blob: cef0b7ee1024646cdc0edeb4d9c5cbbc0a4837fc [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/io.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/export.h>
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/moduleparam.h>
20#include <linux/swap.h>
21#include <linux/swapops.h>
22#include <linux/kmemleak.h>
23#include <asm/pgtable.h>
24#include <asm/pgalloc.h>
25#include <asm/tlb.h>
26#include <asm/setup.h>
27#include <asm/hugetlb.h>
28#include <asm/pte-walk.h>
29
30
31#ifdef CONFIG_HUGETLB_PAGE
32
33#define PAGE_SHIFT_64K 16
34#define PAGE_SHIFT_512K 19
35#define PAGE_SHIFT_8M 23
36#define PAGE_SHIFT_16M 24
37#define PAGE_SHIFT_16G 34
38
39bool hugetlb_disabled = false;
40
41unsigned int HPAGE_SHIFT;
42EXPORT_SYMBOL(HPAGE_SHIFT);
43
44#define hugepd_none(hpd) (hpd_val(hpd) == 0)
45
46pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
47{
48 /*
49 * Only called for hugetlbfs pages, hence can ignore THP and the
50 * irq disabled walk.
51 */
52 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
53}
54
55static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
56 unsigned long address, unsigned int pdshift,
57 unsigned int pshift, spinlock_t *ptl)
58{
59 struct kmem_cache *cachep;
60 pte_t *new;
61 int i;
62 int num_hugepd;
63
64 if (pshift >= pdshift) {
65 cachep = hugepte_cache;
66 num_hugepd = 1 << (pshift - pdshift);
67 } else {
68 cachep = PGT_CACHE(pdshift - pshift);
69 num_hugepd = 1;
70 }
71
72 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
73
74 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
75 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
76
77 if (! new)
78 return -ENOMEM;
79
80 /*
81 * Make sure other cpus find the hugepd set only after a
82 * properly initialized page table is visible to them.
83 * For more details look for comment in __pte_alloc().
84 */
85 smp_wmb();
86
87 spin_lock(ptl);
88 /*
89 * We have multiple higher-level entries that point to the same
90 * actual pte location. Fill in each as we go and backtrack on error.
91 * We need all of these so the DTLB pgtable walk code can find the
92 * right higher-level entry without knowing if it's a hugepage or not.
93 */
94 for (i = 0; i < num_hugepd; i++, hpdp++) {
95 if (unlikely(!hugepd_none(*hpdp)))
96 break;
97 else {
98#ifdef CONFIG_PPC_BOOK3S_64
99 *hpdp = __hugepd(__pa(new) |
100 (shift_to_mmu_psize(pshift) << 2));
101#elif defined(CONFIG_PPC_8xx)
102 *hpdp = __hugepd(__pa(new) | _PMD_USER |
103 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
104 _PMD_PAGE_512K) | _PMD_PRESENT);
105#else
106 /* We use the old format for PPC_FSL_BOOK3E */
107 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
108#endif
109 }
110 }
111 /* If we bailed from the for loop early, an error occurred, clean up */
112 if (i < num_hugepd) {
113 for (i = i - 1 ; i >= 0; i--, hpdp--)
114 *hpdp = __hugepd(0);
115 kmem_cache_free(cachep, new);
116 } else {
117 kmemleak_ignore(new);
118 }
119 spin_unlock(ptl);
120 return 0;
121}
122
123/*
124 * At this point we do the placement change only for BOOK3S 64. This would
125 * possibly work on other subarchs.
126 */
127pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
128{
129 pgd_t *pg;
130 pud_t *pu;
131 pmd_t *pm;
132 hugepd_t *hpdp = NULL;
133 unsigned pshift = __ffs(sz);
134 unsigned pdshift = PGDIR_SHIFT;
135 spinlock_t *ptl;
136
137 addr &= ~(sz-1);
138 pg = pgd_offset(mm, addr);
139
140#ifdef CONFIG_PPC_BOOK3S_64
141 if (pshift == PGDIR_SHIFT)
142 /* 16GB huge page */
143 return (pte_t *) pg;
144 else if (pshift > PUD_SHIFT) {
145 /*
146 * We need to use hugepd table
147 */
148 ptl = &mm->page_table_lock;
149 hpdp = (hugepd_t *)pg;
150 } else {
151 pdshift = PUD_SHIFT;
152 pu = pud_alloc(mm, pg, addr);
153 if (!pu)
154 return NULL;
155 if (pshift == PUD_SHIFT)
156 return (pte_t *)pu;
157 else if (pshift > PMD_SHIFT) {
158 ptl = pud_lockptr(mm, pu);
159 hpdp = (hugepd_t *)pu;
160 } else {
161 pdshift = PMD_SHIFT;
162 pm = pmd_alloc(mm, pu, addr);
163 if (!pm)
164 return NULL;
165 if (pshift == PMD_SHIFT)
166 /* 16MB hugepage */
167 return (pte_t *)pm;
168 else {
169 ptl = pmd_lockptr(mm, pm);
170 hpdp = (hugepd_t *)pm;
171 }
172 }
173 }
174#else
175 if (pshift >= PGDIR_SHIFT) {
176 ptl = &mm->page_table_lock;
177 hpdp = (hugepd_t *)pg;
178 } else {
179 pdshift = PUD_SHIFT;
180 pu = pud_alloc(mm, pg, addr);
181 if (!pu)
182 return NULL;
183 if (pshift >= PUD_SHIFT) {
184 ptl = pud_lockptr(mm, pu);
185 hpdp = (hugepd_t *)pu;
186 } else {
187 pdshift = PMD_SHIFT;
188 pm = pmd_alloc(mm, pu, addr);
189 if (!pm)
190 return NULL;
191 ptl = pmd_lockptr(mm, pm);
192 hpdp = (hugepd_t *)pm;
193 }
194 }
195#endif
196 if (!hpdp)
197 return NULL;
198
199 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
200
201 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
202 pdshift, pshift, ptl))
203 return NULL;
204
205 return hugepte_offset(*hpdp, addr, pdshift);
206}
207
208#ifdef CONFIG_PPC_BOOK3S_64
209/*
210 * Tracks gpages after the device tree is scanned and before the
211 * huge_boot_pages list is ready on pseries.
212 */
213#define MAX_NUMBER_GPAGES 1024
214__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
215__initdata static unsigned nr_gpages;
216
217/*
218 * Build list of addresses of gigantic pages. This function is used in early
219 * boot before the buddy allocator is setup.
220 */
221void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
222{
223 if (!addr)
224 return;
225 while (number_of_pages > 0) {
226 gpage_freearray[nr_gpages] = addr;
227 nr_gpages++;
228 number_of_pages--;
229 addr += page_size;
230 }
231}
232
233int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
234{
235 struct huge_bootmem_page *m;
236 if (nr_gpages == 0)
237 return 0;
238 m = phys_to_virt(gpage_freearray[--nr_gpages]);
239 gpage_freearray[nr_gpages] = 0;
240 list_add(&m->list, &huge_boot_pages);
241 m->hstate = hstate;
242 return 1;
243}
244#endif
245
246
247int __init alloc_bootmem_huge_page(struct hstate *h)
248{
249
250#ifdef CONFIG_PPC_BOOK3S_64
251 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
252 return pseries_alloc_bootmem_huge_page(h);
253#endif
254 return __alloc_bootmem_huge_page(h);
255}
256
257#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
258#define HUGEPD_FREELIST_SIZE \
259 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
260
261struct hugepd_freelist {
262 struct rcu_head rcu;
263 unsigned int index;
264 void *ptes[0];
265};
266
267static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
268
269static void hugepd_free_rcu_callback(struct rcu_head *head)
270{
271 struct hugepd_freelist *batch =
272 container_of(head, struct hugepd_freelist, rcu);
273 unsigned int i;
274
275 for (i = 0; i < batch->index; i++)
276 kmem_cache_free(hugepte_cache, batch->ptes[i]);
277
278 free_page((unsigned long)batch);
279}
280
281static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
282{
283 struct hugepd_freelist **batchp;
284
285 batchp = &get_cpu_var(hugepd_freelist_cur);
286
287 if (atomic_read(&tlb->mm->mm_users) < 2 ||
288 mm_is_thread_local(tlb->mm)) {
289 kmem_cache_free(hugepte_cache, hugepte);
290 put_cpu_var(hugepd_freelist_cur);
291 return;
292 }
293
294 if (*batchp == NULL) {
295 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
296 (*batchp)->index = 0;
297 }
298
299 (*batchp)->ptes[(*batchp)->index++] = hugepte;
300 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
301 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
302 *batchp = NULL;
303 }
304 put_cpu_var(hugepd_freelist_cur);
305}
306#else
307static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
308#endif
309
310static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
311 unsigned long start, unsigned long end,
312 unsigned long floor, unsigned long ceiling)
313{
314 pte_t *hugepte = hugepd_page(*hpdp);
315 int i;
316
317 unsigned long pdmask = ~((1UL << pdshift) - 1);
318 unsigned int num_hugepd = 1;
319 unsigned int shift = hugepd_shift(*hpdp);
320
321 /* Note: On fsl the hpdp may be the first of several */
322 if (shift > pdshift)
323 num_hugepd = 1 << (shift - pdshift);
324
325 start &= pdmask;
326 if (start < floor)
327 return;
328 if (ceiling) {
329 ceiling &= pdmask;
330 if (! ceiling)
331 return;
332 }
333 if (end - 1 > ceiling - 1)
334 return;
335
336 for (i = 0; i < num_hugepd; i++, hpdp++)
337 *hpdp = __hugepd(0);
338
339 if (shift >= pdshift)
340 hugepd_free(tlb, hugepte);
341 else
342 pgtable_free_tlb(tlb, hugepte,
343 get_hugepd_cache_index(pdshift - shift));
344}
345
346static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
347 unsigned long addr, unsigned long end,
348 unsigned long floor, unsigned long ceiling)
349{
350 pmd_t *pmd;
351 unsigned long next;
352 unsigned long start;
353
354 start = addr;
355 do {
356 unsigned long more;
357
358 pmd = pmd_offset(pud, addr);
359 next = pmd_addr_end(addr, end);
360 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
361 /*
362 * if it is not hugepd pointer, we should already find
363 * it cleared.
364 */
365 WARN_ON(!pmd_none_or_clear_bad(pmd));
366 continue;
367 }
368 /*
369 * Increment next by the size of the huge mapping since
370 * there may be more than one entry at this level for a
371 * single hugepage, but all of them point to
372 * the same kmem cache that holds the hugepte.
373 */
374 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
375 if (more > next)
376 next = more;
377
378 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
379 addr, next, floor, ceiling);
380 } while (addr = next, addr != end);
381
382 start &= PUD_MASK;
383 if (start < floor)
384 return;
385 if (ceiling) {
386 ceiling &= PUD_MASK;
387 if (!ceiling)
388 return;
389 }
390 if (end - 1 > ceiling - 1)
391 return;
392
393 pmd = pmd_offset(pud, start);
394 pud_clear(pud);
395 pmd_free_tlb(tlb, pmd, start);
396 mm_dec_nr_pmds(tlb->mm);
397}
398
399static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
402{
403 pud_t *pud;
404 unsigned long next;
405 unsigned long start;
406
407 start = addr;
408 do {
409 pud = pud_offset(pgd, addr);
410 next = pud_addr_end(addr, end);
411 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
412 if (pud_none_or_clear_bad(pud))
413 continue;
414 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
415 ceiling);
416 } else {
417 unsigned long more;
418 /*
419 * Increment next by the size of the huge mapping since
420 * there may be more than one entry at this level for a
421 * single hugepage, but all of them point to
422 * the same kmem cache that holds the hugepte.
423 */
424 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
425 if (more > next)
426 next = more;
427
428 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
429 addr, next, floor, ceiling);
430 }
431 } while (addr = next, addr != end);
432
433 start &= PGDIR_MASK;
434 if (start < floor)
435 return;
436 if (ceiling) {
437 ceiling &= PGDIR_MASK;
438 if (!ceiling)
439 return;
440 }
441 if (end - 1 > ceiling - 1)
442 return;
443
444 pud = pud_offset(pgd, start);
445 pgd_clear(pgd);
446 pud_free_tlb(tlb, pud, start);
447 mm_dec_nr_puds(tlb->mm);
448}
449
450/*
451 * This function frees user-level page tables of a process.
452 */
453void hugetlb_free_pgd_range(struct mmu_gather *tlb,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
456{
457 pgd_t *pgd;
458 unsigned long next;
459
460 /*
461 * Because there are a number of different possible pagetable
462 * layouts for hugepage ranges, we limit knowledge of how
463 * things should be laid out to the allocation path
464 * (huge_pte_alloc(), above). Everything else works out the
465 * structure as it goes from information in the hugepd
466 * pointers. That means that we can't here use the
467 * optimization used in the normal page free_pgd_range(), of
468 * checking whether we're actually covering a large enough
469 * range to have to do anything at the top level of the walk
470 * instead of at the bottom.
471 *
472 * To make sense of this, you should probably go read the big
473 * block comment at the top of the normal free_pgd_range(),
474 * too.
475 */
476
477 do {
478 next = pgd_addr_end(addr, end);
479 pgd = pgd_offset(tlb->mm, addr);
480 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
481 if (pgd_none_or_clear_bad(pgd))
482 continue;
483 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
484 } else {
485 unsigned long more;
486 /*
487 * Increment next by the size of the huge mapping since
488 * there may be more than one entry at the pgd level
489 * for a single hugepage, but all of them point to the
490 * same kmem cache that holds the hugepte.
491 */
492 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
493 if (more > next)
494 next = more;
495
496 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
497 addr, next, floor, ceiling);
498 }
499 } while (addr = next, addr != end);
500}
501
502struct page *follow_huge_pd(struct vm_area_struct *vma,
503 unsigned long address, hugepd_t hpd,
504 int flags, int pdshift)
505{
506 pte_t *ptep;
507 spinlock_t *ptl;
508 struct page *page = NULL;
509 unsigned long mask;
510 int shift = hugepd_shift(hpd);
511 struct mm_struct *mm = vma->vm_mm;
512
513retry:
514 /*
515 * hugepage directory entries are protected by mm->page_table_lock
516 * Use this instead of huge_pte_lockptr
517 */
518 ptl = &mm->page_table_lock;
519 spin_lock(ptl);
520
521 ptep = hugepte_offset(hpd, address, pdshift);
522 if (pte_present(*ptep)) {
523 mask = (1UL << shift) - 1;
524 page = pte_page(*ptep);
525 page += ((address & mask) >> PAGE_SHIFT);
526 if (flags & FOLL_GET)
527 get_page(page);
528 } else {
529 if (is_hugetlb_entry_migration(*ptep)) {
530 spin_unlock(ptl);
531 __migration_entry_wait(mm, ptep, ptl);
532 goto retry;
533 }
534 }
535 spin_unlock(ptl);
536 return page;
537}
538
539static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
540 unsigned long sz)
541{
542 unsigned long __boundary = (addr + sz) & ~(sz-1);
543 return (__boundary - 1 < end - 1) ? __boundary : end;
544}
545
546int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
547 unsigned long end, int write, struct page **pages, int *nr)
548{
549 pte_t *ptep;
550 unsigned long sz = 1UL << hugepd_shift(hugepd);
551 unsigned long next;
552
553 ptep = hugepte_offset(hugepd, addr, pdshift);
554 do {
555 next = hugepte_addr_end(addr, end, sz);
556 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
557 return 0;
558 } while (ptep++, addr = next, addr != end);
559
560 return 1;
561}
562
563#ifdef CONFIG_PPC_MM_SLICES
564unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
565 unsigned long len, unsigned long pgoff,
566 unsigned long flags)
567{
568 struct hstate *hstate = hstate_file(file);
569 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
570
571#ifdef CONFIG_PPC_RADIX_MMU
572 if (radix_enabled())
573 return radix__hugetlb_get_unmapped_area(file, addr, len,
574 pgoff, flags);
575#endif
576 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
577}
578#endif
579
580unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
581{
582#ifdef CONFIG_PPC_MM_SLICES
583 /* With radix we don't use slice, so derive it from vma*/
584 if (!radix_enabled()) {
585 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
586
587 return 1UL << mmu_psize_to_shift(psize);
588 }
589#endif
590 return vma_kernel_pagesize(vma);
591}
592
593static inline bool is_power_of_4(unsigned long x)
594{
595 if (is_power_of_2(x))
596 return (__ilog2(x) % 2) ? false : true;
597 return false;
598}
599
600static int __init add_huge_page_size(unsigned long long size)
601{
602 int shift = __ffs(size);
603 int mmu_psize;
604
605 /* Check that it is a page size supported by the hardware and
606 * that it fits within pagetable and slice limits. */
607 if (size <= PAGE_SIZE)
608 return -EINVAL;
609#if defined(CONFIG_PPC_FSL_BOOK3E)
610 if (!is_power_of_4(size))
611 return -EINVAL;
612#elif !defined(CONFIG_PPC_8xx)
613 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
614 return -EINVAL;
615#endif
616
617 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
618 return -EINVAL;
619
620#ifdef CONFIG_PPC_BOOK3S_64
621 /*
622 * We need to make sure that for different page sizes reported by
623 * firmware we only add hugetlb support for page sizes that can be
624 * supported by linux page table layout.
625 * For now we have
626 * Radix: 2M and 1G
627 * Hash: 16M and 16G
628 */
629 if (radix_enabled()) {
630 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
631 return -EINVAL;
632 } else {
633 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
634 return -EINVAL;
635 }
636#endif
637
638 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
639
640 /* Return if huge page size has already been setup */
641 if (size_to_hstate(size))
642 return 0;
643
644 hugetlb_add_hstate(shift - PAGE_SHIFT);
645
646 return 0;
647}
648
649static int __init hugepage_setup_sz(char *str)
650{
651 unsigned long long size;
652
653 size = memparse(str, &str);
654
655 if (add_huge_page_size(size) != 0) {
656 hugetlb_bad_size();
657 pr_err("Invalid huge page size specified(%llu)\n", size);
658 }
659
660 return 1;
661}
662__setup("hugepagesz=", hugepage_setup_sz);
663
664struct kmem_cache *hugepte_cache;
665static int __init hugetlbpage_init(void)
666{
667 int psize;
668
669 if (hugetlb_disabled) {
670 pr_info("HugeTLB support is disabled!\n");
671 return 0;
672 }
673
674#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
675 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
676 return -ENODEV;
677#endif
678 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
679 unsigned shift;
680 unsigned pdshift;
681
682 if (!mmu_psize_defs[psize].shift)
683 continue;
684
685 shift = mmu_psize_to_shift(psize);
686
687#ifdef CONFIG_PPC_BOOK3S_64
688 if (shift > PGDIR_SHIFT)
689 continue;
690 else if (shift > PUD_SHIFT)
691 pdshift = PGDIR_SHIFT;
692 else if (shift > PMD_SHIFT)
693 pdshift = PUD_SHIFT;
694 else
695 pdshift = PMD_SHIFT;
696#else
697 if (shift < PUD_SHIFT)
698 pdshift = PMD_SHIFT;
699 else if (shift < PGDIR_SHIFT)
700 pdshift = PUD_SHIFT;
701 else
702 pdshift = PGDIR_SHIFT;
703#endif
704
705 if (add_huge_page_size(1ULL << shift) < 0)
706 continue;
707 /*
708 * if we have pdshift and shift value same, we don't
709 * use pgt cache for hugepd.
710 */
711 if (pdshift > shift)
712 pgtable_cache_add(pdshift - shift, NULL);
713#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
714 else if (!hugepte_cache) {
715 /*
716 * Create a kmem cache for hugeptes. The bottom bits in
717 * the pte have size information encoded in them, so
718 * align them to allow this
719 */
720 hugepte_cache = kmem_cache_create("hugepte-cache",
721 sizeof(pte_t),
722 HUGEPD_SHIFT_MASK + 1,
723 0, NULL);
724 if (hugepte_cache == NULL)
725 panic("%s: Unable to create kmem cache "
726 "for hugeptes\n", __func__);
727
728 }
729#endif
730 }
731
732#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
733 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
734 if (mmu_psize_defs[MMU_PAGE_4M].shift)
735 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
736 else if (mmu_psize_defs[MMU_PAGE_512K].shift)
737 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
738#else
739 /* Set default large page size. Currently, we pick 16M or 1M
740 * depending on what is available
741 */
742 if (mmu_psize_defs[MMU_PAGE_16M].shift)
743 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
744 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
745 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
746 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
747 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
748#endif
749 return 0;
750}
751
752arch_initcall(hugetlbpage_init);
753
754void flush_dcache_icache_hugepage(struct page *page)
755{
756 int i;
757 void *start;
758
759 BUG_ON(!PageCompound(page));
760
761 for (i = 0; i < (1UL << compound_order(page)); i++) {
762 if (!PageHighMem(page)) {
763 __flush_dcache_icache(page_address(page+i));
764 } else {
765 start = kmap_atomic(page+i);
766 __flush_dcache_icache(start);
767 kunmap_atomic(start);
768 }
769 }
770}
771
772#endif /* CONFIG_HUGETLB_PAGE */
773
774/*
775 * We have 4 cases for pgds and pmds:
776 * (1) invalid (all zeroes)
777 * (2) pointer to next table, as normal; bottom 6 bits == 0
778 * (3) leaf pte for huge page _PAGE_PTE set
779 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
780 *
781 * So long as we atomically load page table pointers we are safe against teardown,
782 * we can follow the address down to the the page and take a ref on it.
783 * This function need to be called with interrupts disabled. We use this variant
784 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
785 */
786pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
787 bool *is_thp, unsigned *hpage_shift)
788{
789 pgd_t pgd, *pgdp;
790 pud_t pud, *pudp;
791 pmd_t pmd, *pmdp;
792 pte_t *ret_pte;
793 hugepd_t *hpdp = NULL;
794 unsigned pdshift = PGDIR_SHIFT;
795
796 if (hpage_shift)
797 *hpage_shift = 0;
798
799 if (is_thp)
800 *is_thp = false;
801
802 pgdp = pgdir + pgd_index(ea);
803 pgd = READ_ONCE(*pgdp);
804 /*
805 * Always operate on the local stack value. This make sure the
806 * value don't get updated by a parallel THP split/collapse,
807 * page fault or a page unmap. The return pte_t * is still not
808 * stable. So should be checked there for above conditions.
809 */
810 if (pgd_none(pgd))
811 return NULL;
812 else if (pgd_huge(pgd)) {
813 ret_pte = (pte_t *) pgdp;
814 goto out;
815 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
816 hpdp = (hugepd_t *)&pgd;
817 else {
818 /*
819 * Even if we end up with an unmap, the pgtable will not
820 * be freed, because we do an rcu free and here we are
821 * irq disabled
822 */
823 pdshift = PUD_SHIFT;
824 pudp = pud_offset(&pgd, ea);
825 pud = READ_ONCE(*pudp);
826
827 if (pud_none(pud))
828 return NULL;
829 else if (pud_huge(pud)) {
830 ret_pte = (pte_t *) pudp;
831 goto out;
832 } else if (is_hugepd(__hugepd(pud_val(pud))))
833 hpdp = (hugepd_t *)&pud;
834 else {
835 pdshift = PMD_SHIFT;
836 pmdp = pmd_offset(&pud, ea);
837 pmd = READ_ONCE(*pmdp);
838 /*
839 * A hugepage collapse is captured by pmd_none, because
840 * it mark the pmd none and do a hpte invalidate.
841 */
842 if (pmd_none(pmd))
843 return NULL;
844
845 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
846 if (is_thp)
847 *is_thp = true;
848 ret_pte = (pte_t *) pmdp;
849 goto out;
850 }
851
852 if (pmd_huge(pmd)) {
853 ret_pte = (pte_t *) pmdp;
854 goto out;
855 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
856 hpdp = (hugepd_t *)&pmd;
857 else
858 return pte_offset_kernel(&pmd, ea);
859 }
860 }
861 if (!hpdp)
862 return NULL;
863
864 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
865 pdshift = hugepd_shift(*hpdp);
866out:
867 if (hpage_shift)
868 *hpage_shift = pdshift;
869 return ret_pte;
870}
871EXPORT_SYMBOL_GPL(__find_linux_pte);
872
873int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
874 unsigned long end, int write, struct page **pages, int *nr)
875{
876 unsigned long pte_end;
877 struct page *head, *page;
878 pte_t pte;
879 int refs;
880
881 pte_end = (addr + sz) & ~(sz-1);
882 if (pte_end < end)
883 end = pte_end;
884
885 pte = READ_ONCE(*ptep);
886
887 if (!pte_access_permitted(pte, write))
888 return 0;
889
890 /* hugepages are never "special" */
891 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
892
893 refs = 0;
894 head = pte_page(pte);
895
896 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
897 do {
898 VM_BUG_ON(compound_head(page) != head);
899 pages[*nr] = page;
900 (*nr)++;
901 page++;
902 refs++;
903 } while (addr += PAGE_SIZE, addr != end);
904
905 if (!page_cache_add_speculative(head, refs)) {
906 *nr -= refs;
907 return 0;
908 }
909
910 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
911 /* Could be optimized better */
912 *nr -= refs;
913 while (refs--)
914 put_page(head);
915 return 0;
916 }
917
918 return 1;
919}