| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline. | 
 | 3 |  * | 
 | 4 |  *		This program is free software; you can redistribute it and/or | 
 | 5 |  *		modify it under the terms of the GNU General Public License | 
 | 6 |  *		as published by the Free Software Foundation; either version | 
 | 7 |  *		2 of the License, or (at your option) any later version. | 
 | 8 |  * | 
 | 9 |  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | #include <linux/module.h> | 
 | 13 | #include <linux/types.h> | 
 | 14 | #include <linux/kernel.h> | 
 | 15 | #include <linux/jiffies.h> | 
 | 16 | #include <linux/string.h> | 
 | 17 | #include <linux/in.h> | 
 | 18 | #include <linux/errno.h> | 
 | 19 | #include <linux/init.h> | 
 | 20 | #include <linux/skbuff.h> | 
 | 21 | #include <linux/siphash.h> | 
 | 22 | #include <linux/slab.h> | 
 | 23 | #include <linux/vmalloc.h> | 
 | 24 | #include <net/netlink.h> | 
 | 25 | #include <net/pkt_sched.h> | 
 | 26 | #include <net/pkt_cls.h> | 
 | 27 | #include <net/red.h> | 
 | 28 |  | 
 | 29 |  | 
 | 30 | /*	Stochastic Fairness Queuing algorithm. | 
 | 31 | 	======================================= | 
 | 32 |  | 
 | 33 | 	Source: | 
 | 34 | 	Paul E. McKenney "Stochastic Fairness Queuing", | 
 | 35 | 	IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. | 
 | 36 |  | 
 | 37 | 	Paul E. McKenney "Stochastic Fairness Queuing", | 
 | 38 | 	"Interworking: Research and Experience", v.2, 1991, p.113-131. | 
 | 39 |  | 
 | 40 |  | 
 | 41 | 	See also: | 
 | 42 | 	M. Shreedhar and George Varghese "Efficient Fair | 
 | 43 | 	Queuing using Deficit Round Robin", Proc. SIGCOMM 95. | 
 | 44 |  | 
 | 45 |  | 
 | 46 | 	This is not the thing that is usually called (W)FQ nowadays. | 
 | 47 | 	It does not use any timestamp mechanism, but instead | 
 | 48 | 	processes queues in round-robin order. | 
 | 49 |  | 
 | 50 | 	ADVANTAGE: | 
 | 51 |  | 
 | 52 | 	- It is very cheap. Both CPU and memory requirements are minimal. | 
 | 53 |  | 
 | 54 | 	DRAWBACKS: | 
 | 55 |  | 
 | 56 | 	- "Stochastic" -> It is not 100% fair. | 
 | 57 | 	When hash collisions occur, several flows are considered as one. | 
 | 58 |  | 
 | 59 | 	- "Round-robin" -> It introduces larger delays than virtual clock | 
 | 60 | 	based schemes, and should not be used for isolating interactive | 
 | 61 | 	traffic	from non-interactive. It means, that this scheduler | 
 | 62 | 	should be used as leaf of CBQ or P3, which put interactive traffic | 
 | 63 | 	to higher priority band. | 
 | 64 |  | 
 | 65 | 	We still need true WFQ for top level CSZ, but using WFQ | 
 | 66 | 	for the best effort traffic is absolutely pointless: | 
 | 67 | 	SFQ is superior for this purpose. | 
 | 68 |  | 
 | 69 | 	IMPLEMENTATION: | 
 | 70 | 	This implementation limits : | 
 | 71 | 	- maximal queue length per flow to 127 packets. | 
 | 72 | 	- max mtu to 2^18-1; | 
 | 73 | 	- max 65408 flows, | 
 | 74 | 	- number of hash buckets to 65536. | 
 | 75 |  | 
 | 76 | 	It is easy to increase these values, but not in flight.  */ | 
 | 77 |  | 
 | 78 | #define SFQ_MAX_DEPTH		127 /* max number of packets per flow */ | 
 | 79 | #define SFQ_DEFAULT_FLOWS	128 | 
 | 80 | #define SFQ_MAX_FLOWS		(0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */ | 
 | 81 | #define SFQ_EMPTY_SLOT		0xffff | 
 | 82 | #define SFQ_DEFAULT_HASH_DIVISOR 1024 | 
 | 83 |  | 
 | 84 | /* We use 16 bits to store allot, and want to handle packets up to 64K | 
 | 85 |  * Scale allot by 8 (1<<3) so that no overflow occurs. | 
 | 86 |  */ | 
 | 87 | #define SFQ_ALLOT_SHIFT		3 | 
 | 88 | #define SFQ_ALLOT_SIZE(X)	DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT) | 
 | 89 |  | 
 | 90 | /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */ | 
 | 91 | typedef u16 sfq_index; | 
 | 92 |  | 
 | 93 | /* | 
 | 94 |  * We dont use pointers to save space. | 
 | 95 |  * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array | 
 | 96 |  * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH] | 
 | 97 |  * are 'pointers' to dep[] array | 
 | 98 |  */ | 
 | 99 | struct sfq_head { | 
 | 100 | 	sfq_index	next; | 
 | 101 | 	sfq_index	prev; | 
 | 102 | }; | 
 | 103 |  | 
 | 104 | struct sfq_slot { | 
 | 105 | 	struct sk_buff	*skblist_next; | 
 | 106 | 	struct sk_buff	*skblist_prev; | 
 | 107 | 	sfq_index	qlen; /* number of skbs in skblist */ | 
 | 108 | 	sfq_index	next; /* next slot in sfq RR chain */ | 
 | 109 | 	struct sfq_head dep; /* anchor in dep[] chains */ | 
 | 110 | 	unsigned short	hash; /* hash value (index in ht[]) */ | 
 | 111 | 	short		allot; /* credit for this slot */ | 
 | 112 |  | 
 | 113 | 	unsigned int    backlog; | 
 | 114 | 	struct red_vars vars; | 
 | 115 | }; | 
 | 116 |  | 
 | 117 | struct sfq_sched_data { | 
 | 118 | /* frequently used fields */ | 
 | 119 | 	int		limit;		/* limit of total number of packets in this qdisc */ | 
 | 120 | 	unsigned int	divisor;	/* number of slots in hash table */ | 
 | 121 | 	u8		headdrop; | 
 | 122 | 	u8		maxdepth;	/* limit of packets per flow */ | 
 | 123 |  | 
 | 124 | 	siphash_key_t 	perturbation; | 
 | 125 | 	u8		cur_depth;	/* depth of longest slot */ | 
 | 126 | 	u8		flags; | 
 | 127 | 	unsigned short  scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */ | 
 | 128 | 	struct tcf_proto __rcu *filter_list; | 
 | 129 | 	struct tcf_block *block; | 
 | 130 | 	sfq_index	*ht;		/* Hash table ('divisor' slots) */ | 
 | 131 | 	struct sfq_slot	*slots;		/* Flows table ('maxflows' entries) */ | 
 | 132 |  | 
 | 133 | 	struct red_parms *red_parms; | 
 | 134 | 	struct tc_sfqred_stats stats; | 
 | 135 | 	struct sfq_slot *tail;		/* current slot in round */ | 
 | 136 |  | 
 | 137 | 	struct sfq_head	dep[SFQ_MAX_DEPTH + 1]; | 
 | 138 | 					/* Linked lists of slots, indexed by depth | 
 | 139 | 					 * dep[0] : list of unused flows | 
 | 140 | 					 * dep[1] : list of flows with 1 packet | 
 | 141 | 					 * dep[X] : list of flows with X packets | 
 | 142 | 					 */ | 
 | 143 |  | 
 | 144 | 	unsigned int	maxflows;	/* number of flows in flows array */ | 
 | 145 | 	int		perturb_period; | 
 | 146 | 	unsigned int	quantum;	/* Allotment per round: MUST BE >= MTU */ | 
 | 147 | 	struct timer_list perturb_timer; | 
 | 148 | 	struct Qdisc	*sch; | 
 | 149 | }; | 
 | 150 |  | 
 | 151 | /* | 
 | 152 |  * sfq_head are either in a sfq_slot or in dep[] array | 
 | 153 |  */ | 
 | 154 | static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val) | 
 | 155 | { | 
 | 156 | 	if (val < SFQ_MAX_FLOWS) | 
 | 157 | 		return &q->slots[val].dep; | 
 | 158 | 	return &q->dep[val - SFQ_MAX_FLOWS]; | 
 | 159 | } | 
 | 160 |  | 
 | 161 | static unsigned int sfq_hash(const struct sfq_sched_data *q, | 
 | 162 | 			     const struct sk_buff *skb) | 
 | 163 | { | 
 | 164 | 	return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1); | 
 | 165 | } | 
 | 166 |  | 
 | 167 | static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, | 
 | 168 | 				 int *qerr) | 
 | 169 | { | 
 | 170 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 171 | 	struct tcf_result res; | 
 | 172 | 	struct tcf_proto *fl; | 
 | 173 | 	int result; | 
 | 174 |  | 
 | 175 | 	if (TC_H_MAJ(skb->priority) == sch->handle && | 
 | 176 | 	    TC_H_MIN(skb->priority) > 0 && | 
 | 177 | 	    TC_H_MIN(skb->priority) <= q->divisor) | 
 | 178 | 		return TC_H_MIN(skb->priority); | 
 | 179 |  | 
 | 180 | 	fl = rcu_dereference_bh(q->filter_list); | 
 | 181 | 	if (!fl) | 
 | 182 | 		return sfq_hash(q, skb) + 1; | 
 | 183 |  | 
 | 184 | 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; | 
 | 185 | 	result = tcf_classify(skb, fl, &res, false); | 
 | 186 | 	if (result >= 0) { | 
 | 187 | #ifdef CONFIG_NET_CLS_ACT | 
 | 188 | 		switch (result) { | 
 | 189 | 		case TC_ACT_STOLEN: | 
 | 190 | 		case TC_ACT_QUEUED: | 
 | 191 | 		case TC_ACT_TRAP: | 
 | 192 | 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; | 
 | 193 | 			/* fall through */ | 
 | 194 | 		case TC_ACT_SHOT: | 
 | 195 | 			return 0; | 
 | 196 | 		} | 
 | 197 | #endif | 
 | 198 | 		if (TC_H_MIN(res.classid) <= q->divisor) | 
 | 199 | 			return TC_H_MIN(res.classid); | 
 | 200 | 	} | 
 | 201 | 	return 0; | 
 | 202 | } | 
 | 203 |  | 
 | 204 | /* | 
 | 205 |  * x : slot number [0 .. SFQ_MAX_FLOWS - 1] | 
 | 206 |  */ | 
 | 207 | static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) | 
 | 208 | { | 
 | 209 | 	sfq_index p, n; | 
 | 210 | 	struct sfq_slot *slot = &q->slots[x]; | 
 | 211 | 	int qlen = slot->qlen; | 
 | 212 |  | 
 | 213 | 	p = qlen + SFQ_MAX_FLOWS; | 
 | 214 | 	n = q->dep[qlen].next; | 
 | 215 |  | 
 | 216 | 	slot->dep.next = n; | 
 | 217 | 	slot->dep.prev = p; | 
 | 218 |  | 
 | 219 | 	q->dep[qlen].next = x;		/* sfq_dep_head(q, p)->next = x */ | 
 | 220 | 	sfq_dep_head(q, n)->prev = x; | 
 | 221 | } | 
 | 222 |  | 
 | 223 | #define sfq_unlink(q, x, n, p)			\ | 
 | 224 | 	do {					\ | 
 | 225 | 		n = q->slots[x].dep.next;	\ | 
 | 226 | 		p = q->slots[x].dep.prev;	\ | 
 | 227 | 		sfq_dep_head(q, p)->next = n;	\ | 
 | 228 | 		sfq_dep_head(q, n)->prev = p;	\ | 
 | 229 | 	} while (0) | 
 | 230 |  | 
 | 231 |  | 
 | 232 | static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) | 
 | 233 | { | 
 | 234 | 	sfq_index p, n; | 
 | 235 | 	int d; | 
 | 236 |  | 
 | 237 | 	sfq_unlink(q, x, n, p); | 
 | 238 |  | 
 | 239 | 	d = q->slots[x].qlen--; | 
 | 240 | 	if (n == p && q->cur_depth == d) | 
 | 241 | 		q->cur_depth--; | 
 | 242 | 	sfq_link(q, x); | 
 | 243 | } | 
 | 244 |  | 
 | 245 | static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) | 
 | 246 | { | 
 | 247 | 	sfq_index p, n; | 
 | 248 | 	int d; | 
 | 249 |  | 
 | 250 | 	sfq_unlink(q, x, n, p); | 
 | 251 |  | 
 | 252 | 	d = ++q->slots[x].qlen; | 
 | 253 | 	if (q->cur_depth < d) | 
 | 254 | 		q->cur_depth = d; | 
 | 255 | 	sfq_link(q, x); | 
 | 256 | } | 
 | 257 |  | 
 | 258 | /* helper functions : might be changed when/if skb use a standard list_head */ | 
 | 259 |  | 
 | 260 | /* remove one skb from tail of slot queue */ | 
 | 261 | static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot) | 
 | 262 | { | 
 | 263 | 	struct sk_buff *skb = slot->skblist_prev; | 
 | 264 |  | 
 | 265 | 	slot->skblist_prev = skb->prev; | 
 | 266 | 	skb->prev->next = (struct sk_buff *)slot; | 
 | 267 | 	skb->next = skb->prev = NULL; | 
 | 268 | 	return skb; | 
 | 269 | } | 
 | 270 |  | 
 | 271 | /* remove one skb from head of slot queue */ | 
 | 272 | static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot) | 
 | 273 | { | 
 | 274 | 	struct sk_buff *skb = slot->skblist_next; | 
 | 275 |  | 
 | 276 | 	slot->skblist_next = skb->next; | 
 | 277 | 	skb->next->prev = (struct sk_buff *)slot; | 
 | 278 | 	skb->next = skb->prev = NULL; | 
 | 279 | 	return skb; | 
 | 280 | } | 
 | 281 |  | 
 | 282 | static inline void slot_queue_init(struct sfq_slot *slot) | 
 | 283 | { | 
 | 284 | 	memset(slot, 0, sizeof(*slot)); | 
 | 285 | 	slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot; | 
 | 286 | } | 
 | 287 |  | 
 | 288 | /* add skb to slot queue (tail add) */ | 
 | 289 | static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb) | 
 | 290 | { | 
 | 291 | 	skb->prev = slot->skblist_prev; | 
 | 292 | 	skb->next = (struct sk_buff *)slot; | 
 | 293 | 	slot->skblist_prev->next = skb; | 
 | 294 | 	slot->skblist_prev = skb; | 
 | 295 | } | 
 | 296 |  | 
 | 297 | static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free) | 
 | 298 | { | 
 | 299 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 300 | 	sfq_index x, d = q->cur_depth; | 
 | 301 | 	struct sk_buff *skb; | 
 | 302 | 	unsigned int len; | 
 | 303 | 	struct sfq_slot *slot; | 
 | 304 |  | 
 | 305 | 	/* Queue is full! Find the longest slot and drop tail packet from it */ | 
 | 306 | 	if (d > 1) { | 
 | 307 | 		x = q->dep[d].next; | 
 | 308 | 		slot = &q->slots[x]; | 
 | 309 | drop: | 
 | 310 | 		skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot); | 
 | 311 | 		len = qdisc_pkt_len(skb); | 
 | 312 | 		slot->backlog -= len; | 
 | 313 | 		sfq_dec(q, x); | 
 | 314 | 		sch->q.qlen--; | 
 | 315 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | 316 | 		qdisc_drop(skb, sch, to_free); | 
 | 317 | 		return len; | 
 | 318 | 	} | 
 | 319 |  | 
 | 320 | 	if (d == 1) { | 
 | 321 | 		/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ | 
 | 322 | 		x = q->tail->next; | 
 | 323 | 		slot = &q->slots[x]; | 
 | 324 | 		q->tail->next = slot->next; | 
 | 325 | 		q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
 | 326 | 		goto drop; | 
 | 327 | 	} | 
 | 328 |  | 
 | 329 | 	return 0; | 
 | 330 | } | 
 | 331 |  | 
 | 332 | /* Is ECN parameter configured */ | 
 | 333 | static int sfq_prob_mark(const struct sfq_sched_data *q) | 
 | 334 | { | 
 | 335 | 	return q->flags & TC_RED_ECN; | 
 | 336 | } | 
 | 337 |  | 
 | 338 | /* Should packets over max threshold just be marked */ | 
 | 339 | static int sfq_hard_mark(const struct sfq_sched_data *q) | 
 | 340 | { | 
 | 341 | 	return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN; | 
 | 342 | } | 
 | 343 |  | 
 | 344 | static int sfq_headdrop(const struct sfq_sched_data *q) | 
 | 345 | { | 
 | 346 | 	return q->headdrop; | 
 | 347 | } | 
 | 348 |  | 
 | 349 | static int | 
 | 350 | sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) | 
 | 351 | { | 
 | 352 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 353 | 	unsigned int hash, dropped; | 
 | 354 | 	sfq_index x, qlen; | 
 | 355 | 	struct sfq_slot *slot; | 
 | 356 | 	int uninitialized_var(ret); | 
 | 357 | 	struct sk_buff *head; | 
 | 358 | 	int delta; | 
 | 359 |  | 
 | 360 | 	hash = sfq_classify(skb, sch, &ret); | 
 | 361 | 	if (hash == 0) { | 
 | 362 | 		if (ret & __NET_XMIT_BYPASS) | 
 | 363 | 			qdisc_qstats_drop(sch); | 
 | 364 | 		__qdisc_drop(skb, to_free); | 
 | 365 | 		return ret; | 
 | 366 | 	} | 
 | 367 | 	hash--; | 
 | 368 |  | 
 | 369 | 	x = q->ht[hash]; | 
 | 370 | 	slot = &q->slots[x]; | 
 | 371 | 	if (x == SFQ_EMPTY_SLOT) { | 
 | 372 | 		x = q->dep[0].next; /* get a free slot */ | 
 | 373 | 		if (x >= SFQ_MAX_FLOWS) | 
 | 374 | 			return qdisc_drop(skb, sch, to_free); | 
 | 375 | 		q->ht[hash] = x; | 
 | 376 | 		slot = &q->slots[x]; | 
 | 377 | 		slot->hash = hash; | 
 | 378 | 		slot->backlog = 0; /* should already be 0 anyway... */ | 
 | 379 | 		red_set_vars(&slot->vars); | 
 | 380 | 		goto enqueue; | 
 | 381 | 	} | 
 | 382 | 	if (q->red_parms) { | 
 | 383 | 		slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms, | 
 | 384 | 							&slot->vars, | 
 | 385 | 							slot->backlog); | 
 | 386 | 		switch (red_action(q->red_parms, | 
 | 387 | 				   &slot->vars, | 
 | 388 | 				   slot->vars.qavg)) { | 
 | 389 | 		case RED_DONT_MARK: | 
 | 390 | 			break; | 
 | 391 |  | 
 | 392 | 		case RED_PROB_MARK: | 
 | 393 | 			qdisc_qstats_overlimit(sch); | 
 | 394 | 			if (sfq_prob_mark(q)) { | 
 | 395 | 				/* We know we have at least one packet in queue */ | 
 | 396 | 				if (sfq_headdrop(q) && | 
 | 397 | 				    INET_ECN_set_ce(slot->skblist_next)) { | 
 | 398 | 					q->stats.prob_mark_head++; | 
 | 399 | 					break; | 
 | 400 | 				} | 
 | 401 | 				if (INET_ECN_set_ce(skb)) { | 
 | 402 | 					q->stats.prob_mark++; | 
 | 403 | 					break; | 
 | 404 | 				} | 
 | 405 | 			} | 
 | 406 | 			q->stats.prob_drop++; | 
 | 407 | 			goto congestion_drop; | 
 | 408 |  | 
 | 409 | 		case RED_HARD_MARK: | 
 | 410 | 			qdisc_qstats_overlimit(sch); | 
 | 411 | 			if (sfq_hard_mark(q)) { | 
 | 412 | 				/* We know we have at least one packet in queue */ | 
 | 413 | 				if (sfq_headdrop(q) && | 
 | 414 | 				    INET_ECN_set_ce(slot->skblist_next)) { | 
 | 415 | 					q->stats.forced_mark_head++; | 
 | 416 | 					break; | 
 | 417 | 				} | 
 | 418 | 				if (INET_ECN_set_ce(skb)) { | 
 | 419 | 					q->stats.forced_mark++; | 
 | 420 | 					break; | 
 | 421 | 				} | 
 | 422 | 			} | 
 | 423 | 			q->stats.forced_drop++; | 
 | 424 | 			goto congestion_drop; | 
 | 425 | 		} | 
 | 426 | 	} | 
 | 427 |  | 
 | 428 | 	if (slot->qlen >= q->maxdepth) { | 
 | 429 | congestion_drop: | 
 | 430 | 		if (!sfq_headdrop(q)) | 
 | 431 | 			return qdisc_drop(skb, sch, to_free); | 
 | 432 |  | 
 | 433 | 		/* We know we have at least one packet in queue */ | 
 | 434 | 		head = slot_dequeue_head(slot); | 
 | 435 | 		delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb); | 
 | 436 | 		sch->qstats.backlog -= delta; | 
 | 437 | 		slot->backlog -= delta; | 
 | 438 | 		qdisc_drop(head, sch, to_free); | 
 | 439 |  | 
 | 440 | 		slot_queue_add(slot, skb); | 
 | 441 | 		qdisc_tree_reduce_backlog(sch, 0, delta); | 
 | 442 | 		return NET_XMIT_CN; | 
 | 443 | 	} | 
 | 444 |  | 
 | 445 | enqueue: | 
 | 446 | 	qdisc_qstats_backlog_inc(sch, skb); | 
 | 447 | 	slot->backlog += qdisc_pkt_len(skb); | 
 | 448 | 	slot_queue_add(slot, skb); | 
 | 449 | 	sfq_inc(q, x); | 
 | 450 | 	if (slot->qlen == 1) {		/* The flow is new */ | 
 | 451 | 		if (q->tail == NULL) {	/* It is the first flow */ | 
 | 452 | 			slot->next = x; | 
 | 453 | 		} else { | 
 | 454 | 			slot->next = q->tail->next; | 
 | 455 | 			q->tail->next = x; | 
 | 456 | 		} | 
 | 457 | 		/* We put this flow at the end of our flow list. | 
 | 458 | 		 * This might sound unfair for a new flow to wait after old ones, | 
 | 459 | 		 * but we could endup servicing new flows only, and freeze old ones. | 
 | 460 | 		 */ | 
 | 461 | 		q->tail = slot; | 
 | 462 | 		/* We could use a bigger initial quantum for new flows */ | 
 | 463 | 		slot->allot = q->scaled_quantum; | 
 | 464 | 	} | 
 | 465 | 	if (++sch->q.qlen <= q->limit) | 
 | 466 | 		return NET_XMIT_SUCCESS; | 
 | 467 |  | 
 | 468 | 	qlen = slot->qlen; | 
 | 469 | 	dropped = sfq_drop(sch, to_free); | 
 | 470 | 	/* Return Congestion Notification only if we dropped a packet | 
 | 471 | 	 * from this flow. | 
 | 472 | 	 */ | 
 | 473 | 	if (qlen != slot->qlen) { | 
 | 474 | 		qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb)); | 
 | 475 | 		return NET_XMIT_CN; | 
 | 476 | 	} | 
 | 477 |  | 
 | 478 | 	/* As we dropped a packet, better let upper stack know this */ | 
 | 479 | 	qdisc_tree_reduce_backlog(sch, 1, dropped); | 
 | 480 | 	return NET_XMIT_SUCCESS; | 
 | 481 | } | 
 | 482 |  | 
 | 483 | static struct sk_buff * | 
 | 484 | sfq_dequeue(struct Qdisc *sch) | 
 | 485 | { | 
 | 486 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 487 | 	struct sk_buff *skb; | 
 | 488 | 	sfq_index a, next_a; | 
 | 489 | 	struct sfq_slot *slot; | 
 | 490 |  | 
 | 491 | 	/* No active slots */ | 
 | 492 | 	if (q->tail == NULL) | 
 | 493 | 		return NULL; | 
 | 494 |  | 
 | 495 | next_slot: | 
 | 496 | 	a = q->tail->next; | 
 | 497 | 	slot = &q->slots[a]; | 
 | 498 | 	if (slot->allot <= 0) { | 
 | 499 | 		q->tail = slot; | 
 | 500 | 		slot->allot += q->scaled_quantum; | 
 | 501 | 		goto next_slot; | 
 | 502 | 	} | 
 | 503 | 	skb = slot_dequeue_head(slot); | 
 | 504 | 	sfq_dec(q, a); | 
 | 505 | 	qdisc_bstats_update(sch, skb); | 
 | 506 | 	sch->q.qlen--; | 
 | 507 | 	qdisc_qstats_backlog_dec(sch, skb); | 
 | 508 | 	slot->backlog -= qdisc_pkt_len(skb); | 
 | 509 | 	/* Is the slot empty? */ | 
 | 510 | 	if (slot->qlen == 0) { | 
 | 511 | 		q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
 | 512 | 		next_a = slot->next; | 
 | 513 | 		if (a == next_a) { | 
 | 514 | 			q->tail = NULL; /* no more active slots */ | 
 | 515 | 			return skb; | 
 | 516 | 		} | 
 | 517 | 		q->tail->next = next_a; | 
 | 518 | 	} else { | 
 | 519 | 		slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb)); | 
 | 520 | 	} | 
 | 521 | 	return skb; | 
 | 522 | } | 
 | 523 |  | 
 | 524 | static void | 
 | 525 | sfq_reset(struct Qdisc *sch) | 
 | 526 | { | 
 | 527 | 	struct sk_buff *skb; | 
 | 528 |  | 
 | 529 | 	while ((skb = sfq_dequeue(sch)) != NULL) | 
 | 530 | 		rtnl_kfree_skbs(skb, skb); | 
 | 531 | } | 
 | 532 |  | 
 | 533 | /* | 
 | 534 |  * When q->perturbation is changed, we rehash all queued skbs | 
 | 535 |  * to avoid OOO (Out Of Order) effects. | 
 | 536 |  * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change | 
 | 537 |  * counters. | 
 | 538 |  */ | 
 | 539 | static void sfq_rehash(struct Qdisc *sch) | 
 | 540 | { | 
 | 541 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 542 | 	struct sk_buff *skb; | 
 | 543 | 	int i; | 
 | 544 | 	struct sfq_slot *slot; | 
 | 545 | 	struct sk_buff_head list; | 
 | 546 | 	int dropped = 0; | 
 | 547 | 	unsigned int drop_len = 0; | 
 | 548 |  | 
 | 549 | 	__skb_queue_head_init(&list); | 
 | 550 |  | 
 | 551 | 	for (i = 0; i < q->maxflows; i++) { | 
 | 552 | 		slot = &q->slots[i]; | 
 | 553 | 		if (!slot->qlen) | 
 | 554 | 			continue; | 
 | 555 | 		while (slot->qlen) { | 
 | 556 | 			skb = slot_dequeue_head(slot); | 
 | 557 | 			sfq_dec(q, i); | 
 | 558 | 			__skb_queue_tail(&list, skb); | 
 | 559 | 		} | 
 | 560 | 		slot->backlog = 0; | 
 | 561 | 		red_set_vars(&slot->vars); | 
 | 562 | 		q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
 | 563 | 	} | 
 | 564 | 	q->tail = NULL; | 
 | 565 |  | 
 | 566 | 	while ((skb = __skb_dequeue(&list)) != NULL) { | 
 | 567 | 		unsigned int hash = sfq_hash(q, skb); | 
 | 568 | 		sfq_index x = q->ht[hash]; | 
 | 569 |  | 
 | 570 | 		slot = &q->slots[x]; | 
 | 571 | 		if (x == SFQ_EMPTY_SLOT) { | 
 | 572 | 			x = q->dep[0].next; /* get a free slot */ | 
 | 573 | 			if (x >= SFQ_MAX_FLOWS) { | 
 | 574 | drop: | 
 | 575 | 				qdisc_qstats_backlog_dec(sch, skb); | 
 | 576 | 				drop_len += qdisc_pkt_len(skb); | 
 | 577 | 				kfree_skb(skb); | 
 | 578 | 				dropped++; | 
 | 579 | 				continue; | 
 | 580 | 			} | 
 | 581 | 			q->ht[hash] = x; | 
 | 582 | 			slot = &q->slots[x]; | 
 | 583 | 			slot->hash = hash; | 
 | 584 | 		} | 
 | 585 | 		if (slot->qlen >= q->maxdepth) | 
 | 586 | 			goto drop; | 
 | 587 | 		slot_queue_add(slot, skb); | 
 | 588 | 		if (q->red_parms) | 
 | 589 | 			slot->vars.qavg = red_calc_qavg(q->red_parms, | 
 | 590 | 							&slot->vars, | 
 | 591 | 							slot->backlog); | 
 | 592 | 		slot->backlog += qdisc_pkt_len(skb); | 
 | 593 | 		sfq_inc(q, x); | 
 | 594 | 		if (slot->qlen == 1) {		/* The flow is new */ | 
 | 595 | 			if (q->tail == NULL) {	/* It is the first flow */ | 
 | 596 | 				slot->next = x; | 
 | 597 | 			} else { | 
 | 598 | 				slot->next = q->tail->next; | 
 | 599 | 				q->tail->next = x; | 
 | 600 | 			} | 
 | 601 | 			q->tail = slot; | 
 | 602 | 			slot->allot = q->scaled_quantum; | 
 | 603 | 		} | 
 | 604 | 	} | 
 | 605 | 	sch->q.qlen -= dropped; | 
 | 606 | 	qdisc_tree_reduce_backlog(sch, dropped, drop_len); | 
 | 607 | } | 
 | 608 |  | 
 | 609 | static void sfq_perturbation(struct timer_list *t) | 
 | 610 | { | 
 | 611 | 	struct sfq_sched_data *q = from_timer(q, t, perturb_timer); | 
 | 612 | 	struct Qdisc *sch = q->sch; | 
 | 613 | 	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); | 
 | 614 | 	siphash_key_t nkey; | 
 | 615 |  | 
 | 616 | 	get_random_bytes(&nkey, sizeof(nkey)); | 
 | 617 | 	spin_lock(root_lock); | 
 | 618 | 	q->perturbation = nkey; | 
 | 619 | 	if (!q->filter_list && q->tail) | 
 | 620 | 		sfq_rehash(sch); | 
 | 621 | 	spin_unlock(root_lock); | 
 | 622 |  | 
 | 623 | 	if (q->perturb_period) | 
 | 624 | 		mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
 | 625 | } | 
 | 626 |  | 
 | 627 | static int sfq_change(struct Qdisc *sch, struct nlattr *opt) | 
 | 628 | { | 
 | 629 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 630 | 	struct tc_sfq_qopt *ctl = nla_data(opt); | 
 | 631 | 	struct tc_sfq_qopt_v1 *ctl_v1 = NULL; | 
 | 632 | 	unsigned int qlen, dropped = 0; | 
 | 633 | 	struct red_parms *p = NULL; | 
 | 634 | 	struct sk_buff *to_free = NULL; | 
 | 635 | 	struct sk_buff *tail = NULL; | 
 | 636 |  | 
 | 637 | 	if (opt->nla_len < nla_attr_size(sizeof(*ctl))) | 
 | 638 | 		return -EINVAL; | 
 | 639 | 	if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1))) | 
 | 640 | 		ctl_v1 = nla_data(opt); | 
 | 641 | 	if (ctl->divisor && | 
 | 642 | 	    (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536)) | 
 | 643 | 		return -EINVAL; | 
 | 644 | 	if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max, | 
 | 645 | 					ctl_v1->Wlog)) | 
 | 646 | 		return -EINVAL; | 
 | 647 | 	if (ctl_v1 && ctl_v1->qth_min) { | 
 | 648 | 		p = kmalloc(sizeof(*p), GFP_KERNEL); | 
 | 649 | 		if (!p) | 
 | 650 | 			return -ENOMEM; | 
 | 651 | 	} | 
 | 652 | 	sch_tree_lock(sch); | 
 | 653 | 	if (ctl->quantum) { | 
 | 654 | 		q->quantum = ctl->quantum; | 
 | 655 | 		q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); | 
 | 656 | 	} | 
 | 657 | 	q->perturb_period = ctl->perturb_period * HZ; | 
 | 658 | 	if (ctl->flows) | 
 | 659 | 		q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS); | 
 | 660 | 	if (ctl->divisor) { | 
 | 661 | 		q->divisor = ctl->divisor; | 
 | 662 | 		q->maxflows = min_t(u32, q->maxflows, q->divisor); | 
 | 663 | 	} | 
 | 664 | 	if (ctl_v1) { | 
 | 665 | 		if (ctl_v1->depth) | 
 | 666 | 			q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH); | 
 | 667 | 		if (p) { | 
 | 668 | 			swap(q->red_parms, p); | 
 | 669 | 			red_set_parms(q->red_parms, | 
 | 670 | 				      ctl_v1->qth_min, ctl_v1->qth_max, | 
 | 671 | 				      ctl_v1->Wlog, | 
 | 672 | 				      ctl_v1->Plog, ctl_v1->Scell_log, | 
 | 673 | 				      NULL, | 
 | 674 | 				      ctl_v1->max_P); | 
 | 675 | 		} | 
 | 676 | 		q->flags = ctl_v1->flags; | 
 | 677 | 		q->headdrop = ctl_v1->headdrop; | 
 | 678 | 	} | 
 | 679 | 	if (ctl->limit) { | 
 | 680 | 		q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows); | 
 | 681 | 		q->maxflows = min_t(u32, q->maxflows, q->limit); | 
 | 682 | 	} | 
 | 683 |  | 
 | 684 | 	qlen = sch->q.qlen; | 
 | 685 | 	while (sch->q.qlen > q->limit) { | 
 | 686 | 		dropped += sfq_drop(sch, &to_free); | 
 | 687 | 		if (!tail) | 
 | 688 | 			tail = to_free; | 
 | 689 | 	} | 
 | 690 |  | 
 | 691 | 	rtnl_kfree_skbs(to_free, tail); | 
 | 692 | 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); | 
 | 693 |  | 
 | 694 | 	del_timer(&q->perturb_timer); | 
 | 695 | 	if (q->perturb_period) { | 
 | 696 | 		mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
 | 697 | 		get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
 | 698 | 	} | 
 | 699 | 	sch_tree_unlock(sch); | 
 | 700 | 	kfree(p); | 
 | 701 | 	return 0; | 
 | 702 | } | 
 | 703 |  | 
 | 704 | static void *sfq_alloc(size_t sz) | 
 | 705 | { | 
 | 706 | 	return  kvmalloc(sz, GFP_KERNEL); | 
 | 707 | } | 
 | 708 |  | 
 | 709 | static void sfq_free(void *addr) | 
 | 710 | { | 
 | 711 | 	kvfree(addr); | 
 | 712 | } | 
 | 713 |  | 
 | 714 | static void sfq_destroy(struct Qdisc *sch) | 
 | 715 | { | 
 | 716 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 717 |  | 
 | 718 | 	tcf_block_put(q->block); | 
 | 719 | 	q->perturb_period = 0; | 
 | 720 | 	del_timer_sync(&q->perturb_timer); | 
 | 721 | 	sfq_free(q->ht); | 
 | 722 | 	sfq_free(q->slots); | 
 | 723 | 	kfree(q->red_parms); | 
 | 724 | } | 
 | 725 |  | 
 | 726 | static int sfq_init(struct Qdisc *sch, struct nlattr *opt, | 
 | 727 | 		    struct netlink_ext_ack *extack) | 
 | 728 | { | 
 | 729 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 730 | 	int i; | 
 | 731 | 	int err; | 
 | 732 |  | 
 | 733 | 	q->sch = sch; | 
 | 734 | 	timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE); | 
 | 735 |  | 
 | 736 | 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack); | 
 | 737 | 	if (err) | 
 | 738 | 		return err; | 
 | 739 |  | 
 | 740 | 	for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) { | 
 | 741 | 		q->dep[i].next = i + SFQ_MAX_FLOWS; | 
 | 742 | 		q->dep[i].prev = i + SFQ_MAX_FLOWS; | 
 | 743 | 	} | 
 | 744 |  | 
 | 745 | 	q->limit = SFQ_MAX_DEPTH; | 
 | 746 | 	q->maxdepth = SFQ_MAX_DEPTH; | 
 | 747 | 	q->cur_depth = 0; | 
 | 748 | 	q->tail = NULL; | 
 | 749 | 	q->divisor = SFQ_DEFAULT_HASH_DIVISOR; | 
 | 750 | 	q->maxflows = SFQ_DEFAULT_FLOWS; | 
 | 751 | 	q->quantum = psched_mtu(qdisc_dev(sch)); | 
 | 752 | 	q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); | 
 | 753 | 	q->perturb_period = 0; | 
 | 754 | 	get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
 | 755 |  | 
 | 756 | 	if (opt) { | 
 | 757 | 		int err = sfq_change(sch, opt); | 
 | 758 | 		if (err) | 
 | 759 | 			return err; | 
 | 760 | 	} | 
 | 761 |  | 
 | 762 | 	q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor); | 
 | 763 | 	q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows); | 
 | 764 | 	if (!q->ht || !q->slots) { | 
 | 765 | 		/* Note: sfq_destroy() will be called by our caller */ | 
 | 766 | 		return -ENOMEM; | 
 | 767 | 	} | 
 | 768 |  | 
 | 769 | 	for (i = 0; i < q->divisor; i++) | 
 | 770 | 		q->ht[i] = SFQ_EMPTY_SLOT; | 
 | 771 |  | 
 | 772 | 	for (i = 0; i < q->maxflows; i++) { | 
 | 773 | 		slot_queue_init(&q->slots[i]); | 
 | 774 | 		sfq_link(q, i); | 
 | 775 | 	} | 
 | 776 | 	if (q->limit >= 1) | 
 | 777 | 		sch->flags |= TCQ_F_CAN_BYPASS; | 
 | 778 | 	else | 
 | 779 | 		sch->flags &= ~TCQ_F_CAN_BYPASS; | 
 | 780 | 	return 0; | 
 | 781 | } | 
 | 782 |  | 
 | 783 | static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | 784 | { | 
 | 785 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 786 | 	unsigned char *b = skb_tail_pointer(skb); | 
 | 787 | 	struct tc_sfq_qopt_v1 opt; | 
 | 788 | 	struct red_parms *p = q->red_parms; | 
 | 789 |  | 
 | 790 | 	memset(&opt, 0, sizeof(opt)); | 
 | 791 | 	opt.v0.quantum	= q->quantum; | 
 | 792 | 	opt.v0.perturb_period = q->perturb_period / HZ; | 
 | 793 | 	opt.v0.limit	= q->limit; | 
 | 794 | 	opt.v0.divisor	= q->divisor; | 
 | 795 | 	opt.v0.flows	= q->maxflows; | 
 | 796 | 	opt.depth	= q->maxdepth; | 
 | 797 | 	opt.headdrop	= q->headdrop; | 
 | 798 |  | 
 | 799 | 	if (p) { | 
 | 800 | 		opt.qth_min	= p->qth_min >> p->Wlog; | 
 | 801 | 		opt.qth_max	= p->qth_max >> p->Wlog; | 
 | 802 | 		opt.Wlog	= p->Wlog; | 
 | 803 | 		opt.Plog	= p->Plog; | 
 | 804 | 		opt.Scell_log	= p->Scell_log; | 
 | 805 | 		opt.max_P	= p->max_P; | 
 | 806 | 	} | 
 | 807 | 	memcpy(&opt.stats, &q->stats, sizeof(opt.stats)); | 
 | 808 | 	opt.flags	= q->flags; | 
 | 809 |  | 
 | 810 | 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) | 
 | 811 | 		goto nla_put_failure; | 
 | 812 |  | 
 | 813 | 	return skb->len; | 
 | 814 |  | 
 | 815 | nla_put_failure: | 
 | 816 | 	nlmsg_trim(skb, b); | 
 | 817 | 	return -1; | 
 | 818 | } | 
 | 819 |  | 
 | 820 | static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg) | 
 | 821 | { | 
 | 822 | 	return NULL; | 
 | 823 | } | 
 | 824 |  | 
 | 825 | static unsigned long sfq_find(struct Qdisc *sch, u32 classid) | 
 | 826 | { | 
 | 827 | 	return 0; | 
 | 828 | } | 
 | 829 |  | 
 | 830 | static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent, | 
 | 831 | 			      u32 classid) | 
 | 832 | { | 
 | 833 | 	return 0; | 
 | 834 | } | 
 | 835 |  | 
 | 836 | static void sfq_unbind(struct Qdisc *q, unsigned long cl) | 
 | 837 | { | 
 | 838 | } | 
 | 839 |  | 
 | 840 | static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl, | 
 | 841 | 				       struct netlink_ext_ack *extack) | 
 | 842 | { | 
 | 843 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 844 |  | 
 | 845 | 	if (cl) | 
 | 846 | 		return NULL; | 
 | 847 | 	return q->block; | 
 | 848 | } | 
 | 849 |  | 
 | 850 | static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, | 
 | 851 | 			  struct sk_buff *skb, struct tcmsg *tcm) | 
 | 852 | { | 
 | 853 | 	tcm->tcm_handle |= TC_H_MIN(cl); | 
 | 854 | 	return 0; | 
 | 855 | } | 
 | 856 |  | 
 | 857 | static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, | 
 | 858 | 				struct gnet_dump *d) | 
 | 859 | { | 
 | 860 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 861 | 	sfq_index idx = q->ht[cl - 1]; | 
 | 862 | 	struct gnet_stats_queue qs = { 0 }; | 
 | 863 | 	struct tc_sfq_xstats xstats = { 0 }; | 
 | 864 |  | 
 | 865 | 	if (idx != SFQ_EMPTY_SLOT) { | 
 | 866 | 		const struct sfq_slot *slot = &q->slots[idx]; | 
 | 867 |  | 
 | 868 | 		xstats.allot = slot->allot << SFQ_ALLOT_SHIFT; | 
 | 869 | 		qs.qlen = slot->qlen; | 
 | 870 | 		qs.backlog = slot->backlog; | 
 | 871 | 	} | 
 | 872 | 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) | 
 | 873 | 		return -1; | 
 | 874 | 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); | 
 | 875 | } | 
 | 876 |  | 
 | 877 | static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) | 
 | 878 | { | 
 | 879 | 	struct sfq_sched_data *q = qdisc_priv(sch); | 
 | 880 | 	unsigned int i; | 
 | 881 |  | 
 | 882 | 	if (arg->stop) | 
 | 883 | 		return; | 
 | 884 |  | 
 | 885 | 	for (i = 0; i < q->divisor; i++) { | 
 | 886 | 		if (q->ht[i] == SFQ_EMPTY_SLOT || | 
 | 887 | 		    arg->count < arg->skip) { | 
 | 888 | 			arg->count++; | 
 | 889 | 			continue; | 
 | 890 | 		} | 
 | 891 | 		if (arg->fn(sch, i + 1, arg) < 0) { | 
 | 892 | 			arg->stop = 1; | 
 | 893 | 			break; | 
 | 894 | 		} | 
 | 895 | 		arg->count++; | 
 | 896 | 	} | 
 | 897 | } | 
 | 898 |  | 
 | 899 | static const struct Qdisc_class_ops sfq_class_ops = { | 
 | 900 | 	.leaf		=	sfq_leaf, | 
 | 901 | 	.find		=	sfq_find, | 
 | 902 | 	.tcf_block	=	sfq_tcf_block, | 
 | 903 | 	.bind_tcf	=	sfq_bind, | 
 | 904 | 	.unbind_tcf	=	sfq_unbind, | 
 | 905 | 	.dump		=	sfq_dump_class, | 
 | 906 | 	.dump_stats	=	sfq_dump_class_stats, | 
 | 907 | 	.walk		=	sfq_walk, | 
 | 908 | }; | 
 | 909 |  | 
 | 910 | static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { | 
 | 911 | 	.cl_ops		=	&sfq_class_ops, | 
 | 912 | 	.id		=	"sfq", | 
 | 913 | 	.priv_size	=	sizeof(struct sfq_sched_data), | 
 | 914 | 	.enqueue	=	sfq_enqueue, | 
 | 915 | 	.dequeue	=	sfq_dequeue, | 
 | 916 | 	.peek		=	qdisc_peek_dequeued, | 
 | 917 | 	.init		=	sfq_init, | 
 | 918 | 	.reset		=	sfq_reset, | 
 | 919 | 	.destroy	=	sfq_destroy, | 
 | 920 | 	.change		=	NULL, | 
 | 921 | 	.dump		=	sfq_dump, | 
 | 922 | 	.owner		=	THIS_MODULE, | 
 | 923 | }; | 
 | 924 |  | 
 | 925 | static int __init sfq_module_init(void) | 
 | 926 | { | 
 | 927 | 	return register_qdisc(&sfq_qdisc_ops); | 
 | 928 | } | 
 | 929 | static void __exit sfq_module_exit(void) | 
 | 930 | { | 
 | 931 | 	unregister_qdisc(&sfq_qdisc_ops); | 
 | 932 | } | 
 | 933 | module_init(sfq_module_init) | 
 | 934 | module_exit(sfq_module_exit) | 
 | 935 | MODULE_LICENSE("GPL"); |