blob: cec90a4c79b34b270a552a4db42e2b3540112cf4 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/ioport.h>
25#include <linux/irq.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/platform_device.h>
30#include <linux/pm_domain.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_timer.h>
33#include <linux/slab.h>
34#include <linux/spinlock.h>
35
36struct sh_cmt_device;
37
38/*
39 * The CMT comes in 5 different identified flavours, depending not only on the
40 * SoC but also on the particular instance. The following table lists the main
41 * characteristics of those flavours.
42 *
43 * 16B 32B 32B-F 48B R-Car Gen2
44 * -----------------------------------------------------------------------------
45 * Channels 2 1/4 1 6 2/8
46 * Control Width 16 16 16 16 32
47 * Counter Width 16 32 32 32/48 32/48
48 * Shared Start/Stop Y Y Y Y N
49 *
50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51 * located in the channel registers block. All other versions have a shared
52 * start/stop register located in the global space.
53 *
54 * Channels are indexed from 0 to N-1 in the documentation. The channel index
55 * infers the start/stop bit position in the control register and the channel
56 * registers block address. Some CMT instances have a subset of channels
57 * available, in which case the index in the documentation doesn't match the
58 * "real" index as implemented in hardware. This is for instance the case with
59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60 * in the documentation but using start/stop bit 5 and having its registers
61 * block at 0x60.
62 *
63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65 */
66
67enum sh_cmt_model {
68 SH_CMT_16BIT,
69 SH_CMT_32BIT,
70 SH_CMT_48BIT,
71 SH_CMT0_RCAR_GEN2,
72 SH_CMT1_RCAR_GEN2,
73};
74
75struct sh_cmt_info {
76 enum sh_cmt_model model;
77
78 unsigned int channels_mask;
79
80 unsigned long width; /* 16 or 32 bit version of hardware block */
81 u32 overflow_bit;
82 u32 clear_bits;
83
84 /* callbacks for CMSTR and CMCSR access */
85 u32 (*read_control)(void __iomem *base, unsigned long offs);
86 void (*write_control)(void __iomem *base, unsigned long offs,
87 u32 value);
88
89 /* callbacks for CMCNT and CMCOR access */
90 u32 (*read_count)(void __iomem *base, unsigned long offs);
91 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
92};
93
94struct sh_cmt_channel {
95 struct sh_cmt_device *cmt;
96
97 unsigned int index; /* Index in the documentation */
98 unsigned int hwidx; /* Real hardware index */
99
100 void __iomem *iostart;
101 void __iomem *ioctrl;
102
103 unsigned int timer_bit;
104 unsigned long flags;
105 u32 match_value;
106 u32 next_match_value;
107 u32 max_match_value;
108 raw_spinlock_t lock;
109 struct clock_event_device ced;
110 struct clocksource cs;
111 u64 total_cycles;
112 bool cs_enabled;
113};
114
115struct sh_cmt_device {
116 struct platform_device *pdev;
117
118 const struct sh_cmt_info *info;
119
120 void __iomem *mapbase;
121 struct clk *clk;
122 unsigned long rate;
123
124 raw_spinlock_t lock; /* Protect the shared start/stop register */
125
126 struct sh_cmt_channel *channels;
127 unsigned int num_channels;
128 unsigned int hw_channels;
129
130 bool has_clockevent;
131 bool has_clocksource;
132};
133
134#define SH_CMT16_CMCSR_CMF (1 << 7)
135#define SH_CMT16_CMCSR_CMIE (1 << 6)
136#define SH_CMT16_CMCSR_CKS8 (0 << 0)
137#define SH_CMT16_CMCSR_CKS32 (1 << 0)
138#define SH_CMT16_CMCSR_CKS128 (2 << 0)
139#define SH_CMT16_CMCSR_CKS512 (3 << 0)
140#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
141
142#define SH_CMT32_CMCSR_CMF (1 << 15)
143#define SH_CMT32_CMCSR_OVF (1 << 14)
144#define SH_CMT32_CMCSR_WRFLG (1 << 13)
145#define SH_CMT32_CMCSR_STTF (1 << 12)
146#define SH_CMT32_CMCSR_STPF (1 << 11)
147#define SH_CMT32_CMCSR_SSIE (1 << 10)
148#define SH_CMT32_CMCSR_CMS (1 << 9)
149#define SH_CMT32_CMCSR_CMM (1 << 8)
150#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
151#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
152#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
153#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
154#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
155#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
156#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
158#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
159#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
160#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
161
162static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
163{
164 return ioread16(base + (offs << 1));
165}
166
167static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
168{
169 return ioread32(base + (offs << 2));
170}
171
172static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
173{
174 iowrite16(value, base + (offs << 1));
175}
176
177static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
178{
179 iowrite32(value, base + (offs << 2));
180}
181
182static const struct sh_cmt_info sh_cmt_info[] = {
183 [SH_CMT_16BIT] = {
184 .model = SH_CMT_16BIT,
185 .width = 16,
186 .overflow_bit = SH_CMT16_CMCSR_CMF,
187 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188 .read_control = sh_cmt_read16,
189 .write_control = sh_cmt_write16,
190 .read_count = sh_cmt_read16,
191 .write_count = sh_cmt_write16,
192 },
193 [SH_CMT_32BIT] = {
194 .model = SH_CMT_32BIT,
195 .width = 32,
196 .overflow_bit = SH_CMT32_CMCSR_CMF,
197 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 .read_control = sh_cmt_read16,
199 .write_control = sh_cmt_write16,
200 .read_count = sh_cmt_read32,
201 .write_count = sh_cmt_write32,
202 },
203 [SH_CMT_48BIT] = {
204 .model = SH_CMT_48BIT,
205 .channels_mask = 0x3f,
206 .width = 32,
207 .overflow_bit = SH_CMT32_CMCSR_CMF,
208 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
209 .read_control = sh_cmt_read32,
210 .write_control = sh_cmt_write32,
211 .read_count = sh_cmt_read32,
212 .write_count = sh_cmt_write32,
213 },
214 [SH_CMT0_RCAR_GEN2] = {
215 .model = SH_CMT0_RCAR_GEN2,
216 .channels_mask = 0x60,
217 .width = 32,
218 .overflow_bit = SH_CMT32_CMCSR_CMF,
219 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
220 .read_control = sh_cmt_read32,
221 .write_control = sh_cmt_write32,
222 .read_count = sh_cmt_read32,
223 .write_count = sh_cmt_write32,
224 },
225 [SH_CMT1_RCAR_GEN2] = {
226 .model = SH_CMT1_RCAR_GEN2,
227 .channels_mask = 0xff,
228 .width = 32,
229 .overflow_bit = SH_CMT32_CMCSR_CMF,
230 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
231 .read_control = sh_cmt_read32,
232 .write_control = sh_cmt_write32,
233 .read_count = sh_cmt_read32,
234 .write_count = sh_cmt_write32,
235 },
236};
237
238#define CMCSR 0 /* channel register */
239#define CMCNT 1 /* channel register */
240#define CMCOR 2 /* channel register */
241
242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243{
244 if (ch->iostart)
245 return ch->cmt->info->read_control(ch->iostart, 0);
246 else
247 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248}
249
250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251{
252 if (ch->iostart)
253 ch->cmt->info->write_control(ch->iostart, 0, value);
254 else
255 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
256}
257
258static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
259{
260 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
261}
262
263static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
264{
265 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
266}
267
268static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
269{
270 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
271}
272
273static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
274{
275 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276}
277
278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
279{
280 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
281}
282
283static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
284{
285 u32 v1, v2, v3;
286 u32 o1, o2;
287
288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289
290 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
291 do {
292 o2 = o1;
293 v1 = sh_cmt_read_cmcnt(ch);
294 v2 = sh_cmt_read_cmcnt(ch);
295 v3 = sh_cmt_read_cmcnt(ch);
296 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
299
300 *has_wrapped = o1;
301 return v2;
302}
303
304static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
305{
306 unsigned long flags;
307 u32 value;
308
309 /* start stop register shared by multiple timer channels */
310 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
311 value = sh_cmt_read_cmstr(ch);
312
313 if (start)
314 value |= 1 << ch->timer_bit;
315 else
316 value &= ~(1 << ch->timer_bit);
317
318 sh_cmt_write_cmstr(ch, value);
319 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
320}
321
322static int sh_cmt_enable(struct sh_cmt_channel *ch)
323{
324 int k, ret;
325
326 pm_runtime_get_sync(&ch->cmt->pdev->dev);
327 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
328
329 /* enable clock */
330 ret = clk_enable(ch->cmt->clk);
331 if (ret) {
332 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
333 ch->index);
334 goto err0;
335 }
336
337 /* make sure channel is disabled */
338 sh_cmt_start_stop_ch(ch, 0);
339
340 /* configure channel, periodic mode and maximum timeout */
341 if (ch->cmt->info->width == 16) {
342 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
343 SH_CMT16_CMCSR_CKS512);
344 } else {
345 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
346 SH_CMT32_CMCSR_CMTOUT_IE |
347 SH_CMT32_CMCSR_CMR_IRQ |
348 SH_CMT32_CMCSR_CKS_RCLK8);
349 }
350
351 sh_cmt_write_cmcor(ch, 0xffffffff);
352 sh_cmt_write_cmcnt(ch, 0);
353
354 /*
355 * According to the sh73a0 user's manual, as CMCNT can be operated
356 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
357 * modifying CMCNT register; two RCLK cycles are necessary before
358 * this register is either read or any modification of the value
359 * it holds is reflected in the LSI's actual operation.
360 *
361 * While at it, we're supposed to clear out the CMCNT as of this
362 * moment, so make sure it's processed properly here. This will
363 * take RCLKx2 at maximum.
364 */
365 for (k = 0; k < 100; k++) {
366 if (!sh_cmt_read_cmcnt(ch))
367 break;
368 udelay(1);
369 }
370
371 if (sh_cmt_read_cmcnt(ch)) {
372 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
373 ch->index);
374 ret = -ETIMEDOUT;
375 goto err1;
376 }
377
378 /* enable channel */
379 sh_cmt_start_stop_ch(ch, 1);
380 return 0;
381 err1:
382 /* stop clock */
383 clk_disable(ch->cmt->clk);
384
385 err0:
386 return ret;
387}
388
389static void sh_cmt_disable(struct sh_cmt_channel *ch)
390{
391 /* disable channel */
392 sh_cmt_start_stop_ch(ch, 0);
393
394 /* disable interrupts in CMT block */
395 sh_cmt_write_cmcsr(ch, 0);
396
397 /* stop clock */
398 clk_disable(ch->cmt->clk);
399
400 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
401 pm_runtime_put(&ch->cmt->pdev->dev);
402}
403
404/* private flags */
405#define FLAG_CLOCKEVENT (1 << 0)
406#define FLAG_CLOCKSOURCE (1 << 1)
407#define FLAG_REPROGRAM (1 << 2)
408#define FLAG_SKIPEVENT (1 << 3)
409#define FLAG_IRQCONTEXT (1 << 4)
410
411static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
412 int absolute)
413{
414 u32 value = ch->next_match_value;
415 u32 new_match;
416 u32 delay = 0;
417 u32 now = 0;
418 u32 has_wrapped;
419
420 now = sh_cmt_get_counter(ch, &has_wrapped);
421 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
422
423 if (has_wrapped) {
424 /* we're competing with the interrupt handler.
425 * -> let the interrupt handler reprogram the timer.
426 * -> interrupt number two handles the event.
427 */
428 ch->flags |= FLAG_SKIPEVENT;
429 return;
430 }
431
432 if (absolute)
433 now = 0;
434
435 do {
436 /* reprogram the timer hardware,
437 * but don't save the new match value yet.
438 */
439 new_match = now + value + delay;
440 if (new_match > ch->max_match_value)
441 new_match = ch->max_match_value;
442
443 sh_cmt_write_cmcor(ch, new_match);
444
445 now = sh_cmt_get_counter(ch, &has_wrapped);
446 if (has_wrapped && (new_match > ch->match_value)) {
447 /* we are changing to a greater match value,
448 * so this wrap must be caused by the counter
449 * matching the old value.
450 * -> first interrupt reprograms the timer.
451 * -> interrupt number two handles the event.
452 */
453 ch->flags |= FLAG_SKIPEVENT;
454 break;
455 }
456
457 if (has_wrapped) {
458 /* we are changing to a smaller match value,
459 * so the wrap must be caused by the counter
460 * matching the new value.
461 * -> save programmed match value.
462 * -> let isr handle the event.
463 */
464 ch->match_value = new_match;
465 break;
466 }
467
468 /* be safe: verify hardware settings */
469 if (now < new_match) {
470 /* timer value is below match value, all good.
471 * this makes sure we won't miss any match events.
472 * -> save programmed match value.
473 * -> let isr handle the event.
474 */
475 ch->match_value = new_match;
476 break;
477 }
478
479 /* the counter has reached a value greater
480 * than our new match value. and since the
481 * has_wrapped flag isn't set we must have
482 * programmed a too close event.
483 * -> increase delay and retry.
484 */
485 if (delay)
486 delay <<= 1;
487 else
488 delay = 1;
489
490 if (!delay)
491 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
492 ch->index);
493
494 } while (delay);
495}
496
497static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
498{
499 if (delta > ch->max_match_value)
500 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
501 ch->index);
502
503 ch->next_match_value = delta;
504 sh_cmt_clock_event_program_verify(ch, 0);
505}
506
507static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
508{
509 unsigned long flags;
510
511 raw_spin_lock_irqsave(&ch->lock, flags);
512 __sh_cmt_set_next(ch, delta);
513 raw_spin_unlock_irqrestore(&ch->lock, flags);
514}
515
516static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
517{
518 struct sh_cmt_channel *ch = dev_id;
519
520 /* clear flags */
521 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
522 ch->cmt->info->clear_bits);
523
524 /* update clock source counter to begin with if enabled
525 * the wrap flag should be cleared by the timer specific
526 * isr before we end up here.
527 */
528 if (ch->flags & FLAG_CLOCKSOURCE)
529 ch->total_cycles += ch->match_value + 1;
530
531 if (!(ch->flags & FLAG_REPROGRAM))
532 ch->next_match_value = ch->max_match_value;
533
534 ch->flags |= FLAG_IRQCONTEXT;
535
536 if (ch->flags & FLAG_CLOCKEVENT) {
537 if (!(ch->flags & FLAG_SKIPEVENT)) {
538 if (clockevent_state_oneshot(&ch->ced)) {
539 ch->next_match_value = ch->max_match_value;
540 ch->flags |= FLAG_REPROGRAM;
541 }
542
543 ch->ced.event_handler(&ch->ced);
544 }
545 }
546
547 ch->flags &= ~FLAG_SKIPEVENT;
548
549 if (ch->flags & FLAG_REPROGRAM) {
550 ch->flags &= ~FLAG_REPROGRAM;
551 sh_cmt_clock_event_program_verify(ch, 1);
552
553 if (ch->flags & FLAG_CLOCKEVENT)
554 if ((clockevent_state_shutdown(&ch->ced))
555 || (ch->match_value == ch->next_match_value))
556 ch->flags &= ~FLAG_REPROGRAM;
557 }
558
559 ch->flags &= ~FLAG_IRQCONTEXT;
560
561 return IRQ_HANDLED;
562}
563
564static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
565{
566 int ret = 0;
567 unsigned long flags;
568
569 raw_spin_lock_irqsave(&ch->lock, flags);
570
571 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
572 ret = sh_cmt_enable(ch);
573
574 if (ret)
575 goto out;
576 ch->flags |= flag;
577
578 /* setup timeout if no clockevent */
579 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
580 __sh_cmt_set_next(ch, ch->max_match_value);
581 out:
582 raw_spin_unlock_irqrestore(&ch->lock, flags);
583
584 return ret;
585}
586
587static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
588{
589 unsigned long flags;
590 unsigned long f;
591
592 raw_spin_lock_irqsave(&ch->lock, flags);
593
594 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595 ch->flags &= ~flag;
596
597 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
598 sh_cmt_disable(ch);
599
600 /* adjust the timeout to maximum if only clocksource left */
601 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
602 __sh_cmt_set_next(ch, ch->max_match_value);
603
604 raw_spin_unlock_irqrestore(&ch->lock, flags);
605}
606
607static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
608{
609 return container_of(cs, struct sh_cmt_channel, cs);
610}
611
612static u64 sh_cmt_clocksource_read(struct clocksource *cs)
613{
614 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
615 unsigned long flags;
616 u32 has_wrapped;
617 u64 value;
618 u32 raw;
619
620 raw_spin_lock_irqsave(&ch->lock, flags);
621 value = ch->total_cycles;
622 raw = sh_cmt_get_counter(ch, &has_wrapped);
623
624 if (unlikely(has_wrapped))
625 raw += ch->match_value + 1;
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628 return value + raw;
629}
630
631static int sh_cmt_clocksource_enable(struct clocksource *cs)
632{
633 int ret;
634 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635
636 WARN_ON(ch->cs_enabled);
637
638 ch->total_cycles = 0;
639
640 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641 if (!ret)
642 ch->cs_enabled = true;
643
644 return ret;
645}
646
647static void sh_cmt_clocksource_disable(struct clocksource *cs)
648{
649 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650
651 WARN_ON(!ch->cs_enabled);
652
653 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654 ch->cs_enabled = false;
655}
656
657static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658{
659 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660
661 if (!ch->cs_enabled)
662 return;
663
664 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666}
667
668static void sh_cmt_clocksource_resume(struct clocksource *cs)
669{
670 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672 if (!ch->cs_enabled)
673 return;
674
675 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677}
678
679static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680 const char *name)
681{
682 struct clocksource *cs = &ch->cs;
683
684 cs->name = name;
685 cs->rating = 125;
686 cs->read = sh_cmt_clocksource_read;
687 cs->enable = sh_cmt_clocksource_enable;
688 cs->disable = sh_cmt_clocksource_disable;
689 cs->suspend = sh_cmt_clocksource_suspend;
690 cs->resume = sh_cmt_clocksource_resume;
691 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
692 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693
694 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695 ch->index);
696
697 clocksource_register_hz(cs, ch->cmt->rate);
698 return 0;
699}
700
701static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702{
703 return container_of(ced, struct sh_cmt_channel, ced);
704}
705
706static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707{
708 sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710 if (periodic)
711 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712 else
713 sh_cmt_set_next(ch, ch->max_match_value);
714}
715
716static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717{
718 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719
720 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721 return 0;
722}
723
724static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725 int periodic)
726{
727 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729 /* deal with old setting first */
730 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732
733 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734 ch->index, periodic ? "periodic" : "oneshot");
735 sh_cmt_clock_event_start(ch, periodic);
736 return 0;
737}
738
739static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740{
741 return sh_cmt_clock_event_set_state(ced, 0);
742}
743
744static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745{
746 return sh_cmt_clock_event_set_state(ced, 1);
747}
748
749static int sh_cmt_clock_event_next(unsigned long delta,
750 struct clock_event_device *ced)
751{
752 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753
754 BUG_ON(!clockevent_state_oneshot(ced));
755 if (likely(ch->flags & FLAG_IRQCONTEXT))
756 ch->next_match_value = delta - 1;
757 else
758 sh_cmt_set_next(ch, delta - 1);
759
760 return 0;
761}
762
763static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764{
765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768 clk_unprepare(ch->cmt->clk);
769}
770
771static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772{
773 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775 clk_prepare(ch->cmt->clk);
776 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777}
778
779static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780 const char *name)
781{
782 struct clock_event_device *ced = &ch->ced;
783 int irq;
784 int ret;
785
786 irq = platform_get_irq(ch->cmt->pdev, ch->index);
787 if (irq < 0) {
788 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789 ch->index);
790 return irq;
791 }
792
793 ret = request_irq(irq, sh_cmt_interrupt,
794 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795 dev_name(&ch->cmt->pdev->dev), ch);
796 if (ret) {
797 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798 ch->index, irq);
799 return ret;
800 }
801
802 ced->name = name;
803 ced->features = CLOCK_EVT_FEAT_PERIODIC;
804 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805 ced->rating = 125;
806 ced->cpumask = cpu_possible_mask;
807 ced->set_next_event = sh_cmt_clock_event_next;
808 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811 ced->suspend = sh_cmt_clock_event_suspend;
812 ced->resume = sh_cmt_clock_event_resume;
813
814 /* TODO: calculate good shift from rate and counter bit width */
815 ced->shift = 32;
816 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818 ced->max_delta_ticks = ch->max_match_value;
819 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
820 ced->min_delta_ticks = 0x1f;
821
822 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823 ch->index);
824 clockevents_register_device(ced);
825
826 return 0;
827}
828
829static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
830 bool clockevent, bool clocksource)
831{
832 int ret;
833
834 if (clockevent) {
835 ch->cmt->has_clockevent = true;
836 ret = sh_cmt_register_clockevent(ch, name);
837 if (ret < 0)
838 return ret;
839 }
840
841 if (clocksource) {
842 ch->cmt->has_clocksource = true;
843 sh_cmt_register_clocksource(ch, name);
844 }
845
846 return 0;
847}
848
849static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
850 unsigned int hwidx, bool clockevent,
851 bool clocksource, struct sh_cmt_device *cmt)
852{
853 int ret;
854
855 /* Skip unused channels. */
856 if (!clockevent && !clocksource)
857 return 0;
858
859 ch->cmt = cmt;
860 ch->index = index;
861 ch->hwidx = hwidx;
862 ch->timer_bit = hwidx;
863
864 /*
865 * Compute the address of the channel control register block. For the
866 * timers with a per-channel start/stop register, compute its address
867 * as well.
868 */
869 switch (cmt->info->model) {
870 case SH_CMT_16BIT:
871 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
872 break;
873 case SH_CMT_32BIT:
874 case SH_CMT_48BIT:
875 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
876 break;
877 case SH_CMT0_RCAR_GEN2:
878 case SH_CMT1_RCAR_GEN2:
879 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
880 ch->ioctrl = ch->iostart + 0x10;
881 ch->timer_bit = 0;
882 break;
883 }
884
885 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
886 ch->max_match_value = ~0;
887 else
888 ch->max_match_value = (1 << cmt->info->width) - 1;
889
890 ch->match_value = ch->max_match_value;
891 raw_spin_lock_init(&ch->lock);
892
893 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
894 clockevent, clocksource);
895 if (ret) {
896 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
897 ch->index);
898 return ret;
899 }
900 ch->cs_enabled = false;
901
902 return 0;
903}
904
905static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
906{
907 struct resource *mem;
908
909 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
910 if (!mem) {
911 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
912 return -ENXIO;
913 }
914
915 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
916 if (cmt->mapbase == NULL) {
917 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
918 return -ENXIO;
919 }
920
921 return 0;
922}
923
924static const struct platform_device_id sh_cmt_id_table[] = {
925 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
926 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
927 { }
928};
929MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
930
931static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
932 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
933 {
934 /* deprecated, preserved for backward compatibility */
935 .compatible = "renesas,cmt-48-gen2",
936 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
937 },
938 { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
939 { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
940 { }
941};
942MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
943
944static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
945{
946 unsigned int mask;
947 unsigned int i;
948 int ret;
949
950 cmt->pdev = pdev;
951 raw_spin_lock_init(&cmt->lock);
952
953 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
954 cmt->info = of_device_get_match_data(&pdev->dev);
955 cmt->hw_channels = cmt->info->channels_mask;
956 } else if (pdev->dev.platform_data) {
957 struct sh_timer_config *cfg = pdev->dev.platform_data;
958 const struct platform_device_id *id = pdev->id_entry;
959
960 cmt->info = (const struct sh_cmt_info *)id->driver_data;
961 cmt->hw_channels = cfg->channels_mask;
962 } else {
963 dev_err(&cmt->pdev->dev, "missing platform data\n");
964 return -ENXIO;
965 }
966
967 /* Get hold of clock. */
968 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
969 if (IS_ERR(cmt->clk)) {
970 dev_err(&cmt->pdev->dev, "cannot get clock\n");
971 return PTR_ERR(cmt->clk);
972 }
973
974 ret = clk_prepare(cmt->clk);
975 if (ret < 0)
976 goto err_clk_put;
977
978 /* Determine clock rate. */
979 ret = clk_enable(cmt->clk);
980 if (ret < 0)
981 goto err_clk_unprepare;
982
983 if (cmt->info->width == 16)
984 cmt->rate = clk_get_rate(cmt->clk) / 512;
985 else
986 cmt->rate = clk_get_rate(cmt->clk) / 8;
987
988 clk_disable(cmt->clk);
989
990 /* Map the memory resource(s). */
991 ret = sh_cmt_map_memory(cmt);
992 if (ret < 0)
993 goto err_clk_unprepare;
994
995 /* Allocate and setup the channels. */
996 cmt->num_channels = hweight8(cmt->hw_channels);
997 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
998 GFP_KERNEL);
999 if (cmt->channels == NULL) {
1000 ret = -ENOMEM;
1001 goto err_unmap;
1002 }
1003
1004 /*
1005 * Use the first channel as a clock event device and the second channel
1006 * as a clock source. If only one channel is available use it for both.
1007 */
1008 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1009 unsigned int hwidx = ffs(mask) - 1;
1010 bool clocksource = i == 1 || cmt->num_channels == 1;
1011 bool clockevent = i == 0;
1012
1013 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1014 clockevent, clocksource, cmt);
1015 if (ret < 0)
1016 goto err_unmap;
1017
1018 mask &= ~(1 << hwidx);
1019 }
1020
1021 platform_set_drvdata(pdev, cmt);
1022
1023 return 0;
1024
1025err_unmap:
1026 kfree(cmt->channels);
1027 iounmap(cmt->mapbase);
1028err_clk_unprepare:
1029 clk_unprepare(cmt->clk);
1030err_clk_put:
1031 clk_put(cmt->clk);
1032 return ret;
1033}
1034
1035static int sh_cmt_probe(struct platform_device *pdev)
1036{
1037 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1038 int ret;
1039
1040 if (!is_early_platform_device(pdev)) {
1041 pm_runtime_set_active(&pdev->dev);
1042 pm_runtime_enable(&pdev->dev);
1043 }
1044
1045 if (cmt) {
1046 dev_info(&pdev->dev, "kept as earlytimer\n");
1047 goto out;
1048 }
1049
1050 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1051 if (cmt == NULL)
1052 return -ENOMEM;
1053
1054 ret = sh_cmt_setup(cmt, pdev);
1055 if (ret) {
1056 kfree(cmt);
1057 pm_runtime_idle(&pdev->dev);
1058 return ret;
1059 }
1060 if (is_early_platform_device(pdev))
1061 return 0;
1062
1063 out:
1064 if (cmt->has_clockevent || cmt->has_clocksource)
1065 pm_runtime_irq_safe(&pdev->dev);
1066 else
1067 pm_runtime_idle(&pdev->dev);
1068
1069 return 0;
1070}
1071
1072static int sh_cmt_remove(struct platform_device *pdev)
1073{
1074 return -EBUSY; /* cannot unregister clockevent and clocksource */
1075}
1076
1077static struct platform_driver sh_cmt_device_driver = {
1078 .probe = sh_cmt_probe,
1079 .remove = sh_cmt_remove,
1080 .driver = {
1081 .name = "sh_cmt",
1082 .of_match_table = of_match_ptr(sh_cmt_of_table),
1083 },
1084 .id_table = sh_cmt_id_table,
1085};
1086
1087static int __init sh_cmt_init(void)
1088{
1089 return platform_driver_register(&sh_cmt_device_driver);
1090}
1091
1092static void __exit sh_cmt_exit(void)
1093{
1094 platform_driver_unregister(&sh_cmt_device_driver);
1095}
1096
1097early_platform_init("earlytimer", &sh_cmt_device_driver);
1098subsys_initcall(sh_cmt_init);
1099module_exit(sh_cmt_exit);
1100
1101MODULE_AUTHOR("Magnus Damm");
1102MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1103MODULE_LICENSE("GPL v2");