blob: 75ef8722e15caf53689692df296db074d70db3ae [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001#include <linux/export.h>
2#include <linux/kref.h>
3#include <linux/list.h>
4#include <linux/mutex.h>
5#include <linux/phylink.h>
6#include <linux/property.h>
7#include <linux/rtnetlink.h>
8#include <linux/slab.h>
9
10#include "sfp.h"
11
12struct sfp_quirk {
13 const char *vendor;
14 const char *part;
15 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
16};
17
18/**
19 * struct sfp_bus - internal representation of a sfp bus
20 */
21struct sfp_bus {
22 /* private: */
23 struct kref kref;
24 struct list_head node;
25 struct fwnode_handle *fwnode;
26
27 const struct sfp_socket_ops *socket_ops;
28 struct device *sfp_dev;
29 struct sfp *sfp;
30 const struct sfp_quirk *sfp_quirk;
31
32 const struct sfp_upstream_ops *upstream_ops;
33 void *upstream;
34 struct phy_device *phydev;
35
36 bool registered;
37 bool started;
38};
39
40static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
41 unsigned long *modes)
42{
43 phylink_set(modes, 2500baseX_Full);
44}
45
46static const struct sfp_quirk sfp_quirks[] = {
47 {
48 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
49 // incorrectly report 2500MBd NRZ in their EEPROM
50 .vendor = "ALCATELLUCENT",
51 .part = "G010SP",
52 .modes = sfp_quirk_2500basex,
53 }, {
54 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
55 // report 3.2GBd NRZ in their EEPROM
56 .vendor = "ALCATELLUCENT",
57 .part = "3FE46541AA",
58 .modes = sfp_quirk_2500basex,
59 }, {
60 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
61 // NRZ in their EEPROM
62 .vendor = "HUAWEI",
63 .part = "MA5671A",
64 .modes = sfp_quirk_2500basex,
65 },
66};
67
68static size_t sfp_strlen(const char *str, size_t maxlen)
69{
70 size_t size, i;
71
72 /* Trailing characters should be filled with space chars */
73 for (i = 0, size = 0; i < maxlen; i++)
74 if (str[i] != ' ')
75 size = i + 1;
76
77 return size;
78}
79
80static bool sfp_match(const char *qs, const char *str, size_t len)
81{
82 if (!qs)
83 return true;
84 if (strlen(qs) != len)
85 return false;
86 return !strncmp(qs, str, len);
87}
88
89static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
90{
91 const struct sfp_quirk *q;
92 unsigned int i;
93 size_t vs, ps;
94
95 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
96 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
97
98 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
99 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
100 sfp_match(q->part, id->base.vendor_pn, ps))
101 return q;
102
103 return NULL;
104}
105
106/**
107 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
108 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
109 * @id: a pointer to the module's &struct sfp_eeprom_id
110 * @support: optional pointer to an array of unsigned long for the
111 * ethtool support mask
112 *
113 * Parse the EEPROM identification given in @id, and return one of
114 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
115 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
116 * the connector type.
117 *
118 * If the port type is not known, returns %PORT_OTHER.
119 */
120int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
121 unsigned long *support)
122{
123 int port;
124
125 /* port is the physical connector, set this from the connector field. */
126 switch (id->base.connector) {
127 case SFF8024_CONNECTOR_SC:
128 case SFF8024_CONNECTOR_FIBERJACK:
129 case SFF8024_CONNECTOR_LC:
130 case SFF8024_CONNECTOR_MT_RJ:
131 case SFF8024_CONNECTOR_MU:
132 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
133 case SFF8024_CONNECTOR_MPO_1X12:
134 case SFF8024_CONNECTOR_MPO_2X16:
135 port = PORT_FIBRE;
136 break;
137
138 case SFF8024_CONNECTOR_RJ45:
139 port = PORT_TP;
140 break;
141
142 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
143 port = PORT_DA;
144 break;
145
146 case SFF8024_CONNECTOR_UNSPEC:
147 if (id->base.e1000_base_t) {
148 port = PORT_TP;
149 break;
150 }
151 /* fallthrough */
152 case SFF8024_CONNECTOR_SG: /* guess */
153 case SFF8024_CONNECTOR_HSSDC_II:
154 case SFF8024_CONNECTOR_NOSEPARATE:
155 case SFF8024_CONNECTOR_MXC_2X16:
156 port = PORT_OTHER;
157 break;
158 default:
159 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
160 id->base.connector);
161 port = PORT_OTHER;
162 break;
163 }
164
165 if (support) {
166 switch (port) {
167 case PORT_FIBRE:
168 phylink_set(support, FIBRE);
169 break;
170
171 case PORT_TP:
172 phylink_set(support, TP);
173 break;
174 }
175 }
176
177 return port;
178}
179EXPORT_SYMBOL_GPL(sfp_parse_port);
180
181/**
182 * sfp_may_have_phy() - indicate whether the module may have a PHY
183 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
184 * @id: a pointer to the module's &struct sfp_eeprom_id
185 *
186 * Parse the EEPROM identification given in @id, and return whether
187 * this module may have a PHY.
188 */
189bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
190{
191 if (id->base.e1000_base_t)
192 return true;
193
194 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
195 switch (id->base.extended_cc) {
196 case SFF8024_ECC_10GBASE_T_SFI:
197 case SFF8024_ECC_10GBASE_T_SR:
198 case SFF8024_ECC_5GBASE_T:
199 case SFF8024_ECC_2_5GBASE_T:
200 return true;
201 }
202 }
203
204 return false;
205}
206EXPORT_SYMBOL_GPL(sfp_may_have_phy);
207
208/**
209 * sfp_parse_support() - Parse the eeprom id for supported link modes
210 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
211 * @id: a pointer to the module's &struct sfp_eeprom_id
212 * @support: pointer to an array of unsigned long for the ethtool support mask
213 *
214 * Parse the EEPROM identification information and derive the supported
215 * ethtool link modes for the module.
216 */
217void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
218 unsigned long *support)
219{
220 unsigned int br_min, br_nom, br_max;
221 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
222
223 /* Decode the bitrate information to MBd */
224 br_min = br_nom = br_max = 0;
225 if (id->base.br_nominal) {
226 if (id->base.br_nominal != 255) {
227 br_nom = id->base.br_nominal * 100;
228 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
229 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
230 } else if (id->ext.br_max) {
231 br_nom = 250 * id->ext.br_max;
232 br_max = br_nom + br_nom * id->ext.br_min / 100;
233 br_min = br_nom - br_nom * id->ext.br_min / 100;
234 }
235
236 /* When using passive cables, in case neither BR,min nor BR,max
237 * are specified, set br_min to 0 as the nominal value is then
238 * used as the maximum.
239 */
240 if (br_min == br_max && id->base.sfp_ct_passive)
241 br_min = 0;
242 }
243
244 /* Set ethtool support from the compliance fields. */
245 if (id->base.e10g_base_sr)
246 phylink_set(modes, 10000baseSR_Full);
247 if (id->base.e10g_base_lr)
248 phylink_set(modes, 10000baseLR_Full);
249 if (id->base.e10g_base_lrm)
250 phylink_set(modes, 10000baseLRM_Full);
251 if (id->base.e10g_base_er)
252 phylink_set(modes, 10000baseER_Full);
253 if (id->base.e1000_base_sx ||
254 id->base.e1000_base_lx ||
255 id->base.e1000_base_cx)
256 phylink_set(modes, 1000baseX_Full);
257 if (id->base.e1000_base_t) {
258 phylink_set(modes, 1000baseT_Half);
259 phylink_set(modes, 1000baseT_Full);
260 }
261
262 /* 1000Base-PX or 1000Base-BX10 */
263 if ((id->base.e_base_px || id->base.e_base_bx10) &&
264 br_min <= 1300 && br_max >= 1200)
265 phylink_set(modes, 1000baseX_Full);
266
267 /* For active or passive cables, select the link modes
268 * based on the bit rates and the cable compliance bytes.
269 */
270 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
271 /* This may look odd, but some manufacturers use 12000MBd */
272 if (br_min <= 12000 && br_max >= 10300)
273 phylink_set(modes, 10000baseCR_Full);
274 if (br_min <= 3200 && br_max >= 3100)
275 phylink_set(modes, 2500baseX_Full);
276 if (br_min <= 1300 && br_max >= 1200)
277 phylink_set(modes, 1000baseX_Full);
278 }
279 if (id->base.sfp_ct_passive) {
280 if (id->base.passive.sff8431_app_e)
281 phylink_set(modes, 10000baseCR_Full);
282 }
283 if (id->base.sfp_ct_active) {
284 if (id->base.active.sff8431_app_e ||
285 id->base.active.sff8431_lim) {
286 phylink_set(modes, 10000baseCR_Full);
287 }
288 }
289
290 switch (id->base.extended_cc) {
291 case SFF8024_ECC_UNSPEC:
292 break;
293 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
294 phylink_set(modes, 100000baseSR4_Full);
295 phylink_set(modes, 25000baseSR_Full);
296 break;
297 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
298 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
299 phylink_set(modes, 100000baseLR4_ER4_Full);
300 break;
301 case SFF8024_ECC_100GBASE_CR4:
302 phylink_set(modes, 100000baseCR4_Full);
303 /* fallthrough */
304 case SFF8024_ECC_25GBASE_CR_S:
305 case SFF8024_ECC_25GBASE_CR_N:
306 phylink_set(modes, 25000baseCR_Full);
307 break;
308 case SFF8024_ECC_10GBASE_T_SFI:
309 case SFF8024_ECC_10GBASE_T_SR:
310 phylink_set(modes, 10000baseT_Full);
311 break;
312 case SFF8024_ECC_5GBASE_T:
313 phylink_set(modes, 5000baseT_Full);
314 break;
315 case SFF8024_ECC_2_5GBASE_T:
316 phylink_set(modes, 2500baseT_Full);
317 break;
318 default:
319 dev_warn(bus->sfp_dev,
320 "Unknown/unsupported extended compliance code: 0x%02x\n",
321 id->base.extended_cc);
322 break;
323 }
324
325 /* For fibre channel SFP, derive possible BaseX modes */
326 if (id->base.fc_speed_100 ||
327 id->base.fc_speed_200 ||
328 id->base.fc_speed_400) {
329 if (id->base.br_nominal >= 31)
330 phylink_set(modes, 2500baseX_Full);
331 if (id->base.br_nominal >= 12)
332 phylink_set(modes, 1000baseX_Full);
333 }
334
335 /* If we haven't discovered any modes that this module supports, try
336 * the encoding and bitrate to determine supported modes. Some BiDi
337 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
338 * the differing wavelengths, so do not set any transceiver bits.
339 */
340 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
341 /* If the encoding and bit rate allows 1000baseX */
342 if (id->base.encoding == SFF8024_ENCODING_8B10B && br_nom &&
343 br_min <= 1300 && br_max >= 1200)
344 phylink_set(modes, 1000baseX_Full);
345 }
346
347 if (bus->sfp_quirk)
348 bus->sfp_quirk->modes(id, modes);
349
350 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
351
352 phylink_set(support, Autoneg);
353 phylink_set(support, Pause);
354 phylink_set(support, Asym_Pause);
355}
356EXPORT_SYMBOL_GPL(sfp_parse_support);
357
358/**
359 * sfp_select_interface() - Select appropriate phy_interface_t mode
360 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
361 * @link_modes: ethtool link modes mask
362 *
363 * Derive the phy_interface_t mode for the SFP module from the link
364 * modes mask.
365 */
366phy_interface_t sfp_select_interface(struct sfp_bus *bus,
367 unsigned long *link_modes)
368{
369 if (phylink_test(link_modes, 10000baseCR_Full) ||
370 phylink_test(link_modes, 10000baseSR_Full) ||
371 phylink_test(link_modes, 10000baseLR_Full) ||
372 phylink_test(link_modes, 10000baseLRM_Full) ||
373 phylink_test(link_modes, 10000baseER_Full) ||
374 phylink_test(link_modes, 10000baseT_Full))
375 return PHY_INTERFACE_MODE_10GKR;
376
377 if (phylink_test(link_modes, 2500baseX_Full))
378 return PHY_INTERFACE_MODE_2500BASEX;
379
380 if (phylink_test(link_modes, 1000baseT_Half) ||
381 phylink_test(link_modes, 1000baseT_Full))
382 return PHY_INTERFACE_MODE_SGMII;
383
384 if (phylink_test(link_modes, 1000baseX_Full))
385 return PHY_INTERFACE_MODE_1000BASEX;
386
387 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
388
389 return PHY_INTERFACE_MODE_NA;
390}
391EXPORT_SYMBOL_GPL(sfp_select_interface);
392
393static LIST_HEAD(sfp_buses);
394static DEFINE_MUTEX(sfp_mutex);
395
396static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
397{
398 return bus->registered ? bus->upstream_ops : NULL;
399}
400
401static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
402{
403 struct sfp_bus *sfp, *new, *found = NULL;
404
405 new = kzalloc(sizeof(*new), GFP_KERNEL);
406
407 mutex_lock(&sfp_mutex);
408
409 list_for_each_entry(sfp, &sfp_buses, node) {
410 if (sfp->fwnode == fwnode) {
411 kref_get(&sfp->kref);
412 found = sfp;
413 break;
414 }
415 }
416
417 if (!found && new) {
418 kref_init(&new->kref);
419 new->fwnode = fwnode;
420 list_add(&new->node, &sfp_buses);
421 found = new;
422 new = NULL;
423 }
424
425 mutex_unlock(&sfp_mutex);
426
427 kfree(new);
428
429 return found;
430}
431
432static void sfp_bus_release(struct kref *kref)
433{
434 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
435
436 list_del(&bus->node);
437 mutex_unlock(&sfp_mutex);
438 kfree(bus);
439}
440
441/**
442 * sfp_bus_put() - put a reference on the &struct sfp_bus
443 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
444 *
445 * Put a reference on the &struct sfp_bus and free the underlying structure
446 * if this was the last reference.
447 */
448void sfp_bus_put(struct sfp_bus *bus)
449{
450 if (bus)
451 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
452}
453EXPORT_SYMBOL_GPL(sfp_bus_put);
454
455static int sfp_register_bus(struct sfp_bus *bus)
456{
457 const struct sfp_upstream_ops *ops = bus->upstream_ops;
458 int ret;
459
460 if (ops) {
461 if (ops->link_down)
462 ops->link_down(bus->upstream);
463 if (ops->connect_phy && bus->phydev) {
464 ret = ops->connect_phy(bus->upstream, bus->phydev);
465 if (ret)
466 return ret;
467 }
468 }
469 bus->registered = true;
470 bus->socket_ops->attach(bus->sfp);
471 if (bus->started)
472 bus->socket_ops->start(bus->sfp);
473 bus->upstream_ops->attach(bus->upstream, bus);
474 return 0;
475}
476
477static void sfp_unregister_bus(struct sfp_bus *bus)
478{
479 const struct sfp_upstream_ops *ops = bus->upstream_ops;
480
481 if (bus->registered) {
482 bus->upstream_ops->detach(bus->upstream, bus);
483 if (bus->started)
484 bus->socket_ops->stop(bus->sfp);
485 bus->socket_ops->detach(bus->sfp);
486 if (bus->phydev && ops && ops->disconnect_phy)
487 ops->disconnect_phy(bus->upstream);
488 }
489 bus->registered = false;
490}
491
492/**
493 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
494 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
495 * @modinfo: a &struct ethtool_modinfo
496 *
497 * Fill in the type and eeprom_len parameters in @modinfo for a module on
498 * the sfp bus specified by @bus.
499 *
500 * Returns 0 on success or a negative errno number.
501 */
502int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
503{
504 return bus->socket_ops->module_info(bus->sfp, modinfo);
505}
506EXPORT_SYMBOL_GPL(sfp_get_module_info);
507
508/**
509 * sfp_get_module_eeprom() - Read the SFP module EEPROM
510 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
511 * @ee: a &struct ethtool_eeprom
512 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
513 *
514 * Read the EEPROM as specified by the supplied @ee. See the documentation
515 * for &struct ethtool_eeprom for the region to be read.
516 *
517 * Returns 0 on success or a negative errno number.
518 */
519int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
520 u8 *data)
521{
522 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
523}
524EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
525
526/**
527 * sfp_upstream_start() - Inform the SFP that the network device is up
528 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
529 *
530 * Inform the SFP socket that the network device is now up, so that the
531 * module can be enabled by allowing TX_DISABLE to be deasserted. This
532 * should be called from the network device driver's &struct net_device_ops
533 * ndo_open() method.
534 */
535void sfp_upstream_start(struct sfp_bus *bus)
536{
537 if (bus->registered)
538 bus->socket_ops->start(bus->sfp);
539 bus->started = true;
540}
541EXPORT_SYMBOL_GPL(sfp_upstream_start);
542
543/**
544 * sfp_upstream_stop() - Inform the SFP that the network device is down
545 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
546 *
547 * Inform the SFP socket that the network device is now up, so that the
548 * module can be disabled by asserting TX_DISABLE, disabling the laser
549 * in optical modules. This should be called from the network device
550 * driver's &struct net_device_ops ndo_stop() method.
551 */
552void sfp_upstream_stop(struct sfp_bus *bus)
553{
554 if (bus->registered)
555 bus->socket_ops->stop(bus->sfp);
556 bus->started = false;
557}
558EXPORT_SYMBOL_GPL(sfp_upstream_stop);
559
560static void sfp_upstream_clear(struct sfp_bus *bus)
561{
562 bus->upstream_ops = NULL;
563 bus->upstream = NULL;
564}
565
566/**
567 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
568 * @fwnode: firmware node for the parent device (MAC or PHY)
569 *
570 * Parse the parent device's firmware node for a SFP bus, and locate
571 * the sfp_bus structure, incrementing its reference count. This must
572 * be put via sfp_bus_put() when done.
573 *
574 * Returns: on success, a pointer to the sfp_bus structure,
575 * %NULL if no SFP is specified,
576 * on failure, an error pointer value:
577 * corresponding to the errors detailed for
578 * fwnode_property_get_reference_args().
579 * %-ENOMEM if we failed to allocate the bus.
580 * an error from the upstream's connect_phy() method.
581 */
582struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
583{
584 struct fwnode_reference_args ref;
585 struct sfp_bus *bus;
586 int ret;
587
588 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
589 0, 0, &ref);
590 if (ret == -ENOENT)
591 return NULL;
592 else if (ret < 0)
593 return ERR_PTR(ret);
594
595 bus = sfp_bus_get(ref.fwnode);
596 fwnode_handle_put(ref.fwnode);
597 if (!bus)
598 return ERR_PTR(-ENOMEM);
599
600 return bus;
601}
602EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
603
604/**
605 * sfp_bus_add_upstream() - parse and register the neighbouring device
606 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
607 * @upstream: the upstream private data
608 * @ops: the upstream's &struct sfp_upstream_ops
609 *
610 * Add upstream driver for the SFP bus, and if the bus is complete, register
611 * the SFP bus using sfp_register_upstream(). This takes a reference on the
612 * bus, so it is safe to put the bus after this call.
613 *
614 * Returns: on success, a pointer to the sfp_bus structure,
615 * %NULL if no SFP is specified,
616 * on failure, an error pointer value:
617 * corresponding to the errors detailed for
618 * fwnode_property_get_reference_args().
619 * %-ENOMEM if we failed to allocate the bus.
620 * an error from the upstream's connect_phy() method.
621 */
622int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
623 const struct sfp_upstream_ops *ops)
624{
625 int ret;
626
627 /* If no bus, return success */
628 if (!bus)
629 return 0;
630
631 rtnl_lock();
632 kref_get(&bus->kref);
633 bus->upstream_ops = ops;
634 bus->upstream = upstream;
635
636 if (bus->sfp) {
637 ret = sfp_register_bus(bus);
638 if (ret)
639 sfp_upstream_clear(bus);
640 } else {
641 ret = 0;
642 }
643 rtnl_unlock();
644
645 if (ret)
646 sfp_bus_put(bus);
647
648 return ret;
649}
650EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
651
652/**
653 * sfp_bus_del_upstream() - Delete a sfp bus
654 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
655 *
656 * Delete a previously registered upstream connection for the SFP
657 * module. @bus should have been added by sfp_bus_add_upstream().
658 */
659void sfp_bus_del_upstream(struct sfp_bus *bus)
660{
661 if (bus) {
662 rtnl_lock();
663 if (bus->sfp)
664 sfp_unregister_bus(bus);
665 sfp_upstream_clear(bus);
666 rtnl_unlock();
667
668 sfp_bus_put(bus);
669 }
670}
671EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
672
673/* Socket driver entry points */
674int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
675{
676 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
677 int ret = 0;
678
679 if (ops && ops->connect_phy)
680 ret = ops->connect_phy(bus->upstream, phydev);
681
682 if (ret == 0)
683 bus->phydev = phydev;
684
685 return ret;
686}
687EXPORT_SYMBOL_GPL(sfp_add_phy);
688
689void sfp_remove_phy(struct sfp_bus *bus)
690{
691 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
692
693 if (ops && ops->disconnect_phy)
694 ops->disconnect_phy(bus->upstream);
695 bus->phydev = NULL;
696}
697EXPORT_SYMBOL_GPL(sfp_remove_phy);
698
699void sfp_link_up(struct sfp_bus *bus)
700{
701 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
702
703 if (ops && ops->link_up)
704 ops->link_up(bus->upstream);
705}
706EXPORT_SYMBOL_GPL(sfp_link_up);
707
708void sfp_link_down(struct sfp_bus *bus)
709{
710 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
711
712 if (ops && ops->link_down)
713 ops->link_down(bus->upstream);
714}
715EXPORT_SYMBOL_GPL(sfp_link_down);
716
717int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
718{
719 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
720 int ret = 0;
721
722 bus->sfp_quirk = sfp_lookup_quirk(id);
723
724 if (ops && ops->module_insert)
725 ret = ops->module_insert(bus->upstream, id);
726
727 return ret;
728}
729EXPORT_SYMBOL_GPL(sfp_module_insert);
730
731void sfp_module_remove(struct sfp_bus *bus)
732{
733 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
734
735 if (ops && ops->module_remove)
736 ops->module_remove(bus->upstream);
737
738 bus->sfp_quirk = NULL;
739}
740EXPORT_SYMBOL_GPL(sfp_module_remove);
741
742int sfp_module_start(struct sfp_bus *bus)
743{
744 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
745 int ret = 0;
746
747 if (ops && ops->module_start)
748 ret = ops->module_start(bus->upstream);
749
750 return ret;
751}
752EXPORT_SYMBOL_GPL(sfp_module_start);
753
754void sfp_module_stop(struct sfp_bus *bus)
755{
756 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
757
758 if (ops && ops->module_stop)
759 ops->module_stop(bus->upstream);
760}
761EXPORT_SYMBOL_GPL(sfp_module_stop);
762
763static void sfp_socket_clear(struct sfp_bus *bus)
764{
765 bus->sfp_dev = NULL;
766 bus->sfp = NULL;
767 bus->socket_ops = NULL;
768}
769
770struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
771 const struct sfp_socket_ops *ops)
772{
773 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
774 int ret = 0;
775
776 if (bus) {
777 rtnl_lock();
778 bus->sfp_dev = dev;
779 bus->sfp = sfp;
780 bus->socket_ops = ops;
781
782 if (bus->upstream_ops) {
783 ret = sfp_register_bus(bus);
784 if (ret)
785 sfp_socket_clear(bus);
786 }
787 rtnl_unlock();
788 }
789
790 if (ret) {
791 sfp_bus_put(bus);
792 bus = NULL;
793 }
794
795 return bus;
796}
797EXPORT_SYMBOL_GPL(sfp_register_socket);
798
799void sfp_unregister_socket(struct sfp_bus *bus)
800{
801 rtnl_lock();
802 if (bus->upstream_ops)
803 sfp_unregister_bus(bus);
804 sfp_socket_clear(bus);
805 rtnl_unlock();
806
807 sfp_bus_put(bus);
808}
809EXPORT_SYMBOL_GPL(sfp_unregister_socket);