| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * fs/verity/hash_algs.c: fs-verity hash algorithms |
| 4 | * |
| 5 | * Copyright 2019 Google LLC |
| 6 | */ |
| 7 | |
| 8 | #include "fsverity_private.h" |
| 9 | |
| 10 | #include <crypto/hash.h> |
| 11 | #include <linux/scatterlist.h> |
| 12 | |
| 13 | /* The hash algorithms supported by fs-verity */ |
| 14 | struct fsverity_hash_alg fsverity_hash_algs[] = { |
| 15 | [FS_VERITY_HASH_ALG_SHA256] = { |
| 16 | .name = "sha256", |
| 17 | .digest_size = SHA256_DIGEST_SIZE, |
| 18 | .block_size = SHA256_BLOCK_SIZE, |
| 19 | }, |
| 20 | [FS_VERITY_HASH_ALG_SHA512] = { |
| 21 | .name = "sha512", |
| 22 | .digest_size = SHA512_DIGEST_SIZE, |
| 23 | .block_size = SHA512_BLOCK_SIZE, |
| 24 | }, |
| 25 | }; |
| 26 | |
| 27 | /** |
| 28 | * fsverity_get_hash_alg() - validate and prepare a hash algorithm |
| 29 | * @inode: optional inode for logging purposes |
| 30 | * @num: the hash algorithm number |
| 31 | * |
| 32 | * Get the struct fsverity_hash_alg for the given hash algorithm number, and |
| 33 | * ensure it has a hash transform ready to go. The hash transforms are |
| 34 | * allocated on-demand so that we don't waste resources unnecessarily, and |
| 35 | * because the crypto modules may be initialized later than fs/verity/. |
| 36 | * |
| 37 | * Return: pointer to the hash alg on success, else an ERR_PTR() |
| 38 | */ |
| 39 | const struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, |
| 40 | unsigned int num) |
| 41 | { |
| 42 | struct fsverity_hash_alg *alg; |
| 43 | struct crypto_ahash *tfm; |
| 44 | int err; |
| 45 | |
| 46 | if (num >= ARRAY_SIZE(fsverity_hash_algs) || |
| 47 | !fsverity_hash_algs[num].name) { |
| 48 | fsverity_warn(inode, "Unknown hash algorithm number: %u", num); |
| 49 | return ERR_PTR(-EINVAL); |
| 50 | } |
| 51 | alg = &fsverity_hash_algs[num]; |
| 52 | |
| 53 | /* pairs with cmpxchg() below */ |
| 54 | tfm = READ_ONCE(alg->tfm); |
| 55 | if (likely(tfm != NULL)) |
| 56 | return alg; |
| 57 | /* |
| 58 | * Using the shash API would make things a bit simpler, but the ahash |
| 59 | * API is preferable as it allows the use of crypto accelerators. |
| 60 | */ |
| 61 | tfm = crypto_alloc_ahash(alg->name, 0, 0); |
| 62 | if (IS_ERR(tfm)) { |
| 63 | if (PTR_ERR(tfm) == -ENOENT) { |
| 64 | fsverity_warn(inode, |
| 65 | "Missing crypto API support for hash algorithm \"%s\"", |
| 66 | alg->name); |
| 67 | return ERR_PTR(-ENOPKG); |
| 68 | } |
| 69 | fsverity_err(inode, |
| 70 | "Error allocating hash algorithm \"%s\": %ld", |
| 71 | alg->name, PTR_ERR(tfm)); |
| 72 | return ERR_CAST(tfm); |
| 73 | } |
| 74 | |
| 75 | err = -EINVAL; |
| 76 | if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) |
| 77 | goto err_free_tfm; |
| 78 | if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) |
| 79 | goto err_free_tfm; |
| 80 | |
| 81 | pr_info("%s using implementation \"%s\"\n", |
| 82 | alg->name, crypto_ahash_driver_name(tfm)); |
| 83 | |
| 84 | /* pairs with READ_ONCE() above */ |
| 85 | if (cmpxchg(&alg->tfm, NULL, tfm) != NULL) |
| 86 | crypto_free_ahash(tfm); |
| 87 | |
| 88 | return alg; |
| 89 | |
| 90 | err_free_tfm: |
| 91 | crypto_free_ahash(tfm); |
| 92 | return ERR_PTR(err); |
| 93 | } |
| 94 | |
| 95 | /** |
| 96 | * fsverity_prepare_hash_state() - precompute the initial hash state |
| 97 | * @alg: hash algorithm |
| 98 | * @salt: a salt which is to be prepended to all data to be hashed |
| 99 | * @salt_size: salt size in bytes, possibly 0 |
| 100 | * |
| 101 | * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed |
| 102 | * initial hash state on success or an ERR_PTR() on failure. |
| 103 | */ |
| 104 | const u8 *fsverity_prepare_hash_state(const struct fsverity_hash_alg *alg, |
| 105 | const u8 *salt, size_t salt_size) |
| 106 | { |
| 107 | u8 *hashstate = NULL; |
| 108 | struct ahash_request *req = NULL; |
| 109 | u8 *padded_salt = NULL; |
| 110 | size_t padded_salt_size; |
| 111 | struct scatterlist sg; |
| 112 | DECLARE_CRYPTO_WAIT(wait); |
| 113 | int err; |
| 114 | |
| 115 | if (salt_size == 0) |
| 116 | return NULL; |
| 117 | |
| 118 | hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); |
| 119 | if (!hashstate) |
| 120 | return ERR_PTR(-ENOMEM); |
| 121 | |
| 122 | req = ahash_request_alloc(alg->tfm, GFP_KERNEL); |
| 123 | if (!req) { |
| 124 | err = -ENOMEM; |
| 125 | goto err_free; |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Zero-pad the salt to the next multiple of the input size of the hash |
| 130 | * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 |
| 131 | * bytes for SHA-512. This ensures that the hash algorithm won't have |
| 132 | * any bytes buffered internally after processing the salt, thus making |
| 133 | * salted hashing just as fast as unsalted hashing. |
| 134 | */ |
| 135 | padded_salt_size = round_up(salt_size, alg->block_size); |
| 136 | padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); |
| 137 | if (!padded_salt) { |
| 138 | err = -ENOMEM; |
| 139 | goto err_free; |
| 140 | } |
| 141 | memcpy(padded_salt, salt, salt_size); |
| 142 | |
| 143 | sg_init_one(&sg, padded_salt, padded_salt_size); |
| 144 | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| 145 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 146 | crypto_req_done, &wait); |
| 147 | ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); |
| 148 | |
| 149 | err = crypto_wait_req(crypto_ahash_init(req), &wait); |
| 150 | if (err) |
| 151 | goto err_free; |
| 152 | |
| 153 | err = crypto_wait_req(crypto_ahash_update(req), &wait); |
| 154 | if (err) |
| 155 | goto err_free; |
| 156 | |
| 157 | err = crypto_ahash_export(req, hashstate); |
| 158 | if (err) |
| 159 | goto err_free; |
| 160 | out: |
| 161 | ahash_request_free(req); |
| 162 | kfree(padded_salt); |
| 163 | return hashstate; |
| 164 | |
| 165 | err_free: |
| 166 | kfree(hashstate); |
| 167 | hashstate = ERR_PTR(err); |
| 168 | goto out; |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * fsverity_hash_page() - hash a single data or hash page |
| 173 | * @params: the Merkle tree's parameters |
| 174 | * @inode: inode for which the hashing is being done |
| 175 | * @req: preallocated hash request |
| 176 | * @page: the page to hash |
| 177 | * @out: output digest, size 'params->digest_size' bytes |
| 178 | * |
| 179 | * Hash a single data or hash block, assuming block_size == PAGE_SIZE. |
| 180 | * The hash is salted if a salt is specified in the Merkle tree parameters. |
| 181 | * |
| 182 | * Return: 0 on success, -errno on failure |
| 183 | */ |
| 184 | int fsverity_hash_page(const struct merkle_tree_params *params, |
| 185 | const struct inode *inode, |
| 186 | struct ahash_request *req, struct page *page, u8 *out) |
| 187 | { |
| 188 | struct scatterlist sg; |
| 189 | DECLARE_CRYPTO_WAIT(wait); |
| 190 | int err; |
| 191 | |
| 192 | if (WARN_ON(params->block_size != PAGE_SIZE)) |
| 193 | return -EINVAL; |
| 194 | |
| 195 | sg_init_table(&sg, 1); |
| 196 | sg_set_page(&sg, page, PAGE_SIZE, 0); |
| 197 | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| 198 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 199 | crypto_req_done, &wait); |
| 200 | ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); |
| 201 | |
| 202 | if (params->hashstate) { |
| 203 | err = crypto_ahash_import(req, params->hashstate); |
| 204 | if (err) { |
| 205 | fsverity_err(inode, |
| 206 | "Error %d importing hash state", err); |
| 207 | return err; |
| 208 | } |
| 209 | err = crypto_ahash_finup(req); |
| 210 | } else { |
| 211 | err = crypto_ahash_digest(req); |
| 212 | } |
| 213 | |
| 214 | err = crypto_wait_req(err, &wait); |
| 215 | if (err) |
| 216 | fsverity_err(inode, "Error %d computing page hash", err); |
| 217 | return err; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * fsverity_hash_buffer() - hash some data |
| 222 | * @alg: the hash algorithm to use |
| 223 | * @data: the data to hash |
| 224 | * @size: size of data to hash, in bytes |
| 225 | * @out: output digest, size 'alg->digest_size' bytes |
| 226 | * |
| 227 | * Hash some data which is located in physically contiguous memory (i.e. memory |
| 228 | * allocated by kmalloc(), not by vmalloc()). No salt is used. |
| 229 | * |
| 230 | * Return: 0 on success, -errno on failure |
| 231 | */ |
| 232 | int fsverity_hash_buffer(const struct fsverity_hash_alg *alg, |
| 233 | const void *data, size_t size, u8 *out) |
| 234 | { |
| 235 | struct ahash_request *req; |
| 236 | struct scatterlist sg; |
| 237 | DECLARE_CRYPTO_WAIT(wait); |
| 238 | int err; |
| 239 | |
| 240 | req = ahash_request_alloc(alg->tfm, GFP_KERNEL); |
| 241 | if (!req) |
| 242 | return -ENOMEM; |
| 243 | |
| 244 | sg_init_one(&sg, data, size); |
| 245 | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| 246 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 247 | crypto_req_done, &wait); |
| 248 | ahash_request_set_crypt(req, &sg, out, size); |
| 249 | |
| 250 | err = crypto_wait_req(crypto_ahash_digest(req), &wait); |
| 251 | |
| 252 | ahash_request_free(req); |
| 253 | return err; |
| 254 | } |
| 255 | |
| 256 | void __init fsverity_check_hash_algs(void) |
| 257 | { |
| 258 | size_t i; |
| 259 | |
| 260 | /* |
| 261 | * Sanity check the hash algorithms (could be a build-time check, but |
| 262 | * they're in an array) |
| 263 | */ |
| 264 | for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { |
| 265 | const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; |
| 266 | |
| 267 | if (!alg->name) |
| 268 | continue; |
| 269 | |
| 270 | BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); |
| 271 | |
| 272 | /* |
| 273 | * For efficiency, the implementation currently assumes the |
| 274 | * digest and block sizes are powers of 2. This limitation can |
| 275 | * be lifted if the code is updated to handle other values. |
| 276 | */ |
| 277 | BUG_ON(!is_power_of_2(alg->digest_size)); |
| 278 | BUG_ON(!is_power_of_2(alg->block_size)); |
| 279 | } |
| 280 | } |