | * again, we have to make sure it has something | 
|  | 654 | * to decrement | 
|  | 655 | */ | 
|  | 656 | atomic_inc(&eb->io_pages); | 
|  | 657 | clear_extent_buffer_uptodate(eb); | 
|  | 658 | } | 
|  | 659 | free_extent_buffer(eb); | 
|  | 660 | out: | 
|  | 661 | return ret; | 
|  | 662 | } | 
|  | 663 |  | 
|  | 664 | static int btree_io_failed_hook(struct page *page, int failed_mirror) | 
|  | 665 | { | 
|  | 666 | struct extent_buffer *eb; | 
|  | 667 |  | 
|  | 668 | eb = (struct extent_buffer *)page->private; | 
|  | 669 | set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); | 
|  | 670 | eb->read_mirror = failed_mirror; | 
|  | 671 | atomic_dec(&eb->io_pages); | 
|  | 672 | if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) | 
|  | 673 | btree_readahead_hook(eb, -EIO); | 
|  | 674 | return -EIO;	/* we fixed nothing */ | 
|  | 675 | } | 
|  | 676 |  | 
|  | 677 | static void end_workqueue_bio(struct bio *bio) | 
|  | 678 | { | 
|  | 679 | struct btrfs_end_io_wq *end_io_wq = bio->bi_private; | 
|  | 680 | struct btrfs_fs_info *fs_info; | 
|  | 681 | struct btrfs_workqueue *wq; | 
|  | 682 | btrfs_work_func_t func; | 
|  | 683 |  | 
|  | 684 | fs_info = end_io_wq->info; | 
|  | 685 | end_io_wq->status = bio->bi_status; | 
|  | 686 |  | 
|  | 687 | if (bio_op(bio) == REQ_OP_WRITE) { | 
|  | 688 | if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { | 
|  | 689 | wq = fs_info->endio_meta_write_workers; | 
|  | 690 | func = btrfs_endio_meta_write_helper; | 
|  | 691 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { | 
|  | 692 | wq = fs_info->endio_freespace_worker; | 
|  | 693 | func = btrfs_freespace_write_helper; | 
|  | 694 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { | 
|  | 695 | wq = fs_info->endio_raid56_workers; | 
|  | 696 | func = btrfs_endio_raid56_helper; | 
|  | 697 | } else { | 
|  | 698 | wq = fs_info->endio_write_workers; | 
|  | 699 | func = btrfs_endio_write_helper; | 
|  | 700 | } | 
|  | 701 | } else { | 
|  | 702 | if (unlikely(end_io_wq->metadata == | 
|  | 703 | BTRFS_WQ_ENDIO_DIO_REPAIR)) { | 
|  | 704 | wq = fs_info->endio_repair_workers; | 
|  | 705 | func = btrfs_endio_repair_helper; | 
|  | 706 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { | 
|  | 707 | wq = fs_info->endio_raid56_workers; | 
|  | 708 | func = btrfs_endio_raid56_helper; | 
|  | 709 | } else if (end_io_wq->metadata) { | 
|  | 710 | wq = fs_info->endio_meta_workers; | 
|  | 711 | func = btrfs_endio_meta_helper; | 
|  | 712 | } else { | 
|  | 713 | wq = fs_info->endio_workers; | 
|  | 714 | func = btrfs_endio_helper; | 
|  | 715 | } | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); | 
|  | 719 | btrfs_queue_work(wq, &end_io_wq->work); | 
|  | 720 | } | 
|  | 721 |  | 
|  | 722 | blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | 
|  | 723 | enum btrfs_wq_endio_type metadata) | 
|  | 724 | { | 
|  | 725 | struct btrfs_end_io_wq *end_io_wq; | 
|  | 726 |  | 
|  | 727 | end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); | 
|  | 728 | if (!end_io_wq) | 
|  | 729 | return BLK_STS_RESOURCE; | 
|  | 730 |  | 
|  | 731 | end_io_wq->private = bio->bi_private; | 
|  | 732 | end_io_wq->end_io = bio->bi_end_io; | 
|  | 733 | end_io_wq->info = info; | 
|  | 734 | end_io_wq->status = 0; | 
|  | 735 | end_io_wq->bio = bio; | 
|  | 736 | end_io_wq->metadata = metadata; | 
|  | 737 |  | 
|  | 738 | bio->bi_private = end_io_wq; | 
|  | 739 | bio->bi_end_io = end_workqueue_bio; | 
|  | 740 | return 0; | 
|  | 741 | } | 
|  | 742 |  | 
|  | 743 | static void run_one_async_start(struct btrfs_work *work) | 
|  | 744 | { | 
|  | 745 | struct async_submit_bio *async; | 
|  | 746 | blk_status_t ret; | 
|  | 747 |  | 
|  | 748 | async = container_of(work, struct  async_submit_bio, work); | 
|  | 749 | ret = async->submit_bio_start(async->private_data, async->bio, | 
|  | 750 | async->bio_offset); | 
|  | 751 | if (ret) | 
|  | 752 | async->status = ret; | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | static void run_one_async_done(struct btrfs_work *work) | 
|  | 756 | { | 
|  | 757 | struct async_submit_bio *async; | 
|  | 758 |  | 
|  | 759 | async = container_of(work, struct  async_submit_bio, work); | 
|  | 760 |  | 
|  | 761 | /* If an error occurred we just want to clean up the bio and move on */ | 
|  | 762 | if (async->status) { | 
|  | 763 | async->bio->bi_status = async->status; | 
|  | 764 | bio_endio(async->bio); | 
|  | 765 | return; | 
|  | 766 | } | 
|  | 767 |  | 
|  | 768 | btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num); | 
|  | 769 | } | 
|  | 770 |  | 
|  | 771 | static void run_one_async_free(struct btrfs_work *work) | 
|  | 772 | { | 
|  | 773 | struct async_submit_bio *async; | 
|  | 774 |  | 
|  | 775 | async = container_of(work, struct  async_submit_bio, work); | 
|  | 776 | kfree(async); | 
|  | 777 | } | 
|  | 778 |  | 
|  | 779 | blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, | 
|  | 780 | int mirror_num, unsigned long bio_flags, | 
|  | 781 | u64 bio_offset, void *private_data, | 
|  | 782 | extent_submit_bio_start_t *submit_bio_start) | 
|  | 783 | { | 
|  | 784 | struct async_submit_bio *async; | 
|  | 785 |  | 
|  | 786 | async = kmalloc(sizeof(*async), GFP_NOFS); | 
|  | 787 | if (!async) | 
|  | 788 | return BLK_STS_RESOURCE; | 
|  | 789 |  | 
|  | 790 | async->private_data = private_data; | 
|  | 791 | async->bio = bio; | 
|  | 792 | async->mirror_num = mirror_num; | 
|  | 793 | async->submit_bio_start = submit_bio_start; | 
|  | 794 |  | 
|  | 795 | btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, | 
|  | 796 | run_one_async_done, run_one_async_free); | 
|  | 797 |  | 
|  | 798 | async->bio_offset = bio_offset; | 
|  | 799 |  | 
|  | 800 | async->status = 0; | 
|  | 801 |  | 
|  | 802 | if (op_is_sync(bio->bi_opf)) | 
|  | 803 | btrfs_set_work_high_priority(&async->work); | 
|  | 804 |  | 
|  | 805 | btrfs_queue_work(fs_info->workers, &async->work); | 
|  | 806 | return 0; | 
|  | 807 | } | 
|  | 808 |  | 
|  | 809 | static blk_status_t btree_csum_one_bio(struct bio *bio) | 
|  | 810 | { | 
|  | 811 | struct bio_vec *bvec; | 
|  | 812 | struct btrfs_root *root; | 
|  | 813 | int i, ret = 0; | 
|  | 814 |  | 
|  | 815 | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | 816 | bio_for_each_segment_all(bvec, bio, i) { | 
|  | 817 | root = BTRFS_I(bvec->bv_page->mapping->host)->root; | 
|  | 818 | ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); | 
|  | 819 | if (ret) | 
|  | 820 | break; | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | return errno_to_blk_status(ret); | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, | 
|  | 827 | u64 bio_offset) | 
|  | 828 | { | 
|  | 829 | /* | 
|  | 830 | * when we're called for a write, we're already in the async | 
|  | 831 | * submission context.  Just jump into btrfs_map_bio | 
|  | 832 | */ | 
|  | 833 | return btree_csum_one_bio(bio); | 
|  | 834 | } | 
|  | 835 |  | 
|  | 836 | static int check_async_write(struct btrfs_inode *bi) | 
|  | 837 | { | 
|  | 838 | if (atomic_read(&bi->sync_writers)) | 
|  | 839 | return 0; | 
|  | 840 | #ifdef CONFIG_X86 | 
|  | 841 | if (static_cpu_has(X86_FEATURE_XMM4_2)) | 
|  | 842 | return 0; | 
|  | 843 | #endif | 
|  | 844 | return 1; | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, | 
|  | 848 | int mirror_num, unsigned long bio_flags, | 
|  | 849 | u64 bio_offset) | 
|  | 850 | { | 
|  | 851 | struct inode *inode = private_data; | 
|  | 852 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | 853 | int async = check_async_write(BTRFS_I(inode)); | 
|  | 854 | blk_status_t ret; | 
|  | 855 |  | 
|  | 856 | if (bio_op(bio) != REQ_OP_WRITE) { | 
|  | 857 | /* | 
|  | 858 | * called for a read, do the setup so that checksum validation | 
|  | 859 | * can happen in the async kernel threads | 
|  | 860 | */ | 
|  | 861 | ret = btrfs_bio_wq_end_io(fs_info, bio, | 
|  | 862 | BTRFS_WQ_ENDIO_METADATA); | 
|  | 863 | if (ret) | 
|  | 864 | goto out_w_error; | 
|  | 865 | ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
|  | 866 | } else if (!async) { | 
|  | 867 | ret = btree_csum_one_bio(bio); | 
|  | 868 | if (ret) | 
|  | 869 | goto out_w_error; | 
|  | 870 | ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
|  | 871 | } else { | 
|  | 872 | /* | 
|  | 873 | * kthread helpers are used to submit writes so that | 
|  | 874 | * checksumming can happen in parallel across all CPUs | 
|  | 875 | */ | 
|  | 876 | ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, | 
|  | 877 | bio_offset, private_data, | 
|  | 878 | btree_submit_bio_start); | 
|  | 879 | } | 
|  | 880 |  | 
|  | 881 | if (ret) | 
|  | 882 | goto out_w_error; | 
|  | 883 | return 0; | 
|  | 884 |  | 
|  | 885 | out_w_error: | 
|  | 886 | bio->bi_status = ret; | 
|  | 887 | bio_endio(bio); | 
|  | 888 | return ret; | 
|  | 889 | } | 
|  | 890 |  | 
|  | 891 | #ifdef CONFIG_MIGRATION | 
|  | 892 | static int btree_migratepage(struct address_space *mapping, | 
|  | 893 | struct page *newpage, struct page *page, | 
|  | 894 | enum migrate_mode mode) | 
|  | 895 | { | 
|  | 896 | /* | 
|  | 897 | * we can't safely write a btree page from here, | 
|  | 898 | * we haven't done the locking hook | 
|  | 899 | */ | 
|  | 900 | if (PageDirty(page)) | 
|  | 901 | return -EAGAIN; | 
|  | 902 | /* | 
|  | 903 | * Buffers may be managed in a filesystem specific way. | 
|  | 904 | * We must have no buffers or drop them. | 
|  | 905 | */ | 
|  | 906 | if (page_has_private(page) && | 
|  | 907 | !try_to_release_page(page, GFP_KERNEL)) | 
|  | 908 | return -EAGAIN; | 
|  | 909 | return migrate_page(mapping, newpage, page, mode); | 
|  | 910 | } | 
|  | 911 | #endif | 
|  | 912 |  | 
|  | 913 |  | 
|  | 914 | static int btree_writepages(struct address_space *mapping, | 
|  | 915 | struct writeback_control *wbc) | 
|  | 916 | { | 
|  | 917 | struct btrfs_fs_info *fs_info; | 
|  | 918 | int ret; | 
|  | 919 |  | 
|  | 920 | if (wbc->sync_mode == WB_SYNC_NONE) { | 
|  | 921 |  | 
|  | 922 | if (wbc->for_kupdate) | 
|  | 923 | return 0; | 
|  | 924 |  | 
|  | 925 | fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
|  | 926 | /* this is a bit racy, but that's ok */ | 
|  | 927 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
|  | 928 | BTRFS_DIRTY_METADATA_THRESH, | 
|  | 929 | fs_info->dirty_metadata_batch); | 
|  | 930 | if (ret < 0) | 
|  | 931 | return 0; | 
|  | 932 | } | 
|  | 933 | return btree_write_cache_pages(mapping, wbc); | 
|  | 934 | } | 
|  | 935 |  | 
|  | 936 | static int btree_readpage(struct file *file, struct page *page) | 
|  | 937 | { | 
|  | 938 | struct extent_io_tree *tree; | 
|  | 939 | tree = &BTRFS_I(page->mapping->host)->io_tree; | 
|  | 940 | return extent_read_full_page(tree, page, btree_get_extent, 0); | 
|  | 941 | } | 
|  | 942 |  | 
|  | 943 | static int btree_releasepage(struct page *page, gfp_t gfp_flags) | 
|  | 944 | { | 
|  | 945 | if (PageWriteback(page) || PageDirty(page)) | 
|  | 946 | return 0; | 
|  | 947 |  | 
|  | 948 | return try_release_extent_buffer(page); | 
|  | 949 | } | 
|  | 950 |  | 
|  | 951 | static void btree_invalidatepage(struct page *page, unsigned int offset, | 
|  | 952 | unsigned int length) | 
|  | 953 | { | 
|  | 954 | struct extent_io_tree *tree; | 
|  | 955 | tree = &BTRFS_I(page->mapping->host)->io_tree; | 
|  | 956 | extent_invalidatepage(tree, page, offset); | 
|  | 957 | btree_releasepage(page, GFP_NOFS); | 
|  | 958 | if (PagePrivate(page)) { | 
|  | 959 | btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, | 
|  | 960 | "page private not zero on page %llu", | 
|  | 961 | (unsigned long long)page_offset(page)); | 
|  | 962 | ClearPagePrivate(page); | 
|  | 963 | set_page_private(page, 0); | 
|  | 964 | put_page(page); | 
|  | 965 | } | 
|  | 966 | } | 
|  | 967 |  | 
|  | 968 | static int btree_set_page_dirty(struct page *page) | 
|  | 969 | { | 
|  | 970 | #ifdef DEBUG | 
|  | 971 | struct extent_buffer *eb; | 
|  | 972 |  | 
|  | 973 | BUG_ON(!PagePrivate(page)); | 
|  | 974 | eb = (struct extent_buffer *)page->private; | 
|  | 975 | BUG_ON(!eb); | 
|  | 976 | BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | 977 | BUG_ON(!atomic_read(&eb->refs)); | 
|  | 978 | btrfs_assert_tree_locked(eb); | 
|  | 979 | #endif | 
|  | 980 | return __set_page_dirty_nobuffers(page); | 
|  | 981 | } | 
|  | 982 |  | 
|  | 983 | static const struct address_space_operations btree_aops = { | 
|  | 984 | .readpage	= btree_readpage, | 
|  | 985 | .writepages	= btree_writepages, | 
|  | 986 | .releasepage	= btree_releasepage, | 
|  | 987 | .invalidatepage = btree_invalidatepage, | 
|  | 988 | #ifdef CONFIG_MIGRATION | 
|  | 989 | .migratepage	= btree_migratepage, | 
|  | 990 | #endif | 
|  | 991 | .set_page_dirty = btree_set_page_dirty, | 
|  | 992 | }; | 
|  | 993 |  | 
|  | 994 | void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | 995 | { | 
|  | 996 | struct extent_buffer *buf = NULL; | 
|  | 997 | struct inode *btree_inode = fs_info->btree_inode; | 
|  | 998 | int ret; | 
|  | 999 |  | 
|  | 1000 | buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | 1001 | if (IS_ERR(buf)) | 
|  | 1002 | return; | 
|  | 1003 |  | 
|  | 1004 | ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf, | 
|  | 1005 | WAIT_NONE, 0); | 
|  | 1006 | if (ret < 0) | 
|  | 1007 | free_extent_buffer_stale(buf); | 
|  | 1008 | else | 
|  | 1009 | free_extent_buffer(buf); | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1013 | int mirror_num, struct extent_buffer **eb) | 
|  | 1014 | { | 
|  | 1015 | struct extent_buffer *buf = NULL; | 
|  | 1016 | struct inode *btree_inode = fs_info->btree_inode; | 
|  | 1017 | struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; | 
|  | 1018 | int ret; | 
|  | 1019 |  | 
|  | 1020 | buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | 1021 | if (IS_ERR(buf)) | 
|  | 1022 | return 0; | 
|  | 1023 |  | 
|  | 1024 | set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); | 
|  | 1025 |  | 
|  | 1026 | ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, | 
|  | 1027 | mirror_num); | 
|  | 1028 | if (ret) { | 
|  | 1029 | free_extent_buffer_stale(buf); | 
|  | 1030 | return ret; | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { | 
|  | 1034 | free_extent_buffer_stale(buf); | 
|  | 1035 | return -EIO; | 
|  | 1036 | } else if (extent_buffer_uptodate(buf)) { | 
|  | 1037 | *eb = buf; | 
|  | 1038 | } else { | 
|  | 1039 | free_extent_buffer(buf); | 
|  | 1040 | } | 
|  | 1041 | return 0; | 
|  | 1042 | } | 
|  | 1043 |  | 
|  | 1044 | struct extent_buffer *btrfs_find_create_tree_block( | 
|  | 1045 | struct btrfs_fs_info *fs_info, | 
|  | 1046 | u64 bytenr) | 
|  | 1047 | { | 
|  | 1048 | if (btrfs_is_testing(fs_info)) | 
|  | 1049 | return alloc_test_extent_buffer(fs_info, bytenr); | 
|  | 1050 | return alloc_extent_buffer(fs_info, bytenr); | 
|  | 1051 | } | 
|  | 1052 |  | 
|  | 1053 |  | 
|  | 1054 | int btrfs_write_tree_block(struct extent_buffer *buf) | 
|  | 1055 | { | 
|  | 1056 | return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, | 
|  | 1057 | buf->start + buf->len - 1); | 
|  | 1058 | } | 
|  | 1059 |  | 
|  | 1060 | void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) | 
|  | 1061 | { | 
|  | 1062 | filemap_fdatawait_range(buf->pages[0]->mapping, | 
|  | 1063 | buf->start, buf->start + buf->len - 1); | 
|  | 1064 | } | 
|  | 1065 |  | 
|  | 1066 | /* | 
|  | 1067 | * Read tree block at logical address @bytenr and do variant basic but critical | 
|  | 1068 | * verification. | 
|  | 1069 | * | 
|  | 1070 | * @parent_transid:	expected transid of this tree block, skip check if 0 | 
|  | 1071 | * @level:		expected level, mandatory check | 
|  | 1072 | * @first_key:		expected key in slot 0, skip check if NULL | 
|  | 1073 | */ | 
|  | 1074 | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | 1075 | u64 parent_transid, int level, | 
|  | 1076 | struct btrfs_key *first_key) | 
|  | 1077 | { | 
|  | 1078 | struct extent_buffer *buf = NULL; | 
|  | 1079 | int ret; | 
|  | 1080 |  | 
|  | 1081 | buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | 1082 | if (IS_ERR(buf)) | 
|  | 1083 | return buf; | 
|  | 1084 |  | 
|  | 1085 | ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, | 
|  | 1086 | level, first_key); | 
|  | 1087 | if (ret) { | 
|  | 1088 | free_extent_buffer_stale(buf); | 
|  | 1089 | return ERR_PTR(ret); | 
|  | 1090 | } | 
|  | 1091 | return buf; | 
|  | 1092 |  | 
|  | 1093 | } | 
|  | 1094 |  | 
|  | 1095 | void clean_tree_block(struct btrfs_fs_info *fs_info, | 
|  | 1096 | struct extent_buffer *buf) | 
|  | 1097 | { | 
|  | 1098 | if (btrfs_header_generation(buf) == | 
|  | 1099 | fs_info->running_transaction->transid) { | 
|  | 1100 | btrfs_assert_tree_locked(buf); | 
|  | 1101 |  | 
|  | 1102 | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { | 
|  | 1103 | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | 1104 | -buf->len, | 
|  | 1105 | fs_info->dirty_metadata_batch); | 
|  | 1106 | /* ugh, clear_extent_buffer_dirty needs to lock the page */ | 
|  | 1107 | btrfs_set_lock_blocking(buf); | 
|  | 1108 | clear_extent_buffer_dirty(buf); | 
|  | 1109 | } | 
|  | 1110 | } | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) | 
|  | 1114 | { | 
|  | 1115 | struct btrfs_subvolume_writers *writers; | 
|  | 1116 | int ret; | 
|  | 1117 |  | 
|  | 1118 | writers = kmalloc(sizeof(*writers), GFP_NOFS); | 
|  | 1119 | if (!writers) | 
|  | 1120 | return ERR_PTR(-ENOMEM); | 
|  | 1121 |  | 
|  | 1122 | ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); | 
|  | 1123 | if (ret < 0) { | 
|  | 1124 | kfree(writers); | 
|  | 1125 | return ERR_PTR(ret); | 
|  | 1126 | } | 
|  | 1127 |  | 
|  | 1128 | init_waitqueue_head(&writers->wait); | 
|  | 1129 | return writers; | 
|  | 1130 | } | 
|  | 1131 |  | 
|  | 1132 | static void | 
|  | 1133 | btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) | 
|  | 1134 | { | 
|  | 1135 | percpu_counter_destroy(&writers->counter); | 
|  | 1136 | kfree(writers); | 
|  | 1137 | } | 
|  | 1138 |  | 
|  | 1139 | static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, | 
|  | 1140 | u64 objectid) | 
|  | 1141 | { | 
|  | 1142 | bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); | 
|  | 1143 | root->node = NULL; | 
|  | 1144 | root->commit_root = NULL; | 
|  | 1145 | root->state = 0; | 
|  | 1146 | root->orphan_cleanup_state = 0; | 
|  | 1147 |  | 
|  | 1148 | root->objectid = objectid; | 
|  | 1149 | root->last_trans = 0; | 
|  | 1150 | root->highest_objectid = 0; | 
|  | 1151 | root->nr_delalloc_inodes = 0; | 
|  | 1152 | root->nr_ordered_extents = 0; | 
|  | 1153 | root->inode_tree = RB_ROOT; | 
|  | 1154 | INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); | 
|  | 1155 | root->block_rsv = NULL; | 
|  | 1156 |  | 
|  | 1157 | INIT_LIST_HEAD(&root->dirty_list); | 
|  | 1158 | INIT_LIST_HEAD(&root->root_list); | 
|  | 1159 | INIT_LIST_HEAD(&root->delalloc_inodes); | 
|  | 1160 | INIT_LIST_HEAD(&root->delalloc_root); | 
|  | 1161 | INIT_LIST_HEAD(&root->ordered_extents); | 
|  | 1162 | INIT_LIST_HEAD(&root->ordered_root); | 
|  | 1163 | INIT_LIST_HEAD(&root->logged_list[0]); | 
|  | 1164 | INIT_LIST_HEAD(&root->logged_list[1]); | 
|  | 1165 | spin_lock_init(&root->inode_lock); | 
|  | 1166 | spin_lock_init(&root->delalloc_lock); | 
|  | 1167 | spin_lock_init(&root->ordered_extent_lock); | 
|  | 1168 | spin_lock_init(&root->accounting_lock); | 
|  | 1169 | spin_lock_init(&root->log_extents_lock[0]); | 
|  | 1170 | spin_lock_init(&root->log_extents_lock[1]); | 
|  | 1171 | spin_lock_init(&root->qgroup_meta_rsv_lock); | 
|  | 1172 | mutex_init(&root->objectid_mutex); | 
|  | 1173 | mutex_init(&root->log_mutex); | 
|  | 1174 | mutex_init(&root->ordered_extent_mutex); | 
|  | 1175 | mutex_init(&root->delalloc_mutex); | 
|  | 1176 | init_waitqueue_head(&root->log_writer_wait); | 
|  | 1177 | init_waitqueue_head(&root->log_commit_wait[0]); | 
|  | 1178 | init_waitqueue_head(&root->log_commit_wait[1]); | 
|  | 1179 | INIT_LIST_HEAD(&root->log_ctxs[0]); | 
|  | 1180 | INIT_LIST_HEAD(&root->log_ctxs[1]); | 
|  | 1181 | atomic_set(&root->log_commit[0], 0); | 
|  | 1182 | atomic_set(&root->log_commit[1], 0); | 
|  | 1183 | atomic_set(&root->log_writers, 0); | 
|  | 1184 | atomic_set(&root->log_batch, 0); | 
|  | 1185 | refcount_set(&root->refs, 1); | 
|  | 1186 | atomic_set(&root->will_be_snapshotted, 0); | 
|  | 1187 | atomic_set(&root->snapshot_force_cow, 0); | 
|  | 1188 | root->log_transid = 0; | 
|  | 1189 | root->log_transid_committed = -1; | 
|  | 1190 | root->last_log_commit = 0; | 
|  | 1191 | if (!dummy) | 
|  | 1192 | extent_io_tree_init(&root->dirty_log_pages, NULL); | 
|  | 1193 |  | 
|  | 1194 | memset(&root->root_key, 0, sizeof(root->root_key)); | 
|  | 1195 | memset(&root->root_item, 0, sizeof(root->root_item)); | 
|  | 1196 | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
|  | 1197 | if (!dummy) | 
|  | 1198 | root->defrag_trans_start = fs_info->generation; | 
|  | 1199 | else | 
|  | 1200 | root->defrag_trans_start = 0; | 
|  | 1201 | root->root_key.objectid = objectid; | 
|  | 1202 | root->anon_dev = 0; | 
|  | 1203 |  | 
|  | 1204 | spin_lock_init(&root->root_item_lock); | 
|  | 1205 | } | 
|  | 1206 |  | 
|  | 1207 | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, | 
|  | 1208 | gfp_t flags) | 
|  | 1209 | { | 
|  | 1210 | struct btrfs_root *root = kzalloc(sizeof(*root), flags); | 
|  | 1211 | if (root) | 
|  | 1212 | root->fs_info = fs_info; | 
|  | 1213 | return root; | 
|  | 1214 | } | 
|  | 1215 |  | 
|  | 1216 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | 1217 | /* Should only be used by the testing infrastructure */ | 
|  | 1218 | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) | 
|  | 1219 | { | 
|  | 1220 | struct btrfs_root *root; | 
|  | 1221 |  | 
|  | 1222 | if (!fs_info) | 
|  | 1223 | return ERR_PTR(-EINVAL); | 
|  | 1224 |  | 
|  | 1225 | root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
|  | 1226 | if (!root) | 
|  | 1227 | return ERR_PTR(-ENOMEM); | 
|  | 1228 |  | 
|  | 1229 | /* We don't use the stripesize in selftest, set it as sectorsize */ | 
|  | 1230 | __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
|  | 1231 | root->alloc_bytenr = 0; | 
|  | 1232 |  | 
|  | 1233 | return root; | 
|  | 1234 | } | 
|  | 1235 | #endif | 
|  | 1236 |  | 
|  | 1237 | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, | 
|  | 1238 | struct btrfs_fs_info *fs_info, | 
|  | 1239 | u64 objectid) | 
|  | 1240 | { | 
|  | 1241 | struct extent_buffer *leaf; | 
|  | 1242 | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | 1243 | struct btrfs_root *root; | 
|  | 1244 | struct btrfs_key key; | 
|  | 1245 | unsigned int nofs_flag; | 
|  | 1246 | int ret = 0; | 
|  | 1247 | uuid_le uuid = NULL_UUID_LE; | 
|  | 1248 |  | 
|  | 1249 | /* | 
|  | 1250 | * We're holding a transaction handle, so use a NOFS memory allocation | 
|  | 1251 | * context to avoid deadlock if reclaim happens. | 
|  | 1252 | */ | 
|  | 1253 | nofs_flag = memalloc_nofs_save(); | 
|  | 1254 | root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
|  | 1255 | memalloc_nofs_restore(nofs_flag); | 
|  | 1256 | if (!root) | 
|  | 1257 | return ERR_PTR(-ENOMEM); | 
|  | 1258 |  | 
|  | 1259 | __setup_root(root, fs_info, objectid); | 
|  | 1260 | root->root_key.objectid = objectid; | 
|  | 1261 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 1262 | root->root_key.offset = 0; | 
|  | 1263 |  | 
|  | 1264 | leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); | 
|  | 1265 | if (IS_ERR(leaf)) { | 
|  | 1266 | ret = PTR_ERR(leaf); | 
|  | 1267 | leaf = NULL; | 
|  | 1268 | goto fail; | 
|  | 1269 | } | 
|  | 1270 |  | 
|  | 1271 | root->node = leaf; | 
|  | 1272 | btrfs_mark_buffer_dirty(leaf); | 
|  | 1273 |  | 
|  | 1274 | root->commit_root = btrfs_root_node(root); | 
|  | 1275 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 1276 |  | 
|  | 1277 | root->root_item.flags = 0; | 
|  | 1278 | root->root_item.byte_limit = 0; | 
|  | 1279 | btrfs_set_root_bytenr(&root->root_item, leaf->start); | 
|  | 1280 | btrfs_set_root_generation(&root->root_item, trans->transid); | 
|  | 1281 | btrfs_set_root_level(&root->root_item, 0); | 
|  | 1282 | btrfs_set_root_refs(&root->root_item, 1); | 
|  | 1283 | btrfs_set_root_used(&root->root_item, leaf->len); | 
|  | 1284 | btrfs_set_root_last_snapshot(&root->root_item, 0); | 
|  | 1285 | btrfs_set_root_dirid(&root->root_item, 0); | 
|  | 1286 | if (is_fstree(objectid)) | 
|  | 1287 | uuid_le_gen(&uuid); | 
|  | 1288 | memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); | 
|  | 1289 | root->root_item.drop_level = 0; | 
|  | 1290 |  | 
|  | 1291 | key.objectid = objectid; | 
|  | 1292 | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 1293 | key.offset = 0; | 
|  | 1294 | ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); | 
|  | 1295 | if (ret) | 
|  | 1296 | goto fail; | 
|  | 1297 |  | 
|  | 1298 | btrfs_tree_unlock(leaf); | 
|  | 1299 |  | 
|  | 1300 | return root; | 
|  | 1301 |  | 
|  | 1302 | fail: | 
|  | 1303 | if (leaf) { | 
|  | 1304 | btrfs_tree_unlock(leaf); | 
|  | 1305 | free_extent_buffer(root->commit_root); | 
|  | 1306 | free_extent_buffer(leaf); | 
|  | 1307 | } | 
|  | 1308 | kfree(root); | 
|  | 1309 |  | 
|  | 1310 | return ERR_PTR(ret); | 
|  | 1311 | } | 
|  | 1312 |  | 
|  | 1313 | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, | 
|  | 1314 | struct btrfs_fs_info *fs_info) | 
|  | 1315 | { | 
|  | 1316 | struct btrfs_root *root; | 
|  | 1317 | struct extent_buffer *leaf; | 
|  | 1318 |  | 
|  | 1319 | root = btrfs_alloc_root(fs_info, GFP_NOFS); | 
|  | 1320 | if (!root) | 
|  | 1321 | return ERR_PTR(-ENOMEM); | 
|  | 1322 |  | 
|  | 1323 | __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
|  | 1324 |  | 
|  | 1325 | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | 1326 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 1327 | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
|  | 1328 |  | 
|  | 1329 | /* | 
|  | 1330 | * DON'T set REF_COWS for log trees | 
|  | 1331 | * | 
|  | 1332 | * log trees do not get reference counted because they go away | 
|  | 1333 | * before a real commit is actually done.  They do store pointers | 
|  | 1334 | * to file data extents, and those reference counts still get | 
|  | 1335 | * updated (along with back refs to the log tree). | 
|  | 1336 | */ | 
|  | 1337 |  | 
|  | 1338 | leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, | 
|  | 1339 | NULL, 0, 0, 0); | 
|  | 1340 | if (IS_ERR(leaf)) { | 
|  | 1341 | kfree(root); | 
|  | 1342 | return ERR_CAST(leaf); | 
|  | 1343 | } | 
|  | 1344 |  | 
|  | 1345 | root->node = leaf; | 
|  | 1346 |  | 
|  | 1347 | btrfs_mark_buffer_dirty(root->node); | 
|  | 1348 | btrfs_tree_unlock(root->node); | 
|  | 1349 | return root; | 
|  | 1350 | } | 
|  | 1351 |  | 
|  | 1352 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
|  | 1353 | struct btrfs_fs_info *fs_info) | 
|  | 1354 | { | 
|  | 1355 | struct btrfs_root *log_root; | 
|  | 1356 |  | 
|  | 1357 | log_root = alloc_log_tree(trans, fs_info); | 
|  | 1358 | if (IS_ERR(log_root)) | 
|  | 1359 | return PTR_ERR(log_root); | 
|  | 1360 | WARN_ON(fs_info->log_root_tree); | 
|  | 1361 | fs_info->log_root_tree = log_root; | 
|  | 1362 | return 0; | 
|  | 1363 | } | 
|  | 1364 |  | 
|  | 1365 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
|  | 1366 | struct btrfs_root *root) | 
|  | 1367 | { | 
|  | 1368 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 1369 | struct btrfs_root *log_root; | 
|  | 1370 | struct btrfs_inode_item *inode_item; | 
|  | 1371 |  | 
|  | 1372 | log_root = alloc_log_tree(trans, fs_info); | 
|  | 1373 | if (IS_ERR(log_root)) | 
|  | 1374 | return PTR_ERR(log_root); | 
|  | 1375 |  | 
|  | 1376 | log_root->last_trans = trans->transid; | 
|  | 1377 | log_root->root_key.offset = root->root_key.objectid; | 
|  | 1378 |  | 
|  | 1379 | inode_item = &log_root->root_item.inode; | 
|  | 1380 | btrfs_set_stack_inode_generation(inode_item, 1); | 
|  | 1381 | btrfs_set_stack_inode_size(inode_item, 3); | 
|  | 1382 | btrfs_set_stack_inode_nlink(inode_item, 1); | 
|  | 1383 | btrfs_set_stack_inode_nbytes(inode_item, | 
|  | 1384 | fs_info->nodesize); | 
|  | 1385 | btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); | 
|  | 1386 |  | 
|  | 1387 | btrfs_set_root_node(&log_root->root_item, log_root->node); | 
|  | 1388 |  | 
|  | 1389 | WARN_ON(root->log_root); | 
|  | 1390 | root->log_root = log_root; | 
|  | 1391 | root->log_transid = 0; | 
|  | 1392 | root->log_transid_committed = -1; | 
|  | 1393 | root->last_log_commit = 0; | 
|  | 1394 | return 0; | 
|  | 1395 | } | 
|  | 1396 |  | 
|  | 1397 | static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, | 
|  | 1398 | struct btrfs_key *key) | 
|  | 1399 | { | 
|  | 1400 | struct btrfs_root *root; | 
|  | 1401 | struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
|  | 1402 | struct btrfs_path *path; | 
|  | 1403 | u64 generation; | 
|  | 1404 | int ret; | 
|  | 1405 | int level; | 
|  | 1406 |  | 
|  | 1407 | path = btrfs_alloc_path(); | 
|  | 1408 | if (!path) | 
|  | 1409 | return ERR_PTR(-ENOMEM); | 
|  | 1410 |  | 
|  | 1411 | root = btrfs_alloc_root(fs_info, GFP_NOFS); | 
|  | 1412 | if (!root) { | 
|  | 1413 | ret = -ENOMEM; | 
|  | 1414 | goto alloc_fail; | 
|  | 1415 | } | 
|  | 1416 |  | 
|  | 1417 | __setup_root(root, fs_info, key->objectid); | 
|  | 1418 |  | 
|  | 1419 | ret = btrfs_find_root(tree_root, key, path, | 
|  | 1420 | &root->root_item, &root->root_key); | 
|  | 1421 | if (ret) { | 
|  | 1422 | if (ret > 0) | 
|  | 1423 | ret = -ENOENT; | 
|  | 1424 | goto find_fail; | 
|  | 1425 | } | 
|  | 1426 |  | 
|  | 1427 | generation = btrfs_root_generation(&root->root_item); | 
|  | 1428 | level = btrfs_root_level(&root->root_item); | 
|  | 1429 | root->node = read_tree_block(fs_info, | 
|  | 1430 | btrfs_root_bytenr(&root->root_item), | 
|  | 1431 | generation, level, NULL); | 
|  | 1432 | if (IS_ERR(root->node)) { | 
|  | 1433 | ret = PTR_ERR(root->node); | 
|  | 1434 | goto find_fail; | 
|  | 1435 | } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { | 
|  | 1436 | ret = -EIO; | 
|  | 1437 | free_extent_buffer(root->node); | 
|  | 1438 | goto find_fail; | 
|  | 1439 | } | 
|  | 1440 | root->commit_root = btrfs_root_node(root); | 
|  | 1441 | out: | 
|  | 1442 | btrfs_free_path(path); | 
|  | 1443 | return root; | 
|  | 1444 |  | 
|  | 1445 | find_fail: | 
|  | 1446 | kfree(root); | 
|  | 1447 | alloc_fail: | 
|  | 1448 | root = ERR_PTR(ret); | 
|  | 1449 | goto out; | 
|  | 1450 | } | 
|  | 1451 |  | 
|  | 1452 | struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, | 
|  | 1453 | struct btrfs_key *location) | 
|  | 1454 | { | 
|  | 1455 | struct btrfs_root *root; | 
|  | 1456 |  | 
|  | 1457 | root = btrfs_read_tree_root(tree_root, location); | 
|  | 1458 | if (IS_ERR(root)) | 
|  | 1459 | return root; | 
|  | 1460 |  | 
|  | 1461 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | 1462 | set_bit(BTRFS_ROOT_REF_COWS, &root->state); | 
|  | 1463 | btrfs_check_and_init_root_item(&root->root_item); | 
|  | 1464 | } | 
|  | 1465 |  | 
|  | 1466 | return root; | 
|  | 1467 | } | 
|  | 1468 |  | 
|  | 1469 | int btrfs_init_fs_root(struct btrfs_root *root) | 
|  | 1470 | { | 
|  | 1471 | int ret; | 
|  | 1472 | struct btrfs_subvolume_writers *writers; | 
|  | 1473 |  | 
|  | 1474 | root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); | 
|  | 1475 | root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), | 
|  | 1476 | GFP_NOFS); | 
|  | 1477 | if (!root->free_ino_pinned || !root->free_ino_ctl) { | 
|  | 1478 | ret = -ENOMEM; | 
|  | 1479 | goto fail; | 
|  | 1480 | } | 
|  | 1481 |  | 
|  | 1482 | writers = btrfs_alloc_subvolume_writers(); | 
|  | 1483 | if (IS_ERR(writers)) { | 
|  | 1484 | ret = PTR_ERR(writers); | 
|  | 1485 | goto fail; | 
|  | 1486 | } | 
|  | 1487 | root->subv_writers = writers; | 
|  | 1488 |  | 
|  | 1489 | btrfs_init_free_ino_ctl(root); | 
|  | 1490 | spin_lock_init(&root->ino_cache_lock); | 
|  | 1491 | init_waitqueue_head(&root->ino_cache_wait); | 
|  | 1492 |  | 
|  | 1493 | ret = get_anon_bdev(&root->anon_dev); | 
|  | 1494 | if (ret) | 
|  | 1495 | goto fail; | 
|  | 1496 |  | 
|  | 1497 | mutex_lock(&root->objectid_mutex); | 
|  | 1498 | ret = btrfs_find_highest_objectid(root, | 
|  | 1499 | &root->highest_objectid); | 
|  | 1500 | if (ret) { | 
|  | 1501 | mutex_unlock(&root->objectid_mutex); | 
|  | 1502 | goto fail; | 
|  | 1503 | } | 
|  | 1504 |  | 
|  | 1505 | ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
|  | 1506 |  | 
|  | 1507 | mutex_unlock(&root->objectid_mutex); | 
|  | 1508 |  | 
|  | 1509 | return 0; | 
|  | 1510 | fail: | 
|  | 1511 | /* The caller is responsible to call btrfs_free_fs_root */ | 
|  | 1512 | return ret; | 
|  | 1513 | } | 
|  | 1514 |  | 
|  | 1515 | struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | 
|  | 1516 | u64 root_id) | 
|  | 1517 | { | 
|  | 1518 | struct btrfs_root *root; | 
|  | 1519 |  | 
|  | 1520 | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | 1521 | root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
|  | 1522 | (unsigned long)root_id); | 
|  | 1523 | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | 1524 | return root; | 
|  | 1525 | } | 
|  | 1526 |  | 
|  | 1527 | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, | 
|  | 1528 | struct btrfs_root *root) | 
|  | 1529 | { | 
|  | 1530 | int ret; | 
|  | 1531 |  | 
|  | 1532 | ret = radix_tree_preload(GFP_NOFS); | 
|  | 1533 | if (ret) | 
|  | 1534 | return ret; | 
|  | 1535 |  | 
|  | 1536 | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | 1537 | ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
|  | 1538 | (unsigned long)root->root_key.objectid, | 
|  | 1539 | root); | 
|  | 1540 | if (ret == 0) | 
|  | 1541 | set_bit(BTRFS_ROOT_IN_RADIX, &root->state); | 
|  | 1542 | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | 1543 | radix_tree_preload_end(); | 
|  | 1544 |  | 
|  | 1545 | return ret; | 
|  | 1546 | } | 
|  | 1547 |  | 
|  | 1548 | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, | 
|  | 1549 | struct btrfs_key *location, | 
|  | 1550 | bool check_ref) | 
|  | 1551 | { | 
|  | 1552 | struct btrfs_root *root; | 
|  | 1553 | struct btrfs_path *path; | 
|  | 1554 | struct btrfs_key key; | 
|  | 1555 | int ret; | 
|  | 1556 |  | 
|  | 1557 | if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | 
|  | 1558 | return fs_info->tree_root; | 
|  | 1559 | if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
|  | 1560 | return fs_info->extent_root; | 
|  | 1561 | if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) | 
|  | 1562 | return fs_info->chunk_root; | 
|  | 1563 | if (location->objectid == BTRFS_DEV_TREE_OBJECTID) | 
|  | 1564 | return fs_info->dev_root; | 
|  | 1565 | if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) | 
|  | 1566 | return fs_info->csum_root; | 
|  | 1567 | if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) | 
|  | 1568 | return fs_info->quota_root ? fs_info->quota_root : | 
|  | 1569 | ERR_PTR(-ENOENT); | 
|  | 1570 | if (location->objectid == BTRFS_UUID_TREE_OBJECTID) | 
|  | 1571 | return fs_info->uuid_root ? fs_info->uuid_root : | 
|  | 1572 | ERR_PTR(-ENOENT); | 
|  | 1573 | if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) | 
|  | 1574 | return fs_info->free_space_root ? fs_info->free_space_root : | 
|  | 1575 | ERR_PTR(-ENOENT); | 
|  | 1576 | again: | 
|  | 1577 | root = btrfs_lookup_fs_root(fs_info, location->objectid); | 
|  | 1578 | if (root) { | 
|  | 1579 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) | 
|  | 1580 | return ERR_PTR(-ENOENT); | 
|  | 1581 | return root; | 
|  | 1582 | } | 
|  | 1583 |  | 
|  | 1584 | root = btrfs_read_fs_root(fs_info->tree_root, location); | 
|  | 1585 | if (IS_ERR(root)) | 
|  | 1586 | return root; | 
|  | 1587 |  | 
|  | 1588 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { | 
|  | 1589 | ret = -ENOENT; | 
|  | 1590 | goto fail; | 
|  | 1591 | } | 
|  | 1592 |  | 
|  | 1593 | ret = btrfs_init_fs_root(root); | 
|  | 1594 | if (ret) | 
|  | 1595 | goto fail; | 
|  | 1596 |  | 
|  | 1597 | path = btrfs_alloc_path(); | 
|  | 1598 | if (!path) { | 
|  | 1599 | ret = -ENOMEM; | 
|  | 1600 | goto fail; | 
|  | 1601 | } | 
|  | 1602 | key.objectid = BTRFS_ORPHAN_OBJECTID; | 
|  | 1603 | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | 1604 | key.offset = location->objectid; | 
|  | 1605 |  | 
|  | 1606 | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | 1607 | btrfs_free_path(path); | 
|  | 1608 | if (ret < 0) | 
|  | 1609 | goto fail; | 
|  | 1610 | if (ret == 0) | 
|  | 1611 | set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); | 
|  | 1612 |  | 
|  | 1613 | ret = btrfs_insert_fs_root(fs_info, root); | 
|  | 1614 | if (ret) { | 
|  | 1615 | if (ret == -EEXIST) { | 
|  | 1616 | btrfs_free_fs_root(root); | 
|  | 1617 | goto again; | 
|  | 1618 | } | 
|  | 1619 | goto fail; | 
|  | 1620 | } | 
|  | 1621 | return root; | 
|  | 1622 | fail: | 
|  | 1623 | btrfs_free_fs_root(root); | 
|  | 1624 | return ERR_PTR(ret); | 
|  | 1625 | } | 
|  | 1626 |  | 
|  | 1627 | static int btrfs_congested_fn(void *congested_data, int bdi_bits) | 
|  | 1628 | { | 
|  | 1629 | struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; | 
|  | 1630 | int ret = 0; | 
|  | 1631 | struct btrfs_device *device; | 
|  | 1632 | struct backing_dev_info *bdi; | 
|  | 1633 |  | 
|  | 1634 | rcu_read_lock(); | 
|  | 1635 | list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { | 
|  | 1636 | if (!device->bdev) | 
|  | 1637 | continue; | 
|  | 1638 | bdi = device->bdev->bd_bdi; | 
|  | 1639 | if (bdi_congested(bdi, bdi_bits)) { | 
|  | 1640 | ret = 1; | 
|  | 1641 | break; | 
|  | 1642 | } | 
|  | 1643 | } | 
|  | 1644 | rcu_read_unlock(); | 
|  | 1645 | return ret; | 
|  | 1646 | } | 
|  | 1647 |  | 
|  | 1648 | /* | 
|  | 1649 | * called by the kthread helper functions to finally call the bio end_io | 
|  | 1650 | * functions.  This is where read checksum verification actually happens | 
|  | 1651 | */ | 
|  | 1652 | static void end_workqueue_fn(struct btrfs_work *work) | 
|  | 1653 | { | 
|  | 1654 | struct bio *bio; | 
|  | 1655 | struct btrfs_end_io_wq *end_io_wq; | 
|  | 1656 |  | 
|  | 1657 | end_io_wq = container_of(work, struct btrfs_end_io_wq, work); | 
|  | 1658 | bio = end_io_wq->bio; | 
|  | 1659 |  | 
|  | 1660 | bio->bi_status = end_io_wq->status; | 
|  | 1661 | bio->bi_private = end_io_wq->private; | 
|  | 1662 | bio->bi_end_io = end_io_wq->end_io; | 
|  | 1663 | bio_endio(bio); | 
|  | 1664 | kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); | 
|  | 1665 | } | 
|  | 1666 |  | 
|  | 1667 | static int cleaner_kthread(void *arg) | 
|  | 1668 | { | 
|  | 1669 | struct btrfs_root *root = arg; | 
|  | 1670 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 1671 | int again; | 
|  | 1672 |  | 
|  | 1673 | while (1) { | 
|  | 1674 | again = 0; | 
|  | 1675 |  | 
|  | 1676 | /* Make the cleaner go to sleep early. */ | 
|  | 1677 | if (btrfs_need_cleaner_sleep(fs_info)) | 
|  | 1678 | goto sleep; | 
|  | 1679 |  | 
|  | 1680 | /* | 
|  | 1681 | * Do not do anything if we might cause open_ctree() to block | 
|  | 1682 | * before we have finished mounting the filesystem. | 
|  | 1683 | */ | 
|  | 1684 | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
|  | 1685 | goto sleep; | 
|  | 1686 |  | 
|  | 1687 | if (!mutex_trylock(&fs_info->cleaner_mutex)) | 
|  | 1688 | goto sleep; | 
|  | 1689 |  | 
|  | 1690 | /* | 
|  | 1691 | * Avoid the problem that we change the status of the fs | 
|  | 1692 | * during the above check and trylock. | 
|  | 1693 | */ | 
|  | 1694 | if (btrfs_need_cleaner_sleep(fs_info)) { | 
|  | 1695 | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | 1696 | goto sleep; | 
|  | 1697 | } | 
|  | 1698 |  | 
|  | 1699 | mutex_lock(&fs_info->cleaner_delayed_iput_mutex); | 
|  | 1700 | btrfs_run_delayed_iputs(fs_info); | 
|  | 1701 | mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); | 
|  | 1702 |  | 
|  | 1703 | again = btrfs_clean_one_deleted_snapshot(root); | 
|  | 1704 | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | 1705 |  | 
|  | 1706 | /* | 
|  | 1707 | * The defragger has dealt with the R/O remount and umount, | 
|  | 1708 | * needn't do anything special here. | 
|  | 1709 | */ | 
|  | 1710 | btrfs_run_defrag_inodes(fs_info); | 
|  | 1711 |  | 
|  | 1712 | /* | 
|  | 1713 | * Acquires fs_info->delete_unused_bgs_mutex to avoid racing | 
|  | 1714 | * with relocation (btrfs_relocate_chunk) and relocation | 
|  | 1715 | * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) | 
|  | 1716 | * after acquiring fs_info->delete_unused_bgs_mutex. So we | 
|  | 1717 | * can't hold, nor need to, fs_info->cleaner_mutex when deleting | 
|  | 1718 | * unused block groups. | 
|  | 1719 | */ | 
|  | 1720 | btrfs_delete_unused_bgs(fs_info); | 
|  | 1721 | sleep: | 
|  | 1722 | if (kthread_should_park()) | 
|  | 1723 | kthread_parkme(); | 
|  | 1724 | if (kthread_should_stop()) | 
|  | 1725 | return 0; | 
|  | 1726 | if (!again) { | 
|  | 1727 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1728 | schedule(); | 
|  | 1729 | __set_current_state(TASK_RUNNING); | 
|  | 1730 | } | 
|  | 1731 | } | 
|  | 1732 | } | 
|  | 1733 |  | 
|  | 1734 | static int transaction_kthread(void *arg) | 
|  | 1735 | { | 
|  | 1736 | struct btrfs_root *root = arg; | 
|  | 1737 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 1738 | struct btrfs_trans_handle *trans; | 
|  | 1739 | struct btrfs_transaction *cur; | 
|  | 1740 | u64 transid; | 
|  | 1741 | time64_t now; | 
|  | 1742 | unsigned long delay; | 
|  | 1743 | bool cannot_commit; | 
|  | 1744 |  | 
|  | 1745 | do { | 
|  | 1746 | cannot_commit = false; | 
|  | 1747 | delay = HZ * fs_info->commit_interval; | 
|  | 1748 | mutex_lock(&fs_info->transaction_kthread_mutex); | 
|  | 1749 |  | 
|  | 1750 | spin_lock(&fs_info->trans_lock); | 
|  | 1751 | cur = fs_info->running_transaction; | 
|  | 1752 | if (!cur) { | 
|  | 1753 | spin_unlock(&fs_info->trans_lock); | 
|  | 1754 | goto sleep; | 
|  | 1755 | } | 
|  | 1756 |  | 
|  | 1757 | now = ktime_get_seconds(); | 
|  | 1758 | if (cur->state < TRANS_STATE_BLOCKED && | 
|  | 1759 | !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && | 
|  | 1760 | (now < cur->start_time || | 
|  | 1761 | now - cur->start_time < fs_info->commit_interval)) { | 
|  | 1762 | spin_unlock(&fs_info->trans_lock); | 
|  | 1763 | delay = HZ * 5; | 
|  | 1764 | goto sleep; | 
|  | 1765 | } | 
|  | 1766 | transid = cur->transid; | 
|  | 1767 | spin_unlock(&fs_info->trans_lock); | 
|  | 1768 |  | 
|  | 1769 | /* If the file system is aborted, this will always fail. */ | 
|  | 1770 | trans = btrfs_attach_transaction(root); | 
|  | 1771 | if (IS_ERR(trans)) { | 
|  | 1772 | if (PTR_ERR(trans) != -ENOENT) | 
|  | 1773 | cannot_commit = true; | 
|  | 1774 | goto sleep; | 
|  | 1775 | } | 
|  | 1776 | if (transid == trans->transid) { | 
|  | 1777 | btrfs_commit_transaction(trans); | 
|  | 1778 | } else { | 
|  | 1779 | btrfs_end_transaction(trans); | 
|  | 1780 | } | 
|  | 1781 | sleep: | 
|  | 1782 | wake_up_process(fs_info->cleaner_kthread); | 
|  | 1783 | mutex_unlock(&fs_info->transaction_kthread_mutex); | 
|  | 1784 |  | 
|  | 1785 | if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, | 
|  | 1786 | &fs_info->fs_state))) | 
|  | 1787 | btrfs_cleanup_transaction(fs_info); | 
|  | 1788 | if (!kthread_should_stop() && | 
|  | 1789 | (!btrfs_transaction_blocked(fs_info) || | 
|  | 1790 | cannot_commit)) | 
|  | 1791 | schedule_timeout_interruptible(delay); | 
|  | 1792 | } while (!kthread_should_stop()); | 
|  | 1793 | return 0; | 
|  | 1794 | } | 
|  | 1795 |  | 
|  | 1796 | /* | 
|  | 1797 | * this will find the highest generation in the array of | 
|  | 1798 | * root backups.  The index of the highest array is returned, | 
|  | 1799 | * or -1 if we can't find anything. | 
|  | 1800 | * | 
|  | 1801 | * We check to make sure the array is valid by comparing the | 
|  | 1802 | * generation of the latest  root in the array with the generation | 
|  | 1803 | * in the super block.  If they don't match we pitch it. | 
|  | 1804 | */ | 
|  | 1805 | static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) | 
|  | 1806 | { | 
|  | 1807 | u64 cur; | 
|  | 1808 | int newest_index = -1; | 
|  | 1809 | struct btrfs_root_backup *root_backup; | 
|  | 1810 | int i; | 
|  | 1811 |  | 
|  | 1812 | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
|  | 1813 | root_backup = info->super_copy->super_roots + i; | 
|  | 1814 | cur = btrfs_backup_tree_root_gen(root_backup); | 
|  | 1815 | if (cur == newest_gen) | 
|  | 1816 | newest_index = i; | 
|  | 1817 | } | 
|  | 1818 |  | 
|  | 1819 | /* check to see if we actually wrapped around */ | 
|  | 1820 | if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { | 
|  | 1821 | root_backup = info->super_copy->super_roots; | 
|  | 1822 | cur = btrfs_backup_tree_root_gen(root_backup); | 
|  | 1823 | if (cur == newest_gen) | 
|  | 1824 | newest_index = 0; | 
|  | 1825 | } | 
|  | 1826 | return newest_index; | 
|  | 1827 | } | 
|  | 1828 |  | 
|  | 1829 |  | 
|  | 1830 | /* | 
|  | 1831 | * find the oldest backup so we know where to store new entries | 
|  | 1832 | * in the backup array.  This will set the backup_root_index | 
|  | 1833 | * field in the fs_info struct | 
|  | 1834 | */ | 
|  | 1835 | static void find_oldest_super_backup(struct btrfs_fs_info *info, | 
|  | 1836 | u64 newest_gen) | 
|  | 1837 | { | 
|  | 1838 | int newest_index = -1; | 
|  | 1839 |  | 
|  | 1840 | newest_index = find_newest_super_backup(info, newest_gen); | 
|  | 1841 | /* if there was garbage in there, just move along */ | 
|  | 1842 | if (newest_index == -1) { | 
|  | 1843 | info->backup_root_index = 0; | 
|  | 1844 | } else { | 
|  | 1845 | info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
|  | 1846 | } | 
|  | 1847 | } | 
|  | 1848 |  | 
|  | 1849 | /* | 
|  | 1850 | * copy all the root pointers into the super backup array. | 
|  | 1851 | * this will bump the backup pointer by one when it is | 
|  | 1852 | * done | 
|  | 1853 | */ | 
|  | 1854 | static void backup_super_roots(struct btrfs_fs_info *info) | 
|  | 1855 | { | 
|  | 1856 | int next_backup; | 
|  | 1857 | struct btrfs_root_backup *root_backup; | 
|  | 1858 | int last_backup; | 
|  | 1859 |  | 
|  | 1860 | next_backup = info->backup_root_index; | 
|  | 1861 | last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
|  | 1862 | BTRFS_NUM_BACKUP_ROOTS; | 
|  | 1863 |  | 
|  | 1864 | /* | 
|  | 1865 | * just overwrite the last backup if we're at the same generation | 
|  | 1866 | * this happens only at umount | 
|  | 1867 | */ | 
|  | 1868 | root_backup = info->super_for_commit->super_roots + last_backup; | 
|  | 1869 | if (btrfs_backup_tree_root_gen(root_backup) == | 
|  | 1870 | btrfs_header_generation(info->tree_root->node)) | 
|  | 1871 | next_backup = last_backup; | 
|  | 1872 |  | 
|  | 1873 | root_backup = info->super_for_commit->super_roots + next_backup; | 
|  | 1874 |  | 
|  | 1875 | /* | 
|  | 1876 | * make sure all of our padding and empty slots get zero filled | 
|  | 1877 | * regardless of which ones we use today | 
|  | 1878 | */ | 
|  | 1879 | memset(root_backup, 0, sizeof(*root_backup)); | 
|  | 1880 |  | 
|  | 1881 | info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
|  | 1882 |  | 
|  | 1883 | btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); | 
|  | 1884 | btrfs_set_backup_tree_root_gen(root_backup, | 
|  | 1885 | btrfs_header_generation(info->tree_root->node)); | 
|  | 1886 |  | 
|  | 1887 | btrfs_set_backup_tree_root_level(root_backup, | 
|  | 1888 | btrfs_header_level(info->tree_root->node)); | 
|  | 1889 |  | 
|  | 1890 | btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); | 
|  | 1891 | btrfs_set_backup_chunk_root_gen(root_backup, | 
|  | 1892 | btrfs_header_generation(info->chunk_root->node)); | 
|  | 1893 | btrfs_set_backup_chunk_root_level(root_backup, | 
|  | 1894 | btrfs_header_level(info->chunk_root->node)); | 
|  | 1895 |  | 
|  | 1896 | btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); | 
|  | 1897 | btrfs_set_backup_extent_root_gen(root_backup, | 
|  | 1898 | btrfs_header_generation(info->extent_root->node)); | 
|  | 1899 | btrfs_set_backup_extent_root_level(root_backup, | 
|  | 1900 | btrfs_header_level(info->extent_root->node)); | 
|  | 1901 |  | 
|  | 1902 | /* | 
|  | 1903 | * we might commit during log recovery, which happens before we set | 
|  | 1904 | * the fs_root.  Make sure it is valid before we fill it in. | 
|  | 1905 | */ | 
|  | 1906 | if (info->fs_root && info->fs_root->node) { | 
|  | 1907 | btrfs_set_backup_fs_root(root_backup, | 
|  | 1908 | info->fs_root->node->start); | 
|  | 1909 | btrfs_set_backup_fs_root_gen(root_backup, | 
|  | 1910 | btrfs_header_generation(info->fs_root->node)); | 
|  | 1911 | btrfs_set_backup_fs_root_level(root_backup, | 
|  | 1912 | btrfs_header_level(info->fs_root->node)); | 
|  | 1913 | } | 
|  | 1914 |  | 
|  | 1915 | btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); | 
|  | 1916 | btrfs_set_backup_dev_root_gen(root_backup, | 
|  | 1917 | btrfs_header_generation(info->dev_root->node)); | 
|  | 1918 | btrfs_set_backup_dev_root_level(root_backup, | 
|  | 1919 | btrfs_header_level(info->dev_root->node)); | 
|  | 1920 |  | 
|  | 1921 | btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); | 
|  | 1922 | btrfs_set_backup_csum_root_gen(root_backup, | 
|  | 1923 | btrfs_header_generation(info->csum_root->node)); | 
|  | 1924 | btrfs_set_backup_csum_root_level(root_backup, | 
|  | 1925 | btrfs_header_level(info->csum_root->node)); | 
|  | 1926 |  | 
|  | 1927 | btrfs_set_backup_total_bytes(root_backup, | 
|  | 1928 | btrfs_super_total_bytes(info->super_copy)); | 
|  | 1929 | btrfs_set_backup_bytes_used(root_backup, | 
|  | 1930 | btrfs_super_bytes_used(info->super_copy)); | 
|  | 1931 | btrfs_set_backup_num_devices(root_backup, | 
|  | 1932 | btrfs_super_num_devices(info->super_copy)); | 
|  | 1933 |  | 
|  | 1934 | /* | 
|  | 1935 | * if we don't copy this out to the super_copy, it won't get remembered | 
|  | 1936 | * for the next commit | 
|  | 1937 | */ | 
|  | 1938 | memcpy(&info->super_copy->super_roots, | 
|  | 1939 | &info->super_for_commit->super_roots, | 
|  | 1940 | sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); | 
|  | 1941 | } | 
|  | 1942 |  | 
|  | 1943 | /* | 
|  | 1944 | * this copies info out of the root backup array and back into | 
|  | 1945 | * the in-memory super block.  It is meant to help iterate through | 
|  | 1946 | * the array, so you send it the number of backups you've already | 
|  | 1947 | * tried and the last backup index you used. | 
|  | 1948 | * | 
|  | 1949 | * this returns -1 when it has tried all the backups | 
|  | 1950 | */ | 
|  | 1951 | static noinline int next_root_backup(struct btrfs_fs_info *info, | 
|  | 1952 | struct btrfs_super_block *super, | 
|  | 1953 | int *num_backups_tried, int *backup_index) | 
|  | 1954 | { | 
|  | 1955 | struct btrfs_root_backup *root_backup; | 
|  | 1956 | int newest = *backup_index; | 
|  | 1957 |  | 
|  | 1958 | if (*num_backups_tried == 0) { | 
|  | 1959 | u64 gen = btrfs_super_generation(super); | 
|  | 1960 |  | 
|  | 1961 | newest = find_newest_super_backup(info, gen); | 
|  | 1962 | if (newest == -1) | 
|  | 1963 | return -1; | 
|  | 1964 |  | 
|  | 1965 | *backup_index = newest; | 
|  | 1966 | *num_backups_tried = 1; | 
|  | 1967 | } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { | 
|  | 1968 | /* we've tried all the backups, all done */ | 
|  | 1969 | return -1; | 
|  | 1970 | } else { | 
|  | 1971 | /* jump to the next oldest backup */ | 
|  | 1972 | newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
|  | 1973 | BTRFS_NUM_BACKUP_ROOTS; | 
|  | 1974 | *backup_index = newest; | 
|  | 1975 | *num_backups_tried += 1; | 
|  | 1976 | } | 
|  | 1977 | root_backup = super->super_roots + newest; | 
|  | 1978 |  | 
|  | 1979 | btrfs_set_super_generation(super, | 
|  | 1980 | btrfs_backup_tree_root_gen(root_backup)); | 
|  | 1981 | btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); | 
|  | 1982 | btrfs_set_super_root_level(super, | 
|  | 1983 | btrfs_backup_tree_root_level(root_backup)); | 
|  | 1984 | btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); | 
|  | 1985 |  | 
|  | 1986 | /* | 
|  | 1987 | * fixme: the total bytes and num_devices need to match or we should | 
|  | 1988 | * need a fsck | 
|  | 1989 | */ | 
|  | 1990 | btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); | 
|  | 1991 | btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); | 
|  | 1992 | return 0; | 
|  | 1993 | } | 
|  | 1994 |  | 
|  | 1995 | /* helper to cleanup workers */ | 
|  | 1996 | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) | 
|  | 1997 | { | 
|  | 1998 | btrfs_destroy_workqueue(fs_info->fixup_workers); | 
|  | 1999 | btrfs_destroy_workqueue(fs_info->delalloc_workers); | 
|  | 2000 | btrfs_destroy_workqueue(fs_info->workers); | 
|  | 2001 | btrfs_destroy_workqueue(fs_info->endio_workers); | 
|  | 2002 | btrfs_destroy_workqueue(fs_info->endio_raid56_workers); | 
|  | 2003 | btrfs_destroy_workqueue(fs_info->endio_repair_workers); | 
|  | 2004 | btrfs_destroy_workqueue(fs_info->rmw_workers); | 
|  | 2005 | btrfs_destroy_workqueue(fs_info->endio_write_workers); | 
|  | 2006 | btrfs_destroy_workqueue(fs_info->endio_freespace_worker); | 
|  | 2007 | btrfs_destroy_workqueue(fs_info->submit_workers); | 
|  | 2008 | btrfs_destroy_workqueue(fs_info->delayed_workers); | 
|  | 2009 | btrfs_destroy_workqueue(fs_info->caching_workers); | 
|  | 2010 | btrfs_destroy_workqueue(fs_info->readahead_workers); | 
|  | 2011 | btrfs_destroy_workqueue(fs_info->flush_workers); | 
|  | 2012 | btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); | 
|  | 2013 | btrfs_destroy_workqueue(fs_info->extent_workers); | 
|  | 2014 | /* | 
|  | 2015 | * Now that all other work queues are destroyed, we can safely destroy | 
|  | 2016 | * the queues used for metadata I/O, since tasks from those other work | 
|  | 2017 | * queues can do metadata I/O operations. | 
|  | 2018 | */ | 
|  | 2019 | btrfs_destroy_workqueue(fs_info->endio_meta_workers); | 
|  | 2020 | btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); | 
|  | 2021 | } | 
|  | 2022 |  | 
|  | 2023 | static void free_root_extent_buffers(struct btrfs_root *root) | 
|  | 2024 | { | 
|  | 2025 | if (root) { | 
|  | 2026 | free_extent_buffer(root->node); | 
|  | 2027 | free_extent_buffer(root->commit_root); | 
|  | 2028 | root->node = NULL; | 
|  | 2029 | root->commit_root = NULL; | 
|  | 2030 | } | 
|  | 2031 | } | 
|  | 2032 |  | 
|  | 2033 | /* helper to cleanup tree roots */ | 
|  | 2034 | static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) | 
|  | 2035 | { | 
|  | 2036 | free_root_extent_buffers(info->tree_root); | 
|  | 2037 |  | 
|  | 2038 | free_root_extent_buffers(info->dev_root); | 
|  | 2039 | free_root_extent_buffers(info->extent_root); | 
|  | 2040 | free_root_extent_buffers(info->csum_root); | 
|  | 2041 | free_root_extent_buffers(info->quota_root); | 
|  | 2042 | free_root_extent_buffers(info->uuid_root); | 
|  | 2043 | if (chunk_root) | 
|  | 2044 | free_root_extent_buffers(info->chunk_root); | 
|  | 2045 | free_root_extent_buffers(info->free_space_root); | 
|  | 2046 | } | 
|  | 2047 |  | 
|  | 2048 | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | 2049 | { | 
|  | 2050 | int ret; | 
|  | 2051 | struct btrfs_root *gang[8]; | 
|  | 2052 | int i; | 
|  | 2053 |  | 
|  | 2054 | while (!list_empty(&fs_info->dead_roots)) { | 
|  | 2055 | gang[0] = list_entry(fs_info->dead_roots.next, | 
|  | 2056 | struct btrfs_root, root_list); | 
|  | 2057 | list_del(&gang[0]->root_list); | 
|  | 2058 |  | 
|  | 2059 | if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { | 
|  | 2060 | btrfs_drop_and_free_fs_root(fs_info, gang[0]); | 
|  | 2061 | } else { | 
|  | 2062 | free_extent_buffer(gang[0]->node); | 
|  | 2063 | free_extent_buffer(gang[0]->commit_root); | 
|  | 2064 | btrfs_put_fs_root(gang[0]); | 
|  | 2065 | } | 
|  | 2066 | } | 
|  | 2067 |  | 
|  | 2068 | while (1) { | 
|  | 2069 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | 2070 | (void **)gang, 0, | 
|  | 2071 | ARRAY_SIZE(gang)); | 
|  | 2072 | if (!ret) | 
|  | 2073 | break; | 
|  | 2074 | for (i = 0; i < ret; i++) | 
|  | 2075 | btrfs_drop_and_free_fs_root(fs_info, gang[i]); | 
|  | 2076 | } | 
|  | 2077 |  | 
|  | 2078 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | 2079 | btrfs_free_log_root_tree(NULL, fs_info); | 
|  | 2080 | btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); | 
|  | 2081 | } | 
|  | 2082 | } | 
|  | 2083 |  | 
|  | 2084 | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) | 
|  | 2085 | { | 
|  | 2086 | mutex_init(&fs_info->scrub_lock); | 
|  | 2087 | atomic_set(&fs_info->scrubs_running, 0); | 
|  | 2088 | atomic_set(&fs_info->scrub_pause_req, 0); | 
|  | 2089 | atomic_set(&fs_info->scrubs_paused, 0); | 
|  | 2090 | atomic_set(&fs_info->scrub_cancel_req, 0); | 
|  | 2091 | init_waitqueue_head(&fs_info->scrub_pause_wait); | 
|  | 2092 | fs_info->scrub_workers_refcnt = 0; | 
|  | 2093 | } | 
|  | 2094 |  | 
|  | 2095 | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) | 
|  | 2096 | { | 
|  | 2097 | spin_lock_init(&fs_info->balance_lock); | 
|  | 2098 | mutex_init(&fs_info->balance_mutex); | 
|  | 2099 | atomic_set(&fs_info->balance_pause_req, 0); | 
|  | 2100 | atomic_set(&fs_info->balance_cancel_req, 0); | 
|  | 2101 | fs_info->balance_ctl = NULL; | 
|  | 2102 | init_waitqueue_head(&fs_info->balance_wait_q); | 
|  | 2103 | } | 
|  | 2104 |  | 
|  | 2105 | static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) | 
|  | 2106 | { | 
|  | 2107 | struct inode *inode = fs_info->btree_inode; | 
|  | 2108 |  | 
|  | 2109 | inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; | 
|  | 2110 | set_nlink(inode, 1); | 
|  | 2111 | /* | 
|  | 2112 | * we set the i_size on the btree inode to the max possible int. | 
|  | 2113 | * the real end of the address space is determined by all of | 
|  | 2114 | * the devices in the system | 
|  | 2115 | */ | 
|  | 2116 | inode->i_size = OFFSET_MAX; | 
|  | 2117 | inode->i_mapping->a_ops = &btree_aops; | 
|  | 2118 |  | 
|  | 2119 | RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); | 
|  | 2120 | extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); | 
|  | 2121 | BTRFS_I(inode)->io_tree.track_uptodate = 0; | 
|  | 2122 | extent_map_tree_init(&BTRFS_I(inode)->extent_tree); | 
|  | 2123 |  | 
|  | 2124 | BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; | 
|  | 2125 |  | 
|  | 2126 | BTRFS_I(inode)->root = fs_info->tree_root; | 
|  | 2127 | memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); | 
|  | 2128 | set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); | 
|  | 2129 | btrfs_insert_inode_hash(inode); | 
|  | 2130 | } | 
|  | 2131 |  | 
|  | 2132 | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) | 
|  | 2133 | { | 
|  | 2134 | mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); | 
|  | 2135 | rwlock_init(&fs_info->dev_replace.lock); | 
|  | 2136 | atomic_set(&fs_info->dev_replace.read_locks, 0); | 
|  | 2137 | atomic_set(&fs_info->dev_replace.blocking_readers, 0); | 
|  | 2138 | init_waitqueue_head(&fs_info->replace_wait); | 
|  | 2139 | init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); | 
|  | 2140 | } | 
|  | 2141 |  | 
|  | 2142 | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) | 
|  | 2143 | { | 
|  | 2144 | spin_lock_init(&fs_info->qgroup_lock); | 
|  | 2145 | mutex_init(&fs_info->qgroup_ioctl_lock); | 
|  | 2146 | fs_info->qgroup_tree = RB_ROOT; | 
|  | 2147 | fs_info->qgroup_op_tree = RB_ROOT; | 
|  | 2148 | INIT_LIST_HEAD(&fs_info->dirty_qgroups); | 
|  | 2149 | fs_info->qgroup_seq = 1; | 
|  | 2150 | fs_info->qgroup_ulist = NULL; | 
|  | 2151 | fs_info->qgroup_rescan_running = false; | 
|  | 2152 | mutex_init(&fs_info->qgroup_rescan_lock); | 
|  | 2153 | } | 
|  | 2154 |  | 
|  | 2155 | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, | 
|  | 2156 | struct btrfs_fs_devices *fs_devices) | 
|  | 2157 | { | 
|  | 2158 | u32 max_active = fs_info->thread_pool_size; | 
|  | 2159 | unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; | 
|  | 2160 |  | 
|  | 2161 | fs_info->workers = | 
|  | 2162 | btrfs_alloc_workqueue(fs_info, "worker", | 
|  | 2163 | flags | WQ_HIGHPRI, max_active, 16); | 
|  | 2164 |  | 
|  | 2165 | fs_info->delalloc_workers = | 
|  | 2166 | btrfs_alloc_workqueue(fs_info, "delalloc", | 
|  | 2167 | flags, max_active, 2); | 
|  | 2168 |  | 
|  | 2169 | fs_info->flush_workers = | 
|  | 2170 | btrfs_alloc_workqueue(fs_info, "flush_delalloc", | 
|  | 2171 | flags, max_active, 0); | 
|  | 2172 |  | 
|  | 2173 | fs_info->caching_workers = | 
|  | 2174 | btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); | 
|  | 2175 |  | 
|  | 2176 | /* | 
|  | 2177 | * a higher idle thresh on the submit workers makes it much more | 
|  | 2178 | * likely that bios will be send down in a sane order to the | 
|  | 2179 | * devices | 
|  | 2180 | */ | 
|  | 2181 | fs_info->submit_workers = | 
|  | 2182 | btrfs_alloc_workqueue(fs_info, "submit", flags, | 
|  | 2183 | min_t(u64, fs_devices->num_devices, | 
|  | 2184 | max_active), 64); | 
|  | 2185 |  | 
|  | 2186 | fs_info->fixup_workers = | 
|  | 2187 | btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); | 
|  | 2188 |  | 
|  | 2189 | /* | 
|  | 2190 | * endios are largely parallel and should have a very | 
|  | 2191 | * low idle thresh | 
|  | 2192 | */ | 
|  | 2193 | fs_info->endio_workers = | 
|  | 2194 | btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); | 
|  | 2195 | fs_info->endio_meta_workers = | 
|  | 2196 | btrfs_alloc_workqueue(fs_info, "endio-meta", flags, | 
|  | 2197 | max_active, 4); | 
|  | 2198 | fs_info->endio_meta_write_workers = | 
|  | 2199 | btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, | 
|  | 2200 | max_active, 2); | 
|  | 2201 | fs_info->endio_raid56_workers = | 
|  | 2202 | btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, | 
|  | 2203 | max_active, 4); | 
|  | 2204 | fs_info->endio_repair_workers = | 
|  | 2205 | btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); | 
|  | 2206 | fs_info->rmw_workers = | 
|  | 2207 | btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); | 
|  | 2208 | fs_info->endio_write_workers = | 
|  | 2209 | btrfs_alloc_workqueue(fs_info, "endio-write", flags, | 
|  | 2210 | max_active, 2); | 
|  | 2211 | fs_info->endio_freespace_worker = | 
|  | 2212 | btrfs_alloc_workqueue(fs_info, "freespace-write", flags, | 
|  | 2213 | max_active, 0); | 
|  | 2214 | fs_info->delayed_workers = | 
|  | 2215 | btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, | 
|  | 2216 | max_active, 0); | 
|  | 2217 | fs_info->readahead_workers = | 
|  | 2218 | btrfs_alloc_workqueue(fs_info, "readahead", flags, | 
|  | 2219 | max_active, 2); | 
|  | 2220 | fs_info->qgroup_rescan_workers = | 
|  | 2221 | btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); | 
|  | 2222 | fs_info->extent_workers = | 
|  | 2223 | btrfs_alloc_workqueue(fs_info, "extent-refs", flags, | 
|  | 2224 | min_t(u64, fs_devices->num_devices, | 
|  | 2225 | max_active), 8); | 
|  | 2226 |  | 
|  | 2227 | if (!(fs_info->workers && fs_info->delalloc_workers && | 
|  | 2228 | fs_info->submit_workers && fs_info->flush_workers && | 
|  | 2229 | fs_info->endio_workers && fs_info->endio_meta_workers && | 
|  | 2230 | fs_info->endio_meta_write_workers && | 
|  | 2231 | fs_info->endio_repair_workers && | 
|  | 2232 | fs_info->endio_write_workers && fs_info->endio_raid56_workers && | 
|  | 2233 | fs_info->endio_freespace_worker && fs_info->rmw_workers && | 
|  | 2234 | fs_info->caching_workers && fs_info->readahead_workers && | 
|  | 2235 | fs_info->fixup_workers && fs_info->delayed_workers && | 
|  | 2236 | fs_info->extent_workers && | 
|  | 2237 | fs_info->qgroup_rescan_workers)) { | 
|  | 2238 | return -ENOMEM; | 
|  | 2239 | } | 
|  | 2240 |  | 
|  | 2241 | return 0; | 
|  | 2242 | } | 
|  | 2243 |  | 
|  | 2244 | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, | 
|  | 2245 | struct btrfs_fs_devices *fs_devices) | 
|  | 2246 | { | 
|  | 2247 | int ret; | 
|  | 2248 | struct btrfs_root *log_tree_root; | 
|  | 2249 | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | 2250 | u64 bytenr = btrfs_super_log_root(disk_super); | 
|  | 2251 | int level = btrfs_super_log_root_level(disk_super); | 
|  | 2252 |  | 
|  | 2253 | if (fs_devices->rw_devices == 0) { | 
|  | 2254 | btrfs_warn(fs_info, "log replay required on RO media"); | 
|  | 2255 | return -EIO; | 
|  | 2256 | } | 
|  | 2257 |  | 
|  | 2258 | log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
|  | 2259 | if (!log_tree_root) | 
|  | 2260 | return -ENOMEM; | 
|  | 2261 |  | 
|  | 2262 | __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
|  | 2263 |  | 
|  | 2264 | log_tree_root->node = read_tree_block(fs_info, bytenr, | 
|  | 2265 | fs_info->generation + 1, | 
|  | 2266 | level, NULL); | 
|  | 2267 | if (IS_ERR(log_tree_root->node)) { | 
|  | 2268 | btrfs_warn(fs_info, "failed to read log tree"); | 
|  | 2269 | ret = PTR_ERR(log_tree_root->node); | 
|  | 2270 | kfree(log_tree_root); | 
|  | 2271 | return ret; | 
|  | 2272 | } else if (!extent_buffer_uptodate(log_tree_root->node)) { | 
|  | 2273 | btrfs_err(fs_info, "failed to read log tree"); | 
|  | 2274 | free_extent_buffer(log_tree_root->node); | 
|  | 2275 | kfree(log_tree_root); | 
|  | 2276 | return -EIO; | 
|  | 2277 | } | 
|  | 2278 | /* returns with log_tree_root freed on success */ | 
|  | 2279 | ret = btrfs_recover_log_trees(log_tree_root); | 
|  | 2280 | if (ret) { | 
|  | 2281 | btrfs_handle_fs_error(fs_info, ret, | 
|  | 2282 | "Failed to recover log tree"); | 
|  | 2283 | free_extent_buffer(log_tree_root->node); | 
|  | 2284 | kfree(log_tree_root); | 
|  | 2285 | return ret; | 
|  | 2286 | } | 
|  | 2287 |  | 
|  | 2288 | if (sb_rdonly(fs_info->sb)) { | 
|  | 2289 | ret = btrfs_commit_super(fs_info); | 
|  | 2290 | if (ret) | 
|  | 2291 | return ret; | 
|  | 2292 | } | 
|  | 2293 |  | 
|  | 2294 | return 0; | 
|  | 2295 | } | 
|  | 2296 |  | 
|  | 2297 | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) | 
|  | 2298 | { | 
|  | 2299 | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | 2300 | struct btrfs_root *root; | 
|  | 2301 | struct btrfs_key location; | 
|  | 2302 | int ret; | 
|  | 2303 |  | 
|  | 2304 | BUG_ON(!fs_info->tree_root); | 
|  | 2305 |  | 
|  | 2306 | location.objectid = BTRFS_EXTENT_TREE_OBJECTID; | 
|  | 2307 | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 2308 | location.offset = 0; | 
|  | 2309 |  | 
|  | 2310 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2311 | if (IS_ERR(root)) { | 
|  | 2312 | ret = PTR_ERR(root); | 
|  | 2313 | goto out; | 
|  | 2314 | } | 
|  | 2315 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2316 | fs_info->extent_root = root; | 
|  | 2317 |  | 
|  | 2318 | location.objectid = BTRFS_DEV_TREE_OBJECTID; | 
|  | 2319 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2320 | if (IS_ERR(root)) { | 
|  | 2321 | ret = PTR_ERR(root); | 
|  | 2322 | goto out; | 
|  | 2323 | } | 
|  | 2324 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2325 | fs_info->dev_root = root; | 
|  | 2326 | btrfs_init_devices_late(fs_info); | 
|  | 2327 |  | 
|  | 2328 | location.objectid = BTRFS_CSUM_TREE_OBJECTID; | 
|  | 2329 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2330 | if (IS_ERR(root)) { | 
|  | 2331 | ret = PTR_ERR(root); | 
|  | 2332 | goto out; | 
|  | 2333 | } | 
|  | 2334 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2335 | fs_info->csum_root = root; | 
|  | 2336 |  | 
|  | 2337 | location.objectid = BTRFS_QUOTA_TREE_OBJECTID; | 
|  | 2338 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2339 | if (!IS_ERR(root)) { | 
|  | 2340 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2341 | set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); | 
|  | 2342 | fs_info->quota_root = root; | 
|  | 2343 | } | 
|  | 2344 |  | 
|  | 2345 | location.objectid = BTRFS_UUID_TREE_OBJECTID; | 
|  | 2346 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2347 | if (IS_ERR(root)) { | 
|  | 2348 | ret = PTR_ERR(root); | 
|  | 2349 | if (ret != -ENOENT) | 
|  | 2350 | goto out; | 
|  | 2351 | } else { | 
|  | 2352 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2353 | fs_info->uuid_root = root; | 
|  | 2354 | } | 
|  | 2355 |  | 
|  | 2356 | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
|  | 2357 | location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; | 
|  | 2358 | root = btrfs_read_tree_root(tree_root, &location); | 
|  | 2359 | if (IS_ERR(root)) { | 
|  | 2360 | ret = PTR_ERR(root); | 
|  | 2361 | goto out; | 
|  | 2362 | } | 
|  | 2363 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | 2364 | fs_info->free_space_root = root; | 
|  | 2365 | } | 
|  | 2366 |  | 
|  | 2367 | return 0; | 
|  | 2368 | out: | 
|  | 2369 | btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", | 
|  | 2370 | location.objectid, ret); | 
|  | 2371 | return ret; | 
|  | 2372 | } | 
|  | 2373 |  | 
|  | 2374 | /* | 
|  | 2375 | * Real super block validation | 
|  | 2376 | * NOTE: super csum type and incompat features will not be checked here. | 
|  | 2377 | * | 
|  | 2378 | * @sb:		super block to check | 
|  | 2379 | * @mirror_num:	the super block number to check its bytenr: | 
|  | 2380 | * 		0	the primary (1st) sb | 
|  | 2381 | * 		1, 2	2nd and 3rd backup copy | 
|  | 2382 | * 	       -1	skip bytenr check | 
|  | 2383 | */ | 
|  | 2384 | static int validate_super(struct btrfs_fs_info *fs_info, | 
|  | 2385 | struct btrfs_super_block *sb, int mirror_num) | 
|  | 2386 | { | 
|  | 2387 | u64 nodesize = btrfs_super_nodesize(sb); | 
|  | 2388 | u64 sectorsize = btrfs_super_sectorsize(sb); | 
|  | 2389 | int ret = 0; | 
|  | 2390 |  | 
|  | 2391 | if (btrfs_super_magic(sb) != BTRFS_MAGIC) { | 
|  | 2392 | btrfs_err(fs_info, "no valid FS found"); | 
|  | 2393 | ret = -EINVAL; | 
|  | 2394 | } | 
|  | 2395 | if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { | 
|  | 2396 | btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", | 
|  | 2397 | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
|  | 2398 | ret = -EINVAL; | 
|  | 2399 | } | 
|  | 2400 | if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | 2401 | btrfs_err(fs_info, "tree_root level too big: %d >= %d", | 
|  | 2402 | btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | 2403 | ret = -EINVAL; | 
|  | 2404 | } | 
|  | 2405 | if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | 2406 | btrfs_err(fs_info, "chunk_root level too big: %d >= %d", | 
|  | 2407 | btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | 2408 | ret = -EINVAL; | 
|  | 2409 | } | 
|  | 2410 | if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | 2411 | btrfs_err(fs_info, "log_root level too big: %d >= %d", | 
|  | 2412 | btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | 2413 | ret = -EINVAL; | 
|  | 2414 | } | 
|  | 2415 |  | 
|  | 2416 | /* | 
|  | 2417 | * Check sectorsize and nodesize first, other check will need it. | 
|  | 2418 | * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. | 
|  | 2419 | */ | 
|  | 2420 | if (!is_power_of_2(sectorsize) || sectorsize < 4096 || | 
|  | 2421 | sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
|  | 2422 | btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); | 
|  | 2423 | ret = -EINVAL; | 
|  | 2424 | } | 
|  | 2425 | /* Only PAGE SIZE is supported yet */ | 
|  | 2426 | if (sectorsize != PAGE_SIZE) { | 
|  | 2427 | btrfs_err(fs_info, | 
|  | 2428 | "sectorsize %llu not supported yet, only support %lu", | 
|  | 2429 | sectorsize, PAGE_SIZE); | 
|  | 2430 | ret = -EINVAL; | 
|  | 2431 | } | 
|  | 2432 | if (!is_power_of_2(nodesize) || nodesize < sectorsize || | 
|  | 2433 | nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
|  | 2434 | btrfs_err(fs_info, "invalid nodesize %llu", nodesize); | 
|  | 2435 | ret = -EINVAL; | 
|  | 2436 | } | 
|  | 2437 | if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { | 
|  | 2438 | btrfs_err(fs_info, "invalid leafsize %u, should be %llu", | 
|  | 2439 | le32_to_cpu(sb->__unused_leafsize), nodesize); | 
|  | 2440 | ret = -EINVAL; | 
|  | 2441 | } | 
|  | 2442 |  | 
|  | 2443 | /* Root alignment check */ | 
|  | 2444 | if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { | 
|  | 2445 | btrfs_warn(fs_info, "tree_root block unaligned: %llu", | 
|  | 2446 | btrfs_super_root(sb)); | 
|  | 2447 | ret = -EINVAL; | 
|  | 2448 | } | 
|  | 2449 | if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { | 
|  | 2450 | btrfs_warn(fs_info, "chunk_root block unaligned: %llu", | 
|  | 2451 | btrfs_super_chunk_root(sb)); | 
|  | 2452 | ret = -EINVAL; | 
|  | 2453 | } | 
|  | 2454 | if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { | 
|  | 2455 | btrfs_warn(fs_info, "log_root block unaligned: %llu", | 
|  | 2456 | btrfs_super_log_root(sb)); | 
|  | 2457 | ret = -EINVAL; | 
|  | 2458 | } | 
|  | 2459 |  | 
|  | 2460 | if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { | 
|  | 2461 | btrfs_err(fs_info, | 
|  | 2462 | "dev_item UUID does not match fsid: %pU != %pU", | 
|  | 2463 | fs_info->fsid, sb->dev_item.fsid); | 
|  | 2464 | ret = -EINVAL; | 
|  | 2465 | } | 
|  | 2466 |  | 
|  | 2467 | /* | 
|  | 2468 | * Hint to catch really bogus numbers, bitflips or so, more exact checks are | 
|  | 2469 | * done later | 
|  | 2470 | */ | 
|  | 2471 | if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { | 
|  | 2472 | btrfs_err(fs_info, "bytes_used is too small %llu", | 
|  | 2473 | btrfs_super_bytes_used(sb)); | 
|  | 2474 | ret = -EINVAL; | 
|  | 2475 | } | 
|  | 2476 | if (!is_power_of_2(btrfs_super_stripesize(sb))) { | 
|  | 2477 | btrfs_err(fs_info, "invalid stripesize %u", | 
|  | 2478 | btrfs_super_stripesize(sb)); | 
|  | 2479 | ret = -EINVAL; | 
|  | 2480 | } | 
|  | 2481 | if (btrfs_super_num_devices(sb) > (1UL << 31)) | 
|  | 2482 | btrfs_warn(fs_info, "suspicious number of devices: %llu", | 
|  | 2483 | btrfs_super_num_devices(sb)); | 
|  | 2484 | if (btrfs_super_num_devices(sb) == 0) { | 
|  | 2485 | btrfs_err(fs_info, "number of devices is 0"); | 
|  | 2486 | ret = -EINVAL; | 
|  | 2487 | } | 
|  | 2488 |  | 
|  | 2489 | if (mirror_num >= 0 && | 
|  | 2490 | btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { | 
|  | 2491 | btrfs_err(fs_info, "super offset mismatch %llu != %u", | 
|  | 2492 | btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); | 
|  | 2493 | ret = -EINVAL; | 
|  | 2494 | } | 
|  | 2495 |  | 
|  | 2496 | /* | 
|  | 2497 | * Obvious sys_chunk_array corruptions, it must hold at least one key | 
|  | 2498 | * and one chunk | 
|  | 2499 | */ | 
|  | 2500 | if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
|  | 2501 | btrfs_err(fs_info, "system chunk array too big %u > %u", | 
|  | 2502 | btrfs_super_sys_array_size(sb), | 
|  | 2503 | BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); | 
|  | 2504 | ret = -EINVAL; | 
|  | 2505 | } | 
|  | 2506 | if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) | 
|  | 2507 | + sizeof(struct btrfs_chunk)) { | 
|  | 2508 | btrfs_err(fs_info, "system chunk array too small %u < %zu", | 
|  | 2509 | btrfs_super_sys_array_size(sb), | 
|  | 2510 | sizeof(struct btrfs_disk_key) | 
|  | 2511 | + sizeof(struct btrfs_chunk)); | 
|  | 2512 | ret = -EINVAL; | 
|  | 2513 | } | 
|  | 2514 |  | 
|  | 2515 | /* | 
|  | 2516 | * The generation is a global counter, we'll trust it more than the others | 
|  | 2517 | * but it's still possible that it's the one that's wrong. | 
|  | 2518 | */ | 
|  | 2519 | if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) | 
|  | 2520 | btrfs_warn(fs_info, | 
|  | 2521 | "suspicious: generation < chunk_root_generation: %llu < %llu", | 
|  | 2522 | btrfs_super_generation(sb), | 
|  | 2523 | btrfs_super_chunk_root_generation(sb)); | 
|  | 2524 | if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) | 
|  | 2525 | && btrfs_super_cache_generation(sb) != (u64)-1) | 
|  | 2526 | btrfs_warn(fs_info, | 
|  | 2527 | "suspicious: generation < cache_generation: %llu < %llu", | 
|  | 2528 | btrfs_super_generation(sb), | 
|  | 2529 | btrfs_super_cache_generation(sb)); | 
|  | 2530 |  | 
|  | 2531 | return ret; | 
|  | 2532 | } | 
|  | 2533 |  | 
|  | 2534 | /* | 
|  | 2535 | * Validation of super block at mount time. | 
|  | 2536 | * Some checks already done early at mount time, like csum type and incompat | 
|  | 2537 | * flags will be skipped. | 
|  | 2538 | */ | 
|  | 2539 | static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) | 
|  | 2540 | { | 
|  | 2541 | return validate_super(fs_info, fs_info->super_copy, 0); | 
|  | 2542 | } | 
|  | 2543 |  | 
|  | 2544 | /* | 
|  | 2545 | * Validation of super block at write time. | 
|  | 2546 | * Some checks like bytenr check will be skipped as their values will be | 
|  | 2547 | * overwritten soon. | 
|  | 2548 | * Extra checks like csum type and incompat flags will be done here. | 
|  | 2549 | */ | 
|  | 2550 | static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, | 
|  | 2551 | struct btrfs_super_block *sb) | 
|  | 2552 | { | 
|  | 2553 | int ret; | 
|  | 2554 |  | 
|  | 2555 | ret = validate_super(fs_info, sb, -1); | 
|  | 2556 | if (ret < 0) | 
|  | 2557 | goto out; | 
|  | 2558 | if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { | 
|  | 2559 | ret = -EUCLEAN; | 
|  | 2560 | btrfs_err(fs_info, "invalid csum type, has %u want %u", | 
|  | 2561 | btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); | 
|  | 2562 | goto out; | 
|  | 2563 | } | 
|  | 2564 | if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
|  | 2565 | ret = -EUCLEAN; | 
|  | 2566 | btrfs_err(fs_info, | 
|  | 2567 | "invalid incompat flags, has 0x%llx valid mask 0x%llx", | 
|  | 2568 | btrfs_super_incompat_flags(sb), | 
|  | 2569 | (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); | 
|  | 2570 | goto out; | 
|  | 2571 | } | 
|  | 2572 | out: | 
|  | 2573 | if (ret < 0) | 
|  | 2574 | btrfs_err(fs_info, | 
|  | 2575 | "super block corruption detected before writing it to disk"); | 
|  | 2576 | return ret; | 
|  | 2577 | } | 
|  | 2578 |  | 
|  | 2579 | int open_ctree(struct super_block *sb, | 
|  | 2580 | struct btrfs_fs_devices *fs_devices, | 
|  | 2581 | char *options) | 
|  | 2582 | { | 
|  | 2583 | u32 sectorsize; | 
|  | 2584 | u32 nodesize; | 
|  | 2585 | u32 stripesize; | 
|  | 2586 | u64 generation; | 
|  | 2587 | u64 features; | 
|  | 2588 | struct btrfs_key location; | 
|  | 2589 | struct buffer_head *bh; | 
|  | 2590 | struct btrfs_super_block *disk_super; | 
|  | 2591 | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | 2592 | struct btrfs_root *tree_root; | 
|  | 2593 | struct btrfs_root *chunk_root; | 
|  | 2594 | int ret; | 
|  | 2595 | int err = -EINVAL; | 
|  | 2596 | int num_backups_tried = 0; | 
|  | 2597 | int backup_index = 0; | 
|  | 2598 | int clear_free_space_tree = 0; | 
|  | 2599 | int level; | 
|  | 2600 |  | 
|  | 2601 | tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
|  | 2602 | chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); | 
|  | 2603 | if (!tree_root || !chunk_root) { | 
|  | 2604 | err = -ENOMEM; | 
|  | 2605 | goto fail; | 
|  | 2606 | } | 
|  | 2607 |  | 
|  | 2608 | ret = init_srcu_struct(&fs_info->subvol_srcu); | 
|  | 2609 | if (ret) { | 
|  | 2610 | err = ret; | 
|  | 2611 | goto fail; | 
|  | 2612 | } | 
|  | 2613 |  | 
|  | 2614 | ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); | 
|  | 2615 | if (ret) { | 
|  | 2616 | err = ret; | 
|  | 2617 | goto fail_srcu; | 
|  | 2618 | } | 
|  | 2619 | fs_info->dirty_metadata_batch = PAGE_SIZE * | 
|  | 2620 | (1 + ilog2(nr_cpu_ids)); | 
|  | 2621 |  | 
|  | 2622 | ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); | 
|  | 2623 | if (ret) { | 
|  | 2624 | err = ret; | 
|  | 2625 | goto fail_dirty_metadata_bytes; | 
|  | 2626 | } | 
|  | 2627 |  | 
|  | 2628 | ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); | 
|  | 2629 | if (ret) { | 
|  | 2630 | err = ret; | 
|  | 2631 | goto fail_delalloc_bytes; | 
|  | 2632 | } | 
|  | 2633 |  | 
|  | 2634 | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
|  | 2635 | INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); | 
|  | 2636 | INIT_LIST_HEAD(&fs_info->trans_list); | 
|  | 2637 | INIT_LIST_HEAD(&fs_info->dead_roots); | 
|  | 2638 | INIT_LIST_HEAD(&fs_info->delayed_iputs); | 
|  | 2639 | INIT_LIST_HEAD(&fs_info->delalloc_roots); | 
|  | 2640 | INIT_LIST_HEAD(&fs_info->caching_block_groups); | 
|  | 2641 | INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); | 
|  | 2642 | spin_lock_init(&fs_info->pending_raid_kobjs_lock); | 
|  | 2643 | spin_lock_init(&fs_info->delalloc_root_lock); | 
|  | 2644 | spin_lock_init(&fs_info->trans_lock); | 
|  | 2645 | spin_lock_init(&fs_info->fs_roots_radix_lock); | 
|  | 2646 | spin_lock_init(&fs_info->delayed_iput_lock); | 
|  | 2647 | spin_lock_init(&fs_info->defrag_inodes_lock); | 
|  | 2648 | spin_lock_init(&fs_info->tree_mod_seq_lock); | 
|  | 2649 | spin_lock_init(&fs_info->super_lock); | 
|  | 2650 | spin_lock_init(&fs_info->qgroup_op_lock); | 
|  | 2651 | spin_lock_init(&fs_info->buffer_lock); | 
|  | 2652 | spin_lock_init(&fs_info->unused_bgs_lock); | 
|  | 2653 | rwlock_init(&fs_info->tree_mod_log_lock); | 
|  | 2654 | mutex_init(&fs_info->unused_bg_unpin_mutex); | 
|  | 2655 | mutex_init(&fs_info->delete_unused_bgs_mutex); | 
|  | 2656 | mutex_init(&fs_info->reloc_mutex); | 
|  | 2657 | mutex_init(&fs_info->delalloc_root_mutex); | 
|  | 2658 | mutex_init(&fs_info->cleaner_delayed_iput_mutex); | 
|  | 2659 | seqlock_init(&fs_info->profiles_lock); | 
|  | 2660 |  | 
|  | 2661 | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | 
|  | 2662 | INIT_LIST_HEAD(&fs_info->space_info); | 
|  | 2663 | INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); | 
|  | 2664 | INIT_LIST_HEAD(&fs_info->unused_bgs); | 
|  | 2665 | btrfs_mapping_init(&fs_info->mapping_tree); | 
|  | 2666 | btrfs_init_block_rsv(&fs_info->global_block_rsv, | 
|  | 2667 | BTRFS_BLOCK_RSV_GLOBAL); | 
|  | 2668 | btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); | 
|  | 2669 | btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); | 
|  | 2670 | btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); | 
|  | 2671 | btrfs_init_block_rsv(&fs_info->delayed_block_rsv, | 
|  | 2672 | BTRFS_BLOCK_RSV_DELOPS); | 
|  | 2673 | atomic_set(&fs_info->async_delalloc_pages, 0); | 
|  | 2674 | atomic_set(&fs_info->defrag_running, 0); | 
|  | 2675 | atomic_set(&fs_info->qgroup_op_seq, 0); | 
|  | 2676 | atomic_set(&fs_info->reada_works_cnt, 0); | 
|  | 2677 | atomic64_set(&fs_info->tree_mod_seq, 0); | 
|  | 2678 | fs_info->sb = sb; | 
|  | 2679 | fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; | 
|  | 2680 | fs_info->metadata_ratio = 0; | 
|  | 2681 | fs_info->defrag_inodes = RB_ROOT; | 
|  | 2682 | atomic64_set(&fs_info->free_chunk_space, 0); | 
|  | 2683 | fs_info->tree_mod_log = RB_ROOT; | 
|  | 2684 | fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
|  | 2685 | fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ | 
|  | 2686 | /* readahead state */ | 
|  | 2687 | INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); | 
|  | 2688 | spin_lock_init(&fs_info->reada_lock); | 
|  | 2689 | btrfs_init_ref_verify(fs_info); | 
|  | 2690 |  | 
|  | 2691 | fs_info->thread_pool_size = min_t(unsigned long, | 
|  | 2692 | num_online_cpus() + 2, 8); | 
|  | 2693 |  | 
|  | 2694 | INIT_LIST_HEAD(&fs_info->ordered_roots); | 
|  | 2695 | spin_lock_init(&fs_info->ordered_root_lock); | 
|  | 2696 |  | 
|  | 2697 | fs_info->btree_inode = new_inode(sb); | 
|  | 2698 | if (!fs_info->btree_inode) { | 
|  | 2699 | err = -ENOMEM; | 
|  | 2700 | goto fail_bio_counter; | 
|  | 2701 | } | 
|  | 2702 | mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); | 
|  | 2703 |  | 
|  | 2704 | fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
|  | 2705 | GFP_KERNEL); | 
|  | 2706 | if (!fs_info->delayed_root) { | 
|  | 2707 | err = -ENOMEM; | 
|  | 2708 | goto fail_iput; | 
|  | 2709 | } | 
|  | 2710 | btrfs_init_delayed_root(fs_info->delayed_root); | 
|  | 2711 |  | 
|  | 2712 | btrfs_init_scrub(fs_info); | 
|  | 2713 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | 2714 | fs_info->check_integrity_print_mask = 0; | 
|  | 2715 | #endif | 
|  | 2716 | btrfs_init_balance(fs_info); | 
|  | 2717 | btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); | 
|  | 2718 |  | 
|  | 2719 | sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; | 
|  | 2720 | sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); | 
|  | 2721 |  | 
|  | 2722 | btrfs_init_btree_inode(fs_info); | 
|  | 2723 |  | 
|  | 2724 | spin_lock_init(&fs_info->block_group_cache_lock); | 
|  | 2725 | fs_info->block_group_cache_tree = RB_ROOT; | 
|  | 2726 | fs_info->first_logical_byte = (u64)-1; | 
|  | 2727 |  | 
|  | 2728 | extent_io_tree_init(&fs_info->freed_extents[0], NULL); | 
|  | 2729 | extent_io_tree_init(&fs_info->freed_extents[1], NULL); | 
|  | 2730 | fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
|  | 2731 | set_bit(BTRFS_FS_BARRIER, &fs_info->flags); | 
|  | 2732 |  | 
|  | 2733 | mutex_init(&fs_info->ordered_operations_mutex); | 
|  | 2734 | mutex_init(&fs_info->tree_log_mutex); | 
|  | 2735 | mutex_init(&fs_info->chunk_mutex); | 
|  | 2736 | mutex_init(&fs_info->transaction_kthread_mutex); | 
|  | 2737 | mutex_init(&fs_info->cleaner_mutex); | 
|  | 2738 | mutex_init(&fs_info->ro_block_group_mutex); | 
|  | 2739 | init_rwsem(&fs_info->commit_root_sem); | 
|  | 2740 | init_rwsem(&fs_info->cleanup_work_sem); | 
|  | 2741 | init_rwsem(&fs_info->subvol_sem); | 
|  | 2742 | sema_init(&fs_info->uuid_tree_rescan_sem, 1); | 
|  | 2743 |  | 
|  | 2744 | btrfs_init_dev_replace_locks(fs_info); | 
|  | 2745 | btrfs_init_qgroup(fs_info); | 
|  | 2746 |  | 
|  | 2747 | btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); | 
|  | 2748 | btrfs_init_free_cluster(&fs_info->data_alloc_cluster); | 
|  | 2749 |  | 
|  | 2750 | init_waitqueue_head(&fs_info->transaction_throttle); | 
|  | 2751 | init_waitqueue_head(&fs_info->transaction_wait); | 
|  | 2752 | init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
|  | 2753 | init_waitqueue_head(&fs_info->async_submit_wait); | 
|  | 2754 |  | 
|  | 2755 | INIT_LIST_HEAD(&fs_info->pinned_chunks); | 
|  | 2756 |  | 
|  | 2757 | /* Usable values until the real ones are cached from the superblock */ | 
|  | 2758 | fs_info->nodesize = 4096; | 
|  | 2759 | fs_info->sectorsize = 4096; | 
|  | 2760 | fs_info->stripesize = 4096; | 
|  | 2761 |  | 
|  | 2762 | ret = btrfs_alloc_stripe_hash_table(fs_info); | 
|  | 2763 | if (ret) { | 
|  | 2764 | err = ret; | 
|  | 2765 | goto fail_alloc; | 
|  | 2766 | } | 
|  | 2767 |  | 
|  | 2768 | __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
|  | 2769 |  | 
|  | 2770 | invalidate_bdev(fs_devices->latest_bdev); | 
|  | 2771 |  | 
|  | 2772 | /* | 
|  | 2773 | * Read super block and check the signature bytes only | 
|  | 2774 | */ | 
|  | 2775 | bh = btrfs_read_dev_super(fs_devices->latest_bdev); | 
|  | 2776 | if (IS_ERR(bh)) { | 
|  | 2777 | err = PTR_ERR(bh); | 
|  | 2778 | goto fail_alloc; | 
|  | 2779 | } | 
|  | 2780 |  | 
|  | 2781 | /* | 
|  | 2782 | * We want to check superblock checksum, the type is stored inside. | 
|  | 2783 | * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). | 
|  | 2784 | */ | 
|  | 2785 | if (btrfs_check_super_csum(fs_info, bh->b_data)) { | 
|  | 2786 | btrfs_err(fs_info, "superblock checksum mismatch"); | 
|  | 2787 | err = -EINVAL; | 
|  | 2788 | brelse(bh); | 
|  | 2789 | goto fail_alloc; | 
|  | 2790 | } | 
|  | 2791 |  | 
|  | 2792 | /* | 
|  | 2793 | * super_copy is zeroed at allocation time and we never touch the | 
|  | 2794 | * following bytes up to INFO_SIZE, the checksum is calculated from | 
|  | 2795 | * the whole block of INFO_SIZE | 
|  | 2796 | */ | 
|  | 2797 | memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); | 
|  | 2798 | memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
|  | 2799 | sizeof(*fs_info->super_for_commit)); | 
|  | 2800 | brelse(bh); | 
|  | 2801 |  | 
|  | 2802 | memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); | 
|  | 2803 |  | 
|  | 2804 | ret = btrfs_validate_mount_super(fs_info); | 
|  | 2805 | if (ret) { | 
|  | 2806 | btrfs_err(fs_info, "superblock contains fatal errors"); | 
|  | 2807 | err = -EINVAL; | 
|  | 2808 | goto fail_alloc; | 
|  | 2809 | } | 
|  | 2810 |  | 
|  | 2811 | disk_super = fs_info->super_copy; | 
|  | 2812 | if (!btrfs_super_root(disk_super)) | 
|  | 2813 | goto fail_alloc; | 
|  | 2814 |  | 
|  | 2815 | /* check FS state, whether FS is broken. */ | 
|  | 2816 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) | 
|  | 2817 | set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); | 
|  | 2818 |  | 
|  | 2819 | /* | 
|  | 2820 | * run through our array of backup supers and setup | 
|  | 2821 | * our ring pointer to the oldest one | 
|  | 2822 | */ | 
|  | 2823 | generation = btrfs_super_generation(disk_super); | 
|  | 2824 | find_oldest_super_backup(fs_info, generation); | 
|  | 2825 |  | 
|  | 2826 | /* | 
|  | 2827 | * In the long term, we'll store the compression type in the super | 
|  | 2828 | * block, and it'll be used for per file compression control. | 
|  | 2829 | */ | 
|  | 2830 | fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
|  | 2831 |  | 
|  | 2832 | ret = btrfs_parse_options(fs_info, options, sb->s_flags); | 
|  | 2833 | if (ret) { | 
|  | 2834 | err = ret; | 
|  | 2835 | goto fail_alloc; | 
|  | 2836 | } | 
|  | 2837 |  | 
|  | 2838 | features = btrfs_super_incompat_flags(disk_super) & | 
|  | 2839 | ~BTRFS_FEATURE_INCOMPAT_SUPP; | 
|  | 2840 | if (features) { | 
|  | 2841 | btrfs_err(fs_info, | 
|  | 2842 | "cannot mount because of unsupported optional features (%llx)", | 
|  | 2843 | features); | 
|  | 2844 | err = -EINVAL; | 
|  | 2845 | goto fail_alloc; | 
|  | 2846 | } | 
|  | 2847 |  | 
|  | 2848 | features = btrfs_super_incompat_flags(disk_super); | 
|  | 2849 | features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
|  | 2850 | if (fs_info->compress_type == BTRFS_COMPRESS_LZO) | 
|  | 2851 | features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
|  | 2852 | else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) | 
|  | 2853 | features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; | 
|  | 2854 |  | 
|  | 2855 | if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) | 
|  | 2856 | btrfs_info(fs_info, "has skinny extents"); | 
|  | 2857 |  | 
|  | 2858 | /* | 
|  | 2859 | * flag our filesystem as having big metadata blocks if | 
|  | 2860 | * they are bigger than the page size | 
|  | 2861 | */ | 
|  | 2862 | if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { | 
|  | 2863 | if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) | 
|  | 2864 | btrfs_info(fs_info, | 
|  | 2865 | "flagging fs with big metadata feature"); | 
|  | 2866 | features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; | 
|  | 2867 | } | 
|  | 2868 |  | 
|  | 2869 | nodesize = btrfs_super_nodesize(disk_super); | 
|  | 2870 | sectorsize = btrfs_super_sectorsize(disk_super); | 
|  | 2871 | stripesize = sectorsize; | 
|  | 2872 | fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); | 
|  | 2873 | fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); | 
|  | 2874 |  | 
|  | 2875 | /* Cache block sizes */ | 
|  | 2876 | fs_info->nodesize = nodesize; | 
|  | 2877 | fs_info->sectorsize = sectorsize; | 
|  | 2878 | fs_info->stripesize = stripesize; | 
|  | 2879 |  | 
|  | 2880 | /* | 
|  | 2881 | * mixed block groups end up with duplicate but slightly offset | 
|  | 2882 | * extent buffers for the same range.  It leads to corruptions | 
|  | 2883 | */ | 
|  | 2884 | if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && | 
|  | 2885 | (sectorsize != nodesize)) { | 
|  | 2886 | btrfs_err(fs_info, | 
|  | 2887 | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", | 
|  | 2888 | nodesize, sectorsize); | 
|  | 2889 | goto fail_alloc; | 
|  | 2890 | } | 
|  | 2891 |  | 
|  | 2892 | /* | 
|  | 2893 | * Needn't use the lock because there is no other task which will | 
|  | 2894 | * update the flag. | 
|  | 2895 | */ | 
|  | 2896 | btrfs_set_super_incompat_flags(disk_super, features); | 
|  | 2897 |  | 
|  | 2898 | features = btrfs_super_compat_ro_flags(disk_super) & | 
|  | 2899 | ~BTRFS_FEATURE_COMPAT_RO_SUPP; | 
|  | 2900 | if (!sb_rdonly(sb) && features) { | 
|  | 2901 | btrfs_err(fs_info, | 
|  | 2902 | "cannot mount read-write because of unsupported optional features (%llx)", | 
|  | 2903 | features); | 
|  | 2904 | err = -EINVAL; | 
|  | 2905 | goto fail_alloc; | 
|  | 2906 | } | 
|  | 2907 |  | 
|  | 2908 | ret = btrfs_init_workqueues(fs_info, fs_devices); | 
|  | 2909 | if (ret) { | 
|  | 2910 | err = ret; | 
|  | 2911 | goto fail_sb_buffer; | 
|  | 2912 | } | 
|  | 2913 |  | 
|  | 2914 | sb->s_bdi->congested_fn = btrfs_congested_fn; | 
|  | 2915 | sb->s_bdi->congested_data = fs_info; | 
|  | 2916 | sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; | 
|  | 2917 | sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; | 
|  | 2918 | sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); | 
|  | 2919 | sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); | 
|  | 2920 |  | 
|  | 2921 | sb->s_blocksize = sectorsize; | 
|  | 2922 | sb->s_blocksize_bits = blksize_bits(sectorsize); | 
|  | 2923 | memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); | 
|  | 2924 |  | 
|  | 2925 | mutex_lock(&fs_info->chunk_mutex); | 
|  | 2926 | ret = btrfs_read_sys_array(fs_info); | 
|  | 2927 | mutex_unlock(&fs_info->chunk_mutex); | 
|  | 2928 | if (ret) { | 
|  | 2929 | btrfs_err(fs_info, "failed to read the system array: %d", ret); | 
|  | 2930 | goto fail_sb_buffer; | 
|  | 2931 | } | 
|  | 2932 |  | 
|  | 2933 | generation = btrfs_super_chunk_root_generation(disk_super); | 
|  | 2934 | level = btrfs_super_chunk_root_level(disk_super); | 
|  | 2935 |  | 
|  | 2936 | __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); | 
|  | 2937 |  | 
|  | 2938 | chunk_root->node = read_tree_block(fs_info, | 
|  | 2939 | btrfs_super_chunk_root(disk_super), | 
|  | 2940 | generation, level, NULL); | 
|  | 2941 | if (IS_ERR(chunk_root->node) || | 
|  | 2942 | !extent_buffer_uptodate(chunk_root->node)) { | 
|  | 2943 | btrfs_err(fs_info, "failed to read chunk root"); | 
|  | 2944 | if (!IS_ERR(chunk_root->node)) | 
|  | 2945 | free_extent_buffer(chunk_root->node); | 
|  | 2946 | chunk_root->node = NULL; | 
|  | 2947 | goto fail_tree_roots; | 
|  | 2948 | } | 
|  | 2949 | btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); | 
|  | 2950 | chunk_root->commit_root = btrfs_root_node(chunk_root); | 
|  | 2951 |  | 
|  | 2952 | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | 
|  | 2953 | btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); | 
|  | 2954 |  | 
|  | 2955 | ret = btrfs_read_chunk_tree(fs_info); | 
|  | 2956 | if (ret) { | 
|  | 2957 | btrfs_err(fs_info, "failed to read chunk tree: %d", ret); | 
|  | 2958 | goto fail_tree_roots; | 
|  | 2959 | } | 
|  | 2960 |  | 
|  | 2961 | /* | 
|  | 2962 | * Keep the devid that is marked to be the target device for the | 
|  | 2963 | * device replace procedure | 
|  | 2964 | */ | 
|  | 2965 | btrfs_free_extra_devids(fs_devices, 0); | 
|  | 2966 |  | 
|  | 2967 | if (!fs_devices->latest_bdev) { | 
|  | 2968 | btrfs_err(fs_info, "failed to read devices"); | 
|  | 2969 | goto fail_tree_roots; | 
|  | 2970 | } | 
|  | 2971 |  | 
|  | 2972 | retry_root_backup: | 
|  | 2973 | generation = btrfs_super_generation(disk_super); | 
|  | 2974 | level = btrfs_super_root_level(disk_super); | 
|  | 2975 |  | 
|  | 2976 | tree_root->node = read_tree_block(fs_info, | 
|  | 2977 | btrfs_super_root(disk_super), | 
|  | 2978 | generation, level, NULL); | 
|  | 2979 | if (IS_ERR(tree_root->node) || | 
|  | 2980 | !extent_buffer_uptodate(tree_root->node)) { | 
|  | 2981 | btrfs_warn(fs_info, "failed to read tree root"); | 
|  | 2982 | if (!IS_ERR(tree_root->node)) | 
|  | 2983 | free_extent_buffer(tree_root->node); | 
|  | 2984 | tree_root->node = NULL; | 
|  | 2985 | goto recovery_tree_root; | 
|  | 2986 | } | 
|  | 2987 |  | 
|  | 2988 | btrfs_set_root_node(&tree_root->root_item, tree_root->node); | 
|  | 2989 | tree_root->commit_root = btrfs_root_node(tree_root); | 
|  | 2990 | btrfs_set_root_refs(&tree_root->root_item, 1); | 
|  | 2991 |  | 
|  | 2992 | mutex_lock(&tree_root->objectid_mutex); | 
|  | 2993 | ret = btrfs_find_highest_objectid(tree_root, | 
|  | 2994 | &tree_root->highest_objectid); | 
|  | 2995 | if (ret) { | 
|  | 2996 | mutex_unlock(&tree_root->objectid_mutex); | 
|  | 2997 | goto recovery_tree_root; | 
|  | 2998 | } | 
|  | 2999 |  | 
|  | 3000 | ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
|  | 3001 |  | 
|  | 3002 | mutex_unlock(&tree_root->objectid_mutex); | 
|  | 3003 |  | 
|  | 3004 | ret = btrfs_read_roots(fs_info); | 
|  | 3005 | if (ret) | 
|  | 3006 | goto recovery_tree_root; | 
|  | 3007 |  | 
|  | 3008 | fs_info->generation = generation; | 
|  | 3009 | fs_info->last_trans_committed = generation; | 
|  | 3010 |  | 
|  | 3011 | ret = btrfs_verify_dev_extents(fs_info); | 
|  | 3012 | if (ret) { | 
|  | 3013 | btrfs_err(fs_info, | 
|  | 3014 | "failed to verify dev extents against chunks: %d", | 
|  | 3015 | ret); | 
|  | 3016 | goto fail_block_groups; | 
|  | 3017 | } | 
|  | 3018 | ret = btrfs_recover_balance(fs_info); | 
|  | 3019 | if (ret) { | 
|  | 3020 | btrfs_err(fs_info, "failed to recover balance: %d", ret); | 
|  | 3021 | goto fail_block_groups; | 
|  | 3022 | } | 
|  | 3023 |  | 
|  | 3024 | ret = btrfs_init_dev_stats(fs_info); | 
|  | 3025 | if (ret) { | 
|  | 3026 | btrfs_err(fs_info, "failed to init dev_stats: %d", ret); | 
|  | 3027 | goto fail_block_groups; | 
|  | 3028 | } | 
|  | 3029 |  | 
|  | 3030 | ret = btrfs_init_dev_replace(fs_info); | 
|  | 3031 | if (ret) { | 
|  | 3032 | btrfs_err(fs_info, "failed to init dev_replace: %d", ret); | 
|  | 3033 | goto fail_block_groups; | 
|  | 3034 | } | 
|  | 3035 |  | 
|  | 3036 | btrfs_free_extra_devids(fs_devices, 1); | 
|  | 3037 |  | 
|  | 3038 | ret = btrfs_sysfs_add_fsid(fs_devices, NULL); | 
|  | 3039 | if (ret) { | 
|  | 3040 | btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", | 
|  | 3041 | ret); | 
|  | 3042 | goto fail_block_groups; | 
|  | 3043 | } | 
|  | 3044 |  | 
|  | 3045 | ret = btrfs_sysfs_add_device(fs_devices); | 
|  | 3046 | if (ret) { | 
|  | 3047 | btrfs_err(fs_info, "failed to init sysfs device interface: %d", | 
|  | 3048 | ret); | 
|  | 3049 | goto fail_fsdev_sysfs; | 
|  | 3050 | } | 
|  | 3051 |  | 
|  | 3052 | ret = btrfs_sysfs_add_mounted(fs_info); | 
|  | 3053 | if (ret) { | 
|  | 3054 | btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); | 
|  | 3055 | goto fail_fsdev_sysfs; | 
|  | 3056 | } | 
|  | 3057 |  | 
|  | 3058 | ret = btrfs_init_space_info(fs_info); | 
|  | 3059 | if (ret) { | 
|  | 3060 | btrfs_err(fs_info, "failed to initialize space info: %d", ret); | 
|  | 3061 | goto fail_sysfs; | 
|  | 3062 | } | 
|  | 3063 |  | 
|  | 3064 | ret = btrfs_read_block_groups(fs_info); | 
|  | 3065 | if (ret) { | 
|  | 3066 | btrfs_err(fs_info, "failed to read block groups: %d", ret); | 
|  | 3067 | goto fail_sysfs; | 
|  | 3068 | } | 
|  | 3069 |  | 
|  | 3070 | if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { | 
|  | 3071 | btrfs_warn(fs_info, | 
|  | 3072 | "writeable mount is not allowed due to too many missing devices"); | 
|  | 3073 | goto fail_sysfs; | 
|  | 3074 | } | 
|  | 3075 |  | 
|  | 3076 | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, | 
|  | 3077 | "btrfs-cleaner"); | 
|  | 3078 | if (IS_ERR(fs_info->cleaner_kthread)) | 
|  | 3079 | goto fail_sysfs; | 
|  | 3080 |  | 
|  | 3081 | fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
|  | 3082 | tree_root, | 
|  | 3083 | "btrfs-transaction"); | 
|  | 3084 | if (IS_ERR(fs_info->transaction_kthread)) | 
|  | 3085 | goto fail_cleaner; | 
|  | 3086 |  | 
|  | 3087 | if (!btrfs_test_opt(fs_info, NOSSD) && | 
|  | 3088 | !fs_info->fs_devices->rotating) { | 
|  | 3089 | btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); | 
|  | 3090 | } | 
|  | 3091 |  | 
|  | 3092 | /* | 
|  | 3093 | * Mount does not set all options immediately, we can do it now and do | 
|  | 3094 | * not have to wait for transaction commit | 
|  | 3095 | */ | 
|  | 3096 | btrfs_apply_pending_changes(fs_info); | 
|  | 3097 |  | 
|  | 3098 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | 3099 | if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { | 
|  | 3100 | ret = btrfsic_mount(fs_info, fs_devices, | 
|  | 3101 | btrfs_test_opt(fs_info, | 
|  | 3102 | CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? | 
|  | 3103 | 1 : 0, | 
|  | 3104 | fs_info->check_integrity_print_mask); | 
|  | 3105 | if (ret) | 
|  | 3106 | btrfs_warn(fs_info, | 
|  | 3107 | "failed to initialize integrity check module: %d", | 
|  | 3108 | ret); | 
|  | 3109 | } | 
|  | 3110 | #endif | 
|  | 3111 | ret = btrfs_read_qgroup_config(fs_info); | 
|  | 3112 | if (ret) | 
|  | 3113 | goto fail_trans_kthread; | 
|  | 3114 |  | 
|  | 3115 | if (btrfs_build_ref_tree(fs_info)) | 
|  | 3116 | btrfs_err(fs_info, "couldn't build ref tree"); | 
|  | 3117 |  | 
|  | 3118 | /* do not make disk changes in broken FS or nologreplay is given */ | 
|  | 3119 | if (btrfs_super_log_root(disk_super) != 0 && | 
|  | 3120 | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
|  | 3121 | ret = btrfs_replay_log(fs_info, fs_devices); | 
|  | 3122 | if (ret) { | 
|  | 3123 | err = ret; | 
|  | 3124 | goto fail_qgroup; | 
|  | 3125 | } | 
|  | 3126 | } | 
|  | 3127 |  | 
|  | 3128 | ret = btrfs_find_orphan_roots(fs_info); | 
|  | 3129 | if (ret) | 
|  | 3130 | goto fail_qgroup; | 
|  | 3131 |  | 
|  | 3132 | if (!sb_rdonly(sb)) { | 
|  | 3133 | ret = btrfs_cleanup_fs_roots(fs_info); | 
|  | 3134 | if (ret) | 
|  | 3135 | goto fail_qgroup; | 
|  | 3136 |  | 
|  | 3137 | mutex_lock(&fs_info->cleaner_mutex); | 
|  | 3138 | ret = btrfs_recover_relocation(tree_root); | 
|  | 3139 | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | 3140 | if (ret < 0) { | 
|  | 3141 | btrfs_warn(fs_info, "failed to recover relocation: %d", | 
|  | 3142 | ret); | 
|  | 3143 | err = -EINVAL; | 
|  | 3144 | goto fail_qgroup; | 
|  | 3145 | } | 
|  | 3146 | } | 
|  | 3147 |  | 
|  | 3148 | location.objectid = BTRFS_FS_TREE_OBJECTID; | 
|  | 3149 | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  | 3150 | location.offset = 0; | 
|  | 3151 |  | 
|  | 3152 | fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); | 
|  | 3153 | if (IS_ERR(fs_info->fs_root)) { | 
|  | 3154 | err = PTR_ERR(fs_info->fs_root); | 
|  | 3155 | btrfs_warn(fs_info, "failed to read fs tree: %d", err); | 
|  | 3156 | goto fail_qgroup; | 
|  | 3157 | } | 
|  | 3158 |  | 
|  | 3159 | if (sb_rdonly(sb)) | 
|  | 3160 | return 0; | 
|  | 3161 |  | 
|  | 3162 | if (btrfs_test_opt(fs_info, CLEAR_CACHE) && | 
|  | 3163 | btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
|  | 3164 | clear_free_space_tree = 1; | 
|  | 3165 | } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
|  | 3166 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { | 
|  | 3167 | btrfs_warn(fs_info, "free space tree is invalid"); | 
|  | 3168 | clear_free_space_tree = 1; | 
|  | 3169 | } | 
|  | 3170 |  | 
|  | 3171 | if (clear_free_space_tree) { | 
|  | 3172 | btrfs_info(fs_info, "clearing free space tree"); | 
|  | 3173 | ret = btrfs_clear_free_space_tree(fs_info); | 
|  | 3174 | if (ret) { | 
|  | 3175 | btrfs_warn(fs_info, | 
|  | 3176 | "failed to clear free space tree: %d", ret); | 
|  | 3177 | close_ctree(fs_info); | 
|  | 3178 | return ret; | 
|  | 3179 | } | 
|  | 3180 | } | 
|  | 3181 |  | 
|  | 3182 | if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && | 
|  | 3183 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
|  | 3184 | btrfs_info(fs_info, "creating free space tree"); | 
|  | 3185 | ret = btrfs_create_free_space_tree(fs_info); | 
|  | 3186 | if (ret) { | 
|  | 3187 | btrfs_warn(fs_info, | 
|  | 3188 | "failed to create free space tree: %d", ret); | 
|  | 3189 | close_ctree(fs_info); | 
|  | 3190 | return ret; | 
|  | 3191 | } | 
|  | 3192 | } | 
|  | 3193 |  | 
|  | 3194 | down_read(&fs_info->cleanup_work_sem); | 
|  | 3195 | if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || | 
|  | 3196 | (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { | 
|  | 3197 | up_read(&fs_info->cleanup_work_sem); | 
|  | 3198 | close_ctree(fs_info); | 
|  | 3199 | return ret; | 
|  | 3200 | } | 
|  | 3201 | up_read(&fs_info->cleanup_work_sem); | 
|  | 3202 |  | 
|  | 3203 | ret = btrfs_resume_balance_async(fs_info); | 
|  | 3204 | if (ret) { | 
|  | 3205 | btrfs_warn(fs_info, "failed to resume balance: %d", ret); | 
|  | 3206 | close_ctree(fs_info); | 
|  | 3207 | return ret; | 
|  | 3208 | } | 
|  | 3209 |  | 
|  | 3210 | ret = btrfs_resume_dev_replace_async(fs_info); | 
|  | 3211 | if (ret) { | 
|  | 3212 | btrfs_warn(fs_info, "failed to resume device replace: %d", ret); | 
|  | 3213 | close_ctree(fs_info); | 
|  | 3214 | return ret; | 
|  | 3215 | } | 
|  | 3216 |  | 
|  | 3217 | btrfs_qgroup_rescan_resume(fs_info); | 
|  | 3218 |  | 
|  | 3219 | if (!fs_info->uuid_root) { | 
|  | 3220 | btrfs_info(fs_info, "creating UUID tree"); | 
|  | 3221 | ret = btrfs_create_uuid_tree(fs_info); | 
|  | 3222 | if (ret) { | 
|  | 3223 | btrfs_warn(fs_info, | 
|  | 3224 | "failed to create the UUID tree: %d", ret); | 
|  | 3225 | close_ctree(fs_info); | 
|  | 3226 | return ret; | 
|  | 3227 | } | 
|  | 3228 | } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || | 
|  | 3229 | fs_info->generation != | 
|  | 3230 | btrfs_super_uuid_tree_generation(disk_super)) { | 
|  | 3231 | btrfs_info(fs_info, "checking UUID tree"); | 
|  | 3232 | ret = btrfs_check_uuid_tree(fs_info); | 
|  | 3233 | if (ret) { | 
|  | 3234 | btrfs_warn(fs_info, | 
|  | 3235 | "failed to check the UUID tree: %d", ret); | 
|  | 3236 | close_ctree(fs_info); | 
|  | 3237 | return ret; | 
|  | 3238 | } | 
|  | 3239 | } else { | 
|  | 3240 | set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); | 
|  | 3241 | } | 
|  | 3242 | set_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
|  | 3243 |  | 
|  | 3244 | /* | 
|  | 3245 | * backuproot only affect mount behavior, and if open_ctree succeeded, | 
|  | 3246 | * no need to keep the flag | 
|  | 3247 | */ | 
|  | 3248 | btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); | 
|  | 3249 |  | 
|  | 3250 | return 0; | 
|  | 3251 |  | 
|  | 3252 | fail_qgroup: | 
|  | 3253 | btrfs_free_qgroup_config(fs_info); | 
|  | 3254 | fail_trans_kthread: | 
|  | 3255 | kthread_stop(fs_info->transaction_kthread); | 
|  | 3256 | btrfs_cleanup_transaction(fs_info); | 
|  | 3257 | btrfs_free_fs_roots(fs_info); | 
|  | 3258 | fail_cleaner: | 
|  | 3259 | kthread_stop(fs_info->cleaner_kthread); | 
|  | 3260 |  | 
|  | 3261 | /* | 
|  | 3262 | * make sure we're done with the btree inode before we stop our | 
|  | 3263 | * kthreads | 
|  | 3264 | */ | 
|  | 3265 | filemap_write_and_wait(fs_info->btree_inode->i_mapping); | 
|  | 3266 |  | 
|  | 3267 | fail_sysfs: | 
|  | 3268 | btrfs_sysfs_remove_mounted(fs_info); | 
|  | 3269 |  | 
|  | 3270 | fail_fsdev_sysfs: | 
|  | 3271 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
|  | 3272 |  | 
|  | 3273 | fail_block_groups: | 
|  | 3274 | btrfs_put_block_group_cache(fs_info); | 
|  | 3275 |  | 
|  | 3276 | fail_tree_roots: | 
|  | 3277 | free_root_pointers(fs_info, 1); | 
|  | 3278 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
|  | 3279 |  | 
|  | 3280 | fail_sb_buffer: | 
|  | 3281 | btrfs_stop_all_workers(fs_info); | 
|  | 3282 | btrfs_free_block_groups(fs_info); | 
|  | 3283 | fail_alloc: | 
|  | 3284 | fail_iput: | 
|  | 3285 | btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
|  | 3286 |  | 
|  | 3287 | iput(fs_info->btree_inode); | 
|  | 3288 | fail_bio_counter: | 
|  | 3289 | percpu_counter_destroy(&fs_info->bio_counter); | 
|  | 3290 | fail_delalloc_bytes: | 
|  | 3291 | percpu_counter_destroy(&fs_info->delalloc_bytes); | 
|  | 3292 | fail_dirty_metadata_bytes: | 
|  | 3293 | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
|  | 3294 | fail_srcu: | 
|  | 3295 | cleanup_srcu_struct(&fs_info->subvol_srcu); | 
|  | 3296 | fail: | 
|  | 3297 | btrfs_free_stripe_hash_table(fs_info); | 
|  | 3298 | btrfs_close_devices(fs_info->fs_devices); | 
|  | 3299 | return err; | 
|  | 3300 |  | 
|  | 3301 | recovery_tree_root: | 
|  | 3302 | if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) | 
|  | 3303 | goto fail_tree_roots; | 
|  | 3304 |  | 
|  | 3305 | free_root_pointers(fs_info, 0); | 
|  | 3306 |  | 
|  | 3307 | /* don't use the log in recovery mode, it won't be valid */ | 
|  | 3308 | btrfs_set_super_log_root(disk_super, 0); | 
|  | 3309 |  | 
|  | 3310 | /* we can't trust the free space cache either */ | 
|  | 3311 | btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); | 
|  | 3312 |  | 
|  | 3313 | ret = next_root_backup(fs_info, fs_info->super_copy, | 
|  | 3314 | &num_backups_tried, &backup_index); | 
|  | 3315 | if (ret == -1) | 
|  | 3316 | goto fail_block_groups; | 
|  | 3317 | goto retry_root_backup; | 
|  | 3318 | } | 
|  | 3319 | ALLOW_ERROR_INJECTION(open_ctree, ERRNO); | 
|  | 3320 |  | 
|  | 3321 | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) | 
|  | 3322 | { | 
|  | 3323 | if (uptodate) { | 
|  | 3324 | set_buffer_uptodate(bh); | 
|  | 3325 | } else { | 
|  | 3326 | struct btrfs_device *device = (struct btrfs_device *) | 
|  | 3327 | bh->b_private; | 
|  | 3328 |  | 
|  | 3329 | btrfs_warn_rl_in_rcu(device->fs_info, | 
|  | 3330 | "lost page write due to IO error on %s", | 
|  | 3331 | rcu_str_deref(device->name)); | 
|  | 3332 | /* note, we don't set_buffer_write_io_error because we have | 
|  | 3333 | * our own ways of dealing with the IO errors | 
|  | 3334 | */ | 
|  | 3335 | clear_buffer_uptodate(bh); | 
|  | 3336 | btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | 3337 | } | 
|  | 3338 | unlock_buffer(bh); | 
|  | 3339 | put_bh(bh); | 
|  | 3340 | } | 
|  | 3341 |  | 
|  | 3342 | int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, | 
|  | 3343 | struct buffer_head **bh_ret) | 
|  | 3344 | { | 
|  | 3345 | struct buffer_head *bh; | 
|  | 3346 | struct btrfs_super_block *super; | 
|  | 3347 | u64 bytenr; | 
|  | 3348 |  | 
|  | 3349 | bytenr = btrfs_sb_offset(copy_num); | 
|  | 3350 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) | 
|  | 3351 | return -EINVAL; | 
|  | 3352 |  | 
|  | 3353 | bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); | 
|  | 3354 | /* | 
|  | 3355 | * If we fail to read from the underlying devices, as of now | 
|  | 3356 | * the best option we have is to mark it EIO. | 
|  | 3357 | */ | 
|  | 3358 | if (!bh) | 
|  | 3359 | return -EIO; | 
|  | 3360 |  | 
|  | 3361 | super = (struct btrfs_super_block *)bh->b_data; | 
|  | 3362 | if (btrfs_super_bytenr(super) != bytenr || | 
|  | 3363 | btrfs_super_magic(super) != BTRFS_MAGIC) { | 
|  | 3364 | brelse(bh); | 
|  | 3365 | return -EINVAL; | 
|  | 3366 | } | 
|  | 3367 |  | 
|  | 3368 | *bh_ret = bh; | 
|  | 3369 | return 0; | 
|  | 3370 | } | 
|  | 3371 |  | 
|  | 3372 |  | 
|  | 3373 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) | 
|  | 3374 | { | 
|  | 3375 | struct buffer_head *bh; | 
|  | 3376 | struct buffer_head *latest = NULL; | 
|  | 3377 | struct btrfs_super_block *super; | 
|  | 3378 | int i; | 
|  | 3379 | u64 transid = 0; | 
|  | 3380 | int ret = -EINVAL; | 
|  | 3381 |  | 
|  | 3382 | /* we would like to check all the supers, but that would make | 
|  | 3383 | * a btrfs mount succeed after a mkfs from a different FS. | 
|  | 3384 | * So, we need to add a special mount option to scan for | 
|  | 3385 | * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
|  | 3386 | */ | 
|  | 3387 | for (i = 0; i < 1; i++) { | 
|  | 3388 | ret = btrfs_read_dev_one_super(bdev, i, &bh); | 
|  | 3389 | if (ret) | 
|  | 3390 | continue; | 
|  | 3391 |  | 
|  | 3392 | super = (struct btrfs_super_block *)bh->b_data; | 
|  | 3393 |  | 
|  | 3394 | if (!latest || btrfs_super_generation(super) > transid) { | 
|  | 3395 | brelse(latest); | 
|  | 3396 | latest = bh; | 
|  | 3397 | transid = btrfs_super_generation(super); | 
|  | 3398 | } else { | 
|  | 3399 | brelse(bh); | 
|  | 3400 | } | 
|  | 3401 | } | 
|  | 3402 |  | 
|  | 3403 | if (!latest) | 
|  | 3404 | return ERR_PTR(ret); | 
|  | 3405 |  | 
|  | 3406 | return latest; | 
|  | 3407 | } | 
|  | 3408 |  | 
|  | 3409 | /* | 
|  | 3410 | * Write superblock @sb to the @device. Do not wait for completion, all the | 
|  | 3411 | * buffer heads we write are pinned. | 
|  | 3412 | * | 
|  | 3413 | * Write @max_mirrors copies of the superblock, where 0 means default that fit | 
|  | 3414 | * the expected device size at commit time. Note that max_mirrors must be | 
|  | 3415 | * same for write and wait phases. | 
|  | 3416 | * | 
|  | 3417 | * Return number of errors when buffer head is not found or submission fails. | 
|  | 3418 | */ | 
|  | 3419 | static int write_dev_supers(struct btrfs_device *device, | 
|  | 3420 | struct btrfs_super_block *sb, int max_mirrors) | 
|  | 3421 | { | 
|  | 3422 | struct buffer_head *bh; | 
|  | 3423 | int i; | 
|  | 3424 | int ret; | 
|  | 3425 | int errors = 0; | 
|  | 3426 | u32 crc; | 
|  | 3427 | u64 bytenr; | 
|  | 3428 | int op_flags; | 
|  | 3429 |  | 
|  | 3430 | if (max_mirrors == 0) | 
|  | 3431 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
|  | 3432 |  | 
|  | 3433 | for (i = 0; i < max_mirrors; i++) { | 
|  | 3434 | bytenr = btrfs_sb_offset(i); | 
|  | 3435 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
|  | 3436 | device->commit_total_bytes) | 
|  | 3437 | break; | 
|  | 3438 |  | 
|  | 3439 | btrfs_set_super_bytenr(sb, bytenr); | 
|  | 3440 |  | 
|  | 3441 | crc = ~(u32)0; | 
|  | 3442 | crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, | 
|  | 3443 | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); | 
|  | 3444 | btrfs_csum_final(crc, sb->csum); | 
|  | 3445 |  | 
|  | 3446 | /* One reference for us, and we leave it for the caller */ | 
|  | 3447 | bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, | 
|  | 3448 | BTRFS_SUPER_INFO_SIZE); | 
|  | 3449 | if (!bh) { | 
|  | 3450 | btrfs_err(device->fs_info, | 
|  | 3451 | "couldn't get super buffer head for bytenr %llu", | 
|  | 3452 | bytenr); | 
|  | 3453 | errors++; | 
|  | 3454 | continue; | 
|  | 3455 | } | 
|  | 3456 |  | 
|  | 3457 | memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); | 
|  | 3458 |  | 
|  | 3459 | /* one reference for submit_bh */ | 
|  | 3460 | get_bh(bh); | 
|  | 3461 |  | 
|  | 3462 | set_buffer_uptodate(bh); | 
|  | 3463 | lock_buffer(bh); | 
|  | 3464 | bh->b_end_io = btrfs_end_buffer_write_sync; | 
|  | 3465 | bh->b_private = device; | 
|  | 3466 |  | 
|  | 3467 | /* | 
|  | 3468 | * we fua the first super.  The others we allow | 
|  | 3469 | * to go down lazy. | 
|  | 3470 | */ | 
|  | 3471 | op_flags = REQ_SYNC | REQ_META | REQ_PRIO; | 
|  | 3472 | if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) | 
|  | 3473 | op_flags |= REQ_FUA; | 
|  | 3474 | ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); | 
|  | 3475 | if (ret) | 
|  | 3476 | errors++; | 
|  | 3477 | } | 
|  | 3478 | return errors < i ? 0 : -1; | 
|  | 3479 | } | 
|  | 3480 |  | 
|  | 3481 | /* | 
|  | 3482 | * Wait for write completion of superblocks done by write_dev_supers, | 
|  | 3483 | * @max_mirrors same for write and wait phases. | 
|  | 3484 | * | 
|  | 3485 | * Return number of errors when buffer head is not found or not marked up to | 
|  | 3486 | * date. | 
|  | 3487 | */ | 
|  | 3488 | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) | 
|  | 3489 | { | 
|  | 3490 | struct buffer_head *bh; | 
|  | 3491 | int i; | 
|  | 3492 | int errors = 0; | 
|  | 3493 | bool primary_failed = false; | 
|  | 3494 | u64 bytenr; | 
|  | 3495 |  | 
|  | 3496 | if (max_mirrors == 0) | 
|  | 3497 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
|  | 3498 |  | 
|  | 3499 | for (i = 0; i < max_mirrors; i++) { | 
|  | 3500 | bytenr = btrfs_sb_offset(i); | 
|  | 3501 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
|  | 3502 | device->commit_total_bytes) | 
|  | 3503 | break; | 
|  | 3504 |  | 
|  | 3505 | bh = __find_get_block(device->bdev, | 
|  | 3506 | bytenr / BTRFS_BDEV_BLOCKSIZE, | 
|  | 3507 | BTRFS_SUPER_INFO_SIZE); | 
|  | 3508 | if (!bh) { | 
|  | 3509 | errors++; | 
|  | 3510 | if (i == 0) | 
|  | 3511 | primary_failed = true; | 
|  | 3512 | continue; | 
|  | 3513 | } | 
|  | 3514 | wait_on_buffer(bh); | 
|  | 3515 | if (!buffer_uptodate(bh)) { | 
|  | 3516 | errors++; | 
|  | 3517 | if (i == 0) | 
|  | 3518 | primary_failed = true; | 
|  | 3519 | } | 
|  | 3520 |  | 
|  | 3521 | /* drop our reference */ | 
|  | 3522 | brelse(bh); | 
|  | 3523 |  | 
|  | 3524 | /* drop the reference from the writing run */ | 
|  | 3525 | brelse(bh); | 
|  | 3526 | } | 
|  | 3527 |  | 
|  | 3528 | /* log error, force error return */ | 
|  | 3529 | if (primary_failed) { | 
|  | 3530 | btrfs_err(device->fs_info, "error writing primary super block to device %llu", | 
|  | 3531 | device->devid); | 
|  | 3532 | return -1; | 
|  | 3533 | } | 
|  | 3534 |  | 
|  | 3535 | return errors < i ? 0 : -1; | 
|  | 3536 | } | 
|  | 3537 |  | 
|  | 3538 | /* | 
|  | 3539 | * endio for the write_dev_flush, this will wake anyone waiting | 
|  | 3540 | * for the barrier when it is done | 
|  | 3541 | */ | 
|  | 3542 | static void btrfs_end_empty_barrier(struct bio *bio) | 
|  | 3543 | { | 
|  | 3544 | complete(bio->bi_private); | 
|  | 3545 | } | 
|  | 3546 |  | 
|  | 3547 | /* | 
|  | 3548 | * Submit a flush request to the device if it supports it. Error handling is | 
|  | 3549 | * done in the waiting counterpart. | 
|  | 3550 | */ | 
|  | 3551 | static void write_dev_flush(struct btrfs_device *device) | 
|  | 3552 | { | 
|  | 3553 | struct request_queue *q = bdev_get_queue(device->bdev); | 
|  | 3554 | struct bio *bio = device->flush_bio; | 
|  | 3555 |  | 
|  | 3556 | if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) | 
|  | 3557 | return; | 
|  | 3558 |  | 
|  | 3559 | bio_reset(bio); | 
|  | 3560 | bio->bi_end_io = btrfs_end_empty_barrier; | 
|  | 3561 | bio_set_dev(bio, device->bdev); | 
|  | 3562 | bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; | 
|  | 3563 | init_completion(&device->flush_wait); | 
|  | 3564 | bio->bi_private = &device->flush_wait; | 
|  | 3565 |  | 
|  | 3566 | btrfsic_submit_bio(bio); | 
|  | 3567 | set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); | 
|  | 3568 | } | 
|  | 3569 |  | 
|  | 3570 | /* | 
|  | 3571 | * If the flush bio has been submitted by write_dev_flush, wait for it. | 
|  | 3572 | */ | 
|  | 3573 | static blk_status_t wait_dev_flush(struct btrfs_device *device) | 
|  | 3574 | { | 
|  | 3575 | struct bio *bio = device->flush_bio; | 
|  | 3576 |  | 
|  | 3577 | if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) | 
|  | 3578 | return BLK_STS_OK; | 
|  | 3579 |  | 
|  | 3580 | clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); | 
|  | 3581 | wait_for_completion_io(&device->flush_wait); | 
|  | 3582 |  | 
|  | 3583 | return bio->bi_status; | 
|  | 3584 | } | 
|  | 3585 |  | 
|  | 3586 | static int check_barrier_error(struct btrfs_fs_info *fs_info) | 
|  | 3587 | { | 
|  | 3588 | if (!btrfs_check_rw_degradable(fs_info, NULL)) | 
|  | 3589 | return -EIO; | 
|  | 3590 | return 0; | 
|  | 3591 | } | 
|  | 3592 |  | 
|  | 3593 | /* | 
|  | 3594 | * send an empty flush down to each device in parallel, | 
|  | 3595 | * then wait for them | 
|  | 3596 | */ | 
|  | 3597 | static int barrier_all_devices(struct btrfs_fs_info *info) | 
|  | 3598 | { | 
|  | 3599 | struct list_head *head; | 
|  | 3600 | struct btrfs_device *dev; | 
|  | 3601 | int errors_wait = 0; | 
|  | 3602 | blk_status_t ret; | 
|  | 3603 |  | 
|  | 3604 | lockdep_assert_held(&info->fs_devices->device_list_mutex); | 
|  | 3605 | /* send down all the barriers */ | 
|  | 3606 | head = &info->fs_devices->devices; | 
|  | 3607 | list_for_each_entry(dev, head, dev_list) { | 
|  | 3608 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
|  | 3609 | continue; | 
|  | 3610 | if (!dev->bdev) | 
|  | 3611 | continue; | 
|  | 3612 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | 3613 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | 3614 | continue; | 
|  | 3615 |  | 
|  | 3616 | write_dev_flush(dev); | 
|  | 3617 | dev->last_flush_error = BLK_STS_OK; | 
|  | 3618 | } | 
|  | 3619 |  | 
|  | 3620 | /* wait for all the barriers */ | 
|  | 3621 | list_for_each_entry(dev, head, dev_list) { | 
|  | 3622 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
|  | 3623 | continue; | 
|  | 3624 | if (!dev->bdev) { | 
|  | 3625 | errors_wait++; | 
|  | 3626 | continue; | 
|  | 3627 | } | 
|  | 3628 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | 3629 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | 3630 | continue; | 
|  | 3631 |  | 
|  | 3632 | ret = wait_dev_flush(dev); | 
|  | 3633 | if (ret) { | 
|  | 3634 | dev->last_flush_error = ret; | 
|  | 3635 | btrfs_dev_stat_inc_and_print(dev, | 
|  | 3636 | BTRFS_DEV_STAT_FLUSH_ERRS); | 
|  | 3637 | errors_wait++; | 
|  | 3638 | } | 
|  | 3639 | } | 
|  | 3640 |  | 
|  | 3641 | if (errors_wait) { | 
|  | 3642 | /* | 
|  | 3643 | * At some point we need the status of all disks | 
|  | 3644 | * to arrive at the volume status. So error checking | 
|  | 3645 | * is being pushed to a separate loop. | 
|  | 3646 | */ | 
|  | 3647 | return check_barrier_error(info); | 
|  | 3648 | } | 
|  | 3649 | return 0; | 
|  | 3650 | } | 
|  | 3651 |  | 
|  | 3652 | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) | 
|  | 3653 | { | 
|  | 3654 | int raid_type; | 
|  | 3655 | int min_tolerated = INT_MAX; | 
|  | 3656 |  | 
|  | 3657 | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || | 
|  | 3658 | (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) | 
|  | 3659 | min_tolerated = min(min_tolerated, | 
|  | 3660 | btrfs_raid_array[BTRFS_RAID_SINGLE]. | 
|  | 3661 | tolerated_failures); | 
|  | 3662 |  | 
|  | 3663 | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
|  | 3664 | if (raid_type == BTRFS_RAID_SINGLE) | 
|  | 3665 | continue; | 
|  | 3666 | if (!(flags & btrfs_raid_array[raid_type].bg_flag)) | 
|  | 3667 | continue; | 
|  | 3668 | min_tolerated = min(min_tolerated, | 
|  | 3669 | btrfs_raid_array[raid_type]. | 
|  | 3670 | tolerated_failures); | 
|  | 3671 | } | 
|  | 3672 |  | 
|  | 3673 | if (min_tolerated == INT_MAX) { | 
|  | 3674 | pr_warn("BTRFS: unknown raid flag: %llu", flags); | 
|  | 3675 | min_tolerated = 0; | 
|  | 3676 | } | 
|  | 3677 |  | 
|  | 3678 | return min_tolerated; | 
|  | 3679 | } | 
|  | 3680 |  | 
|  | 3681 | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) | 
|  | 3682 | { | 
|  | 3683 | struct list_head *head; | 
|  | 3684 | struct btrfs_device *dev; | 
|  | 3685 | struct btrfs_super_block *sb; | 
|  | 3686 | struct btrfs_dev_item *dev_item; | 
|  | 3687 | int ret; | 
|  | 3688 | int do_barriers; | 
|  | 3689 | int max_errors; | 
|  | 3690 | int total_errors = 0; | 
|  | 3691 | u64 flags; | 
|  | 3692 |  | 
|  | 3693 | do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); | 
|  | 3694 |  | 
|  | 3695 | /* | 
|  | 3696 | * max_mirrors == 0 indicates we're from commit_transaction, | 
|  | 3697 | * not from fsync where the tree roots in fs_info have not | 
|  | 3698 | * been consistent on disk. | 
|  | 3699 | */ | 
|  | 3700 | if (max_mirrors == 0) | 
|  | 3701 | backup_super_roots(fs_info); | 
|  | 3702 |  | 
|  | 3703 | sb = fs_info->super_for_commit; | 
|  | 3704 | dev_item = &sb->dev_item; | 
|  | 3705 |  | 
|  | 3706 | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | 3707 | head = &fs_info->fs_devices->devices; | 
|  | 3708 | max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; | 
|  | 3709 |  | 
|  | 3710 | if (do_barriers) { | 
|  | 3711 | ret = barrier_all_devices(fs_info); | 
|  | 3712 | if (ret) { | 
|  | 3713 | mutex_unlock( | 
|  | 3714 | &fs_info->fs_devices->device_list_mutex); | 
|  | 3715 | btrfs_handle_fs_error(fs_info, ret, | 
|  | 3716 | "errors while submitting device barriers."); | 
|  | 3717 | return ret; | 
|  | 3718 | } | 
|  | 3719 | } | 
|  | 3720 |  | 
|  | 3721 | list_for_each_entry(dev, head, dev_list) { | 
|  | 3722 | if (!dev->bdev) { | 
|  | 3723 | total_errors++; | 
|  | 3724 | continue; | 
|  | 3725 | } | 
|  | 3726 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | 3727 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | 3728 | continue; | 
|  | 3729 |  | 
|  | 3730 | btrfs_set_stack_device_generation(dev_item, 0); | 
|  | 3731 | btrfs_set_stack_device_type(dev_item, dev->type); | 
|  | 3732 | btrfs_set_stack_device_id(dev_item, dev->devid); | 
|  | 3733 | btrfs_set_stack_device_total_bytes(dev_item, | 
|  | 3734 | dev->commit_total_bytes); | 
|  | 3735 | btrfs_set_stack_device_bytes_used(dev_item, | 
|  | 3736 | dev->commit_bytes_used); | 
|  | 3737 | btrfs_set_stack_device_io_align(dev_item, dev->io_align); | 
|  | 3738 | btrfs_set_stack_device_io_width(dev_item, dev->io_width); | 
|  | 3739 | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | 
|  | 3740 | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
|  | 3741 | memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | 3742 |  | 
|  | 3743 | flags = btrfs_super_flags(sb); | 
|  | 3744 | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | 
|  | 3745 |  | 
|  | 3746 | ret = btrfs_validate_write_super(fs_info, sb); | 
|  | 3747 | if (ret < 0) { | 
|  | 3748 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | 3749 | btrfs_handle_fs_error(fs_info, -EUCLEAN, | 
|  | 3750 | "unexpected superblock corruption detected"); | 
|  | 3751 | return -EUCLEAN; | 
|  | 3752 | } | 
|  | 3753 |  | 
|  | 3754 | ret = write_dev_supers(dev, sb, max_mirrors); | 
|  | 3755 | if (ret) | 
|  | 3756 | total_errors++; | 
|  | 3757 | } | 
|  | 3758 | if (total_errors > max_errors) { | 
|  | 3759 | btrfs_err(fs_info, "%d errors while writing supers", | 
|  | 3760 | total_errors); | 
|  | 3761 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | 3762 |  | 
|  | 3763 | /* FUA is masked off if unsupported and can't be the reason */ | 
|  | 3764 | btrfs_handle_fs_error(fs_info, -EIO, | 
|  | 3765 | "%d errors while writing supers", | 
|  | 3766 | total_errors); | 
|  | 3767 | return -EIO; | 
|  | 3768 | } | 
|  | 3769 |  | 
|  | 3770 | total_errors = 0; | 
|  | 3771 | list_for_each_entry(dev, head, dev_list) { | 
|  | 3772 | if (!dev->bdev) | 
|  | 3773 | continue; | 
|  | 3774 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | 3775 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | 3776 | continue; | 
|  | 3777 |  | 
|  | 3778 | ret = wait_dev_supers(dev, max_mirrors); | 
|  | 3779 | if (ret) | 
|  | 3780 | total_errors++; | 
|  | 3781 | } | 
|  | 3782 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | 3783 | if (total_errors > max_errors) { | 
|  | 3784 | btrfs_handle_fs_error(fs_info, -EIO, | 
|  | 3785 | "%d errors while writing supers", | 
|  | 3786 | total_errors); | 
|  | 3787 | return -EIO; | 
|  | 3788 | } | 
|  | 3789 | return 0; | 
|  | 3790 | } | 
|  | 3791 |  | 
|  | 3792 | /* Drop a fs root from the radix tree and free it. */ | 
|  | 3793 | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, | 
|  | 3794 | struct btrfs_root *root) | 
|  | 3795 | { | 
|  | 3796 | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | 3797 | radix_tree_delete(&fs_info->fs_roots_radix, | 
|  | 3798 | (unsigned long)root->root_key.objectid); | 
|  | 3799 | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | 3800 |  | 
|  | 3801 | if (btrfs_root_refs(&root->root_item) == 0) | 
|  | 3802 | synchronize_srcu(&fs_info->subvol_srcu); | 
|  | 3803 |  | 
|  | 3804 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | 3805 | btrfs_free_log(NULL, root); | 
|  | 3806 | if (root->reloc_root) { | 
|  | 3807 | free_extent_buffer(root->reloc_root->node); | 
|  | 3808 | free_extent_buffer(root->reloc_root->commit_root); | 
|  | 3809 | btrfs_put_fs_root(root->reloc_root); | 
|  | 3810 | root->reloc_root = NULL; | 
|  | 3811 | } | 
|  | 3812 | } | 
|  | 3813 |  | 
|  | 3814 | if (root->free_ino_pinned) | 
|  | 3815 | __btrfs_remove_free_space_cache(root->free_ino_pinned); | 
|  | 3816 | if (root->free_ino_ctl) | 
|  | 3817 | __btrfs_remove_free_space_cache(root->free_ino_ctl); | 
|  | 3818 | btrfs_free_fs_root(root); | 
|  | 3819 | } | 
|  | 3820 |  | 
|  | 3821 | void btrfs_free_fs_root(struct btrfs_root *root) | 
|  | 3822 | { | 
|  | 3823 | iput(root->ino_cache_inode); | 
|  | 3824 | WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); | 
|  | 3825 | if (root->anon_dev) | 
|  | 3826 | free_anon_bdev(root->anon_dev); | 
|  | 3827 | if (root->subv_writers) | 
|  | 3828 | btrfs_free_subvolume_writers(root->subv_writers); | 
|  | 3829 | free_extent_buffer(root->node); | 
|  | 3830 | free_extent_buffer(root->commit_root); | 
|  | 3831 | kfree(root->free_ino_ctl); | 
|  | 3832 | kfree(root->free_ino_pinned); | 
|  | 3833 | btrfs_put_fs_root(root); | 
|  | 3834 | } | 
|  | 3835 |  | 
|  | 3836 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | 3837 | { | 
|  | 3838 | u64 root_objectid = 0; | 
|  | 3839 | struct btrfs_root *gang[8]; | 
|  | 3840 | int i = 0; | 
|  | 3841 | int err = 0; | 
|  | 3842 | unsigned int ret = 0; | 
|  | 3843 | int index; | 
|  | 3844 |  | 
|  | 3845 | while (1) { | 
|  | 3846 | index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  | 3847 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | 3848 | (void **)gang, root_objectid, | 
|  | 3849 | ARRAY_SIZE(gang)); | 
|  | 3850 | if (!ret) { | 
|  | 3851 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 3852 | break; | 
|  | 3853 | } | 
|  | 3854 | root_objectid = gang[ret - 1]->root_key.objectid + 1; | 
|  | 3855 |  | 
|  | 3856 | for (i = 0; i < ret; i++) { | 
|  | 3857 | /* Avoid to grab roots in dead_roots */ | 
|  | 3858 | if (btrfs_root_refs(&gang[i]->root_item) == 0) { | 
|  | 3859 | gang[i] = NULL; | 
|  | 3860 | continue; | 
|  | 3861 | } | 
|  | 3862 | /* grab all the search result for later use */ | 
|  | 3863 | gang[i] = btrfs_grab_fs_root(gang[i]); | 
|  | 3864 | } | 
|  | 3865 | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | 3866 |  | 
|  | 3867 | for (i = 0; i < ret; i++) { | 
|  | 3868 | if (!gang[i]) | 
|  | 3869 | continue; | 
|  | 3870 | root_objectid = gang[i]->root_key.objectid; | 
|  | 3871 | err = btrfs_orphan_cleanup(gang[i]); | 
|  | 3872 | if (err) | 
|  | 3873 | break; | 
|  | 3874 | btrfs_put_fs_root(gang[i]); | 
|  | 3875 | } | 
|  | 3876 | root_objectid++; | 
|  | 3877 | } | 
|  | 3878 |  | 
|  | 3879 | /* release the uncleaned roots due to error */ | 
|  | 3880 | for (; i < ret; i++) { | 
|  | 3881 | if (gang[i]) | 
|  | 3882 | btrfs_put_fs_root(gang[i]); | 
|  | 3883 | } | 
|  | 3884 | return err; | 
|  | 3885 | } | 
|  | 3886 |  | 
|  | 3887 | int btrfs_commit_super(struct btrfs_fs_info *fs_info) | 
|  | 3888 | { | 
|  | 3889 | struct btrfs_root *root = fs_info->tree_root; | 
|  | 3890 | struct btrfs_trans_handle *trans; | 
|  | 3891 |  | 
|  | 3892 | mutex_lock(&fs_info->cleaner_mutex); | 
|  | 3893 | btrfs_run_delayed_iputs(fs_info); | 
|  | 3894 | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | 3895 | wake_up_process(fs_info->cleaner_kthread); | 
|  | 3896 |  | 
|  | 3897 | /* wait until ongoing cleanup work done */ | 
|  | 3898 | down_write(&fs_info->cleanup_work_sem); | 
|  | 3899 | up_write(&fs_info->cleanup_work_sem); | 
|  | 3900 |  | 
|  | 3901 | trans = btrfs_join_transaction(root); | 
|  | 3902 | if (IS_ERR(trans)) | 
|  | 3903 | return PTR_ERR(trans); | 
|  | 3904 | return btrfs_commit_transaction(trans); | 
|  | 3905 | } | 
|  | 3906 |  | 
|  | 3907 | void close_ctree(struct btrfs_fs_info *fs_info) | 
|  | 3908 | { | 
|  | 3909 | int ret; | 
|  | 3910 |  | 
|  | 3911 | set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); | 
|  | 3912 | /* | 
|  | 3913 | * We don't want the cleaner to start new transactions, add more delayed | 
|  | 3914 | * iputs, etc. while we're closing. We can't use kthread_stop() yet | 
|  | 3915 | * because that frees the task_struct, and the transaction kthread might | 
|  | 3916 | * still try to wake up the cleaner. | 
|  | 3917 | */ | 
|  | 3918 | kthread_park(fs_info->cleaner_kthread); | 
|  | 3919 |  | 
|  | 3920 | /* wait for the qgroup rescan worker to stop */ | 
|  | 3921 | btrfs_qgroup_wait_for_completion(fs_info, false); | 
|  | 3922 |  | 
|  | 3923 | /* wait for the uuid_scan task to finish */ | 
|  | 3924 | down(&fs_info->uuid_tree_rescan_sem); | 
|  | 3925 | /* avoid complains from lockdep et al., set sem back to initial state */ | 
|  | 3926 | up(&fs_info->uuid_tree_rescan_sem); | 
|  | 3927 |  | 
|  | 3928 | /* pause restriper - we want to resume on mount */ | 
|  | 3929 | btrfs_pause_balance(fs_info); | 
|  | 3930 |  | 
|  | 3931 | btrfs_dev_replace_suspend_for_unmount(fs_info); | 
|  | 3932 |  | 
|  | 3933 | btrfs_scrub_cancel(fs_info); | 
|  | 3934 |  | 
|  | 3935 | /* wait for any defraggers to finish */ | 
|  | 3936 | wait_event(fs_info->transaction_wait, | 
|  | 3937 | (atomic_read(&fs_info->defrag_running) == 0)); | 
|  | 3938 |  | 
|  | 3939 | /* clear out the rbtree of defraggable inodes */ | 
|  | 3940 | btrfs_cleanup_defrag_inodes(fs_info); | 
|  | 3941 |  | 
|  | 3942 | cancel_work_sync(&fs_info->async_reclaim_work); | 
|  | 3943 |  | 
|  | 3944 | if (!sb_rdonly(fs_info->sb)) { | 
|  | 3945 | /* | 
|  | 3946 | * The cleaner kthread is stopped, so do one final pass over | 
|  | 3947 | * unused block groups. | 
|  | 3948 | */ | 
|  | 3949 | btrfs_delete_unused_bgs(fs_info); | 
|  | 3950 |  | 
|  | 3951 | ret = btrfs_commit_super(fs_info); | 
|  | 3952 | if (ret) | 
|  | 3953 | btrfs_err(fs_info, "commit super ret %d", ret); | 
|  | 3954 | } | 
|  | 3955 |  | 
|  | 3956 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || | 
|  | 3957 | test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) | 
|  | 3958 | btrfs_error_commit_super(fs_info); | 
|  | 3959 |  | 
|  | 3960 | kthread_stop(fs_info->transaction_kthread); | 
|  | 3961 | kthread_stop(fs_info->cleaner_kthread); | 
|  | 3962 |  | 
|  | 3963 | set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); | 
|  | 3964 |  | 
|  | 3965 | btrfs_free_qgroup_config(fs_info); | 
|  | 3966 | ASSERT(list_empty(&fs_info->delalloc_roots)); | 
|  | 3967 |  | 
|  | 3968 | if (percpu_counter_sum(&fs_info->delalloc_bytes)) { | 
|  | 3969 | btrfs_info(fs_info, "at unmount delalloc count %lld", | 
|  | 3970 | percpu_counter_sum(&fs_info->delalloc_bytes)); | 
|  | 3971 | } | 
|  | 3972 |  | 
|  | 3973 | btrfs_sysfs_remove_mounted(fs_info); | 
|  | 3974 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
|  | 3975 |  | 
|  | 3976 | btrfs_free_fs_roots(fs_info); | 
|  | 3977 |  | 
|  | 3978 | btrfs_put_block_group_cache(fs_info); | 
|  | 3979 |  | 
|  | 3980 | /* | 
|  | 3981 | * we must make sure there is not any read request to | 
|  | 3982 | * submit after we stopping all workers. | 
|  | 3983 | */ | 
|  | 3984 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
|  | 3985 | btrfs_stop_all_workers(fs_info); | 
|  | 3986 |  | 
|  | 3987 | btrfs_free_block_groups(fs_info); | 
|  | 3988 |  | 
|  | 3989 | clear_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
|  | 3990 | free_root_pointers(fs_info, 1); | 
|  | 3991 |  | 
|  | 3992 | iput(fs_info->btree_inode); | 
|  | 3993 |  | 
|  | 3994 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | 3995 | if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) | 
|  | 3996 | btrfsic_unmount(fs_info->fs_devices); | 
|  | 3997 | #endif | 
|  | 3998 |  | 
|  | 3999 | btrfs_close_devices(fs_info->fs_devices); | 
|  | 4000 | btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
|  | 4001 |  | 
|  | 4002 | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
|  | 4003 | percpu_counter_destroy(&fs_info->delalloc_bytes); | 
|  | 4004 | percpu_counter_destroy(&fs_info->bio_counter); | 
|  | 4005 | cleanup_srcu_struct(&fs_info->subvol_srcu); | 
|  | 4006 |  | 
|  | 4007 | btrfs_free_stripe_hash_table(fs_info); | 
|  | 4008 | btrfs_free_ref_cache(fs_info); | 
|  | 4009 |  | 
|  | 4010 | while (!list_empty(&fs_info->pinned_chunks)) { | 
|  | 4011 | struct extent_map *em; | 
|  | 4012 |  | 
|  | 4013 | em = list_first_entry(&fs_info->pinned_chunks, | 
|  | 4014 | struct extent_map, list); | 
|  | 4015 | list_del_init(&em->list); | 
|  | 4016 | free_extent_map(em); | 
|  | 4017 | } | 
|  | 4018 | } | 
|  | 4019 |  | 
|  | 4020 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, | 
|  | 4021 | int atomic) | 
|  | 4022 | { | 
|  | 4023 | int ret; | 
|  | 4024 | struct inode *btree_inode = buf->pages[0]->mapping->host; | 
|  | 4025 |  | 
|  | 4026 | ret = extent_buffer_uptodate(buf); | 
|  | 4027 | if (!ret) | 
|  | 4028 | return ret; | 
|  | 4029 |  | 
|  | 4030 | ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, | 
|  | 4031 | parent_transid, atomic); | 
|  | 4032 | if (ret == -EAGAIN) | 
|  | 4033 | return ret; | 
|  | 4034 | return !ret; | 
|  | 4035 | } | 
|  | 4036 |  | 
|  | 4037 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) | 
|  | 4038 | { | 
|  | 4039 | struct btrfs_fs_info *fs_info; | 
|  | 4040 | struct btrfs_root *root; | 
|  | 4041 | u64 transid = btrfs_header_generation(buf); | 
|  | 4042 | int was_dirty; | 
|  | 4043 |  | 
|  | 4044 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | 4045 | /* | 
|  | 4046 | * This is a fast path so only do this check if we have sanity tests | 
|  | 4047 | * enabled.  Normal people shouldn't be using umapped buffers as dirty | 
|  | 4048 | * outside of the sanity tests. | 
|  | 4049 | */ | 
|  | 4050 | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) | 
|  | 4051 | return; | 
|  | 4052 | #endif | 
|  | 4053 | root = BTRFS_I(buf->pages[0]->mapping->host)->root; | 
|  | 4054 | fs_info = root->fs_info; | 
|  | 4055 | btrfs_assert_tree_locked(buf); | 
|  | 4056 | if (transid != fs_info->generation) | 
|  | 4057 | WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", | 
|  | 4058 | buf->start, transid, fs_info->generation); | 
|  | 4059 | was_dirty = set_extent_buffer_dirty(buf); | 
|  | 4060 | if (!was_dirty) | 
|  | 4061 | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | 4062 | buf->len, | 
|  | 4063 | fs_info->dirty_metadata_batch); | 
|  | 4064 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | 4065 | /* | 
|  | 4066 | * Since btrfs_mark_buffer_dirty() can be called with item pointer set | 
|  | 4067 | * but item data not updated. | 
|  | 4068 | * So here we should only check item pointers, not item data. | 
|  | 4069 | */ | 
|  | 4070 | if (btrfs_header_level(buf) == 0 && | 
|  | 4071 | btrfs_check_leaf_relaxed(fs_info, buf)) { | 
|  | 4072 | btrfs_print_leaf(buf); | 
|  | 4073 | ASSERT(0); | 
|  | 4074 | } | 
|  | 4075 | #endif | 
|  | 4076 | } | 
|  | 4077 |  | 
|  | 4078 | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, | 
|  | 4079 | int flush_delayed) | 
|  | 4080 | { | 
|  | 4081 | /* | 
|  | 4082 | * looks as though older kernels can get into trouble with | 
|  | 4083 | * this code, they end up stuck in balance_dirty_pages forever | 
|  | 4084 | */ | 
|  | 4085 | int ret; | 
|  | 4086 |  | 
|  | 4087 | if (current->flags & PF_MEMALLOC) | 
|  | 4088 | return; | 
|  | 4089 |  | 
|  | 4090 | if (flush_delayed) | 
|  | 4091 | btrfs_balance_delayed_items(fs_info); | 
|  | 4092 |  | 
|  | 4093 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
|  | 4094 | BTRFS_DIRTY_METADATA_THRESH, | 
|  | 4095 | fs_info->dirty_metadata_batch); | 
|  | 4096 | if (ret > 0) { | 
|  | 4097 | balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); | 
|  | 4098 | } | 
|  | 4099 | } | 
|  | 4100 |  | 
|  | 4101 | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) | 
|  | 4102 | { | 
|  | 4103 | __btrfs_btree_balance_dirty(fs_info, 1); | 
|  | 4104 | } | 
|  | 4105 |  | 
|  | 4106 | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) | 
|  | 4107 | { | 
|  | 4108 | __btrfs_btree_balance_dirty(fs_info, 0); | 
|  | 4109 | } | 
|  | 4110 |  | 
|  | 4111 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, | 
|  | 4112 | struct btrfs_key *first_key) | 
|  | 4113 | { | 
|  | 4114 | struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; | 
|  | 4115 | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | 4116 |  | 
|  | 4117 | return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, | 
|  | 4118 | level, first_key); | 
|  | 4119 | } | 
|  | 4120 |  | 
|  | 4121 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) | 
|  | 4122 | { | 
|  | 4123 | /* cleanup FS via transaction */ | 
|  | 4124 | btrfs_cleanup_transaction(fs_info); | 
|  | 4125 |  | 
|  | 4126 | mutex_lock(&fs_info->cleaner_mutex); | 
|  | 4127 | btrfs_run_delayed_iputs(fs_info); | 
|  | 4128 | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | 4129 |  | 
|  | 4130 | down_write(&fs_info->cleanup_work_sem); | 
|  | 4131 | up_write(&fs_info->cleanup_work_sem); | 
|  | 4132 | } | 
|  | 4133 |  | 
|  | 4134 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
|  | 4135 | { | 
|  | 4136 | struct btrfs_ordered_extent *ordered; | 
|  | 4137 |  | 
|  | 4138 | spin_lock(&root->ordered_extent_lock); | 
|  | 4139 | /* | 
|  | 4140 | * This will just short circuit the ordered completion stuff which will | 
|  | 4141 | * make sure the ordered extent gets properly cleaned up. | 
|  | 4142 | */ | 
|  | 4143 | list_for_each_entry(ordered, &root->ordered_extents, | 
|  | 4144 | root_extent_list) | 
|  | 4145 | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); | 
|  | 4146 | spin_unlock(&root->ordered_extent_lock); | 
|  | 4147 | } | 
|  | 4148 |  | 
|  | 4149 | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) | 
|  | 4150 | { | 
|  | 4151 | struct btrfs_root *root; | 
|  | 4152 | struct list_head splice; | 
|  | 4153 |  | 
|  | 4154 | INIT_LIST_HEAD(&splice); | 
|  | 4155 |  | 
|  | 4156 | spin_lock(&fs_info->ordered_root_lock); | 
|  | 4157 | list_splice_init(&fs_info->ordered_roots, &splice); | 
|  | 4158 | while (!list_empty(&splice)) { | 
|  | 4159 | root = list_first_entry(&splice, struct btrfs_root, | 
|  | 4160 | ordered_root); | 
|  | 4161 | list_move_tail(&root->ordered_root, | 
|  | 4162 | &fs_info->ordered_roots); | 
|  | 4163 |  | 
|  | 4164 | spin_unlock(&fs_info->ordered_root_lock); | 
|  | 4165 | btrfs_destroy_ordered_extents(root); | 
|  | 4166 |  | 
|  | 4167 | cond_resched(); | 
|  | 4168 | spin_lock(&fs_info->ordered_root_lock); | 
|  | 4169 | } | 
|  | 4170 | spin_unlock(&fs_info->ordered_root_lock); | 
|  | 4171 |  | 
|  | 4172 | /* | 
|  | 4173 | * We need this here because if we've been flipped read-only we won't | 
|  | 4174 | * get sync() from the umount, so we need to make sure any ordered | 
|  | 4175 | * extents that haven't had their dirty pages IO start writeout yet | 
|  | 4176 | * actually get run and error out properly. | 
|  | 4177 | */ | 
|  | 4178 | btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); | 
|  | 4179 | } | 
|  | 4180 |  | 
|  | 4181 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
|  | 4182 | struct btrfs_fs_info *fs_info) | 
|  | 4183 | { | 
|  | 4184 | struct rb_node *node; | 
|  | 4185 | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | 4186 | struct btrfs_delayed_ref_node *ref; | 
|  | 4187 | int ret = 0; | 
|  | 4188 |  | 
|  | 4189 | delayed_refs = &trans->delayed_refs; | 
|  | 4190 |  | 
|  | 4191 | spin_lock(&delayed_refs->lock); | 
|  | 4192 | if (atomic_read(&delayed_refs->num_entries) == 0) { | 
|  | 4193 | spin_unlock(&delayed_refs->lock); | 
|  | 4194 | btrfs_info(fs_info, "delayed_refs has NO entry"); | 
|  | 4195 | return ret; | 
|  | 4196 | } | 
|  | 4197 |  | 
|  | 4198 | while ((node = rb_first(&delayed_refs->href_root)) != NULL) { | 
|  | 4199 | struct btrfs_delayed_ref_head *head; | 
|  | 4200 | struct rb_node *n; | 
|  | 4201 | bool pin_bytes = false; | 
|  | 4202 |  | 
|  | 4203 | head = rb_entry(node, struct btrfs_delayed_ref_head, | 
|  | 4204 | href_node); | 
|  | 4205 | if (!mutex_trylock(&head->mutex)) { | 
|  | 4206 | refcount_inc(&head->refs); | 
|  | 4207 | spin_unlock(&delayed_refs->lock); | 
|  | 4208 |  | 
|  | 4209 | mutex_lock(&head->mutex); | 
|  | 4210 | mutex_unlock(&head->mutex); | 
|  | 4211 | btrfs_put_delayed_ref_head(head); | 
|  | 4212 | spin_lock(&delayed_refs->lock); | 
|  | 4213 | continue; | 
|  | 4214 | } | 
|  | 4215 | spin_lock(&head->lock); | 
|  | 4216 | while ((n = rb_first(&head->ref_tree)) != NULL) { | 
|  | 4217 | ref = rb_entry(n, struct btrfs_delayed_ref_node, | 
|  | 4218 | ref_node); | 
|  | 4219 | ref->in_tree = 0; | 
|  | 4220 | rb_erase(&ref->ref_node, &head->ref_tree); | 
|  | 4221 | RB_CLEAR_NODE(&ref->ref_node); | 
|  | 4222 | if (!list_empty(&ref->add_list)) | 
|  | 4223 | list_del(&ref->add_list); | 
|  | 4224 | atomic_dec(&delayed_refs->num_entries); | 
|  | 4225 | btrfs_put_delayed_ref(ref); | 
|  | 4226 | } | 
|  | 4227 | if (head->must_insert_reserved) | 
|  | 4228 | pin_bytes = true; | 
|  | 4229 | btrfs_free_delayed_extent_op(head->extent_op); | 
|  | 4230 | delayed_refs->num_heads--; | 
|  | 4231 | if (head->processing == 0) | 
|  | 4232 | delayed_refs->num_heads_ready--; | 
|  | 4233 | atomic_dec(&delayed_refs->num_entries); | 
|  | 4234 | rb_erase(&head->href_node, &delayed_refs->href_root); | 
|  | 4235 | RB_CLEAR_NODE(&head->href_node); | 
|  | 4236 | spin_unlock(&head->lock); | 
|  | 4237 | spin_unlock(&delayed_refs->lock); | 
|  | 4238 | mutex_unlock(&head->mutex); | 
|  | 4239 |  | 
|  | 4240 | if (pin_bytes) | 
|  | 4241 | btrfs_pin_extent(fs_info, head->bytenr, | 
|  | 4242 | head->num_bytes, 1); | 
|  | 4243 | btrfs_put_delayed_ref_head(head); | 
|  | 4244 | cond_resched(); | 
|  | 4245 | spin_lock(&delayed_refs->lock); | 
|  | 4246 | } | 
|  | 4247 |  | 
|  | 4248 | spin_unlock(&delayed_refs->lock); | 
|  | 4249 |  | 
|  | 4250 | return ret; | 
|  | 4251 | } | 
|  | 4252 |  | 
|  | 4253 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
|  | 4254 | { | 
|  | 4255 | struct btrfs_inode *btrfs_inode; | 
|  | 4256 | struct list_head splice; | 
|  | 4257 |  | 
|  | 4258 | INIT_LIST_HEAD(&splice); | 
|  | 4259 |  | 
|  | 4260 | spin_lock(&root->delalloc_lock); | 
|  | 4261 | list_splice_init(&root->delalloc_inodes, &splice); | 
|  | 4262 |  | 
|  | 4263 | while (!list_empty(&splice)) { | 
|  | 4264 | struct inode *inode = NULL; | 
|  | 4265 | btrfs_inode = list_first_entry(&splice, struct btrfs_inode, | 
|  | 4266 | delalloc_inodes); | 
|  | 4267 | __btrfs_del_delalloc_inode(root, btrfs_inode); | 
|  | 4268 | spin_unlock(&root->delalloc_lock); | 
|  | 4269 |  | 
|  | 4270 | /* | 
|  | 4271 | * Make sure we get a live inode and that it'll not disappear | 
|  | 4272 | * meanwhile. | 
|  | 4273 | */ | 
|  | 4274 | inode = igrab(&btrfs_inode->vfs_inode); | 
|  | 4275 | if (inode) { | 
|  | 4276 | invalidate_inode_pages2(inode->i_mapping); | 
|  | 4277 | iput(inode); | 
|  | 4278 | } | 
|  | 4279 | spin_lock(&root->delalloc_lock); | 
|  | 4280 | } | 
|  | 4281 | spin_unlock(&root->delalloc_lock); | 
|  | 4282 | } | 
|  | 4283 |  | 
|  | 4284 | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) | 
|  | 4285 | { | 
|  | 4286 | struct btrfs_root *root; | 
|  | 4287 | struct list_head splice; | 
|  | 4288 |  | 
|  | 4289 | INIT_LIST_HEAD(&splice); | 
|  | 4290 |  | 
|  | 4291 | spin_lock(&fs_info->delalloc_root_lock); | 
|  | 4292 | list_splice_init(&fs_info->delalloc_roots, &splice); | 
|  | 4293 | while (!list_empty(&splice)) { | 
|  | 4294 | root = list_first_entry(&splice, struct btrfs_root, | 
|  | 4295 | delalloc_root); | 
|  | 4296 | root = btrfs_grab_fs_root(root); | 
|  | 4297 | BUG_ON(!root); | 
|  | 4298 | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | 4299 |  | 
|  | 4300 | btrfs_destroy_delalloc_inodes(root); | 
|  | 4301 | btrfs_put_fs_root(root); | 
|  | 4302 |  | 
|  | 4303 | spin_lock(&fs_info->delalloc_root_lock); | 
|  | 4304 | } | 
|  | 4305 | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | 4306 | } | 
|  | 4307 |  | 
|  | 4308 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | 4309 | struct extent_io_tree *dirty_pages, | 
|  | 4310 | int mark) | 
|  | 4311 | { | 
|  | 4312 | int ret; | 
|  | 4313 | struct extent_buffer *eb; | 
|  | 4314 | u64 start = 0; | 
|  | 4315 | u64 end; | 
|  | 4316 |  | 
|  | 4317 | while (1) { | 
|  | 4318 | ret = find_first_extent_bit(dirty_pages, start, &start, &end, | 
|  | 4319 | mark, NULL); | 
|  | 4320 | if (ret) | 
|  | 4321 | break; | 
|  | 4322 |  | 
|  | 4323 | clear_extent_bits(dirty_pages, start, end, mark); | 
|  | 4324 | while (start <= end) { | 
|  | 4325 | eb = find_extent_buffer(fs_info, start); | 
|  | 4326 | start += fs_info->nodesize; | 
|  | 4327 | if (!eb) | 
|  | 4328 | continue; | 
|  | 4329 | wait_on_extent_buffer_writeback(eb); | 
|  | 4330 |  | 
|  | 4331 | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, | 
|  | 4332 | &eb->bflags)) | 
|  | 4333 | clear_extent_buffer_dirty(eb); | 
|  | 4334 | free_extent_buffer_stale(eb); | 
|  | 4335 | } | 
|  | 4336 | } | 
|  | 4337 |  | 
|  | 4338 | return ret; | 
|  | 4339 | } | 
|  | 4340 |  | 
|  | 4341 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
|  | 4342 | struct extent_io_tree *pinned_extents) | 
|  | 4343 | { | 
|  | 4344 | struct extent_io_tree *unpin; | 
|  | 4345 | u64 start; | 
|  | 4346 | u64 end; | 
|  | 4347 | int ret; | 
|  | 4348 | bool loop = true; | 
|  | 4349 |  | 
|  | 4350 | unpin = pinned_extents; | 
|  | 4351 | again: | 
|  | 4352 | while (1) { | 
|  | 4353 | struct extent_state *cached_state = NULL; | 
|  | 4354 |  | 
|  | 4355 | /* | 
|  | 4356 | * The btrfs_finish_extent_commit() may get the same range as | 
|  | 4357 | * ours between find_first_extent_bit and clear_extent_dirty. | 
|  | 4358 | * Hence, hold the unused_bg_unpin_mutex to avoid double unpin | 
|  | 4359 | * the same extent range. | 
|  | 4360 | */ | 
|  | 4361 | mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
|  | 4362 | ret = find_first_extent_bit(unpin, 0, &start, &end, | 
|  | 4363 | EXTENT_DIRTY, &cached_state); | 
|  | 4364 | if (ret) { | 
|  | 4365 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | 4366 | break; | 
|  | 4367 | } | 
|  | 4368 |  | 
|  | 4369 | clear_extent_dirty(unpin, start, end, &cached_state); | 
|  | 4370 | free_extent_state(cached_state); | 
|  | 4371 | btrfs_error_unpin_extent_range(fs_info, start, end); | 
|  | 4372 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | 4373 | cond_resched(); | 
|  | 4374 | } | 
|  | 4375 |  | 
|  | 4376 | if (loop) { | 
|  | 4377 | if (unpin == &fs_info->freed_extents[0]) | 
|  | 4378 | unpin = &fs_info->freed_extents[1]; | 
|  | 4379 | else | 
|  | 4380 | unpin = &fs_info->freed_extents[0]; | 
|  | 4381 | loop = false; | 
|  | 4382 | goto again; | 
|  | 4383 | } | 
|  | 4384 |  | 
|  | 4385 | return 0; | 
|  | 4386 | } | 
|  | 4387 |  | 
|  | 4388 | static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) | 
|  | 4389 | { | 
|  | 4390 | struct inode *inode; | 
|  | 4391 |  | 
|  | 4392 | inode = cache->io_ctl.inode; | 
|  | 4393 | if (inode) { | 
|  | 4394 | invalidate_inode_pages2(inode->i_mapping); | 
|  | 4395 | BTRFS_I(inode)->generation = 0; | 
|  | 4396 | cache->io_ctl.inode = NULL; | 
|  | 4397 | iput(inode); | 
|  | 4398 | } | 
|  | 4399 | btrfs_put_block_group(cache); | 
|  | 4400 | } | 
|  | 4401 |  | 
|  | 4402 | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, | 
|  | 4403 | struct btrfs_fs_info *fs_info) | 
|  | 4404 | { | 
|  | 4405 | struct btrfs_block_group_cache *cache; | 
|  | 4406 |  | 
|  | 4407 | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | 4408 | while (!list_empty(&cur_trans->dirty_bgs)) { | 
|  | 4409 | cache = list_first_entry(&cur_trans->dirty_bgs, | 
|  | 4410 | struct btrfs_block_group_cache, | 
|  | 4411 | dirty_list); | 
|  | 4412 |  | 
|  | 4413 | if (!list_empty(&cache->io_list)) { | 
|  | 4414 | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | 4415 | list_del_init(&cache->io_list); | 
|  | 4416 | btrfs_cleanup_bg_io(cache); | 
|  | 4417 | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | 4418 | } | 
|  | 4419 |  | 
|  | 4420 | list_del_init(&cache->dirty_list); | 
|  | 4421 | spin_lock(&cache->lock); | 
|  | 4422 | cache->disk_cache_state = BTRFS_DC_ERROR; | 
|  | 4423 | spin_unlock(&cache->lock); | 
|  | 4424 |  | 
|  | 4425 | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | 4426 | btrfs_put_block_group(cache); | 
|  | 4427 | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | 4428 | } | 
|  | 4429 | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | 4430 |  | 
|  | 4431 | /* | 
|  | 4432 | * Refer to the definition of io_bgs member for details why it's safe | 
|  | 4433 | * to use it without any locking | 
|  | 4434 | */ | 
|  | 4435 | while (!list_empty(&cur_trans->io_bgs)) { | 
|  | 4436 | cache = list_first_entry(&cur_trans->io_bgs, | 
|  | 4437 | struct btrfs_block_group_cache, | 
|  | 4438 | io_list); | 
|  | 4439 |  | 
|  | 4440 | list_del_init(&cache->io_list); | 
|  | 4441 | spin_lock(&cache->lock); | 
|  | 4442 | cache->disk_cache_state = BTRFS_DC_ERROR; | 
|  | 4443 | spin_unlock(&cache->lock); | 
|  | 4444 | btrfs_cleanup_bg_io(cache); | 
|  | 4445 | } | 
|  | 4446 | } | 
|  | 4447 |  | 
|  | 4448 | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, | 
|  | 4449 | struct btrfs_fs_info *fs_info) | 
|  | 4450 | { | 
|  | 4451 | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
|  | 4452 | ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
|  | 4453 | ASSERT(list_empty(&cur_trans->io_bgs)); | 
|  | 4454 |  | 
|  | 4455 | btrfs_destroy_delayed_refs(cur_trans, fs_info); | 
|  | 4456 |  | 
|  | 4457 | cur_trans->state = TRANS_STATE_COMMIT_START; | 
|  | 4458 | wake_up(&fs_info->transaction_blocked_wait); | 
|  | 4459 |  | 
|  | 4460 | cur_trans->state = TRANS_STATE_UNBLOCKED; | 
|  | 4461 | wake_up(&fs_info->transaction_wait); | 
|  | 4462 |  | 
|  | 4463 | btrfs_destroy_delayed_inodes(fs_info); | 
|  | 4464 | btrfs_assert_delayed_root_empty(fs_info); | 
|  | 4465 |  | 
|  | 4466 | btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, | 
|  | 4467 | EXTENT_DIRTY); | 
|  | 4468 | btrfs_destroy_pinned_extent(fs_info, | 
|  | 4469 | fs_info->pinned_extents); | 
|  | 4470 |  | 
|  | 4471 | cur_trans->state =TRANS_STATE_COMPLETED; | 
|  | 4472 | wake_up(&cur_trans->commit_wait); | 
|  | 4473 | } | 
|  | 4474 |  | 
|  | 4475 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) | 
|  | 4476 | { | 
|  | 4477 | struct btrfs_transaction *t; | 
|  | 4478 |  | 
|  | 4479 | mutex_lock(&fs_info->transaction_kthread_mutex); | 
|  | 4480 |  | 
|  | 4481 | spin_lock(&fs_info->trans_lock); | 
|  | 4482 | while (!list_empty(&fs_info->trans_list)) { | 
|  | 4483 | t = list_first_entry(&fs_info->trans_list, | 
|  | 4484 | struct btrfs_transaction, list); | 
|  | 4485 | if (t->state >= TRANS_STATE_COMMIT_START) { | 
|  | 4486 | refcount_inc(&t->use_count); | 
|  | 4487 | spin_unlock(&fs_info->trans_lock); | 
|  | 4488 | btrfs_wait_for_commit(fs_info, t->transid); | 
|  | 4489 | btrfs_put_transaction(t); | 
|  | 4490 | spin_lock(&fs_info->trans_lock); | 
|  | 4491 | continue; | 
|  | 4492 | } | 
|  | 4493 | if (t == fs_info->running_transaction) { | 
|  | 4494 | t->state = TRANS_STATE_COMMIT_DOING; | 
|  | 4495 | spin_unlock(&fs_info->trans_lock); | 
|  | 4496 | /* | 
|  | 4497 | * We wait for 0 num_writers since we don't hold a trans | 
|  | 4498 | * handle open currently for this transaction. | 
|  | 4499 | */ | 
|  | 4500 | wait_event(t->writer_wait, | 
|  | 4501 | atomic_read(&t->num_writers) == 0); | 
|  | 4502 | } else { | 
|  | 4503 | spin_unlock(&fs_info->trans_lock); | 
|  | 4504 | } | 
|  | 4505 | btrfs_cleanup_one_transaction(t, fs_info); | 
|  | 4506 |  | 
|  | 4507 | spin_lock(&fs_info->trans_lock); | 
|  | 4508 | if (t == fs_info->running_transaction) | 
|  | 4509 | fs_info->running_transaction = NULL; | 
|  | 4510 | list_del_init(&t->list); | 
|  | 4511 | spin_unlock(&fs_info->trans_lock); | 
|  | 4512 |  | 
|  | 4513 | btrfs_put_transaction(t); | 
|  | 4514 | trace_btrfs_transaction_commit(fs_info->tree_root); | 
|  | 4515 | spin_lock(&fs_info->trans_lock); | 
|  | 4516 | } | 
|  | 4517 | spin_unlock(&fs_info->trans_lock); | 
|  | 4518 | btrfs_destroy_all_ordered_extents(fs_info); | 
|  | 4519 | btrfs_destroy_delayed_inodes(fs_info); | 
|  | 4520 | btrfs_assert_delayed_root_empty(fs_info); | 
|  | 4521 | btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); | 
|  | 4522 | btrfs_destroy_all_delalloc_inodes(fs_info); | 
|  | 4523 | mutex_unlock(&fs_info->transaction_kthread_mutex); | 
|  | 4524 |  | 
|  | 4525 | return 0; | 
|  | 4526 | } | 
|  | 4527 |  | 
|  | 4528 | static const struct extent_io_ops btree_extent_io_ops = { | 
|  | 4529 | /* mandatory callbacks */ | 
|  | 4530 | .submit_bio_hook = btree_submit_bio_hook, | 
|  | 4531 | .readpage_end_io_hook = btree_readpage_end_io_hook, | 
|  | 4532 | .readpage_io_failed_hook = btree_io_failed_hook, | 
|  | 4533 |  | 
|  | 4534 | /* optional callbacks */ | 
|  | 4535 | }; |