blob: 84ff70027c2520d4e04da2b4b725d0abadc74b3b [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
18#include <linux/rwsem.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
116/*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
137
138/*----------------------------------------------------------------*/
139
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
308}
309
310/*----------------------------------------------------------------*/
311
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327};
328
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
352struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356};
357
358struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
365 atomic_t writeback;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370};
371
372struct cache {
373 struct dm_target *ti;
374 spinlock_t lock;
375
376 /*
377 * Fields for converting from sectors to blocks.
378 */
379 int sectors_per_block_shift;
380 sector_t sectors_per_block;
381
382 struct dm_cache_metadata *cmd;
383
384 /*
385 * Metadata is written to this device.
386 */
387 struct dm_dev *metadata_dev;
388
389 /*
390 * The slower of the two data devices. Typically a spindle.
391 */
392 struct dm_dev *origin_dev;
393
394 /*
395 * The faster of the two data devices. Typically an SSD.
396 */
397 struct dm_dev *cache_dev;
398
399 /*
400 * Size of the origin device in _complete_ blocks and native sectors.
401 */
402 dm_oblock_t origin_blocks;
403 sector_t origin_sectors;
404
405 /*
406 * Size of the cache device in blocks.
407 */
408 dm_cblock_t cache_size;
409
410 /*
411 * Invalidation fields.
412 */
413 spinlock_t invalidation_lock;
414 struct list_head invalidation_requests;
415
416 sector_t migration_threshold;
417 wait_queue_head_t migration_wait;
418 atomic_t nr_allocated_migrations;
419
420 /*
421 * The number of in flight migrations that are performing
422 * background io. eg, promotion, writeback.
423 */
424 atomic_t nr_io_migrations;
425
426 struct bio_list deferred_bios;
427
428 struct rw_semaphore quiesce_lock;
429
430 struct dm_target_callbacks callbacks;
431
432 /*
433 * origin_blocks entries, discarded if set.
434 */
435 dm_dblock_t discard_nr_blocks;
436 unsigned long *discard_bitset;
437 uint32_t discard_block_size; /* a power of 2 times sectors per block */
438
439 /*
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
442 */
443 unsigned nr_ctr_args;
444 const char **ctr_args;
445
446 struct dm_kcopyd_client *copier;
447 struct work_struct deferred_bio_worker;
448 struct work_struct migration_worker;
449 struct workqueue_struct *wq;
450 struct delayed_work waker;
451 struct dm_bio_prison_v2 *prison;
452
453 /*
454 * cache_size entries, dirty if set
455 */
456 unsigned long *dirty_bitset;
457 atomic_t nr_dirty;
458
459 unsigned policy_nr_args;
460 struct dm_cache_policy *policy;
461
462 /*
463 * Cache features such as write-through.
464 */
465 struct cache_features features;
466
467 struct cache_stats stats;
468
469 bool need_tick_bio:1;
470 bool sized:1;
471 bool invalidate:1;
472 bool commit_requested:1;
473 bool loaded_mappings:1;
474 bool loaded_discards:1;
475
476 struct rw_semaphore background_work_lock;
477
478 struct batcher committer;
479 struct work_struct commit_ws;
480
481 struct io_tracker tracker;
482
483 mempool_t migration_pool;
484
485 struct bio_set bs;
486};
487
488struct per_bio_data {
489 bool tick:1;
490 unsigned req_nr:2;
491 struct dm_bio_prison_cell_v2 *cell;
492 struct dm_hook_info hook_info;
493 sector_t len;
494};
495
496struct dm_cache_migration {
497 struct continuation k;
498 struct cache *cache;
499
500 struct policy_work *op;
501 struct bio *overwrite_bio;
502 struct dm_bio_prison_cell_v2 *cell;
503
504 dm_cblock_t invalidate_cblock;
505 dm_oblock_t invalidate_oblock;
506};
507
508/*----------------------------------------------------------------*/
509
510static bool writethrough_mode(struct cache *cache)
511{
512 return cache->features.io_mode == CM_IO_WRITETHROUGH;
513}
514
515static bool writeback_mode(struct cache *cache)
516{
517 return cache->features.io_mode == CM_IO_WRITEBACK;
518}
519
520static inline bool passthrough_mode(struct cache *cache)
521{
522 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
523}
524
525/*----------------------------------------------------------------*/
526
527static void wake_deferred_bio_worker(struct cache *cache)
528{
529 queue_work(cache->wq, &cache->deferred_bio_worker);
530}
531
532static void wake_migration_worker(struct cache *cache)
533{
534 if (passthrough_mode(cache))
535 return;
536
537 queue_work(cache->wq, &cache->migration_worker);
538}
539
540/*----------------------------------------------------------------*/
541
542static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
543{
544 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
545}
546
547static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
548{
549 dm_bio_prison_free_cell_v2(cache->prison, cell);
550}
551
552static struct dm_cache_migration *alloc_migration(struct cache *cache)
553{
554 struct dm_cache_migration *mg;
555
556 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
557
558 memset(mg, 0, sizeof(*mg));
559
560 mg->cache = cache;
561 atomic_inc(&cache->nr_allocated_migrations);
562
563 return mg;
564}
565
566static void free_migration(struct dm_cache_migration *mg)
567{
568 struct cache *cache = mg->cache;
569
570 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
571 wake_up(&cache->migration_wait);
572
573 mempool_free(mg, &cache->migration_pool);
574}
575
576/*----------------------------------------------------------------*/
577
578static inline dm_oblock_t oblock_succ(dm_oblock_t b)
579{
580 return to_oblock(from_oblock(b) + 1ull);
581}
582
583static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
584{
585 key->virtual = 0;
586 key->dev = 0;
587 key->block_begin = from_oblock(begin);
588 key->block_end = from_oblock(end);
589}
590
591/*
592 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
593 * level 1 which prevents *both* READs and WRITEs.
594 */
595#define WRITE_LOCK_LEVEL 0
596#define READ_WRITE_LOCK_LEVEL 1
597
598static unsigned lock_level(struct bio *bio)
599{
600 return bio_data_dir(bio) == WRITE ?
601 WRITE_LOCK_LEVEL :
602 READ_WRITE_LOCK_LEVEL;
603}
604
605/*----------------------------------------------------------------
606 * Per bio data
607 *--------------------------------------------------------------*/
608
609static struct per_bio_data *get_per_bio_data(struct bio *bio)
610{
611 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
612 BUG_ON(!pb);
613 return pb;
614}
615
616static struct per_bio_data *init_per_bio_data(struct bio *bio)
617{
618 struct per_bio_data *pb = get_per_bio_data(bio);
619
620 pb->tick = false;
621 pb->req_nr = dm_bio_get_target_bio_nr(bio);
622 pb->cell = NULL;
623 pb->len = 0;
624
625 return pb;
626}
627
628/*----------------------------------------------------------------*/
629
630static void defer_bio(struct cache *cache, struct bio *bio)
631{
632 unsigned long flags;
633
634 spin_lock_irqsave(&cache->lock, flags);
635 bio_list_add(&cache->deferred_bios, bio);
636 spin_unlock_irqrestore(&cache->lock, flags);
637
638 wake_deferred_bio_worker(cache);
639}
640
641static void defer_bios(struct cache *cache, struct bio_list *bios)
642{
643 unsigned long flags;
644
645 spin_lock_irqsave(&cache->lock, flags);
646 bio_list_merge(&cache->deferred_bios, bios);
647 bio_list_init(bios);
648 spin_unlock_irqrestore(&cache->lock, flags);
649
650 wake_deferred_bio_worker(cache);
651}
652
653/*----------------------------------------------------------------*/
654
655static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
656{
657 bool r;
658 struct per_bio_data *pb;
659 struct dm_cell_key_v2 key;
660 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
661 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
662
663 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
664
665 build_key(oblock, end, &key);
666 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
667 if (!r) {
668 /*
669 * Failed to get the lock.
670 */
671 free_prison_cell(cache, cell_prealloc);
672 return r;
673 }
674
675 if (cell != cell_prealloc)
676 free_prison_cell(cache, cell_prealloc);
677
678 pb = get_per_bio_data(bio);
679 pb->cell = cell;
680
681 return r;
682}
683
684/*----------------------------------------------------------------*/
685
686static bool is_dirty(struct cache *cache, dm_cblock_t b)
687{
688 return test_bit(from_cblock(b), cache->dirty_bitset);
689}
690
691static void set_dirty(struct cache *cache, dm_cblock_t cblock)
692{
693 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
694 atomic_inc(&cache->nr_dirty);
695 policy_set_dirty(cache->policy, cblock);
696 }
697}
698
699/*
700 * These two are called when setting after migrations to force the policy
701 * and dirty bitset to be in sync.
702 */
703static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
704{
705 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
706 atomic_inc(&cache->nr_dirty);
707 policy_set_dirty(cache->policy, cblock);
708}
709
710static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
711{
712 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
713 if (atomic_dec_return(&cache->nr_dirty) == 0)
714 dm_table_event(cache->ti->table);
715 }
716
717 policy_clear_dirty(cache->policy, cblock);
718}
719
720/*----------------------------------------------------------------*/
721
722static bool block_size_is_power_of_two(struct cache *cache)
723{
724 return cache->sectors_per_block_shift >= 0;
725}
726
727/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
728#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
729__always_inline
730#endif
731static dm_block_t block_div(dm_block_t b, uint32_t n)
732{
733 do_div(b, n);
734
735 return b;
736}
737
738static dm_block_t oblocks_per_dblock(struct cache *cache)
739{
740 dm_block_t oblocks = cache->discard_block_size;
741
742 if (block_size_is_power_of_two(cache))
743 oblocks >>= cache->sectors_per_block_shift;
744 else
745 oblocks = block_div(oblocks, cache->sectors_per_block);
746
747 return oblocks;
748}
749
750static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
751{
752 return to_dblock(block_div(from_oblock(oblock),
753 oblocks_per_dblock(cache)));
754}
755
756static void set_discard(struct cache *cache, dm_dblock_t b)
757{
758 unsigned long flags;
759
760 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
761 atomic_inc(&cache->stats.discard_count);
762
763 spin_lock_irqsave(&cache->lock, flags);
764 set_bit(from_dblock(b), cache->discard_bitset);
765 spin_unlock_irqrestore(&cache->lock, flags);
766}
767
768static void clear_discard(struct cache *cache, dm_dblock_t b)
769{
770 unsigned long flags;
771
772 spin_lock_irqsave(&cache->lock, flags);
773 clear_bit(from_dblock(b), cache->discard_bitset);
774 spin_unlock_irqrestore(&cache->lock, flags);
775}
776
777static bool is_discarded(struct cache *cache, dm_dblock_t b)
778{
779 int r;
780 unsigned long flags;
781
782 spin_lock_irqsave(&cache->lock, flags);
783 r = test_bit(from_dblock(b), cache->discard_bitset);
784 spin_unlock_irqrestore(&cache->lock, flags);
785
786 return r;
787}
788
789static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
790{
791 int r;
792 unsigned long flags;
793
794 spin_lock_irqsave(&cache->lock, flags);
795 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
796 cache->discard_bitset);
797 spin_unlock_irqrestore(&cache->lock, flags);
798
799 return r;
800}
801
802/*----------------------------------------------------------------
803 * Remapping
804 *--------------------------------------------------------------*/
805static void remap_to_origin(struct cache *cache, struct bio *bio)
806{
807 bio_set_dev(bio, cache->origin_dev->bdev);
808}
809
810static void remap_to_cache(struct cache *cache, struct bio *bio,
811 dm_cblock_t cblock)
812{
813 sector_t bi_sector = bio->bi_iter.bi_sector;
814 sector_t block = from_cblock(cblock);
815
816 bio_set_dev(bio, cache->cache_dev->bdev);
817 if (!block_size_is_power_of_two(cache))
818 bio->bi_iter.bi_sector =
819 (block * cache->sectors_per_block) +
820 sector_div(bi_sector, cache->sectors_per_block);
821 else
822 bio->bi_iter.bi_sector =
823 (block << cache->sectors_per_block_shift) |
824 (bi_sector & (cache->sectors_per_block - 1));
825}
826
827static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
828{
829 unsigned long flags;
830 struct per_bio_data *pb;
831
832 spin_lock_irqsave(&cache->lock, flags);
833 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
834 bio_op(bio) != REQ_OP_DISCARD) {
835 pb = get_per_bio_data(bio);
836 pb->tick = true;
837 cache->need_tick_bio = false;
838 }
839 spin_unlock_irqrestore(&cache->lock, flags);
840}
841
842static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
843 dm_oblock_t oblock, bool bio_has_pbd)
844{
845 if (bio_has_pbd)
846 check_if_tick_bio_needed(cache, bio);
847 remap_to_origin(cache, bio);
848 if (bio_data_dir(bio) == WRITE)
849 clear_discard(cache, oblock_to_dblock(cache, oblock));
850}
851
852static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
853 dm_oblock_t oblock)
854{
855 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
856 __remap_to_origin_clear_discard(cache, bio, oblock, true);
857}
858
859static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
860 dm_oblock_t oblock, dm_cblock_t cblock)
861{
862 check_if_tick_bio_needed(cache, bio);
863 remap_to_cache(cache, bio, cblock);
864 if (bio_data_dir(bio) == WRITE) {
865 set_dirty(cache, cblock);
866 clear_discard(cache, oblock_to_dblock(cache, oblock));
867 }
868}
869
870static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
871{
872 sector_t block_nr = bio->bi_iter.bi_sector;
873
874 if (!block_size_is_power_of_two(cache))
875 (void) sector_div(block_nr, cache->sectors_per_block);
876 else
877 block_nr >>= cache->sectors_per_block_shift;
878
879 return to_oblock(block_nr);
880}
881
882static bool accountable_bio(struct cache *cache, struct bio *bio)
883{
884 return bio_op(bio) != REQ_OP_DISCARD;
885}
886
887static void accounted_begin(struct cache *cache, struct bio *bio)
888{
889 struct per_bio_data *pb;
890
891 if (accountable_bio(cache, bio)) {
892 pb = get_per_bio_data(bio);
893 pb->len = bio_sectors(bio);
894 iot_io_begin(&cache->tracker, pb->len);
895 }
896}
897
898static void accounted_complete(struct cache *cache, struct bio *bio)
899{
900 struct per_bio_data *pb = get_per_bio_data(bio);
901
902 iot_io_end(&cache->tracker, pb->len);
903}
904
905static void accounted_request(struct cache *cache, struct bio *bio)
906{
907 accounted_begin(cache, bio);
908 generic_make_request(bio);
909}
910
911static void issue_op(struct bio *bio, void *context)
912{
913 struct cache *cache = context;
914 accounted_request(cache, bio);
915}
916
917/*
918 * When running in writethrough mode we need to send writes to clean blocks
919 * to both the cache and origin devices. Clone the bio and send them in parallel.
920 */
921static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
922 dm_oblock_t oblock, dm_cblock_t cblock)
923{
924 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
925
926 BUG_ON(!origin_bio);
927
928 bio_chain(origin_bio, bio);
929 /*
930 * Passing false to __remap_to_origin_clear_discard() skips
931 * all code that might use per_bio_data (since clone doesn't have it)
932 */
933 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
934 submit_bio(origin_bio);
935
936 remap_to_cache(cache, bio, cblock);
937}
938
939/*----------------------------------------------------------------
940 * Failure modes
941 *--------------------------------------------------------------*/
942static enum cache_metadata_mode get_cache_mode(struct cache *cache)
943{
944 return cache->features.mode;
945}
946
947static const char *cache_device_name(struct cache *cache)
948{
949 return dm_device_name(dm_table_get_md(cache->ti->table));
950}
951
952static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
953{
954 const char *descs[] = {
955 "write",
956 "read-only",
957 "fail"
958 };
959
960 dm_table_event(cache->ti->table);
961 DMINFO("%s: switching cache to %s mode",
962 cache_device_name(cache), descs[(int)mode]);
963}
964
965static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
966{
967 bool needs_check;
968 enum cache_metadata_mode old_mode = get_cache_mode(cache);
969
970 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
971 DMERR("%s: unable to read needs_check flag, setting failure mode.",
972 cache_device_name(cache));
973 new_mode = CM_FAIL;
974 }
975
976 if (new_mode == CM_WRITE && needs_check) {
977 DMERR("%s: unable to switch cache to write mode until repaired.",
978 cache_device_name(cache));
979 if (old_mode != new_mode)
980 new_mode = old_mode;
981 else
982 new_mode = CM_READ_ONLY;
983 }
984
985 /* Never move out of fail mode */
986 if (old_mode == CM_FAIL)
987 new_mode = CM_FAIL;
988
989 switch (new_mode) {
990 case CM_FAIL:
991 case CM_READ_ONLY:
992 dm_cache_metadata_set_read_only(cache->cmd);
993 break;
994
995 case CM_WRITE:
996 dm_cache_metadata_set_read_write(cache->cmd);
997 break;
998 }
999
1000 cache->features.mode = new_mode;
1001
1002 if (new_mode != old_mode)
1003 notify_mode_switch(cache, new_mode);
1004}
1005
1006static void abort_transaction(struct cache *cache)
1007{
1008 const char *dev_name = cache_device_name(cache);
1009
1010 if (get_cache_mode(cache) >= CM_READ_ONLY)
1011 return;
1012
1013 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1014 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1015 set_cache_mode(cache, CM_FAIL);
1016 }
1017
1018 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1019 if (dm_cache_metadata_abort(cache->cmd)) {
1020 DMERR("%s: failed to abort metadata transaction", dev_name);
1021 set_cache_mode(cache, CM_FAIL);
1022 }
1023}
1024
1025static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1026{
1027 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1028 cache_device_name(cache), op, r);
1029 abort_transaction(cache);
1030 set_cache_mode(cache, CM_READ_ONLY);
1031}
1032
1033/*----------------------------------------------------------------*/
1034
1035static void load_stats(struct cache *cache)
1036{
1037 struct dm_cache_statistics stats;
1038
1039 dm_cache_metadata_get_stats(cache->cmd, &stats);
1040 atomic_set(&cache->stats.read_hit, stats.read_hits);
1041 atomic_set(&cache->stats.read_miss, stats.read_misses);
1042 atomic_set(&cache->stats.write_hit, stats.write_hits);
1043 atomic_set(&cache->stats.write_miss, stats.write_misses);
1044}
1045
1046static void save_stats(struct cache *cache)
1047{
1048 struct dm_cache_statistics stats;
1049
1050 if (get_cache_mode(cache) >= CM_READ_ONLY)
1051 return;
1052
1053 stats.read_hits = atomic_read(&cache->stats.read_hit);
1054 stats.read_misses = atomic_read(&cache->stats.read_miss);
1055 stats.write_hits = atomic_read(&cache->stats.write_hit);
1056 stats.write_misses = atomic_read(&cache->stats.write_miss);
1057
1058 dm_cache_metadata_set_stats(cache->cmd, &stats);
1059}
1060
1061static void update_stats(struct cache_stats *stats, enum policy_operation op)
1062{
1063 switch (op) {
1064 case POLICY_PROMOTE:
1065 atomic_inc(&stats->promotion);
1066 break;
1067
1068 case POLICY_DEMOTE:
1069 atomic_inc(&stats->demotion);
1070 break;
1071
1072 case POLICY_WRITEBACK:
1073 atomic_inc(&stats->writeback);
1074 break;
1075 }
1076}
1077
1078/*----------------------------------------------------------------
1079 * Migration processing
1080 *
1081 * Migration covers moving data from the origin device to the cache, or
1082 * vice versa.
1083 *--------------------------------------------------------------*/
1084
1085static void inc_io_migrations(struct cache *cache)
1086{
1087 atomic_inc(&cache->nr_io_migrations);
1088}
1089
1090static void dec_io_migrations(struct cache *cache)
1091{
1092 atomic_dec(&cache->nr_io_migrations);
1093}
1094
1095static bool discard_or_flush(struct bio *bio)
1096{
1097 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1098}
1099
1100static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1101 dm_dblock_t *b, dm_dblock_t *e)
1102{
1103 sector_t sb = bio->bi_iter.bi_sector;
1104 sector_t se = bio_end_sector(bio);
1105
1106 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1107
1108 if (se - sb < cache->discard_block_size)
1109 *e = *b;
1110 else
1111 *e = to_dblock(block_div(se, cache->discard_block_size));
1112}
1113
1114/*----------------------------------------------------------------*/
1115
1116static void prevent_background_work(struct cache *cache)
1117{
1118 lockdep_off();
1119 down_write(&cache->background_work_lock);
1120 lockdep_on();
1121}
1122
1123static void allow_background_work(struct cache *cache)
1124{
1125 lockdep_off();
1126 up_write(&cache->background_work_lock);
1127 lockdep_on();
1128}
1129
1130static bool background_work_begin(struct cache *cache)
1131{
1132 bool r;
1133
1134 lockdep_off();
1135 r = down_read_trylock(&cache->background_work_lock);
1136 lockdep_on();
1137
1138 return r;
1139}
1140
1141static void background_work_end(struct cache *cache)
1142{
1143 lockdep_off();
1144 up_read(&cache->background_work_lock);
1145 lockdep_on();
1146}
1147
1148/*----------------------------------------------------------------*/
1149
1150static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1151{
1152 return (bio_data_dir(bio) == WRITE) &&
1153 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1154}
1155
1156static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1157{
1158 return writeback_mode(cache) &&
1159 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1160}
1161
1162static void quiesce(struct dm_cache_migration *mg,
1163 void (*continuation)(struct work_struct *))
1164{
1165 init_continuation(&mg->k, continuation);
1166 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1167}
1168
1169static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1170{
1171 struct continuation *k = container_of(ws, struct continuation, ws);
1172 return container_of(k, struct dm_cache_migration, k);
1173}
1174
1175static void copy_complete(int read_err, unsigned long write_err, void *context)
1176{
1177 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1178
1179 if (read_err || write_err)
1180 mg->k.input = BLK_STS_IOERR;
1181
1182 queue_continuation(mg->cache->wq, &mg->k);
1183}
1184
1185static void copy(struct dm_cache_migration *mg, bool promote)
1186{
1187 struct dm_io_region o_region, c_region;
1188 struct cache *cache = mg->cache;
1189
1190 o_region.bdev = cache->origin_dev->bdev;
1191 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1192 o_region.count = cache->sectors_per_block;
1193
1194 c_region.bdev = cache->cache_dev->bdev;
1195 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1196 c_region.count = cache->sectors_per_block;
1197
1198 if (promote)
1199 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1200 else
1201 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1202}
1203
1204static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1205{
1206 struct per_bio_data *pb = get_per_bio_data(bio);
1207
1208 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1209 free_prison_cell(cache, pb->cell);
1210 pb->cell = NULL;
1211}
1212
1213static void overwrite_endio(struct bio *bio)
1214{
1215 struct dm_cache_migration *mg = bio->bi_private;
1216 struct cache *cache = mg->cache;
1217 struct per_bio_data *pb = get_per_bio_data(bio);
1218
1219 dm_unhook_bio(&pb->hook_info, bio);
1220
1221 if (bio->bi_status)
1222 mg->k.input = bio->bi_status;
1223
1224 queue_continuation(cache->wq, &mg->k);
1225}
1226
1227static void overwrite(struct dm_cache_migration *mg,
1228 void (*continuation)(struct work_struct *))
1229{
1230 struct bio *bio = mg->overwrite_bio;
1231 struct per_bio_data *pb = get_per_bio_data(bio);
1232
1233 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1234
1235 /*
1236 * The overwrite bio is part of the copy operation, as such it does
1237 * not set/clear discard or dirty flags.
1238 */
1239 if (mg->op->op == POLICY_PROMOTE)
1240 remap_to_cache(mg->cache, bio, mg->op->cblock);
1241 else
1242 remap_to_origin(mg->cache, bio);
1243
1244 init_continuation(&mg->k, continuation);
1245 accounted_request(mg->cache, bio);
1246}
1247
1248/*
1249 * Migration steps:
1250 *
1251 * 1) exclusive lock preventing WRITEs
1252 * 2) quiesce
1253 * 3) copy or issue overwrite bio
1254 * 4) upgrade to exclusive lock preventing READs and WRITEs
1255 * 5) quiesce
1256 * 6) update metadata and commit
1257 * 7) unlock
1258 */
1259static void mg_complete(struct dm_cache_migration *mg, bool success)
1260{
1261 struct bio_list bios;
1262 struct cache *cache = mg->cache;
1263 struct policy_work *op = mg->op;
1264 dm_cblock_t cblock = op->cblock;
1265
1266 if (success)
1267 update_stats(&cache->stats, op->op);
1268
1269 switch (op->op) {
1270 case POLICY_PROMOTE:
1271 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1272 policy_complete_background_work(cache->policy, op, success);
1273
1274 if (mg->overwrite_bio) {
1275 if (success)
1276 force_set_dirty(cache, cblock);
1277 else if (mg->k.input)
1278 mg->overwrite_bio->bi_status = mg->k.input;
1279 else
1280 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1281 bio_endio(mg->overwrite_bio);
1282 } else {
1283 if (success)
1284 force_clear_dirty(cache, cblock);
1285 dec_io_migrations(cache);
1286 }
1287 break;
1288
1289 case POLICY_DEMOTE:
1290 /*
1291 * We clear dirty here to update the nr_dirty counter.
1292 */
1293 if (success)
1294 force_clear_dirty(cache, cblock);
1295 policy_complete_background_work(cache->policy, op, success);
1296 dec_io_migrations(cache);
1297 break;
1298
1299 case POLICY_WRITEBACK:
1300 if (success)
1301 force_clear_dirty(cache, cblock);
1302 policy_complete_background_work(cache->policy, op, success);
1303 dec_io_migrations(cache);
1304 break;
1305 }
1306
1307 bio_list_init(&bios);
1308 if (mg->cell) {
1309 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1310 free_prison_cell(cache, mg->cell);
1311 }
1312
1313 free_migration(mg);
1314 defer_bios(cache, &bios);
1315 wake_migration_worker(cache);
1316
1317 background_work_end(cache);
1318}
1319
1320static void mg_success(struct work_struct *ws)
1321{
1322 struct dm_cache_migration *mg = ws_to_mg(ws);
1323 mg_complete(mg, mg->k.input == 0);
1324}
1325
1326static void mg_update_metadata(struct work_struct *ws)
1327{
1328 int r;
1329 struct dm_cache_migration *mg = ws_to_mg(ws);
1330 struct cache *cache = mg->cache;
1331 struct policy_work *op = mg->op;
1332
1333 switch (op->op) {
1334 case POLICY_PROMOTE:
1335 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1336 if (r) {
1337 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1338 cache_device_name(cache));
1339 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1340
1341 mg_complete(mg, false);
1342 return;
1343 }
1344 mg_complete(mg, true);
1345 break;
1346
1347 case POLICY_DEMOTE:
1348 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1349 if (r) {
1350 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1351 cache_device_name(cache));
1352 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1353
1354 mg_complete(mg, false);
1355 return;
1356 }
1357
1358 /*
1359 * It would be nice if we only had to commit when a REQ_FLUSH
1360 * comes through. But there's one scenario that we have to
1361 * look out for:
1362 *
1363 * - vblock x in a cache block
1364 * - domotion occurs
1365 * - cache block gets reallocated and over written
1366 * - crash
1367 *
1368 * When we recover, because there was no commit the cache will
1369 * rollback to having the data for vblock x in the cache block.
1370 * But the cache block has since been overwritten, so it'll end
1371 * up pointing to data that was never in 'x' during the history
1372 * of the device.
1373 *
1374 * To avoid this issue we require a commit as part of the
1375 * demotion operation.
1376 */
1377 init_continuation(&mg->k, mg_success);
1378 continue_after_commit(&cache->committer, &mg->k);
1379 schedule_commit(&cache->committer);
1380 break;
1381
1382 case POLICY_WRITEBACK:
1383 mg_complete(mg, true);
1384 break;
1385 }
1386}
1387
1388static void mg_update_metadata_after_copy(struct work_struct *ws)
1389{
1390 struct dm_cache_migration *mg = ws_to_mg(ws);
1391
1392 /*
1393 * Did the copy succeed?
1394 */
1395 if (mg->k.input)
1396 mg_complete(mg, false);
1397 else
1398 mg_update_metadata(ws);
1399}
1400
1401static void mg_upgrade_lock(struct work_struct *ws)
1402{
1403 int r;
1404 struct dm_cache_migration *mg = ws_to_mg(ws);
1405
1406 /*
1407 * Did the copy succeed?
1408 */
1409 if (mg->k.input)
1410 mg_complete(mg, false);
1411
1412 else {
1413 /*
1414 * Now we want the lock to prevent both reads and writes.
1415 */
1416 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1417 READ_WRITE_LOCK_LEVEL);
1418 if (r < 0)
1419 mg_complete(mg, false);
1420
1421 else if (r)
1422 quiesce(mg, mg_update_metadata);
1423
1424 else
1425 mg_update_metadata(ws);
1426 }
1427}
1428
1429static void mg_full_copy(struct work_struct *ws)
1430{
1431 struct dm_cache_migration *mg = ws_to_mg(ws);
1432 struct cache *cache = mg->cache;
1433 struct policy_work *op = mg->op;
1434 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1435
1436 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1437 is_discarded_oblock(cache, op->oblock)) {
1438 mg_upgrade_lock(ws);
1439 return;
1440 }
1441
1442 init_continuation(&mg->k, mg_upgrade_lock);
1443 copy(mg, is_policy_promote);
1444}
1445
1446static void mg_copy(struct work_struct *ws)
1447{
1448 struct dm_cache_migration *mg = ws_to_mg(ws);
1449
1450 if (mg->overwrite_bio) {
1451 /*
1452 * No exclusive lock was held when we last checked if the bio
1453 * was optimisable. So we have to check again in case things
1454 * have changed (eg, the block may no longer be discarded).
1455 */
1456 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1457 /*
1458 * Fallback to a real full copy after doing some tidying up.
1459 */
1460 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1461 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1462 mg->overwrite_bio = NULL;
1463 inc_io_migrations(mg->cache);
1464 mg_full_copy(ws);
1465 return;
1466 }
1467
1468 /*
1469 * It's safe to do this here, even though it's new data
1470 * because all IO has been locked out of the block.
1471 *
1472 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1473 * so _not_ using mg_upgrade_lock() as continutation.
1474 */
1475 overwrite(mg, mg_update_metadata_after_copy);
1476
1477 } else
1478 mg_full_copy(ws);
1479}
1480
1481static int mg_lock_writes(struct dm_cache_migration *mg)
1482{
1483 int r;
1484 struct dm_cell_key_v2 key;
1485 struct cache *cache = mg->cache;
1486 struct dm_bio_prison_cell_v2 *prealloc;
1487
1488 prealloc = alloc_prison_cell(cache);
1489
1490 /*
1491 * Prevent writes to the block, but allow reads to continue.
1492 * Unless we're using an overwrite bio, in which case we lock
1493 * everything.
1494 */
1495 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1496 r = dm_cell_lock_v2(cache->prison, &key,
1497 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1498 prealloc, &mg->cell);
1499 if (r < 0) {
1500 free_prison_cell(cache, prealloc);
1501 mg_complete(mg, false);
1502 return r;
1503 }
1504
1505 if (mg->cell != prealloc)
1506 free_prison_cell(cache, prealloc);
1507
1508 if (r == 0)
1509 mg_copy(&mg->k.ws);
1510 else
1511 quiesce(mg, mg_copy);
1512
1513 return 0;
1514}
1515
1516static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1517{
1518 struct dm_cache_migration *mg;
1519
1520 if (!background_work_begin(cache)) {
1521 policy_complete_background_work(cache->policy, op, false);
1522 return -EPERM;
1523 }
1524
1525 mg = alloc_migration(cache);
1526
1527 mg->op = op;
1528 mg->overwrite_bio = bio;
1529
1530 if (!bio)
1531 inc_io_migrations(cache);
1532
1533 return mg_lock_writes(mg);
1534}
1535
1536/*----------------------------------------------------------------
1537 * invalidation processing
1538 *--------------------------------------------------------------*/
1539
1540static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1541{
1542 struct bio_list bios;
1543 struct cache *cache = mg->cache;
1544
1545 bio_list_init(&bios);
1546 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1547 free_prison_cell(cache, mg->cell);
1548
1549 if (!success && mg->overwrite_bio)
1550 bio_io_error(mg->overwrite_bio);
1551
1552 free_migration(mg);
1553 defer_bios(cache, &bios);
1554
1555 background_work_end(cache);
1556}
1557
1558static void invalidate_completed(struct work_struct *ws)
1559{
1560 struct dm_cache_migration *mg = ws_to_mg(ws);
1561 invalidate_complete(mg, !mg->k.input);
1562}
1563
1564static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1565{
1566 int r = policy_invalidate_mapping(cache->policy, cblock);
1567 if (!r) {
1568 r = dm_cache_remove_mapping(cache->cmd, cblock);
1569 if (r) {
1570 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1571 cache_device_name(cache));
1572 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1573 }
1574
1575 } else if (r == -ENODATA) {
1576 /*
1577 * Harmless, already unmapped.
1578 */
1579 r = 0;
1580
1581 } else
1582 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1583
1584 return r;
1585}
1586
1587static void invalidate_remove(struct work_struct *ws)
1588{
1589 int r;
1590 struct dm_cache_migration *mg = ws_to_mg(ws);
1591 struct cache *cache = mg->cache;
1592
1593 r = invalidate_cblock(cache, mg->invalidate_cblock);
1594 if (r) {
1595 invalidate_complete(mg, false);
1596 return;
1597 }
1598
1599 init_continuation(&mg->k, invalidate_completed);
1600 continue_after_commit(&cache->committer, &mg->k);
1601 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1602 mg->overwrite_bio = NULL;
1603 schedule_commit(&cache->committer);
1604}
1605
1606static int invalidate_lock(struct dm_cache_migration *mg)
1607{
1608 int r;
1609 struct dm_cell_key_v2 key;
1610 struct cache *cache = mg->cache;
1611 struct dm_bio_prison_cell_v2 *prealloc;
1612
1613 prealloc = alloc_prison_cell(cache);
1614
1615 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1616 r = dm_cell_lock_v2(cache->prison, &key,
1617 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1618 if (r < 0) {
1619 free_prison_cell(cache, prealloc);
1620 invalidate_complete(mg, false);
1621 return r;
1622 }
1623
1624 if (mg->cell != prealloc)
1625 free_prison_cell(cache, prealloc);
1626
1627 if (r)
1628 quiesce(mg, invalidate_remove);
1629
1630 else {
1631 /*
1632 * We can't call invalidate_remove() directly here because we
1633 * might still be in request context.
1634 */
1635 init_continuation(&mg->k, invalidate_remove);
1636 queue_work(cache->wq, &mg->k.ws);
1637 }
1638
1639 return 0;
1640}
1641
1642static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1643 dm_oblock_t oblock, struct bio *bio)
1644{
1645 struct dm_cache_migration *mg;
1646
1647 if (!background_work_begin(cache))
1648 return -EPERM;
1649
1650 mg = alloc_migration(cache);
1651
1652 mg->overwrite_bio = bio;
1653 mg->invalidate_cblock = cblock;
1654 mg->invalidate_oblock = oblock;
1655
1656 return invalidate_lock(mg);
1657}
1658
1659/*----------------------------------------------------------------
1660 * bio processing
1661 *--------------------------------------------------------------*/
1662
1663enum busy {
1664 IDLE,
1665 BUSY
1666};
1667
1668static enum busy spare_migration_bandwidth(struct cache *cache)
1669{
1670 bool idle = iot_idle_for(&cache->tracker, HZ);
1671 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1672 cache->sectors_per_block;
1673
1674 if (idle && current_volume <= cache->migration_threshold)
1675 return IDLE;
1676 else
1677 return BUSY;
1678}
1679
1680static void inc_hit_counter(struct cache *cache, struct bio *bio)
1681{
1682 atomic_inc(bio_data_dir(bio) == READ ?
1683 &cache->stats.read_hit : &cache->stats.write_hit);
1684}
1685
1686static void inc_miss_counter(struct cache *cache, struct bio *bio)
1687{
1688 atomic_inc(bio_data_dir(bio) == READ ?
1689 &cache->stats.read_miss : &cache->stats.write_miss);
1690}
1691
1692/*----------------------------------------------------------------*/
1693
1694static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1695 bool *commit_needed)
1696{
1697 int r, data_dir;
1698 bool rb, background_queued;
1699 dm_cblock_t cblock;
1700
1701 *commit_needed = false;
1702
1703 rb = bio_detain_shared(cache, block, bio);
1704 if (!rb) {
1705 /*
1706 * An exclusive lock is held for this block, so we have to
1707 * wait. We set the commit_needed flag so the current
1708 * transaction will be committed asap, allowing this lock
1709 * to be dropped.
1710 */
1711 *commit_needed = true;
1712 return DM_MAPIO_SUBMITTED;
1713 }
1714
1715 data_dir = bio_data_dir(bio);
1716
1717 if (optimisable_bio(cache, bio, block)) {
1718 struct policy_work *op = NULL;
1719
1720 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1721 if (unlikely(r && r != -ENOENT)) {
1722 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1723 cache_device_name(cache), r);
1724 bio_io_error(bio);
1725 return DM_MAPIO_SUBMITTED;
1726 }
1727
1728 if (r == -ENOENT && op) {
1729 bio_drop_shared_lock(cache, bio);
1730 BUG_ON(op->op != POLICY_PROMOTE);
1731 mg_start(cache, op, bio);
1732 return DM_MAPIO_SUBMITTED;
1733 }
1734 } else {
1735 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1736 if (unlikely(r && r != -ENOENT)) {
1737 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1738 cache_device_name(cache), r);
1739 bio_io_error(bio);
1740 return DM_MAPIO_SUBMITTED;
1741 }
1742
1743 if (background_queued)
1744 wake_migration_worker(cache);
1745 }
1746
1747 if (r == -ENOENT) {
1748 struct per_bio_data *pb = get_per_bio_data(bio);
1749
1750 /*
1751 * Miss.
1752 */
1753 inc_miss_counter(cache, bio);
1754 if (pb->req_nr == 0) {
1755 accounted_begin(cache, bio);
1756 remap_to_origin_clear_discard(cache, bio, block);
1757 } else {
1758 /*
1759 * This is a duplicate writethrough io that is no
1760 * longer needed because the block has been demoted.
1761 */
1762 bio_endio(bio);
1763 return DM_MAPIO_SUBMITTED;
1764 }
1765 } else {
1766 /*
1767 * Hit.
1768 */
1769 inc_hit_counter(cache, bio);
1770
1771 /*
1772 * Passthrough always maps to the origin, invalidating any
1773 * cache blocks that are written to.
1774 */
1775 if (passthrough_mode(cache)) {
1776 if (bio_data_dir(bio) == WRITE) {
1777 bio_drop_shared_lock(cache, bio);
1778 atomic_inc(&cache->stats.demotion);
1779 invalidate_start(cache, cblock, block, bio);
1780 } else
1781 remap_to_origin_clear_discard(cache, bio, block);
1782 } else {
1783 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1784 !is_dirty(cache, cblock)) {
1785 remap_to_origin_and_cache(cache, bio, block, cblock);
1786 accounted_begin(cache, bio);
1787 } else
1788 remap_to_cache_dirty(cache, bio, block, cblock);
1789 }
1790 }
1791
1792 /*
1793 * dm core turns FUA requests into a separate payload and FLUSH req.
1794 */
1795 if (bio->bi_opf & REQ_FUA) {
1796 /*
1797 * issue_after_commit will call accounted_begin a second time. So
1798 * we call accounted_complete() to avoid double accounting.
1799 */
1800 accounted_complete(cache, bio);
1801 issue_after_commit(&cache->committer, bio);
1802 *commit_needed = true;
1803 return DM_MAPIO_SUBMITTED;
1804 }
1805
1806 return DM_MAPIO_REMAPPED;
1807}
1808
1809static bool process_bio(struct cache *cache, struct bio *bio)
1810{
1811 bool commit_needed;
1812
1813 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1814 generic_make_request(bio);
1815
1816 return commit_needed;
1817}
1818
1819/*
1820 * A non-zero return indicates read_only or fail_io mode.
1821 */
1822static int commit(struct cache *cache, bool clean_shutdown)
1823{
1824 int r;
1825
1826 if (get_cache_mode(cache) >= CM_READ_ONLY)
1827 return -EINVAL;
1828
1829 atomic_inc(&cache->stats.commit_count);
1830 r = dm_cache_commit(cache->cmd, clean_shutdown);
1831 if (r)
1832 metadata_operation_failed(cache, "dm_cache_commit", r);
1833
1834 return r;
1835}
1836
1837/*
1838 * Used by the batcher.
1839 */
1840static blk_status_t commit_op(void *context)
1841{
1842 struct cache *cache = context;
1843
1844 if (dm_cache_changed_this_transaction(cache->cmd))
1845 return errno_to_blk_status(commit(cache, false));
1846
1847 return 0;
1848}
1849
1850/*----------------------------------------------------------------*/
1851
1852static bool process_flush_bio(struct cache *cache, struct bio *bio)
1853{
1854 struct per_bio_data *pb = get_per_bio_data(bio);
1855
1856 if (!pb->req_nr)
1857 remap_to_origin(cache, bio);
1858 else
1859 remap_to_cache(cache, bio, 0);
1860
1861 issue_after_commit(&cache->committer, bio);
1862 return true;
1863}
1864
1865static bool process_discard_bio(struct cache *cache, struct bio *bio)
1866{
1867 dm_dblock_t b, e;
1868
1869 // FIXME: do we need to lock the region? Or can we just assume the
1870 // user wont be so foolish as to issue discard concurrently with
1871 // other IO?
1872 calc_discard_block_range(cache, bio, &b, &e);
1873 while (b != e) {
1874 set_discard(cache, b);
1875 b = to_dblock(from_dblock(b) + 1);
1876 }
1877
1878 bio_endio(bio);
1879
1880 return false;
1881}
1882
1883static void process_deferred_bios(struct work_struct *ws)
1884{
1885 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1886
1887 unsigned long flags;
1888 bool commit_needed = false;
1889 struct bio_list bios;
1890 struct bio *bio;
1891
1892 bio_list_init(&bios);
1893
1894 spin_lock_irqsave(&cache->lock, flags);
1895 bio_list_merge(&bios, &cache->deferred_bios);
1896 bio_list_init(&cache->deferred_bios);
1897 spin_unlock_irqrestore(&cache->lock, flags);
1898
1899 while ((bio = bio_list_pop(&bios))) {
1900 if (bio->bi_opf & REQ_PREFLUSH)
1901 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1902
1903 else if (bio_op(bio) == REQ_OP_DISCARD)
1904 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1905
1906 else
1907 commit_needed = process_bio(cache, bio) || commit_needed;
1908 }
1909
1910 if (commit_needed)
1911 schedule_commit(&cache->committer);
1912}
1913
1914/*----------------------------------------------------------------
1915 * Main worker loop
1916 *--------------------------------------------------------------*/
1917
1918static void requeue_deferred_bios(struct cache *cache)
1919{
1920 struct bio *bio;
1921 struct bio_list bios;
1922
1923 bio_list_init(&bios);
1924 bio_list_merge(&bios, &cache->deferred_bios);
1925 bio_list_init(&cache->deferred_bios);
1926
1927 while ((bio = bio_list_pop(&bios))) {
1928 bio->bi_status = BLK_STS_DM_REQUEUE;
1929 bio_endio(bio);
1930 }
1931}
1932
1933/*
1934 * We want to commit periodically so that not too much
1935 * unwritten metadata builds up.
1936 */
1937static void do_waker(struct work_struct *ws)
1938{
1939 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1940
1941 policy_tick(cache->policy, true);
1942 wake_migration_worker(cache);
1943 schedule_commit(&cache->committer);
1944 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1945}
1946
1947static void check_migrations(struct work_struct *ws)
1948{
1949 int r;
1950 struct policy_work *op;
1951 struct cache *cache = container_of(ws, struct cache, migration_worker);
1952 enum busy b;
1953
1954 for (;;) {
1955 b = spare_migration_bandwidth(cache);
1956
1957 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1958 if (r == -ENODATA)
1959 break;
1960
1961 if (r) {
1962 DMERR_LIMIT("%s: policy_background_work failed",
1963 cache_device_name(cache));
1964 break;
1965 }
1966
1967 r = mg_start(cache, op, NULL);
1968 if (r)
1969 break;
1970 }
1971}
1972
1973/*----------------------------------------------------------------
1974 * Target methods
1975 *--------------------------------------------------------------*/
1976
1977/*
1978 * This function gets called on the error paths of the constructor, so we
1979 * have to cope with a partially initialised struct.
1980 */
1981static void destroy(struct cache *cache)
1982{
1983 unsigned i;
1984
1985 mempool_exit(&cache->migration_pool);
1986
1987 if (cache->prison)
1988 dm_bio_prison_destroy_v2(cache->prison);
1989
1990 if (cache->wq)
1991 destroy_workqueue(cache->wq);
1992
1993 if (cache->dirty_bitset)
1994 free_bitset(cache->dirty_bitset);
1995
1996 if (cache->discard_bitset)
1997 free_bitset(cache->discard_bitset);
1998
1999 if (cache->copier)
2000 dm_kcopyd_client_destroy(cache->copier);
2001
2002 if (cache->cmd)
2003 dm_cache_metadata_close(cache->cmd);
2004
2005 if (cache->metadata_dev)
2006 dm_put_device(cache->ti, cache->metadata_dev);
2007
2008 if (cache->origin_dev)
2009 dm_put_device(cache->ti, cache->origin_dev);
2010
2011 if (cache->cache_dev)
2012 dm_put_device(cache->ti, cache->cache_dev);
2013
2014 if (cache->policy)
2015 dm_cache_policy_destroy(cache->policy);
2016
2017 for (i = 0; i < cache->nr_ctr_args ; i++)
2018 kfree(cache->ctr_args[i]);
2019 kfree(cache->ctr_args);
2020
2021 bioset_exit(&cache->bs);
2022
2023 kfree(cache);
2024}
2025
2026static void cache_dtr(struct dm_target *ti)
2027{
2028 struct cache *cache = ti->private;
2029
2030 destroy(cache);
2031}
2032
2033static sector_t get_dev_size(struct dm_dev *dev)
2034{
2035 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2036}
2037
2038/*----------------------------------------------------------------*/
2039
2040/*
2041 * Construct a cache device mapping.
2042 *
2043 * cache <metadata dev> <cache dev> <origin dev> <block size>
2044 * <#feature args> [<feature arg>]*
2045 * <policy> <#policy args> [<policy arg>]*
2046 *
2047 * metadata dev : fast device holding the persistent metadata
2048 * cache dev : fast device holding cached data blocks
2049 * origin dev : slow device holding original data blocks
2050 * block size : cache unit size in sectors
2051 *
2052 * #feature args : number of feature arguments passed
2053 * feature args : writethrough. (The default is writeback.)
2054 *
2055 * policy : the replacement policy to use
2056 * #policy args : an even number of policy arguments corresponding
2057 * to key/value pairs passed to the policy
2058 * policy args : key/value pairs passed to the policy
2059 * E.g. 'sequential_threshold 1024'
2060 * See cache-policies.txt for details.
2061 *
2062 * Optional feature arguments are:
2063 * writethrough : write through caching that prohibits cache block
2064 * content from being different from origin block content.
2065 * Without this argument, the default behaviour is to write
2066 * back cache block contents later for performance reasons,
2067 * so they may differ from the corresponding origin blocks.
2068 */
2069struct cache_args {
2070 struct dm_target *ti;
2071
2072 struct dm_dev *metadata_dev;
2073
2074 struct dm_dev *cache_dev;
2075 sector_t cache_sectors;
2076
2077 struct dm_dev *origin_dev;
2078 sector_t origin_sectors;
2079
2080 uint32_t block_size;
2081
2082 const char *policy_name;
2083 int policy_argc;
2084 const char **policy_argv;
2085
2086 struct cache_features features;
2087};
2088
2089static void destroy_cache_args(struct cache_args *ca)
2090{
2091 if (ca->metadata_dev)
2092 dm_put_device(ca->ti, ca->metadata_dev);
2093
2094 if (ca->cache_dev)
2095 dm_put_device(ca->ti, ca->cache_dev);
2096
2097 if (ca->origin_dev)
2098 dm_put_device(ca->ti, ca->origin_dev);
2099
2100 kfree(ca);
2101}
2102
2103static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2104{
2105 if (!as->argc) {
2106 *error = "Insufficient args";
2107 return false;
2108 }
2109
2110 return true;
2111}
2112
2113static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2114 char **error)
2115{
2116 int r;
2117 sector_t metadata_dev_size;
2118 char b[BDEVNAME_SIZE];
2119
2120 if (!at_least_one_arg(as, error))
2121 return -EINVAL;
2122
2123 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2124 &ca->metadata_dev);
2125 if (r) {
2126 *error = "Error opening metadata device";
2127 return r;
2128 }
2129
2130 metadata_dev_size = get_dev_size(ca->metadata_dev);
2131 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2132 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2133 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2134
2135 return 0;
2136}
2137
2138static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2139 char **error)
2140{
2141 int r;
2142
2143 if (!at_least_one_arg(as, error))
2144 return -EINVAL;
2145
2146 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2147 &ca->cache_dev);
2148 if (r) {
2149 *error = "Error opening cache device";
2150 return r;
2151 }
2152 ca->cache_sectors = get_dev_size(ca->cache_dev);
2153
2154 return 0;
2155}
2156
2157static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2158 char **error)
2159{
2160 int r;
2161
2162 if (!at_least_one_arg(as, error))
2163 return -EINVAL;
2164
2165 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2166 &ca->origin_dev);
2167 if (r) {
2168 *error = "Error opening origin device";
2169 return r;
2170 }
2171
2172 ca->origin_sectors = get_dev_size(ca->origin_dev);
2173 if (ca->ti->len > ca->origin_sectors) {
2174 *error = "Device size larger than cached device";
2175 return -EINVAL;
2176 }
2177
2178 return 0;
2179}
2180
2181static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2182 char **error)
2183{
2184 unsigned long block_size;
2185
2186 if (!at_least_one_arg(as, error))
2187 return -EINVAL;
2188
2189 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2190 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2191 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2192 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2193 *error = "Invalid data block size";
2194 return -EINVAL;
2195 }
2196
2197 if (block_size > ca->cache_sectors) {
2198 *error = "Data block size is larger than the cache device";
2199 return -EINVAL;
2200 }
2201
2202 ca->block_size = block_size;
2203
2204 return 0;
2205}
2206
2207static void init_features(struct cache_features *cf)
2208{
2209 cf->mode = CM_WRITE;
2210 cf->io_mode = CM_IO_WRITEBACK;
2211 cf->metadata_version = 1;
2212}
2213
2214static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2215 char **error)
2216{
2217 static const struct dm_arg _args[] = {
2218 {0, 2, "Invalid number of cache feature arguments"},
2219 };
2220
2221 int r, mode_ctr = 0;
2222 unsigned argc;
2223 const char *arg;
2224 struct cache_features *cf = &ca->features;
2225
2226 init_features(cf);
2227
2228 r = dm_read_arg_group(_args, as, &argc, error);
2229 if (r)
2230 return -EINVAL;
2231
2232 while (argc--) {
2233 arg = dm_shift_arg(as);
2234
2235 if (!strcasecmp(arg, "writeback")) {
2236 cf->io_mode = CM_IO_WRITEBACK;
2237 mode_ctr++;
2238 }
2239
2240 else if (!strcasecmp(arg, "writethrough")) {
2241 cf->io_mode = CM_IO_WRITETHROUGH;
2242 mode_ctr++;
2243 }
2244
2245 else if (!strcasecmp(arg, "passthrough")) {
2246 cf->io_mode = CM_IO_PASSTHROUGH;
2247 mode_ctr++;
2248 }
2249
2250 else if (!strcasecmp(arg, "metadata2"))
2251 cf->metadata_version = 2;
2252
2253 else {
2254 *error = "Unrecognised cache feature requested";
2255 return -EINVAL;
2256 }
2257 }
2258
2259 if (mode_ctr > 1) {
2260 *error = "Duplicate cache io_mode features requested";
2261 return -EINVAL;
2262 }
2263
2264 return 0;
2265}
2266
2267static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2268 char **error)
2269{
2270 static const struct dm_arg _args[] = {
2271 {0, 1024, "Invalid number of policy arguments"},
2272 };
2273
2274 int r;
2275
2276 if (!at_least_one_arg(as, error))
2277 return -EINVAL;
2278
2279 ca->policy_name = dm_shift_arg(as);
2280
2281 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2282 if (r)
2283 return -EINVAL;
2284
2285 ca->policy_argv = (const char **)as->argv;
2286 dm_consume_args(as, ca->policy_argc);
2287
2288 return 0;
2289}
2290
2291static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2292 char **error)
2293{
2294 int r;
2295 struct dm_arg_set as;
2296
2297 as.argc = argc;
2298 as.argv = argv;
2299
2300 r = parse_metadata_dev(ca, &as, error);
2301 if (r)
2302 return r;
2303
2304 r = parse_cache_dev(ca, &as, error);
2305 if (r)
2306 return r;
2307
2308 r = parse_origin_dev(ca, &as, error);
2309 if (r)
2310 return r;
2311
2312 r = parse_block_size(ca, &as, error);
2313 if (r)
2314 return r;
2315
2316 r = parse_features(ca, &as, error);
2317 if (r)
2318 return r;
2319
2320 r = parse_policy(ca, &as, error);
2321 if (r)
2322 return r;
2323
2324 return 0;
2325}
2326
2327/*----------------------------------------------------------------*/
2328
2329static struct kmem_cache *migration_cache;
2330
2331#define NOT_CORE_OPTION 1
2332
2333static int process_config_option(struct cache *cache, const char *key, const char *value)
2334{
2335 unsigned long tmp;
2336
2337 if (!strcasecmp(key, "migration_threshold")) {
2338 if (kstrtoul(value, 10, &tmp))
2339 return -EINVAL;
2340
2341 cache->migration_threshold = tmp;
2342 return 0;
2343 }
2344
2345 return NOT_CORE_OPTION;
2346}
2347
2348static int set_config_value(struct cache *cache, const char *key, const char *value)
2349{
2350 int r = process_config_option(cache, key, value);
2351
2352 if (r == NOT_CORE_OPTION)
2353 r = policy_set_config_value(cache->policy, key, value);
2354
2355 if (r)
2356 DMWARN("bad config value for %s: %s", key, value);
2357
2358 return r;
2359}
2360
2361static int set_config_values(struct cache *cache, int argc, const char **argv)
2362{
2363 int r = 0;
2364
2365 if (argc & 1) {
2366 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2367 return -EINVAL;
2368 }
2369
2370 while (argc) {
2371 r = set_config_value(cache, argv[0], argv[1]);
2372 if (r)
2373 break;
2374
2375 argc -= 2;
2376 argv += 2;
2377 }
2378
2379 return r;
2380}
2381
2382static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2383 char **error)
2384{
2385 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2386 cache->cache_size,
2387 cache->origin_sectors,
2388 cache->sectors_per_block);
2389 if (IS_ERR(p)) {
2390 *error = "Error creating cache's policy";
2391 return PTR_ERR(p);
2392 }
2393 cache->policy = p;
2394 BUG_ON(!cache->policy);
2395
2396 return 0;
2397}
2398
2399/*
2400 * We want the discard block size to be at least the size of the cache
2401 * block size and have no more than 2^14 discard blocks across the origin.
2402 */
2403#define MAX_DISCARD_BLOCKS (1 << 14)
2404
2405static bool too_many_discard_blocks(sector_t discard_block_size,
2406 sector_t origin_size)
2407{
2408 (void) sector_div(origin_size, discard_block_size);
2409
2410 return origin_size > MAX_DISCARD_BLOCKS;
2411}
2412
2413static sector_t calculate_discard_block_size(sector_t cache_block_size,
2414 sector_t origin_size)
2415{
2416 sector_t discard_block_size = cache_block_size;
2417
2418 if (origin_size)
2419 while (too_many_discard_blocks(discard_block_size, origin_size))
2420 discard_block_size *= 2;
2421
2422 return discard_block_size;
2423}
2424
2425static void set_cache_size(struct cache *cache, dm_cblock_t size)
2426{
2427 dm_block_t nr_blocks = from_cblock(size);
2428
2429 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2430 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2431 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2432 "Please consider increasing the cache block size to reduce the overall cache block count.",
2433 (unsigned long long) nr_blocks);
2434
2435 cache->cache_size = size;
2436}
2437
2438static int is_congested(struct dm_dev *dev, int bdi_bits)
2439{
2440 struct request_queue *q = bdev_get_queue(dev->bdev);
2441 return bdi_congested(q->backing_dev_info, bdi_bits);
2442}
2443
2444static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2445{
2446 struct cache *cache = container_of(cb, struct cache, callbacks);
2447
2448 return is_congested(cache->origin_dev, bdi_bits) ||
2449 is_congested(cache->cache_dev, bdi_bits);
2450}
2451
2452#define DEFAULT_MIGRATION_THRESHOLD 2048
2453
2454static int cache_create(struct cache_args *ca, struct cache **result)
2455{
2456 int r = 0;
2457 char **error = &ca->ti->error;
2458 struct cache *cache;
2459 struct dm_target *ti = ca->ti;
2460 dm_block_t origin_blocks;
2461 struct dm_cache_metadata *cmd;
2462 bool may_format = ca->features.mode == CM_WRITE;
2463
2464 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2465 if (!cache)
2466 return -ENOMEM;
2467
2468 cache->ti = ca->ti;
2469 ti->private = cache;
2470 ti->num_flush_bios = 2;
2471 ti->flush_supported = true;
2472
2473 ti->num_discard_bios = 1;
2474 ti->discards_supported = true;
2475 ti->split_discard_bios = false;
2476
2477 ti->per_io_data_size = sizeof(struct per_bio_data);
2478
2479 cache->features = ca->features;
2480 if (writethrough_mode(cache)) {
2481 /* Create bioset for writethrough bios issued to origin */
2482 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2483 if (r)
2484 goto bad;
2485 }
2486
2487 cache->callbacks.congested_fn = cache_is_congested;
2488 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2489
2490 cache->metadata_dev = ca->metadata_dev;
2491 cache->origin_dev = ca->origin_dev;
2492 cache->cache_dev = ca->cache_dev;
2493
2494 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2495
2496 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2497 origin_blocks = block_div(origin_blocks, ca->block_size);
2498 cache->origin_blocks = to_oblock(origin_blocks);
2499
2500 cache->sectors_per_block = ca->block_size;
2501 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2502 r = -EINVAL;
2503 goto bad;
2504 }
2505
2506 if (ca->block_size & (ca->block_size - 1)) {
2507 dm_block_t cache_size = ca->cache_sectors;
2508
2509 cache->sectors_per_block_shift = -1;
2510 cache_size = block_div(cache_size, ca->block_size);
2511 set_cache_size(cache, to_cblock(cache_size));
2512 } else {
2513 cache->sectors_per_block_shift = __ffs(ca->block_size);
2514 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2515 }
2516
2517 r = create_cache_policy(cache, ca, error);
2518 if (r)
2519 goto bad;
2520
2521 cache->policy_nr_args = ca->policy_argc;
2522 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2523
2524 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2525 if (r) {
2526 *error = "Error setting cache policy's config values";
2527 goto bad;
2528 }
2529
2530 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2531 ca->block_size, may_format,
2532 dm_cache_policy_get_hint_size(cache->policy),
2533 ca->features.metadata_version);
2534 if (IS_ERR(cmd)) {
2535 *error = "Error creating metadata object";
2536 r = PTR_ERR(cmd);
2537 goto bad;
2538 }
2539 cache->cmd = cmd;
2540 set_cache_mode(cache, CM_WRITE);
2541 if (get_cache_mode(cache) != CM_WRITE) {
2542 *error = "Unable to get write access to metadata, please check/repair metadata.";
2543 r = -EINVAL;
2544 goto bad;
2545 }
2546
2547 if (passthrough_mode(cache)) {
2548 bool all_clean;
2549
2550 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2551 if (r) {
2552 *error = "dm_cache_metadata_all_clean() failed";
2553 goto bad;
2554 }
2555
2556 if (!all_clean) {
2557 *error = "Cannot enter passthrough mode unless all blocks are clean";
2558 r = -EINVAL;
2559 goto bad;
2560 }
2561
2562 policy_allow_migrations(cache->policy, false);
2563 }
2564
2565 spin_lock_init(&cache->lock);
2566 bio_list_init(&cache->deferred_bios);
2567 atomic_set(&cache->nr_allocated_migrations, 0);
2568 atomic_set(&cache->nr_io_migrations, 0);
2569 init_waitqueue_head(&cache->migration_wait);
2570
2571 r = -ENOMEM;
2572 atomic_set(&cache->nr_dirty, 0);
2573 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2574 if (!cache->dirty_bitset) {
2575 *error = "could not allocate dirty bitset";
2576 goto bad;
2577 }
2578 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2579
2580 cache->discard_block_size =
2581 calculate_discard_block_size(cache->sectors_per_block,
2582 cache->origin_sectors);
2583 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2584 cache->discard_block_size));
2585 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2586 if (!cache->discard_bitset) {
2587 *error = "could not allocate discard bitset";
2588 goto bad;
2589 }
2590 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2591
2592 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2593 if (IS_ERR(cache->copier)) {
2594 *error = "could not create kcopyd client";
2595 r = PTR_ERR(cache->copier);
2596 goto bad;
2597 }
2598
2599 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2600 if (!cache->wq) {
2601 *error = "could not create workqueue for metadata object";
2602 goto bad;
2603 }
2604 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2605 INIT_WORK(&cache->migration_worker, check_migrations);
2606 INIT_DELAYED_WORK(&cache->waker, do_waker);
2607
2608 cache->prison = dm_bio_prison_create_v2(cache->wq);
2609 if (!cache->prison) {
2610 *error = "could not create bio prison";
2611 goto bad;
2612 }
2613
2614 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2615 migration_cache);
2616 if (r) {
2617 *error = "Error creating cache's migration mempool";
2618 goto bad;
2619 }
2620
2621 cache->need_tick_bio = true;
2622 cache->sized = false;
2623 cache->invalidate = false;
2624 cache->commit_requested = false;
2625 cache->loaded_mappings = false;
2626 cache->loaded_discards = false;
2627
2628 load_stats(cache);
2629
2630 atomic_set(&cache->stats.demotion, 0);
2631 atomic_set(&cache->stats.promotion, 0);
2632 atomic_set(&cache->stats.copies_avoided, 0);
2633 atomic_set(&cache->stats.cache_cell_clash, 0);
2634 atomic_set(&cache->stats.commit_count, 0);
2635 atomic_set(&cache->stats.discard_count, 0);
2636
2637 spin_lock_init(&cache->invalidation_lock);
2638 INIT_LIST_HEAD(&cache->invalidation_requests);
2639
2640 batcher_init(&cache->committer, commit_op, cache,
2641 issue_op, cache, cache->wq);
2642 iot_init(&cache->tracker);
2643
2644 init_rwsem(&cache->background_work_lock);
2645 prevent_background_work(cache);
2646
2647 *result = cache;
2648 return 0;
2649bad:
2650 destroy(cache);
2651 return r;
2652}
2653
2654static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2655{
2656 unsigned i;
2657 const char **copy;
2658
2659 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2660 if (!copy)
2661 return -ENOMEM;
2662 for (i = 0; i < argc; i++) {
2663 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2664 if (!copy[i]) {
2665 while (i--)
2666 kfree(copy[i]);
2667 kfree(copy);
2668 return -ENOMEM;
2669 }
2670 }
2671
2672 cache->nr_ctr_args = argc;
2673 cache->ctr_args = copy;
2674
2675 return 0;
2676}
2677
2678static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2679{
2680 int r = -EINVAL;
2681 struct cache_args *ca;
2682 struct cache *cache = NULL;
2683
2684 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2685 if (!ca) {
2686 ti->error = "Error allocating memory for cache";
2687 return -ENOMEM;
2688 }
2689 ca->ti = ti;
2690
2691 r = parse_cache_args(ca, argc, argv, &ti->error);
2692 if (r)
2693 goto out;
2694
2695 r = cache_create(ca, &cache);
2696 if (r)
2697 goto out;
2698
2699 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2700 if (r) {
2701 destroy(cache);
2702 goto out;
2703 }
2704
2705 ti->private = cache;
2706out:
2707 destroy_cache_args(ca);
2708 return r;
2709}
2710
2711/*----------------------------------------------------------------*/
2712
2713static int cache_map(struct dm_target *ti, struct bio *bio)
2714{
2715 struct cache *cache = ti->private;
2716
2717 int r;
2718 bool commit_needed;
2719 dm_oblock_t block = get_bio_block(cache, bio);
2720
2721 init_per_bio_data(bio);
2722 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2723 /*
2724 * This can only occur if the io goes to a partial block at
2725 * the end of the origin device. We don't cache these.
2726 * Just remap to the origin and carry on.
2727 */
2728 remap_to_origin(cache, bio);
2729 accounted_begin(cache, bio);
2730 return DM_MAPIO_REMAPPED;
2731 }
2732
2733 if (discard_or_flush(bio)) {
2734 defer_bio(cache, bio);
2735 return DM_MAPIO_SUBMITTED;
2736 }
2737
2738 r = map_bio(cache, bio, block, &commit_needed);
2739 if (commit_needed)
2740 schedule_commit(&cache->committer);
2741
2742 return r;
2743}
2744
2745static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2746{
2747 struct cache *cache = ti->private;
2748 unsigned long flags;
2749 struct per_bio_data *pb = get_per_bio_data(bio);
2750
2751 if (pb->tick) {
2752 policy_tick(cache->policy, false);
2753
2754 spin_lock_irqsave(&cache->lock, flags);
2755 cache->need_tick_bio = true;
2756 spin_unlock_irqrestore(&cache->lock, flags);
2757 }
2758
2759 bio_drop_shared_lock(cache, bio);
2760 accounted_complete(cache, bio);
2761
2762 return DM_ENDIO_DONE;
2763}
2764
2765static int write_dirty_bitset(struct cache *cache)
2766{
2767 int r;
2768
2769 if (get_cache_mode(cache) >= CM_READ_ONLY)
2770 return -EINVAL;
2771
2772 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2773 if (r)
2774 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2775
2776 return r;
2777}
2778
2779static int write_discard_bitset(struct cache *cache)
2780{
2781 unsigned i, r;
2782
2783 if (get_cache_mode(cache) >= CM_READ_ONLY)
2784 return -EINVAL;
2785
2786 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2787 cache->discard_nr_blocks);
2788 if (r) {
2789 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2790 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2791 return r;
2792 }
2793
2794 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2795 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2796 is_discarded(cache, to_dblock(i)));
2797 if (r) {
2798 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2799 return r;
2800 }
2801 }
2802
2803 return 0;
2804}
2805
2806static int write_hints(struct cache *cache)
2807{
2808 int r;
2809
2810 if (get_cache_mode(cache) >= CM_READ_ONLY)
2811 return -EINVAL;
2812
2813 r = dm_cache_write_hints(cache->cmd, cache->policy);
2814 if (r) {
2815 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2816 return r;
2817 }
2818
2819 return 0;
2820}
2821
2822/*
2823 * returns true on success
2824 */
2825static bool sync_metadata(struct cache *cache)
2826{
2827 int r1, r2, r3, r4;
2828
2829 r1 = write_dirty_bitset(cache);
2830 if (r1)
2831 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2832
2833 r2 = write_discard_bitset(cache);
2834 if (r2)
2835 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2836
2837 save_stats(cache);
2838
2839 r3 = write_hints(cache);
2840 if (r3)
2841 DMERR("%s: could not write hints", cache_device_name(cache));
2842
2843 /*
2844 * If writing the above metadata failed, we still commit, but don't
2845 * set the clean shutdown flag. This will effectively force every
2846 * dirty bit to be set on reload.
2847 */
2848 r4 = commit(cache, !r1 && !r2 && !r3);
2849 if (r4)
2850 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2851
2852 return !r1 && !r2 && !r3 && !r4;
2853}
2854
2855static void cache_postsuspend(struct dm_target *ti)
2856{
2857 struct cache *cache = ti->private;
2858
2859 prevent_background_work(cache);
2860 BUG_ON(atomic_read(&cache->nr_io_migrations));
2861
2862 cancel_delayed_work(&cache->waker);
2863 flush_workqueue(cache->wq);
2864 WARN_ON(cache->tracker.in_flight);
2865
2866 /*
2867 * If it's a flush suspend there won't be any deferred bios, so this
2868 * call is harmless.
2869 */
2870 requeue_deferred_bios(cache);
2871
2872 if (get_cache_mode(cache) == CM_WRITE)
2873 (void) sync_metadata(cache);
2874}
2875
2876static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2877 bool dirty, uint32_t hint, bool hint_valid)
2878{
2879 int r;
2880 struct cache *cache = context;
2881
2882 if (dirty) {
2883 set_bit(from_cblock(cblock), cache->dirty_bitset);
2884 atomic_inc(&cache->nr_dirty);
2885 } else
2886 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2887
2888 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2889 if (r)
2890 return r;
2891
2892 return 0;
2893}
2894
2895/*
2896 * The discard block size in the on disk metadata is not
2897 * neccessarily the same as we're currently using. So we have to
2898 * be careful to only set the discarded attribute if we know it
2899 * covers a complete block of the new size.
2900 */
2901struct discard_load_info {
2902 struct cache *cache;
2903
2904 /*
2905 * These blocks are sized using the on disk dblock size, rather
2906 * than the current one.
2907 */
2908 dm_block_t block_size;
2909 dm_block_t discard_begin, discard_end;
2910};
2911
2912static void discard_load_info_init(struct cache *cache,
2913 struct discard_load_info *li)
2914{
2915 li->cache = cache;
2916 li->discard_begin = li->discard_end = 0;
2917}
2918
2919static void set_discard_range(struct discard_load_info *li)
2920{
2921 sector_t b, e;
2922
2923 if (li->discard_begin == li->discard_end)
2924 return;
2925
2926 /*
2927 * Convert to sectors.
2928 */
2929 b = li->discard_begin * li->block_size;
2930 e = li->discard_end * li->block_size;
2931
2932 /*
2933 * Then convert back to the current dblock size.
2934 */
2935 b = dm_sector_div_up(b, li->cache->discard_block_size);
2936 sector_div(e, li->cache->discard_block_size);
2937
2938 /*
2939 * The origin may have shrunk, so we need to check we're still in
2940 * bounds.
2941 */
2942 if (e > from_dblock(li->cache->discard_nr_blocks))
2943 e = from_dblock(li->cache->discard_nr_blocks);
2944
2945 for (; b < e; b++)
2946 set_discard(li->cache, to_dblock(b));
2947}
2948
2949static int load_discard(void *context, sector_t discard_block_size,
2950 dm_dblock_t dblock, bool discard)
2951{
2952 struct discard_load_info *li = context;
2953
2954 li->block_size = discard_block_size;
2955
2956 if (discard) {
2957 if (from_dblock(dblock) == li->discard_end)
2958 /*
2959 * We're already in a discard range, just extend it.
2960 */
2961 li->discard_end = li->discard_end + 1ULL;
2962
2963 else {
2964 /*
2965 * Emit the old range and start a new one.
2966 */
2967 set_discard_range(li);
2968 li->discard_begin = from_dblock(dblock);
2969 li->discard_end = li->discard_begin + 1ULL;
2970 }
2971 } else {
2972 set_discard_range(li);
2973 li->discard_begin = li->discard_end = 0;
2974 }
2975
2976 return 0;
2977}
2978
2979static dm_cblock_t get_cache_dev_size(struct cache *cache)
2980{
2981 sector_t size = get_dev_size(cache->cache_dev);
2982 (void) sector_div(size, cache->sectors_per_block);
2983 return to_cblock(size);
2984}
2985
2986static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2987{
2988 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2989 if (cache->sized) {
2990 DMERR("%s: unable to extend cache due to missing cache table reload",
2991 cache_device_name(cache));
2992 return false;
2993 }
2994 }
2995
2996 /*
2997 * We can't drop a dirty block when shrinking the cache.
2998 */
2999 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3000 new_size = to_cblock(from_cblock(new_size) + 1);
3001 if (is_dirty(cache, new_size)) {
3002 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3003 cache_device_name(cache),
3004 (unsigned long long) from_cblock(new_size));
3005 return false;
3006 }
3007 }
3008
3009 return true;
3010}
3011
3012static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3013{
3014 int r;
3015
3016 r = dm_cache_resize(cache->cmd, new_size);
3017 if (r) {
3018 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3019 metadata_operation_failed(cache, "dm_cache_resize", r);
3020 return r;
3021 }
3022
3023 set_cache_size(cache, new_size);
3024
3025 return 0;
3026}
3027
3028static int cache_preresume(struct dm_target *ti)
3029{
3030 int r = 0;
3031 struct cache *cache = ti->private;
3032 dm_cblock_t csize = get_cache_dev_size(cache);
3033
3034 /*
3035 * Check to see if the cache has resized.
3036 */
3037 if (!cache->sized) {
3038 r = resize_cache_dev(cache, csize);
3039 if (r)
3040 return r;
3041
3042 cache->sized = true;
3043
3044 } else if (csize != cache->cache_size) {
3045 if (!can_resize(cache, csize))
3046 return -EINVAL;
3047
3048 r = resize_cache_dev(cache, csize);
3049 if (r)
3050 return r;
3051 }
3052
3053 if (!cache->loaded_mappings) {
3054 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3055 load_mapping, cache);
3056 if (r) {
3057 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3058 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3059 return r;
3060 }
3061
3062 cache->loaded_mappings = true;
3063 }
3064
3065 if (!cache->loaded_discards) {
3066 struct discard_load_info li;
3067
3068 /*
3069 * The discard bitset could have been resized, or the
3070 * discard block size changed. To be safe we start by
3071 * setting every dblock to not discarded.
3072 */
3073 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3074
3075 discard_load_info_init(cache, &li);
3076 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3077 if (r) {
3078 DMERR("%s: could not load origin discards", cache_device_name(cache));
3079 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3080 return r;
3081 }
3082 set_discard_range(&li);
3083
3084 cache->loaded_discards = true;
3085 }
3086
3087 return r;
3088}
3089
3090static void cache_resume(struct dm_target *ti)
3091{
3092 struct cache *cache = ti->private;
3093
3094 cache->need_tick_bio = true;
3095 allow_background_work(cache);
3096 do_waker(&cache->waker.work);
3097}
3098
3099/*
3100 * Status format:
3101 *
3102 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3103 * <cache block size> <#used cache blocks>/<#total cache blocks>
3104 * <#read hits> <#read misses> <#write hits> <#write misses>
3105 * <#demotions> <#promotions> <#dirty>
3106 * <#features> <features>*
3107 * <#core args> <core args>
3108 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3109 */
3110static void cache_status(struct dm_target *ti, status_type_t type,
3111 unsigned status_flags, char *result, unsigned maxlen)
3112{
3113 int r = 0;
3114 unsigned i;
3115 ssize_t sz = 0;
3116 dm_block_t nr_free_blocks_metadata = 0;
3117 dm_block_t nr_blocks_metadata = 0;
3118 char buf[BDEVNAME_SIZE];
3119 struct cache *cache = ti->private;
3120 dm_cblock_t residency;
3121 bool needs_check;
3122
3123 switch (type) {
3124 case STATUSTYPE_INFO:
3125 if (get_cache_mode(cache) == CM_FAIL) {
3126 DMEMIT("Fail");
3127 break;
3128 }
3129
3130 /* Commit to ensure statistics aren't out-of-date */
3131 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3132 (void) commit(cache, false);
3133
3134 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3135 if (r) {
3136 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3137 cache_device_name(cache), r);
3138 goto err;
3139 }
3140
3141 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3142 if (r) {
3143 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3144 cache_device_name(cache), r);
3145 goto err;
3146 }
3147
3148 residency = policy_residency(cache->policy);
3149
3150 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3151 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3152 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3153 (unsigned long long)nr_blocks_metadata,
3154 (unsigned long long)cache->sectors_per_block,
3155 (unsigned long long) from_cblock(residency),
3156 (unsigned long long) from_cblock(cache->cache_size),
3157 (unsigned) atomic_read(&cache->stats.read_hit),
3158 (unsigned) atomic_read(&cache->stats.read_miss),
3159 (unsigned) atomic_read(&cache->stats.write_hit),
3160 (unsigned) atomic_read(&cache->stats.write_miss),
3161 (unsigned) atomic_read(&cache->stats.demotion),
3162 (unsigned) atomic_read(&cache->stats.promotion),
3163 (unsigned long) atomic_read(&cache->nr_dirty));
3164
3165 if (cache->features.metadata_version == 2)
3166 DMEMIT("2 metadata2 ");
3167 else
3168 DMEMIT("1 ");
3169
3170 if (writethrough_mode(cache))
3171 DMEMIT("writethrough ");
3172
3173 else if (passthrough_mode(cache))
3174 DMEMIT("passthrough ");
3175
3176 else if (writeback_mode(cache))
3177 DMEMIT("writeback ");
3178
3179 else {
3180 DMERR("%s: internal error: unknown io mode: %d",
3181 cache_device_name(cache), (int) cache->features.io_mode);
3182 goto err;
3183 }
3184
3185 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3186
3187 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3188 if (sz < maxlen) {
3189 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3190 if (r)
3191 DMERR("%s: policy_emit_config_values returned %d",
3192 cache_device_name(cache), r);
3193 }
3194
3195 if (get_cache_mode(cache) == CM_READ_ONLY)
3196 DMEMIT("ro ");
3197 else
3198 DMEMIT("rw ");
3199
3200 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3201
3202 if (r || needs_check)
3203 DMEMIT("needs_check ");
3204 else
3205 DMEMIT("- ");
3206
3207 break;
3208
3209 case STATUSTYPE_TABLE:
3210 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3211 DMEMIT("%s ", buf);
3212 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3213 DMEMIT("%s ", buf);
3214 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3215 DMEMIT("%s", buf);
3216
3217 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3218 DMEMIT(" %s", cache->ctr_args[i]);
3219 if (cache->nr_ctr_args)
3220 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3221 }
3222
3223 return;
3224
3225err:
3226 DMEMIT("Error");
3227}
3228
3229/*
3230 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3231 * the one-past-the-end value.
3232 */
3233struct cblock_range {
3234 dm_cblock_t begin;
3235 dm_cblock_t end;
3236};
3237
3238/*
3239 * A cache block range can take two forms:
3240 *
3241 * i) A single cblock, eg. '3456'
3242 * ii) A begin and end cblock with a dash between, eg. 123-234
3243 */
3244static int parse_cblock_range(struct cache *cache, const char *str,
3245 struct cblock_range *result)
3246{
3247 char dummy;
3248 uint64_t b, e;
3249 int r;
3250
3251 /*
3252 * Try and parse form (ii) first.
3253 */
3254 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3255 if (r < 0)
3256 return r;
3257
3258 if (r == 2) {
3259 result->begin = to_cblock(b);
3260 result->end = to_cblock(e);
3261 return 0;
3262 }
3263
3264 /*
3265 * That didn't work, try form (i).
3266 */
3267 r = sscanf(str, "%llu%c", &b, &dummy);
3268 if (r < 0)
3269 return r;
3270
3271 if (r == 1) {
3272 result->begin = to_cblock(b);
3273 result->end = to_cblock(from_cblock(result->begin) + 1u);
3274 return 0;
3275 }
3276
3277 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3278 return -EINVAL;
3279}
3280
3281static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3282{
3283 uint64_t b = from_cblock(range->begin);
3284 uint64_t e = from_cblock(range->end);
3285 uint64_t n = from_cblock(cache->cache_size);
3286
3287 if (b >= n) {
3288 DMERR("%s: begin cblock out of range: %llu >= %llu",
3289 cache_device_name(cache), b, n);
3290 return -EINVAL;
3291 }
3292
3293 if (e > n) {
3294 DMERR("%s: end cblock out of range: %llu > %llu",
3295 cache_device_name(cache), e, n);
3296 return -EINVAL;
3297 }
3298
3299 if (b >= e) {
3300 DMERR("%s: invalid cblock range: %llu >= %llu",
3301 cache_device_name(cache), b, e);
3302 return -EINVAL;
3303 }
3304
3305 return 0;
3306}
3307
3308static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3309{
3310 return to_cblock(from_cblock(b) + 1);
3311}
3312
3313static int request_invalidation(struct cache *cache, struct cblock_range *range)
3314{
3315 int r = 0;
3316
3317 /*
3318 * We don't need to do any locking here because we know we're in
3319 * passthrough mode. There's is potential for a race between an
3320 * invalidation triggered by an io and an invalidation message. This
3321 * is harmless, we must not worry if the policy call fails.
3322 */
3323 while (range->begin != range->end) {
3324 r = invalidate_cblock(cache, range->begin);
3325 if (r)
3326 return r;
3327
3328 range->begin = cblock_succ(range->begin);
3329 }
3330
3331 cache->commit_requested = true;
3332 return r;
3333}
3334
3335static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3336 const char **cblock_ranges)
3337{
3338 int r = 0;
3339 unsigned i;
3340 struct cblock_range range;
3341
3342 if (!passthrough_mode(cache)) {
3343 DMERR("%s: cache has to be in passthrough mode for invalidation",
3344 cache_device_name(cache));
3345 return -EPERM;
3346 }
3347
3348 for (i = 0; i < count; i++) {
3349 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3350 if (r)
3351 break;
3352
3353 r = validate_cblock_range(cache, &range);
3354 if (r)
3355 break;
3356
3357 /*
3358 * Pass begin and end origin blocks to the worker and wake it.
3359 */
3360 r = request_invalidation(cache, &range);
3361 if (r)
3362 break;
3363 }
3364
3365 return r;
3366}
3367
3368/*
3369 * Supports
3370 * "<key> <value>"
3371 * and
3372 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3373 *
3374 * The key migration_threshold is supported by the cache target core.
3375 */
3376static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3377 char *result, unsigned maxlen)
3378{
3379 struct cache *cache = ti->private;
3380
3381 if (!argc)
3382 return -EINVAL;
3383
3384 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3385 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3386 cache_device_name(cache));
3387 return -EOPNOTSUPP;
3388 }
3389
3390 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3391 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3392
3393 if (argc != 2)
3394 return -EINVAL;
3395
3396 return set_config_value(cache, argv[0], argv[1]);
3397}
3398
3399static int cache_iterate_devices(struct dm_target *ti,
3400 iterate_devices_callout_fn fn, void *data)
3401{
3402 int r = 0;
3403 struct cache *cache = ti->private;
3404
3405 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3406 if (!r)
3407 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3408
3409 return r;
3410}
3411
3412static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3413{
3414 /*
3415 * FIXME: these limits may be incompatible with the cache device
3416 */
3417 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3418 cache->origin_sectors);
3419 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3420}
3421
3422static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3423{
3424 struct cache *cache = ti->private;
3425 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3426
3427 /*
3428 * If the system-determined stacked limits are compatible with the
3429 * cache's blocksize (io_opt is a factor) do not override them.
3430 */
3431 if (io_opt_sectors < cache->sectors_per_block ||
3432 do_div(io_opt_sectors, cache->sectors_per_block)) {
3433 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3434 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3435 }
3436 set_discard_limits(cache, limits);
3437}
3438
3439/*----------------------------------------------------------------*/
3440
3441static struct target_type cache_target = {
3442 .name = "cache",
3443 .version = {2, 0, 0},
3444 .module = THIS_MODULE,
3445 .ctr = cache_ctr,
3446 .dtr = cache_dtr,
3447 .map = cache_map,
3448 .end_io = cache_end_io,
3449 .postsuspend = cache_postsuspend,
3450 .preresume = cache_preresume,
3451 .resume = cache_resume,
3452 .status = cache_status,
3453 .message = cache_message,
3454 .iterate_devices = cache_iterate_devices,
3455 .io_hints = cache_io_hints,
3456};
3457
3458static int __init dm_cache_init(void)
3459{
3460 int r;
3461
3462 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3463 if (!migration_cache)
3464 return -ENOMEM;
3465
3466 r = dm_register_target(&cache_target);
3467 if (r) {
3468 DMERR("cache target registration failed: %d", r);
3469 kmem_cache_destroy(migration_cache);
3470 return r;
3471 }
3472
3473 return 0;
3474}
3475
3476static void __exit dm_cache_exit(void)
3477{
3478 dm_unregister_target(&cache_target);
3479 kmem_cache_destroy(migration_cache);
3480}
3481
3482module_init(dm_cache_init);
3483module_exit(dm_cache_exit);
3484
3485MODULE_DESCRIPTION(DM_NAME " cache target");
3486MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3487MODULE_LICENSE("GPL");