blob: 41228e545e82ada88268f2f28157ad05554733c6 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38#define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40#include <linux/cpufreq.h>
41#include <linux/delay.h>
42#include <linux/iopoll.h>
43#include <linux/ktime.h>
44#include <linux/rwsem.h>
45#include <linux/wait.h>
46
47#include <acpi/cppc_acpi.h>
48
49struct cppc_pcc_data {
50 struct mbox_chan *pcc_channel;
51 void __iomem *pcc_comm_addr;
52 bool pcc_channel_acquired;
53 unsigned int deadline_us;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78 ktime_t last_cmd_cmpl_time;
79 ktime_t last_mpar_reset;
80 int mpar_count;
81 int refcount;
82};
83
84/* Array to represent the PCC channel per subspace id */
85static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86/* The cpu_pcc_subspace_idx containsper CPU subspace id */
87static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88
89/*
90 * The cpc_desc structure contains the ACPI register details
91 * as described in the per CPU _CPC tables. The details
92 * include the type of register (e.g. PCC, System IO, FFH etc.)
93 * and destination addresses which lets us READ/WRITE CPU performance
94 * information using the appropriate I/O methods.
95 */
96static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97
98/* pcc mapped address + header size + offset within PCC subspace */
99#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100 0x8 + (offs))
101
102/* Check if a CPC register is in PCC */
103#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
104 (cpc)->cpc_entry.reg.space_id == \
105 ACPI_ADR_SPACE_PLATFORM_COMM)
106
107/* Evalutes to True if reg is a NULL register descriptor */
108#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 (reg)->address == 0 && \
110 (reg)->bit_width == 0 && \
111 (reg)->bit_offset == 0 && \
112 (reg)->access_width == 0)
113
114/* Evalutes to True if an optional cpc field is supported */
115#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
116 !!(cpc)->cpc_entry.int_value : \
117 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
118/*
119 * Arbitrary Retries in case the remote processor is slow to respond
120 * to PCC commands. Keeping it high enough to cover emulators where
121 * the processors run painfully slow.
122 */
123#define NUM_RETRIES 500ULL
124
125struct cppc_attr {
126 struct attribute attr;
127 ssize_t (*show)(struct kobject *kobj,
128 struct attribute *attr, char *buf);
129 ssize_t (*store)(struct kobject *kobj,
130 struct attribute *attr, const char *c, ssize_t count);
131};
132
133#define define_one_cppc_ro(_name) \
134static struct cppc_attr _name = \
135__ATTR(_name, 0444, show_##_name, NULL)
136
137#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139#define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct attribute *attr, char *buf)
168{
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 int ret;
172
173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 if (ret)
175 return ret;
176
177 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
179}
180define_one_cppc_ro(feedback_ctrs);
181
182static struct attribute *cppc_attrs[] = {
183 &feedback_ctrs.attr,
184 &reference_perf.attr,
185 &wraparound_time.attr,
186 &highest_perf.attr,
187 &lowest_perf.attr,
188 &lowest_nonlinear_perf.attr,
189 &nominal_perf.attr,
190 &nominal_freq.attr,
191 &lowest_freq.attr,
192 NULL
193};
194
195static struct kobj_type cppc_ktype = {
196 .sysfs_ops = &kobj_sysfs_ops,
197 .default_attrs = cppc_attrs,
198};
199
200static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
201{
202 int ret, status;
203 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
204 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
205 pcc_ss_data->pcc_comm_addr;
206
207 if (!pcc_ss_data->platform_owns_pcc)
208 return 0;
209
210 /*
211 * Poll PCC status register every 3us(delay_us) for maximum of
212 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
213 */
214 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
215 status & PCC_CMD_COMPLETE_MASK, 3,
216 pcc_ss_data->deadline_us);
217
218 if (likely(!ret)) {
219 pcc_ss_data->platform_owns_pcc = false;
220 if (chk_err_bit && (status & PCC_ERROR_MASK))
221 ret = -EIO;
222 }
223
224 if (unlikely(ret))
225 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
226 pcc_ss_id, ret);
227
228 return ret;
229}
230
231/*
232 * This function transfers the ownership of the PCC to the platform
233 * So it must be called while holding write_lock(pcc_lock)
234 */
235static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
236{
237 int ret = -EIO, i;
238 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
239 struct acpi_pcct_shared_memory *generic_comm_base =
240 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
241 unsigned int time_delta;
242
243 /*
244 * For CMD_WRITE we know for a fact the caller should have checked
245 * the channel before writing to PCC space
246 */
247 if (cmd == CMD_READ) {
248 /*
249 * If there are pending cpc_writes, then we stole the channel
250 * before write completion, so first send a WRITE command to
251 * platform
252 */
253 if (pcc_ss_data->pending_pcc_write_cmd)
254 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
255
256 ret = check_pcc_chan(pcc_ss_id, false);
257 if (ret)
258 goto end;
259 } else /* CMD_WRITE */
260 pcc_ss_data->pending_pcc_write_cmd = FALSE;
261
262 /*
263 * Handle the Minimum Request Turnaround Time(MRTT)
264 * "The minimum amount of time that OSPM must wait after the completion
265 * of a command before issuing the next command, in microseconds"
266 */
267 if (pcc_ss_data->pcc_mrtt) {
268 time_delta = ktime_us_delta(ktime_get(),
269 pcc_ss_data->last_cmd_cmpl_time);
270 if (pcc_ss_data->pcc_mrtt > time_delta)
271 udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 }
273
274 /*
275 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
276 * "The maximum number of periodic requests that the subspace channel can
277 * support, reported in commands per minute. 0 indicates no limitation."
278 *
279 * This parameter should be ideally zero or large enough so that it can
280 * handle maximum number of requests that all the cores in the system can
281 * collectively generate. If it is not, we will follow the spec and just
282 * not send the request to the platform after hitting the MPAR limit in
283 * any 60s window
284 */
285 if (pcc_ss_data->pcc_mpar) {
286 if (pcc_ss_data->mpar_count == 0) {
287 time_delta = ktime_ms_delta(ktime_get(),
288 pcc_ss_data->last_mpar_reset);
289 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
290 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 pcc_ss_id);
292 ret = -EIO;
293 goto end;
294 }
295 pcc_ss_data->last_mpar_reset = ktime_get();
296 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
297 }
298 pcc_ss_data->mpar_count--;
299 }
300
301 /* Write to the shared comm region. */
302 writew_relaxed(cmd, &generic_comm_base->command);
303
304 /* Flip CMD COMPLETE bit */
305 writew_relaxed(0, &generic_comm_base->status);
306
307 pcc_ss_data->platform_owns_pcc = true;
308
309 /* Ring doorbell */
310 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
311 if (ret < 0) {
312 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
313 pcc_ss_id, cmd, ret);
314 goto end;
315 }
316
317 /* wait for completion and check for PCC errro bit */
318 ret = check_pcc_chan(pcc_ss_id, true);
319
320 if (pcc_ss_data->pcc_mrtt)
321 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
322
323 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
324 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
325 else
326 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
327
328end:
329 if (cmd == CMD_WRITE) {
330 if (unlikely(ret)) {
331 for_each_possible_cpu(i) {
332 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
333 if (!desc)
334 continue;
335
336 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
337 desc->write_cmd_status = ret;
338 }
339 }
340 pcc_ss_data->pcc_write_cnt++;
341 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
342 }
343
344 return ret;
345}
346
347static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
348{
349 if (ret < 0)
350 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
351 *(u16 *)msg, ret);
352 else
353 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
354 *(u16 *)msg, ret);
355}
356
357struct mbox_client cppc_mbox_cl = {
358 .tx_done = cppc_chan_tx_done,
359 .knows_txdone = true,
360};
361
362static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
363{
364 int result = -EFAULT;
365 acpi_status status = AE_OK;
366 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
367 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
368 struct acpi_buffer state = {0, NULL};
369 union acpi_object *psd = NULL;
370 struct acpi_psd_package *pdomain;
371
372 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
373 &buffer, ACPI_TYPE_PACKAGE);
374 if (status == AE_NOT_FOUND) /* _PSD is optional */
375 return 0;
376 if (ACPI_FAILURE(status))
377 return -ENODEV;
378
379 psd = buffer.pointer;
380 if (!psd || psd->package.count != 1) {
381 pr_debug("Invalid _PSD data\n");
382 goto end;
383 }
384
385 pdomain = &(cpc_ptr->domain_info);
386
387 state.length = sizeof(struct acpi_psd_package);
388 state.pointer = pdomain;
389
390 status = acpi_extract_package(&(psd->package.elements[0]),
391 &format, &state);
392 if (ACPI_FAILURE(status)) {
393 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
394 goto end;
395 }
396
397 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
398 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
399 goto end;
400 }
401
402 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
403 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
404 goto end;
405 }
406
407 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
408 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
409 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
410 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
411 goto end;
412 }
413
414 result = 0;
415end:
416 kfree(buffer.pointer);
417 return result;
418}
419
420/**
421 * acpi_get_psd_map - Map the CPUs in a common freq domain.
422 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
423 *
424 * Return: 0 for success or negative value for err.
425 */
426int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
427{
428 int count_target;
429 int retval = 0;
430 unsigned int i, j;
431 cpumask_var_t covered_cpus;
432 struct cppc_cpudata *pr, *match_pr;
433 struct acpi_psd_package *pdomain;
434 struct acpi_psd_package *match_pdomain;
435 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
436
437 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
438 return -ENOMEM;
439
440 /*
441 * Now that we have _PSD data from all CPUs, lets setup P-state
442 * domain info.
443 */
444 for_each_possible_cpu(i) {
445 pr = all_cpu_data[i];
446 if (!pr)
447 continue;
448
449 if (cpumask_test_cpu(i, covered_cpus))
450 continue;
451
452 cpc_ptr = per_cpu(cpc_desc_ptr, i);
453 if (!cpc_ptr) {
454 retval = -EFAULT;
455 goto err_ret;
456 }
457
458 pdomain = &(cpc_ptr->domain_info);
459 cpumask_set_cpu(i, pr->shared_cpu_map);
460 cpumask_set_cpu(i, covered_cpus);
461 if (pdomain->num_processors <= 1)
462 continue;
463
464 /* Validate the Domain info */
465 count_target = pdomain->num_processors;
466 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
467 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
468 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
469 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
470 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
471 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
472
473 for_each_possible_cpu(j) {
474 if (i == j)
475 continue;
476
477 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
478 if (!match_cpc_ptr) {
479 retval = -EFAULT;
480 goto err_ret;
481 }
482
483 match_pdomain = &(match_cpc_ptr->domain_info);
484 if (match_pdomain->domain != pdomain->domain)
485 continue;
486
487 /* Here i and j are in the same domain */
488 if (match_pdomain->num_processors != count_target) {
489 retval = -EFAULT;
490 goto err_ret;
491 }
492
493 if (pdomain->coord_type != match_pdomain->coord_type) {
494 retval = -EFAULT;
495 goto err_ret;
496 }
497
498 cpumask_set_cpu(j, covered_cpus);
499 cpumask_set_cpu(j, pr->shared_cpu_map);
500 }
501
502 for_each_possible_cpu(j) {
503 if (i == j)
504 continue;
505
506 match_pr = all_cpu_data[j];
507 if (!match_pr)
508 continue;
509
510 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
511 if (!match_cpc_ptr) {
512 retval = -EFAULT;
513 goto err_ret;
514 }
515
516 match_pdomain = &(match_cpc_ptr->domain_info);
517 if (match_pdomain->domain != pdomain->domain)
518 continue;
519
520 match_pr->shared_type = pr->shared_type;
521 cpumask_copy(match_pr->shared_cpu_map,
522 pr->shared_cpu_map);
523 }
524 }
525
526err_ret:
527 for_each_possible_cpu(i) {
528 pr = all_cpu_data[i];
529 if (!pr)
530 continue;
531
532 /* Assume no coordination on any error parsing domain info */
533 if (retval) {
534 cpumask_clear(pr->shared_cpu_map);
535 cpumask_set_cpu(i, pr->shared_cpu_map);
536 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
537 }
538 }
539
540 free_cpumask_var(covered_cpus);
541 return retval;
542}
543EXPORT_SYMBOL_GPL(acpi_get_psd_map);
544
545static int register_pcc_channel(int pcc_ss_idx)
546{
547 struct acpi_pcct_hw_reduced *cppc_ss;
548 u64 usecs_lat;
549
550 if (pcc_ss_idx >= 0) {
551 pcc_data[pcc_ss_idx]->pcc_channel =
552 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
553
554 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
555 pr_err("Failed to find PCC channel for subspace %d\n",
556 pcc_ss_idx);
557 return -ENODEV;
558 }
559
560 /*
561 * The PCC mailbox controller driver should
562 * have parsed the PCCT (global table of all
563 * PCC channels) and stored pointers to the
564 * subspace communication region in con_priv.
565 */
566 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
567
568 if (!cppc_ss) {
569 pr_err("No PCC subspace found for %d CPPC\n",
570 pcc_ss_idx);
571 return -ENODEV;
572 }
573
574 /*
575 * cppc_ss->latency is just a Nominal value. In reality
576 * the remote processor could be much slower to reply.
577 * So add an arbitrary amount of wait on top of Nominal.
578 */
579 usecs_lat = NUM_RETRIES * cppc_ss->latency;
580 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
581 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
582 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
583 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
584
585 pcc_data[pcc_ss_idx]->pcc_comm_addr =
586 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
587 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
588 pr_err("Failed to ioremap PCC comm region mem for %d\n",
589 pcc_ss_idx);
590 return -ENOMEM;
591 }
592
593 /* Set flag so that we dont come here for each CPU. */
594 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
595 }
596
597 return 0;
598}
599
600/**
601 * cpc_ffh_supported() - check if FFH reading supported
602 *
603 * Check if the architecture has support for functional fixed hardware
604 * read/write capability.
605 *
606 * Return: true for supported, false for not supported
607 */
608bool __weak cpc_ffh_supported(void)
609{
610 return false;
611}
612
613/**
614 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
615 *
616 * Check and allocate the cppc_pcc_data memory.
617 * In some processor configurations it is possible that same subspace
618 * is shared between multiple CPU's. This is seen especially in CPU's
619 * with hardware multi-threading support.
620 *
621 * Return: 0 for success, errno for failure
622 */
623int pcc_data_alloc(int pcc_ss_id)
624{
625 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
626 return -EINVAL;
627
628 if (pcc_data[pcc_ss_id]) {
629 pcc_data[pcc_ss_id]->refcount++;
630 } else {
631 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
632 GFP_KERNEL);
633 if (!pcc_data[pcc_ss_id])
634 return -ENOMEM;
635 pcc_data[pcc_ss_id]->refcount++;
636 }
637
638 return 0;
639}
640
641/* Check if CPPC revision + num_ent combination is supported */
642static bool is_cppc_supported(int revision, int num_ent)
643{
644 int expected_num_ent;
645
646 switch (revision) {
647 case CPPC_V2_REV:
648 expected_num_ent = CPPC_V2_NUM_ENT;
649 break;
650 case CPPC_V3_REV:
651 expected_num_ent = CPPC_V3_NUM_ENT;
652 break;
653 default:
654 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
655 revision);
656 return false;
657 }
658
659 if (expected_num_ent != num_ent) {
660 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
661 num_ent, expected_num_ent, revision);
662 return false;
663 }
664
665 return true;
666}
667
668/*
669 * An example CPC table looks like the following.
670 *
671 * Name(_CPC, Package()
672 * {
673 * 17,
674 * NumEntries
675 * 1,
676 * // Revision
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
678 * // Highest Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
680 * // Nominal Performance
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
682 * // Lowest Nonlinear Performance
683 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
684 * // Lowest Performance
685 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
686 * // Guaranteed Performance Register
687 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
688 * // Desired Performance Register
689 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
690 * ..
691 * ..
692 * ..
693 *
694 * }
695 * Each Register() encodes how to access that specific register.
696 * e.g. a sample PCC entry has the following encoding:
697 *
698 * Register (
699 * PCC,
700 * AddressSpaceKeyword
701 * 8,
702 * //RegisterBitWidth
703 * 8,
704 * //RegisterBitOffset
705 * 0x30,
706 * //RegisterAddress
707 * 9
708 * //AccessSize (subspace ID)
709 * 0
710 * )
711 * }
712 */
713
714/**
715 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
716 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
717 *
718 * Return: 0 for success or negative value for err.
719 */
720int acpi_cppc_processor_probe(struct acpi_processor *pr)
721{
722 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
723 union acpi_object *out_obj, *cpc_obj;
724 struct cpc_desc *cpc_ptr;
725 struct cpc_reg *gas_t;
726 struct device *cpu_dev;
727 acpi_handle handle = pr->handle;
728 unsigned int num_ent, i, cpc_rev;
729 int pcc_subspace_id = -1;
730 acpi_status status;
731 int ret = -EFAULT;
732
733 /* Parse the ACPI _CPC table for this cpu. */
734 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
735 ACPI_TYPE_PACKAGE);
736 if (ACPI_FAILURE(status)) {
737 ret = -ENODEV;
738 goto out_buf_free;
739 }
740
741 out_obj = (union acpi_object *) output.pointer;
742
743 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
744 if (!cpc_ptr) {
745 ret = -ENOMEM;
746 goto out_buf_free;
747 }
748
749 /* First entry is NumEntries. */
750 cpc_obj = &out_obj->package.elements[0];
751 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
752 num_ent = cpc_obj->integer.value;
753 } else {
754 pr_debug("Unexpected entry type(%d) for NumEntries\n",
755 cpc_obj->type);
756 goto out_free;
757 }
758 cpc_ptr->num_entries = num_ent;
759
760 /* Second entry should be revision. */
761 cpc_obj = &out_obj->package.elements[1];
762 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
763 cpc_rev = cpc_obj->integer.value;
764 } else {
765 pr_debug("Unexpected entry type(%d) for Revision\n",
766 cpc_obj->type);
767 goto out_free;
768 }
769 cpc_ptr->version = cpc_rev;
770
771 if (!is_cppc_supported(cpc_rev, num_ent))
772 goto out_free;
773
774 /* Iterate through remaining entries in _CPC */
775 for (i = 2; i < num_ent; i++) {
776 cpc_obj = &out_obj->package.elements[i];
777
778 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
779 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
780 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
781 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
782 gas_t = (struct cpc_reg *)
783 cpc_obj->buffer.pointer;
784
785 /*
786 * The PCC Subspace index is encoded inside
787 * the CPC table entries. The same PCC index
788 * will be used for all the PCC entries,
789 * so extract it only once.
790 */
791 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
792 if (pcc_subspace_id < 0) {
793 pcc_subspace_id = gas_t->access_width;
794 if (pcc_data_alloc(pcc_subspace_id))
795 goto out_free;
796 } else if (pcc_subspace_id != gas_t->access_width) {
797 pr_debug("Mismatched PCC ids.\n");
798 goto out_free;
799 }
800 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
801 if (gas_t->address) {
802 void __iomem *addr;
803
804 addr = ioremap(gas_t->address, gas_t->bit_width/8);
805 if (!addr)
806 goto out_free;
807 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
808 }
809 } else {
810 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
811 /* Support only PCC ,SYS MEM and FFH type regs */
812 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
813 goto out_free;
814 }
815 }
816
817 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
818 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
819 } else {
820 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
821 goto out_free;
822 }
823 }
824 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
825
826 /*
827 * Initialize the remaining cpc_regs as unsupported.
828 * Example: In case FW exposes CPPC v2, the below loop will initialize
829 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
830 */
831 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
832 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
833 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
834 }
835
836
837 /* Store CPU Logical ID */
838 cpc_ptr->cpu_id = pr->id;
839
840 /* Parse PSD data for this CPU */
841 ret = acpi_get_psd(cpc_ptr, handle);
842 if (ret)
843 goto out_free;
844
845 /* Register PCC channel once for all PCC subspace id. */
846 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
847 ret = register_pcc_channel(pcc_subspace_id);
848 if (ret)
849 goto out_free;
850
851 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
852 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
853 }
854
855 /* Everything looks okay */
856 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
857
858 /* Add per logical CPU nodes for reading its feedback counters. */
859 cpu_dev = get_cpu_device(pr->id);
860 if (!cpu_dev) {
861 ret = -EINVAL;
862 goto out_free;
863 }
864
865 /* Plug PSD data into this CPUs CPC descriptor. */
866 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
867
868 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
869 "acpi_cppc");
870 if (ret) {
871 per_cpu(cpc_desc_ptr, pr->id) = NULL;
872 goto out_free;
873 }
874
875 kfree(output.pointer);
876 return 0;
877
878out_free:
879 /* Free all the mapped sys mem areas for this CPU */
880 for (i = 2; i < cpc_ptr->num_entries; i++) {
881 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
882
883 if (addr)
884 iounmap(addr);
885 }
886 kfree(cpc_ptr);
887
888out_buf_free:
889 kfree(output.pointer);
890 return ret;
891}
892EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
893
894/**
895 * acpi_cppc_processor_exit - Cleanup CPC structs.
896 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
897 *
898 * Return: Void
899 */
900void acpi_cppc_processor_exit(struct acpi_processor *pr)
901{
902 struct cpc_desc *cpc_ptr;
903 unsigned int i;
904 void __iomem *addr;
905 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
906
907 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
908 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
909 pcc_data[pcc_ss_id]->refcount--;
910 if (!pcc_data[pcc_ss_id]->refcount) {
911 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
912 kfree(pcc_data[pcc_ss_id]);
913 pcc_data[pcc_ss_id] = NULL;
914 }
915 }
916 }
917
918 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
919 if (!cpc_ptr)
920 return;
921
922 /* Free all the mapped sys mem areas for this CPU */
923 for (i = 2; i < cpc_ptr->num_entries; i++) {
924 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
925 if (addr)
926 iounmap(addr);
927 }
928
929 kobject_put(&cpc_ptr->kobj);
930 kfree(cpc_ptr);
931}
932EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
933
934/**
935 * cpc_read_ffh() - Read FFH register
936 * @cpunum: cpu number to read
937 * @reg: cppc register information
938 * @val: place holder for return value
939 *
940 * Read bit_width bits from a specified address and bit_offset
941 *
942 * Return: 0 for success and error code
943 */
944int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
945{
946 return -ENOTSUPP;
947}
948
949/**
950 * cpc_write_ffh() - Write FFH register
951 * @cpunum: cpu number to write
952 * @reg: cppc register information
953 * @val: value to write
954 *
955 * Write value of bit_width bits to a specified address and bit_offset
956 *
957 * Return: 0 for success and error code
958 */
959int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
960{
961 return -ENOTSUPP;
962}
963
964/*
965 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
966 * as fast as possible. We have already mapped the PCC subspace during init, so
967 * we can directly write to it.
968 */
969
970static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
971{
972 int ret_val = 0;
973 void __iomem *vaddr = 0;
974 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
975 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
976
977 if (reg_res->type == ACPI_TYPE_INTEGER) {
978 *val = reg_res->cpc_entry.int_value;
979 return ret_val;
980 }
981
982 *val = 0;
983 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
984 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
985 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
986 vaddr = reg_res->sys_mem_vaddr;
987 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
988 return cpc_read_ffh(cpu, reg, val);
989 else
990 return acpi_os_read_memory((acpi_physical_address)reg->address,
991 val, reg->bit_width);
992
993 switch (reg->bit_width) {
994 case 8:
995 *val = readb_relaxed(vaddr);
996 break;
997 case 16:
998 *val = readw_relaxed(vaddr);
999 break;
1000 case 32:
1001 *val = readl_relaxed(vaddr);
1002 break;
1003 case 64:
1004 *val = readq_relaxed(vaddr);
1005 break;
1006 default:
1007 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1008 reg->bit_width, pcc_ss_id);
1009 ret_val = -EFAULT;
1010 }
1011
1012 return ret_val;
1013}
1014
1015static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1016{
1017 int ret_val = 0;
1018 void __iomem *vaddr = 0;
1019 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1020 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1021
1022 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1023 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1024 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1025 vaddr = reg_res->sys_mem_vaddr;
1026 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1027 return cpc_write_ffh(cpu, reg, val);
1028 else
1029 return acpi_os_write_memory((acpi_physical_address)reg->address,
1030 val, reg->bit_width);
1031
1032 switch (reg->bit_width) {
1033 case 8:
1034 writeb_relaxed(val, vaddr);
1035 break;
1036 case 16:
1037 writew_relaxed(val, vaddr);
1038 break;
1039 case 32:
1040 writel_relaxed(val, vaddr);
1041 break;
1042 case 64:
1043 writeq_relaxed(val, vaddr);
1044 break;
1045 default:
1046 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1047 reg->bit_width, pcc_ss_id);
1048 ret_val = -EFAULT;
1049 break;
1050 }
1051
1052 return ret_val;
1053}
1054
1055/**
1056 * cppc_get_perf_caps - Get a CPUs performance capabilities.
1057 * @cpunum: CPU from which to get capabilities info.
1058 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1059 *
1060 * Return: 0 for success with perf_caps populated else -ERRNO.
1061 */
1062int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1063{
1064 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1065 struct cpc_register_resource *highest_reg, *lowest_reg,
1066 *lowest_non_linear_reg, *nominal_reg,
1067 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1068 u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
1069 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1070 struct cppc_pcc_data *pcc_ss_data = NULL;
1071 int ret = 0, regs_in_pcc = 0;
1072
1073 if (!cpc_desc) {
1074 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1075 return -ENODEV;
1076 }
1077
1078 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1079 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1080 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1081 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1082 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1083 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1084
1085 /* Are any of the regs PCC ?*/
1086 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1087 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1088 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1089 if (pcc_ss_id < 0) {
1090 pr_debug("Invalid pcc_ss_id\n");
1091 return -ENODEV;
1092 }
1093 pcc_ss_data = pcc_data[pcc_ss_id];
1094 regs_in_pcc = 1;
1095 down_write(&pcc_ss_data->pcc_lock);
1096 /* Ring doorbell once to update PCC subspace */
1097 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1098 ret = -EIO;
1099 goto out_err;
1100 }
1101 }
1102
1103 cpc_read(cpunum, highest_reg, &high);
1104 perf_caps->highest_perf = high;
1105
1106 cpc_read(cpunum, lowest_reg, &low);
1107 perf_caps->lowest_perf = low;
1108
1109 cpc_read(cpunum, nominal_reg, &nom);
1110 perf_caps->nominal_perf = nom;
1111
1112 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1113 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1114
1115 if (!high || !low || !nom || !min_nonlinear)
1116 ret = -EFAULT;
1117
1118 /* Read optional lowest and nominal frequencies if present */
1119 if (CPC_SUPPORTED(low_freq_reg))
1120 cpc_read(cpunum, low_freq_reg, &low_f);
1121
1122 if (CPC_SUPPORTED(nom_freq_reg))
1123 cpc_read(cpunum, nom_freq_reg, &nom_f);
1124
1125 perf_caps->lowest_freq = low_f;
1126 perf_caps->nominal_freq = nom_f;
1127
1128
1129out_err:
1130 if (regs_in_pcc)
1131 up_write(&pcc_ss_data->pcc_lock);
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1135
1136/**
1137 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1138 * @cpunum: CPU from which to read counters.
1139 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1140 *
1141 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1142 */
1143int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1144{
1145 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1146 struct cpc_register_resource *delivered_reg, *reference_reg,
1147 *ref_perf_reg, *ctr_wrap_reg;
1148 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1149 struct cppc_pcc_data *pcc_ss_data = NULL;
1150 u64 delivered, reference, ref_perf, ctr_wrap_time;
1151 int ret = 0, regs_in_pcc = 0;
1152
1153 if (!cpc_desc) {
1154 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1155 return -ENODEV;
1156 }
1157
1158 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1159 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1160 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1161 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1162
1163 /*
1164 * If refernce perf register is not supported then we should
1165 * use the nominal perf value
1166 */
1167 if (!CPC_SUPPORTED(ref_perf_reg))
1168 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1169
1170 /* Are any of the regs PCC ?*/
1171 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1172 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1173 if (pcc_ss_id < 0) {
1174 pr_debug("Invalid pcc_ss_id\n");
1175 return -ENODEV;
1176 }
1177 pcc_ss_data = pcc_data[pcc_ss_id];
1178 down_write(&pcc_ss_data->pcc_lock);
1179 regs_in_pcc = 1;
1180 /* Ring doorbell once to update PCC subspace */
1181 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1182 ret = -EIO;
1183 goto out_err;
1184 }
1185 }
1186
1187 cpc_read(cpunum, delivered_reg, &delivered);
1188 cpc_read(cpunum, reference_reg, &reference);
1189 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1190
1191 /*
1192 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1193 * performance counters are assumed to never wrap during the lifetime of
1194 * platform
1195 */
1196 ctr_wrap_time = (u64)(~((u64)0));
1197 if (CPC_SUPPORTED(ctr_wrap_reg))
1198 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1199
1200 if (!delivered || !reference || !ref_perf) {
1201 ret = -EFAULT;
1202 goto out_err;
1203 }
1204
1205 perf_fb_ctrs->delivered = delivered;
1206 perf_fb_ctrs->reference = reference;
1207 perf_fb_ctrs->reference_perf = ref_perf;
1208 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1209out_err:
1210 if (regs_in_pcc)
1211 up_write(&pcc_ss_data->pcc_lock);
1212 return ret;
1213}
1214EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1215
1216/**
1217 * cppc_set_perf - Set a CPUs performance controls.
1218 * @cpu: CPU for which to set performance controls.
1219 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1220 *
1221 * Return: 0 for success, -ERRNO otherwise.
1222 */
1223int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1224{
1225 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1226 struct cpc_register_resource *desired_reg;
1227 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1228 struct cppc_pcc_data *pcc_ss_data = NULL;
1229 int ret = 0;
1230
1231 if (!cpc_desc) {
1232 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1233 return -ENODEV;
1234 }
1235
1236 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1237
1238 /*
1239 * This is Phase-I where we want to write to CPC registers
1240 * -> We want all CPUs to be able to execute this phase in parallel
1241 *
1242 * Since read_lock can be acquired by multiple CPUs simultaneously we
1243 * achieve that goal here
1244 */
1245 if (CPC_IN_PCC(desired_reg)) {
1246 if (pcc_ss_id < 0) {
1247 pr_debug("Invalid pcc_ss_id\n");
1248 return -ENODEV;
1249 }
1250 pcc_ss_data = pcc_data[pcc_ss_id];
1251 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1252 if (pcc_ss_data->platform_owns_pcc) {
1253 ret = check_pcc_chan(pcc_ss_id, false);
1254 if (ret) {
1255 up_read(&pcc_ss_data->pcc_lock);
1256 return ret;
1257 }
1258 }
1259 /*
1260 * Update the pending_write to make sure a PCC CMD_READ will not
1261 * arrive and steal the channel during the switch to write lock
1262 */
1263 pcc_ss_data->pending_pcc_write_cmd = true;
1264 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1265 cpc_desc->write_cmd_status = 0;
1266 }
1267
1268 /*
1269 * Skip writing MIN/MAX until Linux knows how to come up with
1270 * useful values.
1271 */
1272 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1273
1274 if (CPC_IN_PCC(desired_reg))
1275 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1276 /*
1277 * This is Phase-II where we transfer the ownership of PCC to Platform
1278 *
1279 * Short Summary: Basically if we think of a group of cppc_set_perf
1280 * requests that happened in short overlapping interval. The last CPU to
1281 * come out of Phase-I will enter Phase-II and ring the doorbell.
1282 *
1283 * We have the following requirements for Phase-II:
1284 * 1. We want to execute Phase-II only when there are no CPUs
1285 * currently executing in Phase-I
1286 * 2. Once we start Phase-II we want to avoid all other CPUs from
1287 * entering Phase-I.
1288 * 3. We want only one CPU among all those who went through Phase-I
1289 * to run phase-II
1290 *
1291 * If write_trylock fails to get the lock and doesn't transfer the
1292 * PCC ownership to the platform, then one of the following will be TRUE
1293 * 1. There is at-least one CPU in Phase-I which will later execute
1294 * write_trylock, so the CPUs in Phase-I will be responsible for
1295 * executing the Phase-II.
1296 * 2. Some other CPU has beaten this CPU to successfully execute the
1297 * write_trylock and has already acquired the write_lock. We know for a
1298 * fact it(other CPU acquiring the write_lock) couldn't have happened
1299 * before this CPU's Phase-I as we held the read_lock.
1300 * 3. Some other CPU executing pcc CMD_READ has stolen the
1301 * down_write, in which case, send_pcc_cmd will check for pending
1302 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1303 * So this CPU can be certain that its request will be delivered
1304 * So in all cases, this CPU knows that its request will be delivered
1305 * by another CPU and can return
1306 *
1307 * After getting the down_write we still need to check for
1308 * pending_pcc_write_cmd to take care of the following scenario
1309 * The thread running this code could be scheduled out between
1310 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1311 * could have delivered the request to Platform by triggering the
1312 * doorbell and transferred the ownership of PCC to platform. So this
1313 * avoids triggering an unnecessary doorbell and more importantly before
1314 * triggering the doorbell it makes sure that the PCC channel ownership
1315 * is still with OSPM.
1316 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1317 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1318 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1319 * case during a CMD_READ and if there are pending writes it delivers
1320 * the write command before servicing the read command
1321 */
1322 if (CPC_IN_PCC(desired_reg)) {
1323 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1324 /* Update only if there are pending write commands */
1325 if (pcc_ss_data->pending_pcc_write_cmd)
1326 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1327 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1328 } else
1329 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1330 wait_event(pcc_ss_data->pcc_write_wait_q,
1331 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1332
1333 /* send_pcc_cmd updates the status in case of failure */
1334 ret = cpc_desc->write_cmd_status;
1335 }
1336 return ret;
1337}
1338EXPORT_SYMBOL_GPL(cppc_set_perf);
1339
1340/**
1341 * cppc_get_transition_latency - returns frequency transition latency in ns
1342 *
1343 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1344 * transition latency for perfromance change requests. The closest we have
1345 * is the timing information from the PCCT tables which provides the info
1346 * on the number and frequency of PCC commands the platform can handle.
1347 */
1348unsigned int cppc_get_transition_latency(int cpu_num)
1349{
1350 /*
1351 * Expected transition latency is based on the PCCT timing values
1352 * Below are definition from ACPI spec:
1353 * pcc_nominal- Expected latency to process a command, in microseconds
1354 * pcc_mpar - The maximum number of periodic requests that the subspace
1355 * channel can support, reported in commands per minute. 0
1356 * indicates no limitation.
1357 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1358 * completion of a command before issuing the next command,
1359 * in microseconds.
1360 */
1361 unsigned int latency_ns = 0;
1362 struct cpc_desc *cpc_desc;
1363 struct cpc_register_resource *desired_reg;
1364 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1365 struct cppc_pcc_data *pcc_ss_data;
1366
1367 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1368 if (!cpc_desc)
1369 return CPUFREQ_ETERNAL;
1370
1371 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1372 if (!CPC_IN_PCC(desired_reg))
1373 return CPUFREQ_ETERNAL;
1374
1375 if (pcc_ss_id < 0)
1376 return CPUFREQ_ETERNAL;
1377
1378 pcc_ss_data = pcc_data[pcc_ss_id];
1379 if (pcc_ss_data->pcc_mpar)
1380 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1381
1382 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1383 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1384
1385 return latency_ns;
1386}
1387EXPORT_SYMBOL_GPL(cppc_get_transition_latency);