blob: 47ca1ebda056d4af270f9790f73ed01596c827a5 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "tree-log.h"
20#include "disk-io.h"
21#include "print-tree.h"
22#include "volumes.h"
23#include "raid56.h"
24#include "locking.h"
25#include "free-space-cache.h"
26#include "free-space-tree.h"
27#include "math.h"
28#include "sysfs.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31
32#undef SCRAMBLE_DELAYED_REFS
33
34/*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52};
53
54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85static noinline int
86block_group_cache_done(struct btrfs_block_group_cache *cache)
87{
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91}
92
93static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94{
95 return (cache->flags & bits) == bits;
96}
97
98void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99{
100 atomic_inc(&cache->count);
101}
102
103void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104{
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121}
122
123/*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
127static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129{
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161}
162
163/*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167static struct btrfs_block_group_cache *
168block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170{
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207}
208
209static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211{
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218}
219
220static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221{
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232}
233
234static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235{
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289}
290
291static struct btrfs_caching_control *
292get_caching_control(struct btrfs_block_group_cache *cache)
293{
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306}
307
308static void put_caching_control(struct btrfs_caching_control *ctl)
309{
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312}
313
314#ifdef CONFIG_BTRFS_DEBUG
315static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316{
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332}
333#endif
334
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342{
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377}
378
379static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380{
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399#ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407#endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511out:
512 btrfs_free_path(path);
513 return ret;
514}
515
516static noinline void caching_thread(struct btrfs_work *work)
517{
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540#ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553#endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565}
566
567static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569{
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646#ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660#endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701}
702
703/*
704 * return the block group that starts at or after bytenr
705 */
706static struct btrfs_block_group_cache *
707btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708{
709 return block_group_cache_tree_search(info, bytenr, 0);
710}
711
712/*
713 * return the block group that contains the given bytenr
714 */
715struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718{
719 return block_group_cache_tree_search(info, bytenr, 1);
720}
721
722static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724{
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739}
740
741static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743{
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760}
761
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
777/* simple helper to search for an existing data extent at a given offset */
778int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779{
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794}
795
796/*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808{
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927out_free:
928 btrfs_free_path(path);
929 return ret;
930}
931
932/*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038/*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046{
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 return type;
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094}
1095
1096static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097{
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110}
1111
1112static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114{
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118}
1119
1120static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123{
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129}
1130
1131static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136{
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1141 u32 nritems;
1142 int ret;
1143 int recow;
1144 int err = -ENOENT;
1145
1146 key.objectid = bytenr;
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
1162
1163 if (parent) {
1164 if (!ret)
1165 return 0;
1166 goto fail;
1167 }
1168
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
1195 btrfs_release_path(path);
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
1202 }
1203fail:
1204 return err;
1205}
1206
1207static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1212{
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1216 u32 size;
1217 u32 num_refs;
1218 int ret;
1219
1220 key.objectid = bytenr;
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
1231
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 }
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
1256 btrfs_release_path(path);
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
1262
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 }
1278 }
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281fail:
1282 btrfs_release_path(path);
1283 return ret;
1284}
1285
1286static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1289{
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1294 u32 num_refs = 0;
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
1312 } else {
1313 BUG();
1314 }
1315
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1318
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 *last_ref = 1;
1322 } else {
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
1329 return ret;
1330}
1331
1332static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1334{
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
1340 int type;
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 if (iref) {
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372}
1373
1374static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1378{
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1381 int ret;
1382
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1390 }
1391
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
1395 return ret;
1396}
1397
1398static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
1402{
1403 struct btrfs_key key;
1404 int ret;
1405
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 path, &key, 0);
1417 btrfs_release_path(path);
1418 return ret;
1419}
1420
1421static inline int extent_ref_type(u64 parent, u64 owner)
1422{
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
1436}
1437
1438static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1440
1441{
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1444 break;
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457}
1458
1459/*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472static noinline_for_stack
1473int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479{
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 int needed;
1497
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1501
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1506 } else
1507 extra_size = -1;
1508
1509 /*
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518again:
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 if (ret < 0) {
1521 err = ret;
1522 goto out;
1523 }
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
1552 } else if (WARN_ON(ret)) {
1553 err = -EIO;
1554 goto out;
1555 }
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
1565
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
1575 }
1576
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1591 err = -EUCLEAN;
1592 goto out;
1593 }
1594
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654out:
1655 if (insert) {
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660}
1661
1662/*
1663 * helper to add new inline back ref
1664 */
1665static noinline_for_stack
1666void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1672{
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
1689 btrfs_extend_item(fs_info, path, size);
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
1724}
1725
1726static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731{
1732 int ret;
1733
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
1737 if (ret != -ENOENT)
1738 return ret;
1739
1740 btrfs_release_path(path);
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
1746 } else {
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1749 }
1750 return ret;
1751}
1752
1753/*
1754 * helper to update/remove inline back ref
1755 */
1756static noinline_for_stack
1757void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
1762{
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
1773 u64 refs;
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 *last_ref = 1;
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831{
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849}
1850
1851static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855{
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
1861 } else {
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
1865 }
1866 return ret;
1867}
1868
1869static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1873{
1874 int ret = 0;
1875
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 last_ref);
1883 } else {
1884 *last_ref = 1;
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 }
1887 return ret;
1888}
1889
1890#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1891static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1893{
1894 int j, ret = 0;
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1897
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
1903
1904 *discarded_bytes = 0;
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += bytes_left;
1959 }
1960 return ret;
1961}
1962
1963int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1965{
1966 int ret;
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1969
1970
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
1979 /* Error condition is -ENOMEM */
1980 if (!ret) {
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 int i;
1983
1984
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 u64 bytes;
1987 struct request_queue *req_q;
1988
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1995 continue;
1996
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
1999 stripe->length,
2000 &bytes);
2001 if (!ret)
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
2012 }
2013 btrfs_put_bbio(bbio);
2014 }
2015 btrfs_bio_counter_dec(fs_info);
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
2020
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
2023 return ret;
2024}
2025
2026/* Can return -ENOMEM */
2027int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2031{
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2034 int ret;
2035
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2048 } else {
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2054 }
2055
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
2061
2062 return ret;
2063}
2064
2065/*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104{
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 goto out;
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
2139
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2142
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2148 if (ret)
2149 btrfs_abort_transaction(trans, ret);
2150out:
2151 btrfs_free_path(path);
2152 return ret;
2153}
2154
2155static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2159{
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 if (extent_op)
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2193 extent_op);
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198}
2199
2200static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203{
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216}
2217
2218static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2221{
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
2228 int ret;
2229 int err = 0;
2230 int metadata = !extent_op->is_data;
2231
2232 if (trans->aborted)
2233 return 0;
2234
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 metadata = 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 key.objectid = head->bytenr;
2243
2244 if (metadata) {
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2250 }
2251
2252again:
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
2261 if (metadata) {
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
2274
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
2283 }
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288
2289 if (unlikely(item_size < sizeof(*ei))) {
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2298
2299 btrfs_mark_buffer_dirty(leaf);
2300out:
2301 btrfs_free_path(path);
2302 return err;
2303}
2304
2305static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2309{
2310 int ret = 0;
2311 struct btrfs_delayed_tree_ref *ref;
2312 u64 parent = 0;
2313 u64 ref_root = 0;
2314
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2321
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2338 } else {
2339 BUG();
2340 }
2341 return ret;
2342}
2343
2344/* helper function to actually process a single delayed ref entry */
2345static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2349{
2350 int ret = 0;
2351
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2356 return 0;
2357 }
2358
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2366 insert_reserved);
2367 else
2368 BUG();
2369 if (ret && insert_reserved)
2370 btrfs_pin_extent(trans->fs_info, node->bytenr,
2371 node->num_bytes, 1);
2372 return ret;
2373}
2374
2375static inline struct btrfs_delayed_ref_node *
2376select_delayed_ref(struct btrfs_delayed_ref_head *head)
2377{
2378 struct btrfs_delayed_ref_node *ref;
2379
2380 if (RB_EMPTY_ROOT(&head->ref_tree))
2381 return NULL;
2382
2383 /*
2384 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2385 * This is to prevent a ref count from going down to zero, which deletes
2386 * the extent item from the extent tree, when there still are references
2387 * to add, which would fail because they would not find the extent item.
2388 */
2389 if (!list_empty(&head->ref_add_list))
2390 return list_first_entry(&head->ref_add_list,
2391 struct btrfs_delayed_ref_node, add_list);
2392
2393 ref = rb_entry(rb_first(&head->ref_tree),
2394 struct btrfs_delayed_ref_node, ref_node);
2395 ASSERT(list_empty(&ref->add_list));
2396 return ref;
2397}
2398
2399static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2400 struct btrfs_delayed_ref_head *head)
2401{
2402 spin_lock(&delayed_refs->lock);
2403 head->processing = 0;
2404 delayed_refs->num_heads_ready++;
2405 spin_unlock(&delayed_refs->lock);
2406 btrfs_delayed_ref_unlock(head);
2407}
2408
2409static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2410 struct btrfs_delayed_ref_head *head)
2411{
2412 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2413 int ret;
2414
2415 if (!extent_op)
2416 return 0;
2417 head->extent_op = NULL;
2418 if (head->must_insert_reserved) {
2419 btrfs_free_delayed_extent_op(extent_op);
2420 return 0;
2421 }
2422 spin_unlock(&head->lock);
2423 ret = run_delayed_extent_op(trans, head, extent_op);
2424 btrfs_free_delayed_extent_op(extent_op);
2425 return ret ? ret : 1;
2426}
2427
2428static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2429 struct btrfs_delayed_ref_head *head)
2430{
2431
2432 struct btrfs_fs_info *fs_info = trans->fs_info;
2433 struct btrfs_delayed_ref_root *delayed_refs;
2434 int ret;
2435
2436 delayed_refs = &trans->transaction->delayed_refs;
2437
2438 ret = cleanup_extent_op(trans, head);
2439 if (ret < 0) {
2440 unselect_delayed_ref_head(delayed_refs, head);
2441 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2442 return ret;
2443 } else if (ret) {
2444 return ret;
2445 }
2446
2447 /*
2448 * Need to drop our head ref lock and re-acquire the delayed ref lock
2449 * and then re-check to make sure nobody got added.
2450 */
2451 spin_unlock(&head->lock);
2452 spin_lock(&delayed_refs->lock);
2453 spin_lock(&head->lock);
2454 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2455 spin_unlock(&head->lock);
2456 spin_unlock(&delayed_refs->lock);
2457 return 1;
2458 }
2459 delayed_refs->num_heads--;
2460 rb_erase(&head->href_node, &delayed_refs->href_root);
2461 RB_CLEAR_NODE(&head->href_node);
2462 spin_unlock(&head->lock);
2463 spin_unlock(&delayed_refs->lock);
2464 atomic_dec(&delayed_refs->num_entries);
2465
2466 trace_run_delayed_ref_head(fs_info, head, 0);
2467
2468 if (head->total_ref_mod < 0) {
2469 struct btrfs_space_info *space_info;
2470 u64 flags;
2471
2472 if (head->is_data)
2473 flags = BTRFS_BLOCK_GROUP_DATA;
2474 else if (head->is_system)
2475 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2476 else
2477 flags = BTRFS_BLOCK_GROUP_METADATA;
2478 space_info = __find_space_info(fs_info, flags);
2479 ASSERT(space_info);
2480 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2481 -head->num_bytes,
2482 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2483
2484 if (head->is_data) {
2485 spin_lock(&delayed_refs->lock);
2486 delayed_refs->pending_csums -= head->num_bytes;
2487 spin_unlock(&delayed_refs->lock);
2488 }
2489 }
2490
2491 if (head->must_insert_reserved) {
2492 btrfs_pin_extent(fs_info, head->bytenr,
2493 head->num_bytes, 1);
2494 if (head->is_data) {
2495 ret = btrfs_del_csums(trans, fs_info->csum_root,
2496 head->bytenr, head->num_bytes);
2497 }
2498 }
2499
2500 /* Also free its reserved qgroup space */
2501 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2502 head->qgroup_reserved);
2503 btrfs_delayed_ref_unlock(head);
2504 btrfs_put_delayed_ref_head(head);
2505 return 0;
2506}
2507
2508/*
2509 * Returns 0 on success or if called with an already aborted transaction.
2510 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2511 */
2512static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2513 unsigned long nr)
2514{
2515 struct btrfs_fs_info *fs_info = trans->fs_info;
2516 struct btrfs_delayed_ref_root *delayed_refs;
2517 struct btrfs_delayed_ref_node *ref;
2518 struct btrfs_delayed_ref_head *locked_ref = NULL;
2519 struct btrfs_delayed_extent_op *extent_op;
2520 ktime_t start = ktime_get();
2521 int ret;
2522 unsigned long count = 0;
2523 unsigned long actual_count = 0;
2524 int must_insert_reserved = 0;
2525
2526 delayed_refs = &trans->transaction->delayed_refs;
2527 while (1) {
2528 if (!locked_ref) {
2529 if (count >= nr)
2530 break;
2531
2532 spin_lock(&delayed_refs->lock);
2533 locked_ref = btrfs_select_ref_head(trans);
2534 if (!locked_ref) {
2535 spin_unlock(&delayed_refs->lock);
2536 break;
2537 }
2538
2539 /* grab the lock that says we are going to process
2540 * all the refs for this head */
2541 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2542 spin_unlock(&delayed_refs->lock);
2543 /*
2544 * we may have dropped the spin lock to get the head
2545 * mutex lock, and that might have given someone else
2546 * time to free the head. If that's true, it has been
2547 * removed from our list and we can move on.
2548 */
2549 if (ret == -EAGAIN) {
2550 locked_ref = NULL;
2551 count++;
2552 continue;
2553 }
2554 }
2555
2556 /*
2557 * We need to try and merge add/drops of the same ref since we
2558 * can run into issues with relocate dropping the implicit ref
2559 * and then it being added back again before the drop can
2560 * finish. If we merged anything we need to re-loop so we can
2561 * get a good ref.
2562 * Or we can get node references of the same type that weren't
2563 * merged when created due to bumps in the tree mod seq, and
2564 * we need to merge them to prevent adding an inline extent
2565 * backref before dropping it (triggering a BUG_ON at
2566 * insert_inline_extent_backref()).
2567 */
2568 spin_lock(&locked_ref->lock);
2569 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2570
2571 ref = select_delayed_ref(locked_ref);
2572
2573 if (ref && ref->seq &&
2574 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2575 spin_unlock(&locked_ref->lock);
2576 unselect_delayed_ref_head(delayed_refs, locked_ref);
2577 locked_ref = NULL;
2578 cond_resched();
2579 count++;
2580 continue;
2581 }
2582
2583 /*
2584 * We're done processing refs in this ref_head, clean everything
2585 * up and move on to the next ref_head.
2586 */
2587 if (!ref) {
2588 ret = cleanup_ref_head(trans, locked_ref);
2589 if (ret > 0 ) {
2590 /* We dropped our lock, we need to loop. */
2591 ret = 0;
2592 continue;
2593 } else if (ret) {
2594 return ret;
2595 }
2596 locked_ref = NULL;
2597 count++;
2598 continue;
2599 }
2600
2601 actual_count++;
2602 ref->in_tree = 0;
2603 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2604 RB_CLEAR_NODE(&ref->ref_node);
2605 if (!list_empty(&ref->add_list))
2606 list_del(&ref->add_list);
2607 /*
2608 * When we play the delayed ref, also correct the ref_mod on
2609 * head
2610 */
2611 switch (ref->action) {
2612 case BTRFS_ADD_DELAYED_REF:
2613 case BTRFS_ADD_DELAYED_EXTENT:
2614 locked_ref->ref_mod -= ref->ref_mod;
2615 break;
2616 case BTRFS_DROP_DELAYED_REF:
2617 locked_ref->ref_mod += ref->ref_mod;
2618 break;
2619 default:
2620 WARN_ON(1);
2621 }
2622 atomic_dec(&delayed_refs->num_entries);
2623
2624 /*
2625 * Record the must-insert_reserved flag before we drop the spin
2626 * lock.
2627 */
2628 must_insert_reserved = locked_ref->must_insert_reserved;
2629 locked_ref->must_insert_reserved = 0;
2630
2631 extent_op = locked_ref->extent_op;
2632 locked_ref->extent_op = NULL;
2633 spin_unlock(&locked_ref->lock);
2634
2635 ret = run_one_delayed_ref(trans, ref, extent_op,
2636 must_insert_reserved);
2637
2638 btrfs_free_delayed_extent_op(extent_op);
2639 if (ret) {
2640 unselect_delayed_ref_head(delayed_refs, locked_ref);
2641 btrfs_put_delayed_ref(ref);
2642 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2643 ret);
2644 return ret;
2645 }
2646
2647 btrfs_put_delayed_ref(ref);
2648 count++;
2649 cond_resched();
2650 }
2651
2652 /*
2653 * We don't want to include ref heads since we can have empty ref heads
2654 * and those will drastically skew our runtime down since we just do
2655 * accounting, no actual extent tree updates.
2656 */
2657 if (actual_count > 0) {
2658 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2659 u64 avg;
2660
2661 /*
2662 * We weigh the current average higher than our current runtime
2663 * to avoid large swings in the average.
2664 */
2665 spin_lock(&delayed_refs->lock);
2666 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2667 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2668 spin_unlock(&delayed_refs->lock);
2669 }
2670 return 0;
2671}
2672
2673#ifdef SCRAMBLE_DELAYED_REFS
2674/*
2675 * Normally delayed refs get processed in ascending bytenr order. This
2676 * correlates in most cases to the order added. To expose dependencies on this
2677 * order, we start to process the tree in the middle instead of the beginning
2678 */
2679static u64 find_middle(struct rb_root *root)
2680{
2681 struct rb_node *n = root->rb_node;
2682 struct btrfs_delayed_ref_node *entry;
2683 int alt = 1;
2684 u64 middle;
2685 u64 first = 0, last = 0;
2686
2687 n = rb_first(root);
2688 if (n) {
2689 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2690 first = entry->bytenr;
2691 }
2692 n = rb_last(root);
2693 if (n) {
2694 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2695 last = entry->bytenr;
2696 }
2697 n = root->rb_node;
2698
2699 while (n) {
2700 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2701 WARN_ON(!entry->in_tree);
2702
2703 middle = entry->bytenr;
2704
2705 if (alt)
2706 n = n->rb_left;
2707 else
2708 n = n->rb_right;
2709
2710 alt = 1 - alt;
2711 }
2712 return middle;
2713}
2714#endif
2715
2716static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2717{
2718 u64 num_bytes;
2719
2720 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2721 sizeof(struct btrfs_extent_inline_ref));
2722 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2723 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2724
2725 /*
2726 * We don't ever fill up leaves all the way so multiply by 2 just to be
2727 * closer to what we're really going to want to use.
2728 */
2729 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2730}
2731
2732/*
2733 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2734 * would require to store the csums for that many bytes.
2735 */
2736u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2737{
2738 u64 csum_size;
2739 u64 num_csums_per_leaf;
2740 u64 num_csums;
2741
2742 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2743 num_csums_per_leaf = div64_u64(csum_size,
2744 (u64)btrfs_super_csum_size(fs_info->super_copy));
2745 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2746 num_csums += num_csums_per_leaf - 1;
2747 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2748 return num_csums;
2749}
2750
2751int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2752 struct btrfs_fs_info *fs_info)
2753{
2754 struct btrfs_block_rsv *global_rsv;
2755 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2756 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2757 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2758 u64 num_bytes, num_dirty_bgs_bytes;
2759 int ret = 0;
2760
2761 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2762 num_heads = heads_to_leaves(fs_info, num_heads);
2763 if (num_heads > 1)
2764 num_bytes += (num_heads - 1) * fs_info->nodesize;
2765 num_bytes <<= 1;
2766 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2767 fs_info->nodesize;
2768 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2769 num_dirty_bgs);
2770 global_rsv = &fs_info->global_block_rsv;
2771
2772 /*
2773 * If we can't allocate any more chunks lets make sure we have _lots_ of
2774 * wiggle room since running delayed refs can create more delayed refs.
2775 */
2776 if (global_rsv->space_info->full) {
2777 num_dirty_bgs_bytes <<= 1;
2778 num_bytes <<= 1;
2779 }
2780
2781 spin_lock(&global_rsv->lock);
2782 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2783 ret = 1;
2784 spin_unlock(&global_rsv->lock);
2785 return ret;
2786}
2787
2788int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2789 struct btrfs_fs_info *fs_info)
2790{
2791 u64 num_entries =
2792 atomic_read(&trans->transaction->delayed_refs.num_entries);
2793 u64 avg_runtime;
2794 u64 val;
2795
2796 smp_mb();
2797 avg_runtime = fs_info->avg_delayed_ref_runtime;
2798 val = num_entries * avg_runtime;
2799 if (val >= NSEC_PER_SEC)
2800 return 1;
2801 if (val >= NSEC_PER_SEC / 2)
2802 return 2;
2803
2804 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2805}
2806
2807struct async_delayed_refs {
2808 struct btrfs_root *root;
2809 u64 transid;
2810 int count;
2811 int error;
2812 int sync;
2813 struct completion wait;
2814 struct btrfs_work work;
2815};
2816
2817static inline struct async_delayed_refs *
2818to_async_delayed_refs(struct btrfs_work *work)
2819{
2820 return container_of(work, struct async_delayed_refs, work);
2821}
2822
2823static void delayed_ref_async_start(struct btrfs_work *work)
2824{
2825 struct async_delayed_refs *async = to_async_delayed_refs(work);
2826 struct btrfs_trans_handle *trans;
2827 struct btrfs_fs_info *fs_info = async->root->fs_info;
2828 int ret;
2829
2830 /* if the commit is already started, we don't need to wait here */
2831 if (btrfs_transaction_blocked(fs_info))
2832 goto done;
2833
2834 trans = btrfs_join_transaction(async->root);
2835 if (IS_ERR(trans)) {
2836 async->error = PTR_ERR(trans);
2837 goto done;
2838 }
2839
2840 /*
2841 * trans->sync means that when we call end_transaction, we won't
2842 * wait on delayed refs
2843 */
2844 trans->sync = true;
2845
2846 /* Don't bother flushing if we got into a different transaction */
2847 if (trans->transid > async->transid)
2848 goto end;
2849
2850 ret = btrfs_run_delayed_refs(trans, async->count);
2851 if (ret)
2852 async->error = ret;
2853end:
2854 ret = btrfs_end_transaction(trans);
2855 if (ret && !async->error)
2856 async->error = ret;
2857done:
2858 if (async->sync)
2859 complete(&async->wait);
2860 else
2861 kfree(async);
2862}
2863
2864int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2865 unsigned long count, u64 transid, int wait)
2866{
2867 struct async_delayed_refs *async;
2868 int ret;
2869
2870 async = kmalloc(sizeof(*async), GFP_NOFS);
2871 if (!async)
2872 return -ENOMEM;
2873
2874 async->root = fs_info->tree_root;
2875 async->count = count;
2876 async->error = 0;
2877 async->transid = transid;
2878 if (wait)
2879 async->sync = 1;
2880 else
2881 async->sync = 0;
2882 init_completion(&async->wait);
2883
2884 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2885 delayed_ref_async_start, NULL, NULL);
2886
2887 btrfs_queue_work(fs_info->extent_workers, &async->work);
2888
2889 if (wait) {
2890 wait_for_completion(&async->wait);
2891 ret = async->error;
2892 kfree(async);
2893 return ret;
2894 }
2895 return 0;
2896}
2897
2898/*
2899 * this starts processing the delayed reference count updates and
2900 * extent insertions we have queued up so far. count can be
2901 * 0, which means to process everything in the tree at the start
2902 * of the run (but not newly added entries), or it can be some target
2903 * number you'd like to process.
2904 *
2905 * Returns 0 on success or if called with an aborted transaction
2906 * Returns <0 on error and aborts the transaction
2907 */
2908int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2909 unsigned long count)
2910{
2911 struct btrfs_fs_info *fs_info = trans->fs_info;
2912 struct rb_node *node;
2913 struct btrfs_delayed_ref_root *delayed_refs;
2914 struct btrfs_delayed_ref_head *head;
2915 int ret;
2916 int run_all = count == (unsigned long)-1;
2917
2918 /* We'll clean this up in btrfs_cleanup_transaction */
2919 if (trans->aborted)
2920 return 0;
2921
2922 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2923 return 0;
2924
2925 delayed_refs = &trans->transaction->delayed_refs;
2926 if (count == 0)
2927 count = atomic_read(&delayed_refs->num_entries) * 2;
2928
2929again:
2930#ifdef SCRAMBLE_DELAYED_REFS
2931 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2932#endif
2933 ret = __btrfs_run_delayed_refs(trans, count);
2934 if (ret < 0) {
2935 btrfs_abort_transaction(trans, ret);
2936 return ret;
2937 }
2938
2939 if (run_all) {
2940 if (!list_empty(&trans->new_bgs))
2941 btrfs_create_pending_block_groups(trans);
2942
2943 spin_lock(&delayed_refs->lock);
2944 node = rb_first(&delayed_refs->href_root);
2945 if (!node) {
2946 spin_unlock(&delayed_refs->lock);
2947 goto out;
2948 }
2949 head = rb_entry(node, struct btrfs_delayed_ref_head,
2950 href_node);
2951 refcount_inc(&head->refs);
2952 spin_unlock(&delayed_refs->lock);
2953
2954 /* Mutex was contended, block until it's released and retry. */
2955 mutex_lock(&head->mutex);
2956 mutex_unlock(&head->mutex);
2957
2958 btrfs_put_delayed_ref_head(head);
2959 cond_resched();
2960 goto again;
2961 }
2962out:
2963 return 0;
2964}
2965
2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_fs_info *fs_info,
2968 u64 bytenr, u64 num_bytes, u64 flags,
2969 int level, int is_data)
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
2974 extent_op = btrfs_alloc_delayed_extent_op();
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
2982 extent_op->level = level;
2983
2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2985 num_bytes, extent_op);
2986 if (ret)
2987 btrfs_free_delayed_extent_op(extent_op);
2988 return ret;
2989}
2990
2991static noinline int check_delayed_ref(struct btrfs_root *root,
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994{
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
2999 struct btrfs_transaction *cur_trans;
3000 struct rb_node *node;
3001 int ret = 0;
3002
3003 spin_lock(&root->fs_info->trans_lock);
3004 cur_trans = root->fs_info->running_transaction;
3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
3012 spin_lock(&delayed_refs->lock);
3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
3016 btrfs_put_transaction(cur_trans);
3017 return 0;
3018 }
3019
3020 if (!mutex_trylock(&head->mutex)) {
3021 refcount_inc(&head->refs);
3022 spin_unlock(&delayed_refs->lock);
3023
3024 btrfs_release_path(path);
3025
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
3032 btrfs_put_delayed_ref_head(head);
3033 btrfs_put_transaction(cur_trans);
3034 return -EAGAIN;
3035 }
3036 spin_unlock(&delayed_refs->lock);
3037
3038 spin_lock(&head->lock);
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
3050
3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
3052
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
3063 }
3064 spin_unlock(&head->lock);
3065 mutex_unlock(&head->mutex);
3066 btrfs_put_transaction(cur_trans);
3067 return ret;
3068}
3069
3070static noinline int check_committed_ref(struct btrfs_root *root,
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
3073{
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
3076 struct extent_buffer *leaf;
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
3080 struct btrfs_key key;
3081 u32 item_size;
3082 int type;
3083 int ret;
3084
3085 key.objectid = bytenr;
3086 key.offset = (u64)-1;
3087 key.type = BTRFS_EXTENT_ITEM_KEY;
3088
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
3092 BUG_ON(ret == 0); /* Corruption */
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
3096 goto out;
3097
3098 path->slots[0]--;
3099 leaf = path->nodes[0];
3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3101
3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3103 goto out;
3104
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
3112
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133out:
3134 return ret;
3135}
3136
3137int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
3139{
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOMEM;
3147
3148 do {
3149 ret = check_committed_ref(root, path, objectid,
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
3152 goto out;
3153
3154 ret2 = check_delayed_ref(root, path, objectid,
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
3161 }
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
3165out:
3166 btrfs_free_path(path);
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
3169 return ret;
3170}
3171
3172static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 struct extent_buffer *buf,
3175 int full_backref, int inc)
3176{
3177 struct btrfs_fs_info *fs_info = root->fs_info;
3178 u64 bytenr;
3179 u64 num_bytes;
3180 u64 parent;
3181 u64 ref_root;
3182 u32 nritems;
3183 struct btrfs_key key;
3184 struct btrfs_file_extent_item *fi;
3185 int i;
3186 int level;
3187 int ret = 0;
3188 int (*process_func)(struct btrfs_trans_handle *,
3189 struct btrfs_root *,
3190 u64, u64, u64, u64, u64, u64);
3191
3192
3193 if (btrfs_is_testing(fs_info))
3194 return 0;
3195
3196 ref_root = btrfs_header_owner(buf);
3197 nritems = btrfs_header_nritems(buf);
3198 level = btrfs_header_level(buf);
3199
3200 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3201 return 0;
3202
3203 if (inc)
3204 process_func = btrfs_inc_extent_ref;
3205 else
3206 process_func = btrfs_free_extent;
3207
3208 if (full_backref)
3209 parent = buf->start;
3210 else
3211 parent = 0;
3212
3213 for (i = 0; i < nritems; i++) {
3214 if (level == 0) {
3215 btrfs_item_key_to_cpu(buf, &key, i);
3216 if (key.type != BTRFS_EXTENT_DATA_KEY)
3217 continue;
3218 fi = btrfs_item_ptr(buf, i,
3219 struct btrfs_file_extent_item);
3220 if (btrfs_file_extent_type(buf, fi) ==
3221 BTRFS_FILE_EXTENT_INLINE)
3222 continue;
3223 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 if (bytenr == 0)
3225 continue;
3226
3227 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 key.offset -= btrfs_file_extent_offset(buf, fi);
3229 ret = process_func(trans, root, bytenr, num_bytes,
3230 parent, ref_root, key.objectid,
3231 key.offset);
3232 if (ret)
3233 goto fail;
3234 } else {
3235 bytenr = btrfs_node_blockptr(buf, i);
3236 num_bytes = fs_info->nodesize;
3237 ret = process_func(trans, root, bytenr, num_bytes,
3238 parent, ref_root, level - 1, 0);
3239 if (ret)
3240 goto fail;
3241 }
3242 }
3243 return 0;
3244fail:
3245 return ret;
3246}
3247
3248int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3249 struct extent_buffer *buf, int full_backref)
3250{
3251 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3252}
3253
3254int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3255 struct extent_buffer *buf, int full_backref)
3256{
3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3258}
3259
3260static int write_one_cache_group(struct btrfs_trans_handle *trans,
3261 struct btrfs_fs_info *fs_info,
3262 struct btrfs_path *path,
3263 struct btrfs_block_group_cache *cache)
3264{
3265 int ret;
3266 struct btrfs_root *extent_root = fs_info->extent_root;
3267 unsigned long bi;
3268 struct extent_buffer *leaf;
3269
3270 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3271 if (ret) {
3272 if (ret > 0)
3273 ret = -ENOENT;
3274 goto fail;
3275 }
3276
3277 leaf = path->nodes[0];
3278 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 btrfs_mark_buffer_dirty(leaf);
3281fail:
3282 btrfs_release_path(path);
3283 return ret;
3284
3285}
3286
3287static struct btrfs_block_group_cache *
3288next_block_group(struct btrfs_fs_info *fs_info,
3289 struct btrfs_block_group_cache *cache)
3290{
3291 struct rb_node *node;
3292
3293 spin_lock(&fs_info->block_group_cache_lock);
3294
3295 /* If our block group was removed, we need a full search. */
3296 if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298
3299 spin_unlock(&fs_info->block_group_cache_lock);
3300 btrfs_put_block_group(cache);
3301 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3302 }
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
3308 btrfs_get_block_group(cache);
3309 } else
3310 cache = NULL;
3311 spin_unlock(&fs_info->block_group_cache_lock);
3312 return cache;
3313}
3314
3315static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318{
3319 struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 struct btrfs_root *root = fs_info->tree_root;
3321 struct inode *inode = NULL;
3322 struct extent_changeset *data_reserved = NULL;
3323 u64 alloc_hint = 0;
3324 int dcs = BTRFS_DC_ERROR;
3325 u64 num_pages = 0;
3326 int retries = 0;
3327 int ret = 0;
3328
3329 /*
3330 * If this block group is smaller than 100 megs don't bother caching the
3331 * block group.
3332 */
3333 if (block_group->key.offset < (100 * SZ_1M)) {
3334 spin_lock(&block_group->lock);
3335 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 return 0;
3338 }
3339
3340 if (trans->aborted)
3341 return 0;
3342again:
3343 inode = lookup_free_space_inode(fs_info, block_group, path);
3344 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 ret = PTR_ERR(inode);
3346 btrfs_release_path(path);
3347 goto out;
3348 }
3349
3350 if (IS_ERR(inode)) {
3351 BUG_ON(retries);
3352 retries++;
3353
3354 if (block_group->ro)
3355 goto out_free;
3356
3357 ret = create_free_space_inode(fs_info, trans, block_group,
3358 path);
3359 if (ret)
3360 goto out_free;
3361 goto again;
3362 }
3363
3364 /*
3365 * We want to set the generation to 0, that way if anything goes wrong
3366 * from here on out we know not to trust this cache when we load up next
3367 * time.
3368 */
3369 BTRFS_I(inode)->generation = 0;
3370 ret = btrfs_update_inode(trans, root, inode);
3371 if (ret) {
3372 /*
3373 * So theoretically we could recover from this, simply set the
3374 * super cache generation to 0 so we know to invalidate the
3375 * cache, but then we'd have to keep track of the block groups
3376 * that fail this way so we know we _have_ to reset this cache
3377 * before the next commit or risk reading stale cache. So to
3378 * limit our exposure to horrible edge cases lets just abort the
3379 * transaction, this only happens in really bad situations
3380 * anyway.
3381 */
3382 btrfs_abort_transaction(trans, ret);
3383 goto out_put;
3384 }
3385 WARN_ON(ret);
3386
3387 /* We've already setup this transaction, go ahead and exit */
3388 if (block_group->cache_generation == trans->transid &&
3389 i_size_read(inode)) {
3390 dcs = BTRFS_DC_SETUP;
3391 goto out_put;
3392 }
3393
3394 if (i_size_read(inode) > 0) {
3395 ret = btrfs_check_trunc_cache_free_space(fs_info,
3396 &fs_info->global_block_rsv);
3397 if (ret)
3398 goto out_put;
3399
3400 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3401 if (ret)
3402 goto out_put;
3403 }
3404
3405 spin_lock(&block_group->lock);
3406 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3407 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3408 /*
3409 * don't bother trying to write stuff out _if_
3410 * a) we're not cached,
3411 * b) we're with nospace_cache mount option,
3412 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3413 */
3414 dcs = BTRFS_DC_WRITTEN;
3415 spin_unlock(&block_group->lock);
3416 goto out_put;
3417 }
3418 spin_unlock(&block_group->lock);
3419
3420 /*
3421 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 * skip doing the setup, we've already cleared the cache so we're safe.
3423 */
3424 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 ret = -ENOSPC;
3426 goto out_put;
3427 }
3428
3429 /*
3430 * Try to preallocate enough space based on how big the block group is.
3431 * Keep in mind this has to include any pinned space which could end up
3432 * taking up quite a bit since it's not folded into the other space
3433 * cache.
3434 */
3435 num_pages = div_u64(block_group->key.offset, SZ_256M);
3436 if (!num_pages)
3437 num_pages = 1;
3438
3439 num_pages *= 16;
3440 num_pages *= PAGE_SIZE;
3441
3442 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3443 if (ret)
3444 goto out_put;
3445
3446 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 num_pages, num_pages,
3448 &alloc_hint);
3449 /*
3450 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 * of metadata or split extents when writing the cache out, which means
3452 * we can enospc if we are heavily fragmented in addition to just normal
3453 * out of space conditions. So if we hit this just skip setting up any
3454 * other block groups for this transaction, maybe we'll unpin enough
3455 * space the next time around.
3456 */
3457 if (!ret)
3458 dcs = BTRFS_DC_SETUP;
3459 else if (ret == -ENOSPC)
3460 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3461
3462out_put:
3463 iput(inode);
3464out_free:
3465 btrfs_release_path(path);
3466out:
3467 spin_lock(&block_group->lock);
3468 if (!ret && dcs == BTRFS_DC_SETUP)
3469 block_group->cache_generation = trans->transid;
3470 block_group->disk_cache_state = dcs;
3471 spin_unlock(&block_group->lock);
3472
3473 extent_changeset_free(data_reserved);
3474 return ret;
3475}
3476
3477int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3478 struct btrfs_fs_info *fs_info)
3479{
3480 struct btrfs_block_group_cache *cache, *tmp;
3481 struct btrfs_transaction *cur_trans = trans->transaction;
3482 struct btrfs_path *path;
3483
3484 if (list_empty(&cur_trans->dirty_bgs) ||
3485 !btrfs_test_opt(fs_info, SPACE_CACHE))
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 /* Could add new block groups, use _safe just in case */
3493 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 dirty_list) {
3495 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 cache_save_setup(cache, trans, path);
3497 }
3498
3499 btrfs_free_path(path);
3500 return 0;
3501}
3502
3503/*
3504 * transaction commit does final block group cache writeback during a
3505 * critical section where nothing is allowed to change the FS. This is
3506 * required in order for the cache to actually match the block group,
3507 * but can introduce a lot of latency into the commit.
3508 *
3509 * So, btrfs_start_dirty_block_groups is here to kick off block group
3510 * cache IO. There's a chance we'll have to redo some of it if the
3511 * block group changes again during the commit, but it greatly reduces
3512 * the commit latency by getting rid of the easy block groups while
3513 * we're still allowing others to join the commit.
3514 */
3515int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3516{
3517 struct btrfs_fs_info *fs_info = trans->fs_info;
3518 struct btrfs_block_group_cache *cache;
3519 struct btrfs_transaction *cur_trans = trans->transaction;
3520 int ret = 0;
3521 int should_put;
3522 struct btrfs_path *path = NULL;
3523 LIST_HEAD(dirty);
3524 struct list_head *io = &cur_trans->io_bgs;
3525 int num_started = 0;
3526 int loops = 0;
3527
3528 spin_lock(&cur_trans->dirty_bgs_lock);
3529 if (list_empty(&cur_trans->dirty_bgs)) {
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 return 0;
3532 }
3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3534 spin_unlock(&cur_trans->dirty_bgs_lock);
3535
3536again:
3537 /*
3538 * make sure all the block groups on our dirty list actually
3539 * exist
3540 */
3541 btrfs_create_pending_block_groups(trans);
3542
3543 if (!path) {
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547 }
3548
3549 /*
3550 * cache_write_mutex is here only to save us from balance or automatic
3551 * removal of empty block groups deleting this block group while we are
3552 * writing out the cache
3553 */
3554 mutex_lock(&trans->transaction->cache_write_mutex);
3555 while (!list_empty(&dirty)) {
3556 cache = list_first_entry(&dirty,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
3559 /*
3560 * this can happen if something re-dirties a block
3561 * group that is already under IO. Just wait for it to
3562 * finish and then do it all again
3563 */
3564 if (!list_empty(&cache->io_list)) {
3565 list_del_init(&cache->io_list);
3566 btrfs_wait_cache_io(trans, cache, path);
3567 btrfs_put_block_group(cache);
3568 }
3569
3570
3571 /*
3572 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 * if it should update the cache_state. Don't delete
3574 * until after we wait.
3575 *
3576 * Since we're not running in the commit critical section
3577 * we need the dirty_bgs_lock to protect from update_block_group
3578 */
3579 spin_lock(&cur_trans->dirty_bgs_lock);
3580 list_del_init(&cache->dirty_list);
3581 spin_unlock(&cur_trans->dirty_bgs_lock);
3582
3583 should_put = 1;
3584
3585 cache_save_setup(cache, trans, path);
3586
3587 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 cache->io_ctl.inode = NULL;
3589 ret = btrfs_write_out_cache(fs_info, trans,
3590 cache, path);
3591 if (ret == 0 && cache->io_ctl.inode) {
3592 num_started++;
3593 should_put = 0;
3594
3595 /*
3596 * The cache_write_mutex is protecting the
3597 * io_list, also refer to the definition of
3598 * btrfs_transaction::io_bgs for more details
3599 */
3600 list_add_tail(&cache->io_list, io);
3601 } else {
3602 /*
3603 * if we failed to write the cache, the
3604 * generation will be bad and life goes on
3605 */
3606 ret = 0;
3607 }
3608 }
3609 if (!ret) {
3610 ret = write_one_cache_group(trans, fs_info,
3611 path, cache);
3612 /*
3613 * Our block group might still be attached to the list
3614 * of new block groups in the transaction handle of some
3615 * other task (struct btrfs_trans_handle->new_bgs). This
3616 * means its block group item isn't yet in the extent
3617 * tree. If this happens ignore the error, as we will
3618 * try again later in the critical section of the
3619 * transaction commit.
3620 */
3621 if (ret == -ENOENT) {
3622 ret = 0;
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 if (list_empty(&cache->dirty_list)) {
3625 list_add_tail(&cache->dirty_list,
3626 &cur_trans->dirty_bgs);
3627 btrfs_get_block_group(cache);
3628 }
3629 spin_unlock(&cur_trans->dirty_bgs_lock);
3630 } else if (ret) {
3631 btrfs_abort_transaction(trans, ret);
3632 }
3633 }
3634
3635 /* if its not on the io list, we need to put the block group */
3636 if (should_put)
3637 btrfs_put_block_group(cache);
3638
3639 if (ret)
3640 break;
3641
3642 /*
3643 * Avoid blocking other tasks for too long. It might even save
3644 * us from writing caches for block groups that are going to be
3645 * removed.
3646 */
3647 mutex_unlock(&trans->transaction->cache_write_mutex);
3648 mutex_lock(&trans->transaction->cache_write_mutex);
3649 }
3650 mutex_unlock(&trans->transaction->cache_write_mutex);
3651
3652 /*
3653 * go through delayed refs for all the stuff we've just kicked off
3654 * and then loop back (just once)
3655 */
3656 ret = btrfs_run_delayed_refs(trans, 0);
3657 if (!ret && loops == 0) {
3658 loops++;
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3661 /*
3662 * dirty_bgs_lock protects us from concurrent block group
3663 * deletes too (not just cache_write_mutex).
3664 */
3665 if (!list_empty(&dirty)) {
3666 spin_unlock(&cur_trans->dirty_bgs_lock);
3667 goto again;
3668 }
3669 spin_unlock(&cur_trans->dirty_bgs_lock);
3670 } else if (ret < 0) {
3671 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3672 }
3673
3674 btrfs_free_path(path);
3675 return ret;
3676}
3677
3678int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3679 struct btrfs_fs_info *fs_info)
3680{
3681 struct btrfs_block_group_cache *cache;
3682 struct btrfs_transaction *cur_trans = trans->transaction;
3683 int ret = 0;
3684 int should_put;
3685 struct btrfs_path *path;
3686 struct list_head *io = &cur_trans->io_bgs;
3687 int num_started = 0;
3688
3689 path = btrfs_alloc_path();
3690 if (!path)
3691 return -ENOMEM;
3692
3693 /*
3694 * Even though we are in the critical section of the transaction commit,
3695 * we can still have concurrent tasks adding elements to this
3696 * transaction's list of dirty block groups. These tasks correspond to
3697 * endio free space workers started when writeback finishes for a
3698 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 * allocate new block groups as a result of COWing nodes of the root
3700 * tree when updating the free space inode. The writeback for the space
3701 * caches is triggered by an earlier call to
3702 * btrfs_start_dirty_block_groups() and iterations of the following
3703 * loop.
3704 * Also we want to do the cache_save_setup first and then run the
3705 * delayed refs to make sure we have the best chance at doing this all
3706 * in one shot.
3707 */
3708 spin_lock(&cur_trans->dirty_bgs_lock);
3709 while (!list_empty(&cur_trans->dirty_bgs)) {
3710 cache = list_first_entry(&cur_trans->dirty_bgs,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
3713
3714 /*
3715 * this can happen if cache_save_setup re-dirties a block
3716 * group that is already under IO. Just wait for it to
3717 * finish and then do it all again
3718 */
3719 if (!list_empty(&cache->io_list)) {
3720 spin_unlock(&cur_trans->dirty_bgs_lock);
3721 list_del_init(&cache->io_list);
3722 btrfs_wait_cache_io(trans, cache, path);
3723 btrfs_put_block_group(cache);
3724 spin_lock(&cur_trans->dirty_bgs_lock);
3725 }
3726
3727 /*
3728 * don't remove from the dirty list until after we've waited
3729 * on any pending IO
3730 */
3731 list_del_init(&cache->dirty_list);
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 should_put = 1;
3734
3735 cache_save_setup(cache, trans, path);
3736
3737 if (!ret)
3738 ret = btrfs_run_delayed_refs(trans,
3739 (unsigned long) -1);
3740
3741 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
3743 ret = btrfs_write_out_cache(fs_info, trans,
3744 cache, path);
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
3757 if (!ret) {
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
3760 /*
3761 * One of the free space endio workers might have
3762 * created a new block group while updating a free space
3763 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 * and hasn't released its transaction handle yet, in
3765 * which case the new block group is still attached to
3766 * its transaction handle and its creation has not
3767 * finished yet (no block group item in the extent tree
3768 * yet, etc). If this is the case, wait for all free
3769 * space endio workers to finish and retry. This is a
3770 * a very rare case so no need for a more efficient and
3771 * complex approach.
3772 */
3773 if (ret == -ENOENT) {
3774 wait_event(cur_trans->writer_wait,
3775 atomic_read(&cur_trans->num_writers) == 1);
3776 ret = write_one_cache_group(trans, fs_info,
3777 path, cache);
3778 }
3779 if (ret)
3780 btrfs_abort_transaction(trans, ret);
3781 }
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786 spin_lock(&cur_trans->dirty_bgs_lock);
3787 }
3788 spin_unlock(&cur_trans->dirty_bgs_lock);
3789
3790 /*
3791 * Refer to the definition of io_bgs member for details why it's safe
3792 * to use it without any locking
3793 */
3794 while (!list_empty(io)) {
3795 cache = list_first_entry(io, struct btrfs_block_group_cache,
3796 io_list);
3797 list_del_init(&cache->io_list);
3798 btrfs_wait_cache_io(trans, cache, path);
3799 btrfs_put_block_group(cache);
3800 }
3801
3802 btrfs_free_path(path);
3803 return ret;
3804}
3805
3806int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3807{
3808 struct btrfs_block_group_cache *block_group;
3809 int readonly = 0;
3810
3811 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3812 if (!block_group || block_group->ro)
3813 readonly = 1;
3814 if (block_group)
3815 btrfs_put_block_group(block_group);
3816 return readonly;
3817}
3818
3819bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820{
3821 struct btrfs_block_group_cache *bg;
3822 bool ret = true;
3823
3824 bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 if (!bg)
3826 return false;
3827
3828 spin_lock(&bg->lock);
3829 if (bg->ro)
3830 ret = false;
3831 else
3832 atomic_inc(&bg->nocow_writers);
3833 spin_unlock(&bg->lock);
3834
3835 /* no put on block group, done by btrfs_dec_nocow_writers */
3836 if (!ret)
3837 btrfs_put_block_group(bg);
3838
3839 return ret;
3840
3841}
3842
3843void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844{
3845 struct btrfs_block_group_cache *bg;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 ASSERT(bg);
3849 if (atomic_dec_and_test(&bg->nocow_writers))
3850 wake_up_var(&bg->nocow_writers);
3851 /*
3852 * Once for our lookup and once for the lookup done by a previous call
3853 * to btrfs_inc_nocow_writers()
3854 */
3855 btrfs_put_block_group(bg);
3856 btrfs_put_block_group(bg);
3857}
3858
3859void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860{
3861 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3862}
3863
3864static const char *alloc_name(u64 flags)
3865{
3866 switch (flags) {
3867 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 return "mixed";
3869 case BTRFS_BLOCK_GROUP_METADATA:
3870 return "metadata";
3871 case BTRFS_BLOCK_GROUP_DATA:
3872 return "data";
3873 case BTRFS_BLOCK_GROUP_SYSTEM:
3874 return "system";
3875 default:
3876 WARN_ON(1);
3877 return "invalid-combination";
3878 };
3879}
3880
3881static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3882{
3883
3884 struct btrfs_space_info *space_info;
3885 int i;
3886 int ret;
3887
3888 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 if (!space_info)
3890 return -ENOMEM;
3891
3892 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 GFP_KERNEL);
3894 if (ret) {
3895 kfree(space_info);
3896 return ret;
3897 }
3898
3899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 init_rwsem(&space_info->groups_sem);
3902 spin_lock_init(&space_info->lock);
3903 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 init_waitqueue_head(&space_info->wait);
3906 INIT_LIST_HEAD(&space_info->ro_bgs);
3907 INIT_LIST_HEAD(&space_info->tickets);
3908 INIT_LIST_HEAD(&space_info->priority_tickets);
3909
3910 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 info->space_info_kobj, "%s",
3912 alloc_name(space_info->flags));
3913 if (ret) {
3914 kobject_put(&space_info->kobj);
3915 return ret;
3916 }
3917
3918 list_add_rcu(&space_info->list, &info->space_info);
3919 if (flags & BTRFS_BLOCK_GROUP_DATA)
3920 info->data_sinfo = space_info;
3921
3922 return ret;
3923}
3924
3925static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3926 u64 total_bytes, u64 bytes_used,
3927 u64 bytes_readonly,
3928 struct btrfs_space_info **space_info)
3929{
3930 struct btrfs_space_info *found;
3931 int factor;
3932
3933 factor = btrfs_bg_type_to_factor(flags);
3934
3935 found = __find_space_info(info, flags);
3936 ASSERT(found);
3937 spin_lock(&found->lock);
3938 found->total_bytes += total_bytes;
3939 found->disk_total += total_bytes * factor;
3940 found->bytes_used += bytes_used;
3941 found->disk_used += bytes_used * factor;
3942 found->bytes_readonly += bytes_readonly;
3943 if (total_bytes > 0)
3944 found->full = 0;
3945 space_info_add_new_bytes(info, found, total_bytes -
3946 bytes_used - bytes_readonly);
3947 spin_unlock(&found->lock);
3948 *space_info = found;
3949}
3950
3951static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3952{
3953 u64 extra_flags = chunk_to_extended(flags) &
3954 BTRFS_EXTENDED_PROFILE_MASK;
3955
3956 write_seqlock(&fs_info->profiles_lock);
3957 if (flags & BTRFS_BLOCK_GROUP_DATA)
3958 fs_info->avail_data_alloc_bits |= extra_flags;
3959 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3960 fs_info->avail_metadata_alloc_bits |= extra_flags;
3961 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3962 fs_info->avail_system_alloc_bits |= extra_flags;
3963 write_sequnlock(&fs_info->profiles_lock);
3964}
3965
3966/*
3967 * returns target flags in extended format or 0 if restripe for this
3968 * chunk_type is not in progress
3969 *
3970 * should be called with balance_lock held
3971 */
3972static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3973{
3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975 u64 target = 0;
3976
3977 if (!bctl)
3978 return 0;
3979
3980 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3981 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3982 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3983 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3984 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3985 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3986 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3987 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3988 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3989 }
3990
3991 return target;
3992}
3993
3994/*
3995 * @flags: available profiles in extended format (see ctree.h)
3996 *
3997 * Returns reduced profile in chunk format. If profile changing is in
3998 * progress (either running or paused) picks the target profile (if it's
3999 * already available), otherwise falls back to plain reducing.
4000 */
4001static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4002{
4003 u64 num_devices = fs_info->fs_devices->rw_devices;
4004 u64 target;
4005 u64 raid_type;
4006 u64 allowed = 0;
4007
4008 /*
4009 * see if restripe for this chunk_type is in progress, if so
4010 * try to reduce to the target profile
4011 */
4012 spin_lock(&fs_info->balance_lock);
4013 target = get_restripe_target(fs_info, flags);
4014 if (target) {
4015 /* pick target profile only if it's already available */
4016 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4017 spin_unlock(&fs_info->balance_lock);
4018 return extended_to_chunk(target);
4019 }
4020 }
4021 spin_unlock(&fs_info->balance_lock);
4022
4023 /* First, mask out the RAID levels which aren't possible */
4024 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4025 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4026 allowed |= btrfs_raid_array[raid_type].bg_flag;
4027 }
4028 allowed &= flags;
4029
4030 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4031 allowed = BTRFS_BLOCK_GROUP_RAID6;
4032 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4033 allowed = BTRFS_BLOCK_GROUP_RAID5;
4034 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4035 allowed = BTRFS_BLOCK_GROUP_RAID10;
4036 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4037 allowed = BTRFS_BLOCK_GROUP_RAID1;
4038 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4039 allowed = BTRFS_BLOCK_GROUP_RAID0;
4040
4041 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4042
4043 return extended_to_chunk(flags | allowed);
4044}
4045
4046static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4047{
4048 unsigned seq;
4049 u64 flags;
4050
4051 do {
4052 flags = orig_flags;
4053 seq = read_seqbegin(&fs_info->profiles_lock);
4054
4055 if (flags & BTRFS_BLOCK_GROUP_DATA)
4056 flags |= fs_info->avail_data_alloc_bits;
4057 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4058 flags |= fs_info->avail_system_alloc_bits;
4059 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4060 flags |= fs_info->avail_metadata_alloc_bits;
4061 } while (read_seqretry(&fs_info->profiles_lock, seq));
4062
4063 return btrfs_reduce_alloc_profile(fs_info, flags);
4064}
4065
4066static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4067{
4068 struct btrfs_fs_info *fs_info = root->fs_info;
4069 u64 flags;
4070 u64 ret;
4071
4072 if (data)
4073 flags = BTRFS_BLOCK_GROUP_DATA;
4074 else if (root == fs_info->chunk_root)
4075 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4076 else
4077 flags = BTRFS_BLOCK_GROUP_METADATA;
4078
4079 ret = get_alloc_profile(fs_info, flags);
4080 return ret;
4081}
4082
4083u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4084{
4085 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4086}
4087
4088u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4089{
4090 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4091}
4092
4093u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4094{
4095 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4096}
4097
4098static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4099 bool may_use_included)
4100{
4101 ASSERT(s_info);
4102 return s_info->bytes_used + s_info->bytes_reserved +
4103 s_info->bytes_pinned + s_info->bytes_readonly +
4104 (may_use_included ? s_info->bytes_may_use : 0);
4105}
4106
4107int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4108{
4109 struct btrfs_root *root = inode->root;
4110 struct btrfs_fs_info *fs_info = root->fs_info;
4111 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4112 u64 used;
4113 int ret = 0;
4114 int need_commit = 2;
4115 int have_pinned_space;
4116
4117 /* make sure bytes are sectorsize aligned */
4118 bytes = ALIGN(bytes, fs_info->sectorsize);
4119
4120 if (btrfs_is_free_space_inode(inode)) {
4121 need_commit = 0;
4122 ASSERT(current->journal_info);
4123 }
4124
4125again:
4126 /* make sure we have enough space to handle the data first */
4127 spin_lock(&data_sinfo->lock);
4128 used = btrfs_space_info_used(data_sinfo, true);
4129
4130 if (used + bytes > data_sinfo->total_bytes) {
4131 struct btrfs_trans_handle *trans;
4132
4133 /*
4134 * if we don't have enough free bytes in this space then we need
4135 * to alloc a new chunk.
4136 */
4137 if (!data_sinfo->full) {
4138 u64 alloc_target;
4139
4140 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4141 spin_unlock(&data_sinfo->lock);
4142
4143 alloc_target = btrfs_data_alloc_profile(fs_info);
4144 /*
4145 * It is ugly that we don't call nolock join
4146 * transaction for the free space inode case here.
4147 * But it is safe because we only do the data space
4148 * reservation for the free space cache in the
4149 * transaction context, the common join transaction
4150 * just increase the counter of the current transaction
4151 * handler, doesn't try to acquire the trans_lock of
4152 * the fs.
4153 */
4154 trans = btrfs_join_transaction(root);
4155 if (IS_ERR(trans))
4156 return PTR_ERR(trans);
4157
4158 ret = do_chunk_alloc(trans, alloc_target,
4159 CHUNK_ALLOC_NO_FORCE);
4160 btrfs_end_transaction(trans);
4161 if (ret < 0) {
4162 if (ret != -ENOSPC)
4163 return ret;
4164 else {
4165 have_pinned_space = 1;
4166 goto commit_trans;
4167 }
4168 }
4169
4170 goto again;
4171 }
4172
4173 /*
4174 * If we don't have enough pinned space to deal with this
4175 * allocation, and no removed chunk in current transaction,
4176 * don't bother committing the transaction.
4177 */
4178 have_pinned_space = __percpu_counter_compare(
4179 &data_sinfo->total_bytes_pinned,
4180 used + bytes - data_sinfo->total_bytes,
4181 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4182 spin_unlock(&data_sinfo->lock);
4183
4184 /* commit the current transaction and try again */
4185commit_trans:
4186 if (need_commit) {
4187 need_commit--;
4188
4189 if (need_commit > 0) {
4190 btrfs_start_delalloc_roots(fs_info, -1);
4191 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4192 (u64)-1);
4193 }
4194
4195 trans = btrfs_join_transaction(root);
4196 if (IS_ERR(trans))
4197 return PTR_ERR(trans);
4198 if (have_pinned_space >= 0 ||
4199 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4200 &trans->transaction->flags) ||
4201 need_commit > 0) {
4202 ret = btrfs_commit_transaction(trans);
4203 if (ret)
4204 return ret;
4205 /*
4206 * The cleaner kthread might still be doing iput
4207 * operations. Wait for it to finish so that
4208 * more space is released.
4209 */
4210 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4211 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4212 goto again;
4213 } else {
4214 btrfs_end_transaction(trans);
4215 }
4216 }
4217
4218 trace_btrfs_space_reservation(fs_info,
4219 "space_info:enospc",
4220 data_sinfo->flags, bytes, 1);
4221 return -ENOSPC;
4222 }
4223 data_sinfo->bytes_may_use += bytes;
4224 trace_btrfs_space_reservation(fs_info, "space_info",
4225 data_sinfo->flags, bytes, 1);
4226 spin_unlock(&data_sinfo->lock);
4227
4228 return 0;
4229}
4230
4231int btrfs_check_data_free_space(struct inode *inode,
4232 struct extent_changeset **reserved, u64 start, u64 len)
4233{
4234 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4235 int ret;
4236
4237 /* align the range */
4238 len = round_up(start + len, fs_info->sectorsize) -
4239 round_down(start, fs_info->sectorsize);
4240 start = round_down(start, fs_info->sectorsize);
4241
4242 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4243 if (ret < 0)
4244 return ret;
4245
4246 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4247 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4248 if (ret < 0)
4249 btrfs_free_reserved_data_space_noquota(inode, start, len);
4250 else
4251 ret = 0;
4252 return ret;
4253}
4254
4255/*
4256 * Called if we need to clear a data reservation for this inode
4257 * Normally in a error case.
4258 *
4259 * This one will *NOT* use accurate qgroup reserved space API, just for case
4260 * which we can't sleep and is sure it won't affect qgroup reserved space.
4261 * Like clear_bit_hook().
4262 */
4263void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4264 u64 len)
4265{
4266 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4267 struct btrfs_space_info *data_sinfo;
4268
4269 /* Make sure the range is aligned to sectorsize */
4270 len = round_up(start + len, fs_info->sectorsize) -
4271 round_down(start, fs_info->sectorsize);
4272 start = round_down(start, fs_info->sectorsize);
4273
4274 data_sinfo = fs_info->data_sinfo;
4275 spin_lock(&data_sinfo->lock);
4276 if (WARN_ON(data_sinfo->bytes_may_use < len))
4277 data_sinfo->bytes_may_use = 0;
4278 else
4279 data_sinfo->bytes_may_use -= len;
4280 trace_btrfs_space_reservation(fs_info, "space_info",
4281 data_sinfo->flags, len, 0);
4282 spin_unlock(&data_sinfo->lock);
4283}
4284
4285/*
4286 * Called if we need to clear a data reservation for this inode
4287 * Normally in a error case.
4288 *
4289 * This one will handle the per-inode data rsv map for accurate reserved
4290 * space framework.
4291 */
4292void btrfs_free_reserved_data_space(struct inode *inode,
4293 struct extent_changeset *reserved, u64 start, u64 len)
4294{
4295 struct btrfs_root *root = BTRFS_I(inode)->root;
4296
4297 /* Make sure the range is aligned to sectorsize */
4298 len = round_up(start + len, root->fs_info->sectorsize) -
4299 round_down(start, root->fs_info->sectorsize);
4300 start = round_down(start, root->fs_info->sectorsize);
4301
4302 btrfs_free_reserved_data_space_noquota(inode, start, len);
4303 btrfs_qgroup_free_data(inode, reserved, start, len);
4304}
4305
4306static void force_metadata_allocation(struct btrfs_fs_info *info)
4307{
4308 struct list_head *head = &info->space_info;
4309 struct btrfs_space_info *found;
4310
4311 rcu_read_lock();
4312 list_for_each_entry_rcu(found, head, list) {
4313 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4314 found->force_alloc = CHUNK_ALLOC_FORCE;
4315 }
4316 rcu_read_unlock();
4317}
4318
4319static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4320{
4321 return (global->size << 1);
4322}
4323
4324static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4325 struct btrfs_space_info *sinfo, int force)
4326{
4327 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4328 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4329 u64 thresh;
4330
4331 if (force == CHUNK_ALLOC_FORCE)
4332 return 1;
4333
4334 /*
4335 * We need to take into account the global rsv because for all intents
4336 * and purposes it's used space. Don't worry about locking the
4337 * global_rsv, it doesn't change except when the transaction commits.
4338 */
4339 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4340 bytes_used += calc_global_rsv_need_space(global_rsv);
4341
4342 /*
4343 * in limited mode, we want to have some free space up to
4344 * about 1% of the FS size.
4345 */
4346 if (force == CHUNK_ALLOC_LIMITED) {
4347 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4348 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4349
4350 if (sinfo->total_bytes - bytes_used < thresh)
4351 return 1;
4352 }
4353
4354 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4355 return 0;
4356 return 1;
4357}
4358
4359static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4360{
4361 u64 num_dev;
4362
4363 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4364 BTRFS_BLOCK_GROUP_RAID0 |
4365 BTRFS_BLOCK_GROUP_RAID5 |
4366 BTRFS_BLOCK_GROUP_RAID6))
4367 num_dev = fs_info->fs_devices->rw_devices;
4368 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4369 num_dev = 2;
4370 else
4371 num_dev = 1; /* DUP or single */
4372
4373 return num_dev;
4374}
4375
4376/*
4377 * If @is_allocation is true, reserve space in the system space info necessary
4378 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4379 * removing a chunk.
4380 */
4381void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4382{
4383 struct btrfs_fs_info *fs_info = trans->fs_info;
4384 struct btrfs_space_info *info;
4385 u64 left;
4386 u64 thresh;
4387 int ret = 0;
4388 u64 num_devs;
4389
4390 /*
4391 * Needed because we can end up allocating a system chunk and for an
4392 * atomic and race free space reservation in the chunk block reserve.
4393 */
4394 lockdep_assert_held(&fs_info->chunk_mutex);
4395
4396 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4397 spin_lock(&info->lock);
4398 left = info->total_bytes - btrfs_space_info_used(info, true);
4399 spin_unlock(&info->lock);
4400
4401 num_devs = get_profile_num_devs(fs_info, type);
4402
4403 /* num_devs device items to update and 1 chunk item to add or remove */
4404 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4405 btrfs_calc_trans_metadata_size(fs_info, 1);
4406
4407 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4408 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4409 left, thresh, type);
4410 dump_space_info(fs_info, info, 0, 0);
4411 }
4412
4413 if (left < thresh) {
4414 u64 flags = btrfs_system_alloc_profile(fs_info);
4415
4416 /*
4417 * Ignore failure to create system chunk. We might end up not
4418 * needing it, as we might not need to COW all nodes/leafs from
4419 * the paths we visit in the chunk tree (they were already COWed
4420 * or created in the current transaction for example).
4421 */
4422 ret = btrfs_alloc_chunk(trans, flags);
4423 }
4424
4425 if (!ret) {
4426 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4427 &fs_info->chunk_block_rsv,
4428 thresh, BTRFS_RESERVE_NO_FLUSH);
4429 if (!ret)
4430 trans->chunk_bytes_reserved += thresh;
4431 }
4432}
4433
4434/*
4435 * If force is CHUNK_ALLOC_FORCE:
4436 * - return 1 if it successfully allocates a chunk,
4437 * - return errors including -ENOSPC otherwise.
4438 * If force is NOT CHUNK_ALLOC_FORCE:
4439 * - return 0 if it doesn't need to allocate a new chunk,
4440 * - return 1 if it successfully allocates a chunk,
4441 * - return errors including -ENOSPC otherwise.
4442 */
4443static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4444 int force)
4445{
4446 struct btrfs_fs_info *fs_info = trans->fs_info;
4447 struct btrfs_space_info *space_info;
4448 bool wait_for_alloc = false;
4449 bool should_alloc = false;
4450 int ret = 0;
4451
4452 /* Don't re-enter if we're already allocating a chunk */
4453 if (trans->allocating_chunk)
4454 return -ENOSPC;
4455
4456 space_info = __find_space_info(fs_info, flags);
4457 ASSERT(space_info);
4458
4459 do {
4460 spin_lock(&space_info->lock);
4461 if (force < space_info->force_alloc)
4462 force = space_info->force_alloc;
4463 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4464 if (space_info->full) {
4465 /* No more free physical space */
4466 if (should_alloc)
4467 ret = -ENOSPC;
4468 else
4469 ret = 0;
4470 spin_unlock(&space_info->lock);
4471 return ret;
4472 } else if (!should_alloc) {
4473 spin_unlock(&space_info->lock);
4474 return 0;
4475 } else if (space_info->chunk_alloc) {
4476 /*
4477 * Someone is already allocating, so we need to block
4478 * until this someone is finished and then loop to
4479 * recheck if we should continue with our allocation
4480 * attempt.
4481 */
4482 wait_for_alloc = true;
4483 spin_unlock(&space_info->lock);
4484 mutex_lock(&fs_info->chunk_mutex);
4485 mutex_unlock(&fs_info->chunk_mutex);
4486 } else {
4487 /* Proceed with allocation */
4488 space_info->chunk_alloc = 1;
4489 wait_for_alloc = false;
4490 spin_unlock(&space_info->lock);
4491 }
4492
4493 cond_resched();
4494 } while (wait_for_alloc);
4495
4496 mutex_lock(&fs_info->chunk_mutex);
4497 trans->allocating_chunk = true;
4498
4499 /*
4500 * If we have mixed data/metadata chunks we want to make sure we keep
4501 * allocating mixed chunks instead of individual chunks.
4502 */
4503 if (btrfs_mixed_space_info(space_info))
4504 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4505
4506 /*
4507 * if we're doing a data chunk, go ahead and make sure that
4508 * we keep a reasonable number of metadata chunks allocated in the
4509 * FS as well.
4510 */
4511 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4512 fs_info->data_chunk_allocations++;
4513 if (!(fs_info->data_chunk_allocations %
4514 fs_info->metadata_ratio))
4515 force_metadata_allocation(fs_info);
4516 }
4517
4518 /*
4519 * Check if we have enough space in SYSTEM chunk because we may need
4520 * to update devices.
4521 */
4522 check_system_chunk(trans, flags);
4523
4524 ret = btrfs_alloc_chunk(trans, flags);
4525 trans->allocating_chunk = false;
4526
4527 spin_lock(&space_info->lock);
4528 if (ret < 0) {
4529 if (ret == -ENOSPC)
4530 space_info->full = 1;
4531 else
4532 goto out;
4533 } else {
4534 ret = 1;
4535 space_info->max_extent_size = 0;
4536 }
4537
4538 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4539out:
4540 space_info->chunk_alloc = 0;
4541 spin_unlock(&space_info->lock);
4542 mutex_unlock(&fs_info->chunk_mutex);
4543 /*
4544 * When we allocate a new chunk we reserve space in the chunk block
4545 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4546 * add new nodes/leafs to it if we end up needing to do it when
4547 * inserting the chunk item and updating device items as part of the
4548 * second phase of chunk allocation, performed by
4549 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4550 * large number of new block groups to create in our transaction
4551 * handle's new_bgs list to avoid exhausting the chunk block reserve
4552 * in extreme cases - like having a single transaction create many new
4553 * block groups when starting to write out the free space caches of all
4554 * the block groups that were made dirty during the lifetime of the
4555 * transaction.
4556 */
4557 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4558 btrfs_create_pending_block_groups(trans);
4559
4560 return ret;
4561}
4562
4563static int can_overcommit(struct btrfs_fs_info *fs_info,
4564 struct btrfs_space_info *space_info, u64 bytes,
4565 enum btrfs_reserve_flush_enum flush,
4566 bool system_chunk)
4567{
4568 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4569 u64 profile;
4570 u64 space_size;
4571 u64 avail;
4572 u64 used;
4573 int factor;
4574
4575 /* Don't overcommit when in mixed mode. */
4576 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4577 return 0;
4578
4579 if (system_chunk)
4580 profile = btrfs_system_alloc_profile(fs_info);
4581 else
4582 profile = btrfs_metadata_alloc_profile(fs_info);
4583
4584 used = btrfs_space_info_used(space_info, false);
4585
4586 /*
4587 * We only want to allow over committing if we have lots of actual space
4588 * free, but if we don't have enough space to handle the global reserve
4589 * space then we could end up having a real enospc problem when trying
4590 * to allocate a chunk or some other such important allocation.
4591 */
4592 spin_lock(&global_rsv->lock);
4593 space_size = calc_global_rsv_need_space(global_rsv);
4594 spin_unlock(&global_rsv->lock);
4595 if (used + space_size >= space_info->total_bytes)
4596 return 0;
4597
4598 used += space_info->bytes_may_use;
4599
4600 avail = atomic64_read(&fs_info->free_chunk_space);
4601
4602 /*
4603 * If we have dup, raid1 or raid10 then only half of the free
4604 * space is actually useable. For raid56, the space info used
4605 * doesn't include the parity drive, so we don't have to
4606 * change the math
4607 */
4608 factor = btrfs_bg_type_to_factor(profile);
4609 avail = div_u64(avail, factor);
4610
4611 /*
4612 * If we aren't flushing all things, let us overcommit up to
4613 * 1/2th of the space. If we can flush, don't let us overcommit
4614 * too much, let it overcommit up to 1/8 of the space.
4615 */
4616 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4617 avail >>= 3;
4618 else
4619 avail >>= 1;
4620
4621 if (used + bytes < space_info->total_bytes + avail)
4622 return 1;
4623 return 0;
4624}
4625
4626static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4627 unsigned long nr_pages, int nr_items)
4628{
4629 struct super_block *sb = fs_info->sb;
4630
4631 if (down_read_trylock(&sb->s_umount)) {
4632 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4633 up_read(&sb->s_umount);
4634 } else {
4635 /*
4636 * We needn't worry the filesystem going from r/w to r/o though
4637 * we don't acquire ->s_umount mutex, because the filesystem
4638 * should guarantee the delalloc inodes list be empty after
4639 * the filesystem is readonly(all dirty pages are written to
4640 * the disk).
4641 */
4642 btrfs_start_delalloc_roots(fs_info, nr_items);
4643 if (!current->journal_info)
4644 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4645 }
4646}
4647
4648static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4649 u64 to_reclaim)
4650{
4651 u64 bytes;
4652 u64 nr;
4653
4654 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4655 nr = div64_u64(to_reclaim, bytes);
4656 if (!nr)
4657 nr = 1;
4658 return nr;
4659}
4660
4661#define EXTENT_SIZE_PER_ITEM SZ_256K
4662
4663/*
4664 * shrink metadata reservation for delalloc
4665 */
4666static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4667 u64 orig, bool wait_ordered)
4668{
4669 struct btrfs_space_info *space_info;
4670 struct btrfs_trans_handle *trans;
4671 u64 delalloc_bytes;
4672 u64 max_reclaim;
4673 u64 items;
4674 long time_left;
4675 unsigned long nr_pages;
4676 int loops;
4677
4678 /* Calc the number of the pages we need flush for space reservation */
4679 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4680 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4681
4682 trans = (struct btrfs_trans_handle *)current->journal_info;
4683 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4684
4685 delalloc_bytes = percpu_counter_sum_positive(
4686 &fs_info->delalloc_bytes);
4687 if (delalloc_bytes == 0) {
4688 if (trans)
4689 return;
4690 if (wait_ordered)
4691 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4692 return;
4693 }
4694
4695 loops = 0;
4696 while (delalloc_bytes && loops < 3) {
4697 max_reclaim = min(delalloc_bytes, to_reclaim);
4698 nr_pages = max_reclaim >> PAGE_SHIFT;
4699 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4700 /*
4701 * We need to wait for the async pages to actually start before
4702 * we do anything.
4703 */
4704 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4705 if (!max_reclaim)
4706 goto skip_async;
4707
4708 if (max_reclaim <= nr_pages)
4709 max_reclaim = 0;
4710 else
4711 max_reclaim -= nr_pages;
4712
4713 wait_event(fs_info->async_submit_wait,
4714 atomic_read(&fs_info->async_delalloc_pages) <=
4715 (int)max_reclaim);
4716skip_async:
4717 spin_lock(&space_info->lock);
4718 if (list_empty(&space_info->tickets) &&
4719 list_empty(&space_info->priority_tickets)) {
4720 spin_unlock(&space_info->lock);
4721 break;
4722 }
4723 spin_unlock(&space_info->lock);
4724
4725 loops++;
4726 if (wait_ordered && !trans) {
4727 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4728 } else {
4729 time_left = schedule_timeout_killable(1);
4730 if (time_left)
4731 break;
4732 }
4733 delalloc_bytes = percpu_counter_sum_positive(
4734 &fs_info->delalloc_bytes);
4735 }
4736}
4737
4738struct reserve_ticket {
4739 u64 bytes;
4740 int error;
4741 struct list_head list;
4742 wait_queue_head_t wait;
4743};
4744
4745/**
4746 * maybe_commit_transaction - possibly commit the transaction if its ok to
4747 * @root - the root we're allocating for
4748 * @bytes - the number of bytes we want to reserve
4749 * @force - force the commit
4750 *
4751 * This will check to make sure that committing the transaction will actually
4752 * get us somewhere and then commit the transaction if it does. Otherwise it
4753 * will return -ENOSPC.
4754 */
4755static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4756 struct btrfs_space_info *space_info)
4757{
4758 struct reserve_ticket *ticket = NULL;
4759 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4760 struct btrfs_trans_handle *trans;
4761 u64 bytes;
4762
4763 trans = (struct btrfs_trans_handle *)current->journal_info;
4764 if (trans)
4765 return -EAGAIN;
4766
4767 spin_lock(&space_info->lock);
4768 if (!list_empty(&space_info->priority_tickets))
4769 ticket = list_first_entry(&space_info->priority_tickets,
4770 struct reserve_ticket, list);
4771 else if (!list_empty(&space_info->tickets))
4772 ticket = list_first_entry(&space_info->tickets,
4773 struct reserve_ticket, list);
4774 bytes = (ticket) ? ticket->bytes : 0;
4775 spin_unlock(&space_info->lock);
4776
4777 if (!bytes)
4778 return 0;
4779
4780 /* See if there is enough pinned space to make this reservation */
4781 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4782 bytes,
4783 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4784 goto commit;
4785
4786 /*
4787 * See if there is some space in the delayed insertion reservation for
4788 * this reservation.
4789 */
4790 if (space_info != delayed_rsv->space_info)
4791 return -ENOSPC;
4792
4793 spin_lock(&delayed_rsv->lock);
4794 if (delayed_rsv->size > bytes)
4795 bytes = 0;
4796 else
4797 bytes -= delayed_rsv->size;
4798 spin_unlock(&delayed_rsv->lock);
4799
4800 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4801 bytes,
4802 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4803 return -ENOSPC;
4804 }
4805
4806commit:
4807 trans = btrfs_join_transaction(fs_info->extent_root);
4808 if (IS_ERR(trans))
4809 return -ENOSPC;
4810
4811 return btrfs_commit_transaction(trans);
4812}
4813
4814/*
4815 * Try to flush some data based on policy set by @state. This is only advisory
4816 * and may fail for various reasons. The caller is supposed to examine the
4817 * state of @space_info to detect the outcome.
4818 */
4819static void flush_space(struct btrfs_fs_info *fs_info,
4820 struct btrfs_space_info *space_info, u64 num_bytes,
4821 int state)
4822{
4823 struct btrfs_root *root = fs_info->extent_root;
4824 struct btrfs_trans_handle *trans;
4825 int nr;
4826 int ret = 0;
4827
4828 switch (state) {
4829 case FLUSH_DELAYED_ITEMS_NR:
4830 case FLUSH_DELAYED_ITEMS:
4831 if (state == FLUSH_DELAYED_ITEMS_NR)
4832 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4833 else
4834 nr = -1;
4835
4836 trans = btrfs_join_transaction(root);
4837 if (IS_ERR(trans)) {
4838 ret = PTR_ERR(trans);
4839 break;
4840 }
4841 ret = btrfs_run_delayed_items_nr(trans, nr);
4842 btrfs_end_transaction(trans);
4843 break;
4844 case FLUSH_DELALLOC:
4845 case FLUSH_DELALLOC_WAIT:
4846 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4847 state == FLUSH_DELALLOC_WAIT);
4848 break;
4849 case ALLOC_CHUNK:
4850 trans = btrfs_join_transaction(root);
4851 if (IS_ERR(trans)) {
4852 ret = PTR_ERR(trans);
4853 break;
4854 }
4855 ret = do_chunk_alloc(trans,
4856 btrfs_metadata_alloc_profile(fs_info),
4857 CHUNK_ALLOC_NO_FORCE);
4858 btrfs_end_transaction(trans);
4859 if (ret > 0 || ret == -ENOSPC)
4860 ret = 0;
4861 break;
4862 case COMMIT_TRANS:
4863 ret = may_commit_transaction(fs_info, space_info);
4864 break;
4865 default:
4866 ret = -ENOSPC;
4867 break;
4868 }
4869
4870 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4871 ret);
4872 return;
4873}
4874
4875static inline u64
4876btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4877 struct btrfs_space_info *space_info,
4878 bool system_chunk)
4879{
4880 struct reserve_ticket *ticket;
4881 u64 used;
4882 u64 expected;
4883 u64 to_reclaim = 0;
4884
4885 list_for_each_entry(ticket, &space_info->tickets, list)
4886 to_reclaim += ticket->bytes;
4887 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4888 to_reclaim += ticket->bytes;
4889 if (to_reclaim)
4890 return to_reclaim;
4891
4892 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4893 if (can_overcommit(fs_info, space_info, to_reclaim,
4894 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4895 return 0;
4896
4897 used = btrfs_space_info_used(space_info, true);
4898
4899 if (can_overcommit(fs_info, space_info, SZ_1M,
4900 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4901 expected = div_factor_fine(space_info->total_bytes, 95);
4902 else
4903 expected = div_factor_fine(space_info->total_bytes, 90);
4904
4905 if (used > expected)
4906 to_reclaim = used - expected;
4907 else
4908 to_reclaim = 0;
4909 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4910 space_info->bytes_reserved);
4911 return to_reclaim;
4912}
4913
4914static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4915 struct btrfs_space_info *space_info,
4916 u64 used, bool system_chunk)
4917{
4918 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4919
4920 /* If we're just plain full then async reclaim just slows us down. */
4921 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4922 return 0;
4923
4924 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4925 system_chunk))
4926 return 0;
4927
4928 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4929 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4930}
4931
4932static void wake_all_tickets(struct list_head *head)
4933{
4934 struct reserve_ticket *ticket;
4935
4936 while (!list_empty(head)) {
4937 ticket = list_first_entry(head, struct reserve_ticket, list);
4938 list_del_init(&ticket->list);
4939 ticket->error = -ENOSPC;
4940 wake_up(&ticket->wait);
4941 }
4942}
4943
4944/*
4945 * This is for normal flushers, we can wait all goddamned day if we want to. We
4946 * will loop and continuously try to flush as long as we are making progress.
4947 * We count progress as clearing off tickets each time we have to loop.
4948 */
4949static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4950{
4951 struct btrfs_fs_info *fs_info;
4952 struct btrfs_space_info *space_info;
4953 u64 to_reclaim;
4954 int flush_state;
4955 int commit_cycles = 0;
4956 u64 last_tickets_id;
4957
4958 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4959 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4960
4961 spin_lock(&space_info->lock);
4962 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4963 false);
4964 if (!to_reclaim) {
4965 space_info->flush = 0;
4966 spin_unlock(&space_info->lock);
4967 return;
4968 }
4969 last_tickets_id = space_info->tickets_id;
4970 spin_unlock(&space_info->lock);
4971
4972 flush_state = FLUSH_DELAYED_ITEMS_NR;
4973 do {
4974 flush_space(fs_info, space_info, to_reclaim, flush_state);
4975 spin_lock(&space_info->lock);
4976 if (list_empty(&space_info->tickets)) {
4977 space_info->flush = 0;
4978 spin_unlock(&space_info->lock);
4979 return;
4980 }
4981 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4982 space_info,
4983 false);
4984 if (last_tickets_id == space_info->tickets_id) {
4985 flush_state++;
4986 } else {
4987 last_tickets_id = space_info->tickets_id;
4988 flush_state = FLUSH_DELAYED_ITEMS_NR;
4989 if (commit_cycles)
4990 commit_cycles--;
4991 }
4992
4993 if (flush_state > COMMIT_TRANS) {
4994 commit_cycles++;
4995 if (commit_cycles > 2) {
4996 wake_all_tickets(&space_info->tickets);
4997 space_info->flush = 0;
4998 } else {
4999 flush_state = FLUSH_DELAYED_ITEMS_NR;
5000 }
5001 }
5002 spin_unlock(&space_info->lock);
5003 } while (flush_state <= COMMIT_TRANS);
5004}
5005
5006void btrfs_init_async_reclaim_work(struct work_struct *work)
5007{
5008 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5009}
5010
5011static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5012 struct btrfs_space_info *space_info,
5013 struct reserve_ticket *ticket)
5014{
5015 u64 to_reclaim;
5016 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5017
5018 spin_lock(&space_info->lock);
5019 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5020 false);
5021 if (!to_reclaim) {
5022 spin_unlock(&space_info->lock);
5023 return;
5024 }
5025 spin_unlock(&space_info->lock);
5026
5027 do {
5028 flush_space(fs_info, space_info, to_reclaim, flush_state);
5029 flush_state++;
5030 spin_lock(&space_info->lock);
5031 if (ticket->bytes == 0) {
5032 spin_unlock(&space_info->lock);
5033 return;
5034 }
5035 spin_unlock(&space_info->lock);
5036
5037 /*
5038 * Priority flushers can't wait on delalloc without
5039 * deadlocking.
5040 */
5041 if (flush_state == FLUSH_DELALLOC ||
5042 flush_state == FLUSH_DELALLOC_WAIT)
5043 flush_state = ALLOC_CHUNK;
5044 } while (flush_state < COMMIT_TRANS);
5045}
5046
5047static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5048 struct btrfs_space_info *space_info,
5049 struct reserve_ticket *ticket, u64 orig_bytes)
5050
5051{
5052 DEFINE_WAIT(wait);
5053 int ret = 0;
5054
5055 spin_lock(&space_info->lock);
5056 while (ticket->bytes > 0 && ticket->error == 0) {
5057 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5058 if (ret) {
5059 ret = -EINTR;
5060 break;
5061 }
5062 spin_unlock(&space_info->lock);
5063
5064 schedule();
5065
5066 finish_wait(&ticket->wait, &wait);
5067 spin_lock(&space_info->lock);
5068 }
5069 if (!ret)
5070 ret = ticket->error;
5071 if (!list_empty(&ticket->list))
5072 list_del_init(&ticket->list);
5073 if (ticket->bytes && ticket->bytes < orig_bytes) {
5074 u64 num_bytes = orig_bytes - ticket->bytes;
5075 space_info->bytes_may_use -= num_bytes;
5076 trace_btrfs_space_reservation(fs_info, "space_info",
5077 space_info->flags, num_bytes, 0);
5078 }
5079 spin_unlock(&space_info->lock);
5080
5081 return ret;
5082}
5083
5084/**
5085 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5086 * @root - the root we're allocating for
5087 * @space_info - the space info we want to allocate from
5088 * @orig_bytes - the number of bytes we want
5089 * @flush - whether or not we can flush to make our reservation
5090 *
5091 * This will reserve orig_bytes number of bytes from the space info associated
5092 * with the block_rsv. If there is not enough space it will make an attempt to
5093 * flush out space to make room. It will do this by flushing delalloc if
5094 * possible or committing the transaction. If flush is 0 then no attempts to
5095 * regain reservations will be made and this will fail if there is not enough
5096 * space already.
5097 */
5098static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5099 struct btrfs_space_info *space_info,
5100 u64 orig_bytes,
5101 enum btrfs_reserve_flush_enum flush,
5102 bool system_chunk)
5103{
5104 struct reserve_ticket ticket;
5105 u64 used;
5106 int ret = 0;
5107
5108 ASSERT(orig_bytes);
5109 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5110
5111 spin_lock(&space_info->lock);
5112 ret = -ENOSPC;
5113 used = btrfs_space_info_used(space_info, true);
5114
5115 /*
5116 * If we have enough space then hooray, make our reservation and carry
5117 * on. If not see if we can overcommit, and if we can, hooray carry on.
5118 * If not things get more complicated.
5119 */
5120 if (used + orig_bytes <= space_info->total_bytes) {
5121 space_info->bytes_may_use += orig_bytes;
5122 trace_btrfs_space_reservation(fs_info, "space_info",
5123 space_info->flags, orig_bytes, 1);
5124 ret = 0;
5125 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5126 system_chunk)) {
5127 space_info->bytes_may_use += orig_bytes;
5128 trace_btrfs_space_reservation(fs_info, "space_info",
5129 space_info->flags, orig_bytes, 1);
5130 ret = 0;
5131 }
5132
5133 /*
5134 * If we couldn't make a reservation then setup our reservation ticket
5135 * and kick the async worker if it's not already running.
5136 *
5137 * If we are a priority flusher then we just need to add our ticket to
5138 * the list and we will do our own flushing further down.
5139 */
5140 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5141 ticket.bytes = orig_bytes;
5142 ticket.error = 0;
5143 init_waitqueue_head(&ticket.wait);
5144 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5145 list_add_tail(&ticket.list, &space_info->tickets);
5146 if (!space_info->flush) {
5147 space_info->flush = 1;
5148 trace_btrfs_trigger_flush(fs_info,
5149 space_info->flags,
5150 orig_bytes, flush,
5151 "enospc");
5152 queue_work(system_unbound_wq,
5153 &fs_info->async_reclaim_work);
5154 }
5155 } else {
5156 list_add_tail(&ticket.list,
5157 &space_info->priority_tickets);
5158 }
5159 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5160 used += orig_bytes;
5161 /*
5162 * We will do the space reservation dance during log replay,
5163 * which means we won't have fs_info->fs_root set, so don't do
5164 * the async reclaim as we will panic.
5165 */
5166 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5167 need_do_async_reclaim(fs_info, space_info,
5168 used, system_chunk) &&
5169 !work_busy(&fs_info->async_reclaim_work)) {
5170 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5171 orig_bytes, flush, "preempt");
5172 queue_work(system_unbound_wq,
5173 &fs_info->async_reclaim_work);
5174 }
5175 }
5176 spin_unlock(&space_info->lock);
5177 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5178 return ret;
5179
5180 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5181 return wait_reserve_ticket(fs_info, space_info, &ticket,
5182 orig_bytes);
5183
5184 ret = 0;
5185 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5186 spin_lock(&space_info->lock);
5187 if (ticket.bytes) {
5188 if (ticket.bytes < orig_bytes) {
5189 u64 num_bytes = orig_bytes - ticket.bytes;
5190 space_info->bytes_may_use -= num_bytes;
5191 trace_btrfs_space_reservation(fs_info, "space_info",
5192 space_info->flags,
5193 num_bytes, 0);
5194
5195 }
5196 list_del_init(&ticket.list);
5197 ret = -ENOSPC;
5198 }
5199 spin_unlock(&space_info->lock);
5200 ASSERT(list_empty(&ticket.list));
5201 return ret;
5202}
5203
5204/**
5205 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5206 * @root - the root we're allocating for
5207 * @block_rsv - the block_rsv we're allocating for
5208 * @orig_bytes - the number of bytes we want
5209 * @flush - whether or not we can flush to make our reservation
5210 *
5211 * This will reserve orgi_bytes number of bytes from the space info associated
5212 * with the block_rsv. If there is not enough space it will make an attempt to
5213 * flush out space to make room. It will do this by flushing delalloc if
5214 * possible or committing the transaction. If flush is 0 then no attempts to
5215 * regain reservations will be made and this will fail if there is not enough
5216 * space already.
5217 */
5218static int reserve_metadata_bytes(struct btrfs_root *root,
5219 struct btrfs_block_rsv *block_rsv,
5220 u64 orig_bytes,
5221 enum btrfs_reserve_flush_enum flush)
5222{
5223 struct btrfs_fs_info *fs_info = root->fs_info;
5224 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5225 int ret;
5226 bool system_chunk = (root == fs_info->chunk_root);
5227
5228 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5229 orig_bytes, flush, system_chunk);
5230 if (ret == -ENOSPC &&
5231 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5232 if (block_rsv != global_rsv &&
5233 !block_rsv_use_bytes(global_rsv, orig_bytes))
5234 ret = 0;
5235 }
5236 if (ret == -ENOSPC) {
5237 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5238 block_rsv->space_info->flags,
5239 orig_bytes, 1);
5240
5241 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5242 dump_space_info(fs_info, block_rsv->space_info,
5243 orig_bytes, 0);
5244 }
5245 return ret;
5246}
5247
5248static struct btrfs_block_rsv *get_block_rsv(
5249 const struct btrfs_trans_handle *trans,
5250 const struct btrfs_root *root)
5251{
5252 struct btrfs_fs_info *fs_info = root->fs_info;
5253 struct btrfs_block_rsv *block_rsv = NULL;
5254
5255 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5256 (root == fs_info->csum_root && trans->adding_csums) ||
5257 (root == fs_info->uuid_root))
5258 block_rsv = trans->block_rsv;
5259
5260 if (!block_rsv)
5261 block_rsv = root->block_rsv;
5262
5263 if (!block_rsv)
5264 block_rsv = &fs_info->empty_block_rsv;
5265
5266 return block_rsv;
5267}
5268
5269static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5270 u64 num_bytes)
5271{
5272 int ret = -ENOSPC;
5273 spin_lock(&block_rsv->lock);
5274 if (block_rsv->reserved >= num_bytes) {
5275 block_rsv->reserved -= num_bytes;
5276 if (block_rsv->reserved < block_rsv->size)
5277 block_rsv->full = 0;
5278 ret = 0;
5279 }
5280 spin_unlock(&block_rsv->lock);
5281 return ret;
5282}
5283
5284static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5285 u64 num_bytes, int update_size)
5286{
5287 spin_lock(&block_rsv->lock);
5288 block_rsv->reserved += num_bytes;
5289 if (update_size)
5290 block_rsv->size += num_bytes;
5291 else if (block_rsv->reserved >= block_rsv->size)
5292 block_rsv->full = 1;
5293 spin_unlock(&block_rsv->lock);
5294}
5295
5296int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5297 struct btrfs_block_rsv *dest, u64 num_bytes,
5298 int min_factor)
5299{
5300 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5301 u64 min_bytes;
5302
5303 if (global_rsv->space_info != dest->space_info)
5304 return -ENOSPC;
5305
5306 spin_lock(&global_rsv->lock);
5307 min_bytes = div_factor(global_rsv->size, min_factor);
5308 if (global_rsv->reserved < min_bytes + num_bytes) {
5309 spin_unlock(&global_rsv->lock);
5310 return -ENOSPC;
5311 }
5312 global_rsv->reserved -= num_bytes;
5313 if (global_rsv->reserved < global_rsv->size)
5314 global_rsv->full = 0;
5315 spin_unlock(&global_rsv->lock);
5316
5317 block_rsv_add_bytes(dest, num_bytes, 1);
5318 return 0;
5319}
5320
5321/*
5322 * This is for space we already have accounted in space_info->bytes_may_use, so
5323 * basically when we're returning space from block_rsv's.
5324 */
5325static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5326 struct btrfs_space_info *space_info,
5327 u64 num_bytes)
5328{
5329 struct reserve_ticket *ticket;
5330 struct list_head *head;
5331 u64 used;
5332 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5333 bool check_overcommit = false;
5334
5335 spin_lock(&space_info->lock);
5336 head = &space_info->priority_tickets;
5337
5338 /*
5339 * If we are over our limit then we need to check and see if we can
5340 * overcommit, and if we can't then we just need to free up our space
5341 * and not satisfy any requests.
5342 */
5343 used = btrfs_space_info_used(space_info, true);
5344 if (used - num_bytes >= space_info->total_bytes)
5345 check_overcommit = true;
5346again:
5347 while (!list_empty(head) && num_bytes) {
5348 ticket = list_first_entry(head, struct reserve_ticket,
5349 list);
5350 /*
5351 * We use 0 bytes because this space is already reserved, so
5352 * adding the ticket space would be a double count.
5353 */
5354 if (check_overcommit &&
5355 !can_overcommit(fs_info, space_info, 0, flush, false))
5356 break;
5357 if (num_bytes >= ticket->bytes) {
5358 list_del_init(&ticket->list);
5359 num_bytes -= ticket->bytes;
5360 ticket->bytes = 0;
5361 space_info->tickets_id++;
5362 wake_up(&ticket->wait);
5363 } else {
5364 ticket->bytes -= num_bytes;
5365 num_bytes = 0;
5366 }
5367 }
5368
5369 if (num_bytes && head == &space_info->priority_tickets) {
5370 head = &space_info->tickets;
5371 flush = BTRFS_RESERVE_FLUSH_ALL;
5372 goto again;
5373 }
5374 space_info->bytes_may_use -= num_bytes;
5375 trace_btrfs_space_reservation(fs_info, "space_info",
5376 space_info->flags, num_bytes, 0);
5377 spin_unlock(&space_info->lock);
5378}
5379
5380/*
5381 * This is for newly allocated space that isn't accounted in
5382 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5383 * we use this helper.
5384 */
5385static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5386 struct btrfs_space_info *space_info,
5387 u64 num_bytes)
5388{
5389 struct reserve_ticket *ticket;
5390 struct list_head *head = &space_info->priority_tickets;
5391
5392again:
5393 while (!list_empty(head) && num_bytes) {
5394 ticket = list_first_entry(head, struct reserve_ticket,
5395 list);
5396 if (num_bytes >= ticket->bytes) {
5397 trace_btrfs_space_reservation(fs_info, "space_info",
5398 space_info->flags,
5399 ticket->bytes, 1);
5400 list_del_init(&ticket->list);
5401 num_bytes -= ticket->bytes;
5402 space_info->bytes_may_use += ticket->bytes;
5403 ticket->bytes = 0;
5404 space_info->tickets_id++;
5405 wake_up(&ticket->wait);
5406 } else {
5407 trace_btrfs_space_reservation(fs_info, "space_info",
5408 space_info->flags,
5409 num_bytes, 1);
5410 space_info->bytes_may_use += num_bytes;
5411 ticket->bytes -= num_bytes;
5412 num_bytes = 0;
5413 }
5414 }
5415
5416 if (num_bytes && head == &space_info->priority_tickets) {
5417 head = &space_info->tickets;
5418 goto again;
5419 }
5420}
5421
5422static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5423 struct btrfs_block_rsv *block_rsv,
5424 struct btrfs_block_rsv *dest, u64 num_bytes,
5425 u64 *qgroup_to_release_ret)
5426{
5427 struct btrfs_space_info *space_info = block_rsv->space_info;
5428 u64 qgroup_to_release = 0;
5429 u64 ret;
5430
5431 spin_lock(&block_rsv->lock);
5432 if (num_bytes == (u64)-1) {
5433 num_bytes = block_rsv->size;
5434 qgroup_to_release = block_rsv->qgroup_rsv_size;
5435 }
5436 block_rsv->size -= num_bytes;
5437 if (block_rsv->reserved >= block_rsv->size) {
5438 num_bytes = block_rsv->reserved - block_rsv->size;
5439 block_rsv->reserved = block_rsv->size;
5440 block_rsv->full = 1;
5441 } else {
5442 num_bytes = 0;
5443 }
5444 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5445 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5446 block_rsv->qgroup_rsv_size;
5447 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5448 } else {
5449 qgroup_to_release = 0;
5450 }
5451 spin_unlock(&block_rsv->lock);
5452
5453 ret = num_bytes;
5454 if (num_bytes > 0) {
5455 if (dest) {
5456 spin_lock(&dest->lock);
5457 if (!dest->full) {
5458 u64 bytes_to_add;
5459
5460 bytes_to_add = dest->size - dest->reserved;
5461 bytes_to_add = min(num_bytes, bytes_to_add);
5462 dest->reserved += bytes_to_add;
5463 if (dest->reserved >= dest->size)
5464 dest->full = 1;
5465 num_bytes -= bytes_to_add;
5466 }
5467 spin_unlock(&dest->lock);
5468 }
5469 if (num_bytes)
5470 space_info_add_old_bytes(fs_info, space_info,
5471 num_bytes);
5472 }
5473 if (qgroup_to_release_ret)
5474 *qgroup_to_release_ret = qgroup_to_release;
5475 return ret;
5476}
5477
5478int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5479 struct btrfs_block_rsv *dst, u64 num_bytes,
5480 int update_size)
5481{
5482 int ret;
5483
5484 ret = block_rsv_use_bytes(src, num_bytes);
5485 if (ret)
5486 return ret;
5487
5488 block_rsv_add_bytes(dst, num_bytes, update_size);
5489 return 0;
5490}
5491
5492void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5493{
5494 memset(rsv, 0, sizeof(*rsv));
5495 spin_lock_init(&rsv->lock);
5496 rsv->type = type;
5497}
5498
5499void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5500 struct btrfs_block_rsv *rsv,
5501 unsigned short type)
5502{
5503 btrfs_init_block_rsv(rsv, type);
5504 rsv->space_info = __find_space_info(fs_info,
5505 BTRFS_BLOCK_GROUP_METADATA);
5506}
5507
5508struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5509 unsigned short type)
5510{
5511 struct btrfs_block_rsv *block_rsv;
5512
5513 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5514 if (!block_rsv)
5515 return NULL;
5516
5517 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5518 return block_rsv;
5519}
5520
5521void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5522 struct btrfs_block_rsv *rsv)
5523{
5524 if (!rsv)
5525 return;
5526 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5527 kfree(rsv);
5528}
5529
5530int btrfs_block_rsv_add(struct btrfs_root *root,
5531 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5532 enum btrfs_reserve_flush_enum flush)
5533{
5534 int ret;
5535
5536 if (num_bytes == 0)
5537 return 0;
5538
5539 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5540 if (!ret) {
5541 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5542 return 0;
5543 }
5544
5545 return ret;
5546}
5547
5548int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5549{
5550 u64 num_bytes = 0;
5551 int ret = -ENOSPC;
5552
5553 if (!block_rsv)
5554 return 0;
5555
5556 spin_lock(&block_rsv->lock);
5557 num_bytes = div_factor(block_rsv->size, min_factor);
5558 if (block_rsv->reserved >= num_bytes)
5559 ret = 0;
5560 spin_unlock(&block_rsv->lock);
5561
5562 return ret;
5563}
5564
5565int btrfs_block_rsv_refill(struct btrfs_root *root,
5566 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5567 enum btrfs_reserve_flush_enum flush)
5568{
5569 u64 num_bytes = 0;
5570 int ret = -ENOSPC;
5571
5572 if (!block_rsv)
5573 return 0;
5574
5575 spin_lock(&block_rsv->lock);
5576 num_bytes = min_reserved;
5577 if (block_rsv->reserved >= num_bytes)
5578 ret = 0;
5579 else
5580 num_bytes -= block_rsv->reserved;
5581 spin_unlock(&block_rsv->lock);
5582
5583 if (!ret)
5584 return 0;
5585
5586 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5587 if (!ret) {
5588 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5589 return 0;
5590 }
5591
5592 return ret;
5593}
5594
5595/**
5596 * btrfs_inode_rsv_refill - refill the inode block rsv.
5597 * @inode - the inode we are refilling.
5598 * @flush - the flusing restriction.
5599 *
5600 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5601 * block_rsv->size as the minimum size. We'll either refill the missing amount
5602 * or return if we already have enough space. This will also handle the resreve
5603 * tracepoint for the reserved amount.
5604 */
5605static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5606 enum btrfs_reserve_flush_enum flush)
5607{
5608 struct btrfs_root *root = inode->root;
5609 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5610 u64 num_bytes = 0;
5611 u64 qgroup_num_bytes = 0;
5612 int ret = -ENOSPC;
5613
5614 spin_lock(&block_rsv->lock);
5615 if (block_rsv->reserved < block_rsv->size)
5616 num_bytes = block_rsv->size - block_rsv->reserved;
5617 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5618 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5619 block_rsv->qgroup_rsv_reserved;
5620 spin_unlock(&block_rsv->lock);
5621
5622 if (num_bytes == 0)
5623 return 0;
5624
5625 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5626 if (ret)
5627 return ret;
5628 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5629 if (!ret) {
5630 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5631 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5632 btrfs_ino(inode), num_bytes, 1);
5633
5634 /* Don't forget to increase qgroup_rsv_reserved */
5635 spin_lock(&block_rsv->lock);
5636 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5637 spin_unlock(&block_rsv->lock);
5638 } else
5639 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5640 return ret;
5641}
5642
5643/**
5644 * btrfs_inode_rsv_release - release any excessive reservation.
5645 * @inode - the inode we need to release from.
5646 * @qgroup_free - free or convert qgroup meta.
5647 * Unlike normal operation, qgroup meta reservation needs to know if we are
5648 * freeing qgroup reservation or just converting it into per-trans. Normally
5649 * @qgroup_free is true for error handling, and false for normal release.
5650 *
5651 * This is the same as btrfs_block_rsv_release, except that it handles the
5652 * tracepoint for the reservation.
5653 */
5654static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5655{
5656 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5657 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5658 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5659 u64 released = 0;
5660 u64 qgroup_to_release = 0;
5661
5662 /*
5663 * Since we statically set the block_rsv->size we just want to say we
5664 * are releasing 0 bytes, and then we'll just get the reservation over
5665 * the size free'd.
5666 */
5667 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5668 &qgroup_to_release);
5669 if (released > 0)
5670 trace_btrfs_space_reservation(fs_info, "delalloc",
5671 btrfs_ino(inode), released, 0);
5672 if (qgroup_free)
5673 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5674 else
5675 btrfs_qgroup_convert_reserved_meta(inode->root,
5676 qgroup_to_release);
5677}
5678
5679void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5680 struct btrfs_block_rsv *block_rsv,
5681 u64 num_bytes)
5682{
5683 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5684
5685 if (global_rsv == block_rsv ||
5686 block_rsv->space_info != global_rsv->space_info)
5687 global_rsv = NULL;
5688 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5689}
5690
5691static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5692{
5693 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5694 struct btrfs_space_info *sinfo = block_rsv->space_info;
5695 u64 num_bytes;
5696
5697 /*
5698 * The global block rsv is based on the size of the extent tree, the
5699 * checksum tree and the root tree. If the fs is empty we want to set
5700 * it to a minimal amount for safety.
5701 */
5702 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5703 btrfs_root_used(&fs_info->csum_root->root_item) +
5704 btrfs_root_used(&fs_info->tree_root->root_item);
5705 num_bytes = max_t(u64, num_bytes, SZ_16M);
5706
5707 spin_lock(&sinfo->lock);
5708 spin_lock(&block_rsv->lock);
5709
5710 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5711
5712 if (block_rsv->reserved < block_rsv->size) {
5713 num_bytes = btrfs_space_info_used(sinfo, true);
5714 if (sinfo->total_bytes > num_bytes) {
5715 num_bytes = sinfo->total_bytes - num_bytes;
5716 num_bytes = min(num_bytes,
5717 block_rsv->size - block_rsv->reserved);
5718 block_rsv->reserved += num_bytes;
5719 sinfo->bytes_may_use += num_bytes;
5720 trace_btrfs_space_reservation(fs_info, "space_info",
5721 sinfo->flags, num_bytes,
5722 1);
5723 }
5724 } else if (block_rsv->reserved > block_rsv->size) {
5725 num_bytes = block_rsv->reserved - block_rsv->size;
5726 sinfo->bytes_may_use -= num_bytes;
5727 trace_btrfs_space_reservation(fs_info, "space_info",
5728 sinfo->flags, num_bytes, 0);
5729 block_rsv->reserved = block_rsv->size;
5730 }
5731
5732 if (block_rsv->reserved == block_rsv->size)
5733 block_rsv->full = 1;
5734 else
5735 block_rsv->full = 0;
5736
5737 spin_unlock(&block_rsv->lock);
5738 spin_unlock(&sinfo->lock);
5739}
5740
5741static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5742{
5743 struct btrfs_space_info *space_info;
5744
5745 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5746 fs_info->chunk_block_rsv.space_info = space_info;
5747
5748 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5749 fs_info->global_block_rsv.space_info = space_info;
5750 fs_info->trans_block_rsv.space_info = space_info;
5751 fs_info->empty_block_rsv.space_info = space_info;
5752 fs_info->delayed_block_rsv.space_info = space_info;
5753
5754 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5755 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5756 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5757 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5758 if (fs_info->quota_root)
5759 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5760 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5761
5762 update_global_block_rsv(fs_info);
5763}
5764
5765static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5766{
5767 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5768 (u64)-1, NULL);
5769 WARN_ON(fs_info->trans_block_rsv.size > 0);
5770 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5771 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5772 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5773 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5774 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5775}
5776
5777
5778/*
5779 * To be called after all the new block groups attached to the transaction
5780 * handle have been created (btrfs_create_pending_block_groups()).
5781 */
5782void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5783{
5784 struct btrfs_fs_info *fs_info = trans->fs_info;
5785
5786 if (!trans->chunk_bytes_reserved)
5787 return;
5788
5789 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5790
5791 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5792 trans->chunk_bytes_reserved, NULL);
5793 trans->chunk_bytes_reserved = 0;
5794}
5795
5796/*
5797 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5798 * root: the root of the parent directory
5799 * rsv: block reservation
5800 * items: the number of items that we need do reservation
5801 * use_global_rsv: allow fallback to the global block reservation
5802 *
5803 * This function is used to reserve the space for snapshot/subvolume
5804 * creation and deletion. Those operations are different with the
5805 * common file/directory operations, they change two fs/file trees
5806 * and root tree, the number of items that the qgroup reserves is
5807 * different with the free space reservation. So we can not use
5808 * the space reservation mechanism in start_transaction().
5809 */
5810int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5811 struct btrfs_block_rsv *rsv, int items,
5812 bool use_global_rsv)
5813{
5814 u64 qgroup_num_bytes = 0;
5815 u64 num_bytes;
5816 int ret;
5817 struct btrfs_fs_info *fs_info = root->fs_info;
5818 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5819
5820 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5821 /* One for parent inode, two for dir entries */
5822 qgroup_num_bytes = 3 * fs_info->nodesize;
5823 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5824 qgroup_num_bytes, true);
5825 if (ret)
5826 return ret;
5827 }
5828
5829 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5830 rsv->space_info = __find_space_info(fs_info,
5831 BTRFS_BLOCK_GROUP_METADATA);
5832 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5833 BTRFS_RESERVE_FLUSH_ALL);
5834
5835 if (ret == -ENOSPC && use_global_rsv)
5836 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5837
5838 if (ret && qgroup_num_bytes)
5839 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5840
5841 return ret;
5842}
5843
5844void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5845 struct btrfs_block_rsv *rsv)
5846{
5847 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5848}
5849
5850static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5851 struct btrfs_inode *inode)
5852{
5853 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5854 u64 reserve_size = 0;
5855 u64 qgroup_rsv_size = 0;
5856 u64 csum_leaves;
5857 unsigned outstanding_extents;
5858
5859 lockdep_assert_held(&inode->lock);
5860 outstanding_extents = inode->outstanding_extents;
5861 if (outstanding_extents)
5862 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5863 outstanding_extents + 1);
5864 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5865 inode->csum_bytes);
5866 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5867 csum_leaves);
5868 /*
5869 * For qgroup rsv, the calculation is very simple:
5870 * account one nodesize for each outstanding extent
5871 *
5872 * This is overestimating in most cases.
5873 */
5874 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
5875
5876 spin_lock(&block_rsv->lock);
5877 block_rsv->size = reserve_size;
5878 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5879 spin_unlock(&block_rsv->lock);
5880}
5881
5882int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5883{
5884 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5885 unsigned nr_extents;
5886 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5887 int ret = 0;
5888 bool delalloc_lock = true;
5889
5890 /* If we are a free space inode we need to not flush since we will be in
5891 * the middle of a transaction commit. We also don't need the delalloc
5892 * mutex since we won't race with anybody. We need this mostly to make
5893 * lockdep shut its filthy mouth.
5894 *
5895 * If we have a transaction open (can happen if we call truncate_block
5896 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5897 */
5898 if (btrfs_is_free_space_inode(inode)) {
5899 flush = BTRFS_RESERVE_NO_FLUSH;
5900 delalloc_lock = false;
5901 } else {
5902 if (current->journal_info)
5903 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5904
5905 if (btrfs_transaction_in_commit(fs_info))
5906 schedule_timeout(1);
5907 }
5908
5909 if (delalloc_lock)
5910 mutex_lock(&inode->delalloc_mutex);
5911
5912 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5913
5914 /* Add our new extents and calculate the new rsv size. */
5915 spin_lock(&inode->lock);
5916 nr_extents = count_max_extents(num_bytes);
5917 btrfs_mod_outstanding_extents(inode, nr_extents);
5918 inode->csum_bytes += num_bytes;
5919 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5920 spin_unlock(&inode->lock);
5921
5922 ret = btrfs_inode_rsv_refill(inode, flush);
5923 if (unlikely(ret))
5924 goto out_fail;
5925
5926 if (delalloc_lock)
5927 mutex_unlock(&inode->delalloc_mutex);
5928 return 0;
5929
5930out_fail:
5931 spin_lock(&inode->lock);
5932 nr_extents = count_max_extents(num_bytes);
5933 btrfs_mod_outstanding_extents(inode, -nr_extents);
5934 inode->csum_bytes -= num_bytes;
5935 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5936 spin_unlock(&inode->lock);
5937
5938 btrfs_inode_rsv_release(inode, true);
5939 if (delalloc_lock)
5940 mutex_unlock(&inode->delalloc_mutex);
5941 return ret;
5942}
5943
5944/**
5945 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5946 * @inode: the inode to release the reservation for.
5947 * @num_bytes: the number of bytes we are releasing.
5948 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5949 *
5950 * This will release the metadata reservation for an inode. This can be called
5951 * once we complete IO for a given set of bytes to release their metadata
5952 * reservations, or on error for the same reason.
5953 */
5954void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5955 bool qgroup_free)
5956{
5957 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5958
5959 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5960 spin_lock(&inode->lock);
5961 inode->csum_bytes -= num_bytes;
5962 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5963 spin_unlock(&inode->lock);
5964
5965 if (btrfs_is_testing(fs_info))
5966 return;
5967
5968 btrfs_inode_rsv_release(inode, qgroup_free);
5969}
5970
5971/**
5972 * btrfs_delalloc_release_extents - release our outstanding_extents
5973 * @inode: the inode to balance the reservation for.
5974 * @num_bytes: the number of bytes we originally reserved with
5975 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5976 *
5977 * When we reserve space we increase outstanding_extents for the extents we may
5978 * add. Once we've set the range as delalloc or created our ordered extents we
5979 * have outstanding_extents to track the real usage, so we use this to free our
5980 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5981 * with btrfs_delalloc_reserve_metadata.
5982 */
5983void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
5984{
5985 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5986 unsigned num_extents;
5987
5988 spin_lock(&inode->lock);
5989 num_extents = count_max_extents(num_bytes);
5990 btrfs_mod_outstanding_extents(inode, -num_extents);
5991 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5992 spin_unlock(&inode->lock);
5993
5994 if (btrfs_is_testing(fs_info))
5995 return;
5996
5997 btrfs_inode_rsv_release(inode, true);
5998}
5999
6000/**
6001 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6002 * delalloc
6003 * @inode: inode we're writing to
6004 * @start: start range we are writing to
6005 * @len: how long the range we are writing to
6006 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6007 * current reservation.
6008 *
6009 * This will do the following things
6010 *
6011 * o reserve space in data space info for num bytes
6012 * and reserve precious corresponding qgroup space
6013 * (Done in check_data_free_space)
6014 *
6015 * o reserve space for metadata space, based on the number of outstanding
6016 * extents and how much csums will be needed
6017 * also reserve metadata space in a per root over-reserve method.
6018 * o add to the inodes->delalloc_bytes
6019 * o add it to the fs_info's delalloc inodes list.
6020 * (Above 3 all done in delalloc_reserve_metadata)
6021 *
6022 * Return 0 for success
6023 * Return <0 for error(-ENOSPC or -EQUOT)
6024 */
6025int btrfs_delalloc_reserve_space(struct inode *inode,
6026 struct extent_changeset **reserved, u64 start, u64 len)
6027{
6028 int ret;
6029
6030 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6031 if (ret < 0)
6032 return ret;
6033 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6034 if (ret < 0)
6035 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6036 return ret;
6037}
6038
6039/**
6040 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6041 * @inode: inode we're releasing space for
6042 * @start: start position of the space already reserved
6043 * @len: the len of the space already reserved
6044 * @release_bytes: the len of the space we consumed or didn't use
6045 *
6046 * This function will release the metadata space that was not used and will
6047 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6048 * list if there are no delalloc bytes left.
6049 * Also it will handle the qgroup reserved space.
6050 */
6051void btrfs_delalloc_release_space(struct inode *inode,
6052 struct extent_changeset *reserved,
6053 u64 start, u64 len, bool qgroup_free)
6054{
6055 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6056 btrfs_free_reserved_data_space(inode, reserved, start, len);
6057}
6058
6059static int update_block_group(struct btrfs_trans_handle *trans,
6060 struct btrfs_fs_info *info, u64 bytenr,
6061 u64 num_bytes, int alloc)
6062{
6063 struct btrfs_block_group_cache *cache = NULL;
6064 u64 total = num_bytes;
6065 u64 old_val;
6066 u64 byte_in_group;
6067 int factor;
6068
6069 /* block accounting for super block */
6070 spin_lock(&info->delalloc_root_lock);
6071 old_val = btrfs_super_bytes_used(info->super_copy);
6072 if (alloc)
6073 old_val += num_bytes;
6074 else
6075 old_val -= num_bytes;
6076 btrfs_set_super_bytes_used(info->super_copy, old_val);
6077 spin_unlock(&info->delalloc_root_lock);
6078
6079 while (total) {
6080 cache = btrfs_lookup_block_group(info, bytenr);
6081 if (!cache)
6082 return -ENOENT;
6083 factor = btrfs_bg_type_to_factor(cache->flags);
6084
6085 /*
6086 * If this block group has free space cache written out, we
6087 * need to make sure to load it if we are removing space. This
6088 * is because we need the unpinning stage to actually add the
6089 * space back to the block group, otherwise we will leak space.
6090 */
6091 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6092 cache_block_group(cache, 1);
6093
6094 byte_in_group = bytenr - cache->key.objectid;
6095 WARN_ON(byte_in_group > cache->key.offset);
6096
6097 spin_lock(&cache->space_info->lock);
6098 spin_lock(&cache->lock);
6099
6100 if (btrfs_test_opt(info, SPACE_CACHE) &&
6101 cache->disk_cache_state < BTRFS_DC_CLEAR)
6102 cache->disk_cache_state = BTRFS_DC_CLEAR;
6103
6104 old_val = btrfs_block_group_used(&cache->item);
6105 num_bytes = min(total, cache->key.offset - byte_in_group);
6106 if (alloc) {
6107 old_val += num_bytes;
6108 btrfs_set_block_group_used(&cache->item, old_val);
6109 cache->reserved -= num_bytes;
6110 cache->space_info->bytes_reserved -= num_bytes;
6111 cache->space_info->bytes_used += num_bytes;
6112 cache->space_info->disk_used += num_bytes * factor;
6113 spin_unlock(&cache->lock);
6114 spin_unlock(&cache->space_info->lock);
6115 } else {
6116 old_val -= num_bytes;
6117 btrfs_set_block_group_used(&cache->item, old_val);
6118 cache->pinned += num_bytes;
6119 cache->space_info->bytes_pinned += num_bytes;
6120 cache->space_info->bytes_used -= num_bytes;
6121 cache->space_info->disk_used -= num_bytes * factor;
6122 spin_unlock(&cache->lock);
6123 spin_unlock(&cache->space_info->lock);
6124
6125 trace_btrfs_space_reservation(info, "pinned",
6126 cache->space_info->flags,
6127 num_bytes, 1);
6128 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6129 num_bytes,
6130 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6131 set_extent_dirty(info->pinned_extents,
6132 bytenr, bytenr + num_bytes - 1,
6133 GFP_NOFS | __GFP_NOFAIL);
6134 }
6135
6136 spin_lock(&trans->transaction->dirty_bgs_lock);
6137 if (list_empty(&cache->dirty_list)) {
6138 list_add_tail(&cache->dirty_list,
6139 &trans->transaction->dirty_bgs);
6140 trans->transaction->num_dirty_bgs++;
6141 btrfs_get_block_group(cache);
6142 }
6143 spin_unlock(&trans->transaction->dirty_bgs_lock);
6144
6145 /*
6146 * No longer have used bytes in this block group, queue it for
6147 * deletion. We do this after adding the block group to the
6148 * dirty list to avoid races between cleaner kthread and space
6149 * cache writeout.
6150 */
6151 if (!alloc && old_val == 0)
6152 btrfs_mark_bg_unused(cache);
6153
6154 btrfs_put_block_group(cache);
6155 total -= num_bytes;
6156 bytenr += num_bytes;
6157 }
6158 return 0;
6159}
6160
6161static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6162{
6163 struct btrfs_block_group_cache *cache;
6164 u64 bytenr;
6165
6166 spin_lock(&fs_info->block_group_cache_lock);
6167 bytenr = fs_info->first_logical_byte;
6168 spin_unlock(&fs_info->block_group_cache_lock);
6169
6170 if (bytenr < (u64)-1)
6171 return bytenr;
6172
6173 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6174 if (!cache)
6175 return 0;
6176
6177 bytenr = cache->key.objectid;
6178 btrfs_put_block_group(cache);
6179
6180 return bytenr;
6181}
6182
6183static int pin_down_extent(struct btrfs_fs_info *fs_info,
6184 struct btrfs_block_group_cache *cache,
6185 u64 bytenr, u64 num_bytes, int reserved)
6186{
6187 spin_lock(&cache->space_info->lock);
6188 spin_lock(&cache->lock);
6189 cache->pinned += num_bytes;
6190 cache->space_info->bytes_pinned += num_bytes;
6191 if (reserved) {
6192 cache->reserved -= num_bytes;
6193 cache->space_info->bytes_reserved -= num_bytes;
6194 }
6195 spin_unlock(&cache->lock);
6196 spin_unlock(&cache->space_info->lock);
6197
6198 trace_btrfs_space_reservation(fs_info, "pinned",
6199 cache->space_info->flags, num_bytes, 1);
6200 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6201 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6202 set_extent_dirty(fs_info->pinned_extents, bytenr,
6203 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6204 return 0;
6205}
6206
6207/*
6208 * this function must be called within transaction
6209 */
6210int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6211 u64 bytenr, u64 num_bytes, int reserved)
6212{
6213 struct btrfs_block_group_cache *cache;
6214
6215 cache = btrfs_lookup_block_group(fs_info, bytenr);
6216 BUG_ON(!cache); /* Logic error */
6217
6218 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6219
6220 btrfs_put_block_group(cache);
6221 return 0;
6222}
6223
6224/*
6225 * this function must be called within transaction
6226 */
6227int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6228 u64 bytenr, u64 num_bytes)
6229{
6230 struct btrfs_block_group_cache *cache;
6231 int ret;
6232
6233 cache = btrfs_lookup_block_group(fs_info, bytenr);
6234 if (!cache)
6235 return -EINVAL;
6236
6237 /*
6238 * pull in the free space cache (if any) so that our pin
6239 * removes the free space from the cache. We have load_only set
6240 * to one because the slow code to read in the free extents does check
6241 * the pinned extents.
6242 */
6243 cache_block_group(cache, 1);
6244
6245 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6246
6247 /* remove us from the free space cache (if we're there at all) */
6248 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6249 btrfs_put_block_group(cache);
6250 return ret;
6251}
6252
6253static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6254 u64 start, u64 num_bytes)
6255{
6256 int ret;
6257 struct btrfs_block_group_cache *block_group;
6258 struct btrfs_caching_control *caching_ctl;
6259
6260 block_group = btrfs_lookup_block_group(fs_info, start);
6261 if (!block_group)
6262 return -EINVAL;
6263
6264 cache_block_group(block_group, 0);
6265 caching_ctl = get_caching_control(block_group);
6266
6267 if (!caching_ctl) {
6268 /* Logic error */
6269 BUG_ON(!block_group_cache_done(block_group));
6270 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6271 } else {
6272 mutex_lock(&caching_ctl->mutex);
6273
6274 if (start >= caching_ctl->progress) {
6275 ret = add_excluded_extent(fs_info, start, num_bytes);
6276 } else if (start + num_bytes <= caching_ctl->progress) {
6277 ret = btrfs_remove_free_space(block_group,
6278 start, num_bytes);
6279 } else {
6280 num_bytes = caching_ctl->progress - start;
6281 ret = btrfs_remove_free_space(block_group,
6282 start, num_bytes);
6283 if (ret)
6284 goto out_lock;
6285
6286 num_bytes = (start + num_bytes) -
6287 caching_ctl->progress;
6288 start = caching_ctl->progress;
6289 ret = add_excluded_extent(fs_info, start, num_bytes);
6290 }
6291out_lock:
6292 mutex_unlock(&caching_ctl->mutex);
6293 put_caching_control(caching_ctl);
6294 }
6295 btrfs_put_block_group(block_group);
6296 return ret;
6297}
6298
6299int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6300 struct extent_buffer *eb)
6301{
6302 struct btrfs_file_extent_item *item;
6303 struct btrfs_key key;
6304 int found_type;
6305 int i;
6306 int ret = 0;
6307
6308 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6309 return 0;
6310
6311 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6312 btrfs_item_key_to_cpu(eb, &key, i);
6313 if (key.type != BTRFS_EXTENT_DATA_KEY)
6314 continue;
6315 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6316 found_type = btrfs_file_extent_type(eb, item);
6317 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6318 continue;
6319 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6320 continue;
6321 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6322 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6323 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6324 if (ret)
6325 break;
6326 }
6327
6328 return ret;
6329}
6330
6331static void
6332btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6333{
6334 atomic_inc(&bg->reservations);
6335}
6336
6337void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6338 const u64 start)
6339{
6340 struct btrfs_block_group_cache *bg;
6341
6342 bg = btrfs_lookup_block_group(fs_info, start);
6343 ASSERT(bg);
6344 if (atomic_dec_and_test(&bg->reservations))
6345 wake_up_var(&bg->reservations);
6346 btrfs_put_block_group(bg);
6347}
6348
6349void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6350{
6351 struct btrfs_space_info *space_info = bg->space_info;
6352
6353 ASSERT(bg->ro);
6354
6355 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6356 return;
6357
6358 /*
6359 * Our block group is read only but before we set it to read only,
6360 * some task might have had allocated an extent from it already, but it
6361 * has not yet created a respective ordered extent (and added it to a
6362 * root's list of ordered extents).
6363 * Therefore wait for any task currently allocating extents, since the
6364 * block group's reservations counter is incremented while a read lock
6365 * on the groups' semaphore is held and decremented after releasing
6366 * the read access on that semaphore and creating the ordered extent.
6367 */
6368 down_write(&space_info->groups_sem);
6369 up_write(&space_info->groups_sem);
6370
6371 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6372}
6373
6374/**
6375 * btrfs_add_reserved_bytes - update the block_group and space info counters
6376 * @cache: The cache we are manipulating
6377 * @ram_bytes: The number of bytes of file content, and will be same to
6378 * @num_bytes except for the compress path.
6379 * @num_bytes: The number of bytes in question
6380 * @delalloc: The blocks are allocated for the delalloc write
6381 *
6382 * This is called by the allocator when it reserves space. If this is a
6383 * reservation and the block group has become read only we cannot make the
6384 * reservation and return -EAGAIN, otherwise this function always succeeds.
6385 */
6386static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6387 u64 ram_bytes, u64 num_bytes, int delalloc)
6388{
6389 struct btrfs_space_info *space_info = cache->space_info;
6390 int ret = 0;
6391
6392 spin_lock(&space_info->lock);
6393 spin_lock(&cache->lock);
6394 if (cache->ro) {
6395 ret = -EAGAIN;
6396 } else {
6397 cache->reserved += num_bytes;
6398 space_info->bytes_reserved += num_bytes;
6399
6400 trace_btrfs_space_reservation(cache->fs_info,
6401 "space_info", space_info->flags,
6402 ram_bytes, 0);
6403 space_info->bytes_may_use -= ram_bytes;
6404 if (delalloc)
6405 cache->delalloc_bytes += num_bytes;
6406 }
6407 spin_unlock(&cache->lock);
6408 spin_unlock(&space_info->lock);
6409 return ret;
6410}
6411
6412/**
6413 * btrfs_free_reserved_bytes - update the block_group and space info counters
6414 * @cache: The cache we are manipulating
6415 * @num_bytes: The number of bytes in question
6416 * @delalloc: The blocks are allocated for the delalloc write
6417 *
6418 * This is called by somebody who is freeing space that was never actually used
6419 * on disk. For example if you reserve some space for a new leaf in transaction
6420 * A and before transaction A commits you free that leaf, you call this with
6421 * reserve set to 0 in order to clear the reservation.
6422 */
6423
6424static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6425 u64 num_bytes, int delalloc)
6426{
6427 struct btrfs_space_info *space_info = cache->space_info;
6428 int ret = 0;
6429
6430 spin_lock(&space_info->lock);
6431 spin_lock(&cache->lock);
6432 if (cache->ro)
6433 space_info->bytes_readonly += num_bytes;
6434 cache->reserved -= num_bytes;
6435 space_info->bytes_reserved -= num_bytes;
6436 space_info->max_extent_size = 0;
6437
6438 if (delalloc)
6439 cache->delalloc_bytes -= num_bytes;
6440 spin_unlock(&cache->lock);
6441 spin_unlock(&space_info->lock);
6442 return ret;
6443}
6444void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6445{
6446 struct btrfs_caching_control *next;
6447 struct btrfs_caching_control *caching_ctl;
6448 struct btrfs_block_group_cache *cache;
6449
6450 down_write(&fs_info->commit_root_sem);
6451
6452 list_for_each_entry_safe(caching_ctl, next,
6453 &fs_info->caching_block_groups, list) {
6454 cache = caching_ctl->block_group;
6455 if (block_group_cache_done(cache)) {
6456 cache->last_byte_to_unpin = (u64)-1;
6457 list_del_init(&caching_ctl->list);
6458 put_caching_control(caching_ctl);
6459 } else {
6460 cache->last_byte_to_unpin = caching_ctl->progress;
6461 }
6462 }
6463
6464 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6465 fs_info->pinned_extents = &fs_info->freed_extents[1];
6466 else
6467 fs_info->pinned_extents = &fs_info->freed_extents[0];
6468
6469 up_write(&fs_info->commit_root_sem);
6470
6471 update_global_block_rsv(fs_info);
6472}
6473
6474/*
6475 * Returns the free cluster for the given space info and sets empty_cluster to
6476 * what it should be based on the mount options.
6477 */
6478static struct btrfs_free_cluster *
6479fetch_cluster_info(struct btrfs_fs_info *fs_info,
6480 struct btrfs_space_info *space_info, u64 *empty_cluster)
6481{
6482 struct btrfs_free_cluster *ret = NULL;
6483
6484 *empty_cluster = 0;
6485 if (btrfs_mixed_space_info(space_info))
6486 return ret;
6487
6488 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6489 ret = &fs_info->meta_alloc_cluster;
6490 if (btrfs_test_opt(fs_info, SSD))
6491 *empty_cluster = SZ_2M;
6492 else
6493 *empty_cluster = SZ_64K;
6494 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6495 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6496 *empty_cluster = SZ_2M;
6497 ret = &fs_info->data_alloc_cluster;
6498 }
6499
6500 return ret;
6501}
6502
6503static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6504 u64 start, u64 end,
6505 const bool return_free_space)
6506{
6507 struct btrfs_block_group_cache *cache = NULL;
6508 struct btrfs_space_info *space_info;
6509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6510 struct btrfs_free_cluster *cluster = NULL;
6511 u64 len;
6512 u64 total_unpinned = 0;
6513 u64 empty_cluster = 0;
6514 bool readonly;
6515
6516 while (start <= end) {
6517 readonly = false;
6518 if (!cache ||
6519 start >= cache->key.objectid + cache->key.offset) {
6520 if (cache)
6521 btrfs_put_block_group(cache);
6522 total_unpinned = 0;
6523 cache = btrfs_lookup_block_group(fs_info, start);
6524 BUG_ON(!cache); /* Logic error */
6525
6526 cluster = fetch_cluster_info(fs_info,
6527 cache->space_info,
6528 &empty_cluster);
6529 empty_cluster <<= 1;
6530 }
6531
6532 len = cache->key.objectid + cache->key.offset - start;
6533 len = min(len, end + 1 - start);
6534
6535 if (start < cache->last_byte_to_unpin) {
6536 len = min(len, cache->last_byte_to_unpin - start);
6537 if (return_free_space)
6538 btrfs_add_free_space(cache, start, len);
6539 }
6540
6541 start += len;
6542 total_unpinned += len;
6543 space_info = cache->space_info;
6544
6545 /*
6546 * If this space cluster has been marked as fragmented and we've
6547 * unpinned enough in this block group to potentially allow a
6548 * cluster to be created inside of it go ahead and clear the
6549 * fragmented check.
6550 */
6551 if (cluster && cluster->fragmented &&
6552 total_unpinned > empty_cluster) {
6553 spin_lock(&cluster->lock);
6554 cluster->fragmented = 0;
6555 spin_unlock(&cluster->lock);
6556 }
6557
6558 spin_lock(&space_info->lock);
6559 spin_lock(&cache->lock);
6560 cache->pinned -= len;
6561 space_info->bytes_pinned -= len;
6562
6563 trace_btrfs_space_reservation(fs_info, "pinned",
6564 space_info->flags, len, 0);
6565 space_info->max_extent_size = 0;
6566 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6567 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6568 if (cache->ro) {
6569 space_info->bytes_readonly += len;
6570 readonly = true;
6571 }
6572 spin_unlock(&cache->lock);
6573 if (!readonly && return_free_space &&
6574 global_rsv->space_info == space_info) {
6575 u64 to_add = len;
6576
6577 spin_lock(&global_rsv->lock);
6578 if (!global_rsv->full) {
6579 to_add = min(len, global_rsv->size -
6580 global_rsv->reserved);
6581 global_rsv->reserved += to_add;
6582 space_info->bytes_may_use += to_add;
6583 if (global_rsv->reserved >= global_rsv->size)
6584 global_rsv->full = 1;
6585 trace_btrfs_space_reservation(fs_info,
6586 "space_info",
6587 space_info->flags,
6588 to_add, 1);
6589 len -= to_add;
6590 }
6591 spin_unlock(&global_rsv->lock);
6592 /* Add to any tickets we may have */
6593 if (len)
6594 space_info_add_new_bytes(fs_info, space_info,
6595 len);
6596 }
6597 spin_unlock(&space_info->lock);
6598 }
6599
6600 if (cache)
6601 btrfs_put_block_group(cache);
6602 return 0;
6603}
6604
6605int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6606{
6607 struct btrfs_fs_info *fs_info = trans->fs_info;
6608 struct btrfs_block_group_cache *block_group, *tmp;
6609 struct list_head *deleted_bgs;
6610 struct extent_io_tree *unpin;
6611 u64 start;
6612 u64 end;
6613 int ret;
6614
6615 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6616 unpin = &fs_info->freed_extents[1];
6617 else
6618 unpin = &fs_info->freed_extents[0];
6619
6620 while (!trans->aborted) {
6621 struct extent_state *cached_state = NULL;
6622
6623 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6624 ret = find_first_extent_bit(unpin, 0, &start, &end,
6625 EXTENT_DIRTY, &cached_state);
6626 if (ret) {
6627 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6628 break;
6629 }
6630
6631 if (btrfs_test_opt(fs_info, DISCARD))
6632 ret = btrfs_discard_extent(fs_info, start,
6633 end + 1 - start, NULL);
6634
6635 clear_extent_dirty(unpin, start, end, &cached_state);
6636 unpin_extent_range(fs_info, start, end, true);
6637 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6638 free_extent_state(cached_state);
6639 cond_resched();
6640 }
6641
6642 /*
6643 * Transaction is finished. We don't need the lock anymore. We
6644 * do need to clean up the block groups in case of a transaction
6645 * abort.
6646 */
6647 deleted_bgs = &trans->transaction->deleted_bgs;
6648 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6649 u64 trimmed = 0;
6650
6651 ret = -EROFS;
6652 if (!trans->aborted)
6653 ret = btrfs_discard_extent(fs_info,
6654 block_group->key.objectid,
6655 block_group->key.offset,
6656 &trimmed);
6657
6658 list_del_init(&block_group->bg_list);
6659 btrfs_put_block_group_trimming(block_group);
6660 btrfs_put_block_group(block_group);
6661
6662 if (ret) {
6663 const char *errstr = btrfs_decode_error(ret);
6664 btrfs_warn(fs_info,
6665 "discard failed while removing blockgroup: errno=%d %s",
6666 ret, errstr);
6667 }
6668 }
6669
6670 return 0;
6671}
6672
6673static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6674 struct btrfs_delayed_ref_node *node, u64 parent,
6675 u64 root_objectid, u64 owner_objectid,
6676 u64 owner_offset, int refs_to_drop,
6677 struct btrfs_delayed_extent_op *extent_op)
6678{
6679 struct btrfs_fs_info *info = trans->fs_info;
6680 struct btrfs_key key;
6681 struct btrfs_path *path;
6682 struct btrfs_root *extent_root = info->extent_root;
6683 struct extent_buffer *leaf;
6684 struct btrfs_extent_item *ei;
6685 struct btrfs_extent_inline_ref *iref;
6686 int ret;
6687 int is_data;
6688 int extent_slot = 0;
6689 int found_extent = 0;
6690 int num_to_del = 1;
6691 u32 item_size;
6692 u64 refs;
6693 u64 bytenr = node->bytenr;
6694 u64 num_bytes = node->num_bytes;
6695 int last_ref = 0;
6696 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6697
6698 path = btrfs_alloc_path();
6699 if (!path)
6700 return -ENOMEM;
6701
6702 path->reada = READA_FORWARD;
6703 path->leave_spinning = 1;
6704
6705 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6706 BUG_ON(!is_data && refs_to_drop != 1);
6707
6708 if (is_data)
6709 skinny_metadata = false;
6710
6711 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6712 parent, root_objectid, owner_objectid,
6713 owner_offset);
6714 if (ret == 0) {
6715 extent_slot = path->slots[0];
6716 while (extent_slot >= 0) {
6717 btrfs_item_key_to_cpu(path->nodes[0], &key,
6718 extent_slot);
6719 if (key.objectid != bytenr)
6720 break;
6721 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6722 key.offset == num_bytes) {
6723 found_extent = 1;
6724 break;
6725 }
6726 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6727 key.offset == owner_objectid) {
6728 found_extent = 1;
6729 break;
6730 }
6731 if (path->slots[0] - extent_slot > 5)
6732 break;
6733 extent_slot--;
6734 }
6735
6736 if (!found_extent) {
6737 BUG_ON(iref);
6738 ret = remove_extent_backref(trans, path, NULL,
6739 refs_to_drop,
6740 is_data, &last_ref);
6741 if (ret) {
6742 btrfs_abort_transaction(trans, ret);
6743 goto out;
6744 }
6745 btrfs_release_path(path);
6746 path->leave_spinning = 1;
6747
6748 key.objectid = bytenr;
6749 key.type = BTRFS_EXTENT_ITEM_KEY;
6750 key.offset = num_bytes;
6751
6752 if (!is_data && skinny_metadata) {
6753 key.type = BTRFS_METADATA_ITEM_KEY;
6754 key.offset = owner_objectid;
6755 }
6756
6757 ret = btrfs_search_slot(trans, extent_root,
6758 &key, path, -1, 1);
6759 if (ret > 0 && skinny_metadata && path->slots[0]) {
6760 /*
6761 * Couldn't find our skinny metadata item,
6762 * see if we have ye olde extent item.
6763 */
6764 path->slots[0]--;
6765 btrfs_item_key_to_cpu(path->nodes[0], &key,
6766 path->slots[0]);
6767 if (key.objectid == bytenr &&
6768 key.type == BTRFS_EXTENT_ITEM_KEY &&
6769 key.offset == num_bytes)
6770 ret = 0;
6771 }
6772
6773 if (ret > 0 && skinny_metadata) {
6774 skinny_metadata = false;
6775 key.objectid = bytenr;
6776 key.type = BTRFS_EXTENT_ITEM_KEY;
6777 key.offset = num_bytes;
6778 btrfs_release_path(path);
6779 ret = btrfs_search_slot(trans, extent_root,
6780 &key, path, -1, 1);
6781 }
6782
6783 if (ret) {
6784 btrfs_err(info,
6785 "umm, got %d back from search, was looking for %llu",
6786 ret, bytenr);
6787 if (ret > 0)
6788 btrfs_print_leaf(path->nodes[0]);
6789 }
6790 if (ret < 0) {
6791 btrfs_abort_transaction(trans, ret);
6792 goto out;
6793 }
6794 extent_slot = path->slots[0];
6795 }
6796 } else if (WARN_ON(ret == -ENOENT)) {
6797 btrfs_print_leaf(path->nodes[0]);
6798 btrfs_err(info,
6799 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6800 bytenr, parent, root_objectid, owner_objectid,
6801 owner_offset);
6802 btrfs_abort_transaction(trans, ret);
6803 goto out;
6804 } else {
6805 btrfs_abort_transaction(trans, ret);
6806 goto out;
6807 }
6808
6809 leaf = path->nodes[0];
6810 item_size = btrfs_item_size_nr(leaf, extent_slot);
6811 if (unlikely(item_size < sizeof(*ei))) {
6812 ret = -EINVAL;
6813 btrfs_print_v0_err(info);
6814 btrfs_abort_transaction(trans, ret);
6815 goto out;
6816 }
6817 ei = btrfs_item_ptr(leaf, extent_slot,
6818 struct btrfs_extent_item);
6819 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6820 key.type == BTRFS_EXTENT_ITEM_KEY) {
6821 struct btrfs_tree_block_info *bi;
6822 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6823 bi = (struct btrfs_tree_block_info *)(ei + 1);
6824 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6825 }
6826
6827 refs = btrfs_extent_refs(leaf, ei);
6828 if (refs < refs_to_drop) {
6829 btrfs_err(info,
6830 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6831 refs_to_drop, refs, bytenr);
6832 ret = -EINVAL;
6833 btrfs_abort_transaction(trans, ret);
6834 goto out;
6835 }
6836 refs -= refs_to_drop;
6837
6838 if (refs > 0) {
6839 if (extent_op)
6840 __run_delayed_extent_op(extent_op, leaf, ei);
6841 /*
6842 * In the case of inline back ref, reference count will
6843 * be updated by remove_extent_backref
6844 */
6845 if (iref) {
6846 BUG_ON(!found_extent);
6847 } else {
6848 btrfs_set_extent_refs(leaf, ei, refs);
6849 btrfs_mark_buffer_dirty(leaf);
6850 }
6851 if (found_extent) {
6852 ret = remove_extent_backref(trans, path, iref,
6853 refs_to_drop, is_data,
6854 &last_ref);
6855 if (ret) {
6856 btrfs_abort_transaction(trans, ret);
6857 goto out;
6858 }
6859 }
6860 } else {
6861 if (found_extent) {
6862 BUG_ON(is_data && refs_to_drop !=
6863 extent_data_ref_count(path, iref));
6864 if (iref) {
6865 BUG_ON(path->slots[0] != extent_slot);
6866 } else {
6867 BUG_ON(path->slots[0] != extent_slot + 1);
6868 path->slots[0] = extent_slot;
6869 num_to_del = 2;
6870 }
6871 }
6872
6873 last_ref = 1;
6874 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6875 num_to_del);
6876 if (ret) {
6877 btrfs_abort_transaction(trans, ret);
6878 goto out;
6879 }
6880 btrfs_release_path(path);
6881
6882 if (is_data) {
6883 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
6884 num_bytes);
6885 if (ret) {
6886 btrfs_abort_transaction(trans, ret);
6887 goto out;
6888 }
6889 }
6890
6891 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6892 if (ret) {
6893 btrfs_abort_transaction(trans, ret);
6894 goto out;
6895 }
6896
6897 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6898 if (ret) {
6899 btrfs_abort_transaction(trans, ret);
6900 goto out;
6901 }
6902 }
6903 btrfs_release_path(path);
6904
6905out:
6906 btrfs_free_path(path);
6907 return ret;
6908}
6909
6910/*
6911 * when we free an block, it is possible (and likely) that we free the last
6912 * delayed ref for that extent as well. This searches the delayed ref tree for
6913 * a given extent, and if there are no other delayed refs to be processed, it
6914 * removes it from the tree.
6915 */
6916static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6917 u64 bytenr)
6918{
6919 struct btrfs_delayed_ref_head *head;
6920 struct btrfs_delayed_ref_root *delayed_refs;
6921 int ret = 0;
6922
6923 delayed_refs = &trans->transaction->delayed_refs;
6924 spin_lock(&delayed_refs->lock);
6925 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6926 if (!head)
6927 goto out_delayed_unlock;
6928
6929 spin_lock(&head->lock);
6930 if (!RB_EMPTY_ROOT(&head->ref_tree))
6931 goto out;
6932
6933 if (head->extent_op) {
6934 if (!head->must_insert_reserved)
6935 goto out;
6936 btrfs_free_delayed_extent_op(head->extent_op);
6937 head->extent_op = NULL;
6938 }
6939
6940 /*
6941 * waiting for the lock here would deadlock. If someone else has it
6942 * locked they are already in the process of dropping it anyway
6943 */
6944 if (!mutex_trylock(&head->mutex))
6945 goto out;
6946
6947 /*
6948 * at this point we have a head with no other entries. Go
6949 * ahead and process it.
6950 */
6951 rb_erase(&head->href_node, &delayed_refs->href_root);
6952 RB_CLEAR_NODE(&head->href_node);
6953 atomic_dec(&delayed_refs->num_entries);
6954
6955 /*
6956 * we don't take a ref on the node because we're removing it from the
6957 * tree, so we just steal the ref the tree was holding.
6958 */
6959 delayed_refs->num_heads--;
6960 if (head->processing == 0)
6961 delayed_refs->num_heads_ready--;
6962 head->processing = 0;
6963 spin_unlock(&head->lock);
6964 spin_unlock(&delayed_refs->lock);
6965
6966 BUG_ON(head->extent_op);
6967 if (head->must_insert_reserved)
6968 ret = 1;
6969
6970 mutex_unlock(&head->mutex);
6971 btrfs_put_delayed_ref_head(head);
6972 return ret;
6973out:
6974 spin_unlock(&head->lock);
6975
6976out_delayed_unlock:
6977 spin_unlock(&delayed_refs->lock);
6978 return 0;
6979}
6980
6981void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6982 struct btrfs_root *root,
6983 struct extent_buffer *buf,
6984 u64 parent, int last_ref)
6985{
6986 struct btrfs_fs_info *fs_info = root->fs_info;
6987 int pin = 1;
6988 int ret;
6989
6990 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6991 int old_ref_mod, new_ref_mod;
6992
6993 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6994 root->root_key.objectid,
6995 btrfs_header_level(buf), 0,
6996 BTRFS_DROP_DELAYED_REF);
6997 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
6998 buf->len, parent,
6999 root->root_key.objectid,
7000 btrfs_header_level(buf),
7001 BTRFS_DROP_DELAYED_REF, NULL,
7002 &old_ref_mod, &new_ref_mod);
7003 BUG_ON(ret); /* -ENOMEM */
7004 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7005 }
7006
7007 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7008 struct btrfs_block_group_cache *cache;
7009
7010 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7011 ret = check_ref_cleanup(trans, buf->start);
7012 if (!ret)
7013 goto out;
7014 }
7015
7016 pin = 0;
7017 cache = btrfs_lookup_block_group(fs_info, buf->start);
7018
7019 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7020 pin_down_extent(fs_info, cache, buf->start,
7021 buf->len, 1);
7022 btrfs_put_block_group(cache);
7023 goto out;
7024 }
7025
7026 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7027
7028 btrfs_add_free_space(cache, buf->start, buf->len);
7029 btrfs_free_reserved_bytes(cache, buf->len, 0);
7030 btrfs_put_block_group(cache);
7031 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7032 }
7033out:
7034 if (pin)
7035 add_pinned_bytes(fs_info, buf->len, true,
7036 root->root_key.objectid);
7037
7038 if (last_ref) {
7039 /*
7040 * Deleting the buffer, clear the corrupt flag since it doesn't
7041 * matter anymore.
7042 */
7043 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7044 }
7045}
7046
7047/* Can return -ENOMEM */
7048int btrfs_free_extent(struct btrfs_trans_handle *trans,
7049 struct btrfs_root *root,
7050 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7051 u64 owner, u64 offset)
7052{
7053 struct btrfs_fs_info *fs_info = root->fs_info;
7054 int old_ref_mod, new_ref_mod;
7055 int ret;
7056
7057 if (btrfs_is_testing(fs_info))
7058 return 0;
7059
7060 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7061 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7062 root_objectid, owner, offset,
7063 BTRFS_DROP_DELAYED_REF);
7064
7065 /*
7066 * tree log blocks never actually go into the extent allocation
7067 * tree, just update pinning info and exit early.
7068 */
7069 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7070 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7071 /* unlocks the pinned mutex */
7072 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7073 old_ref_mod = new_ref_mod = 0;
7074 ret = 0;
7075 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7076 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7077 num_bytes, parent,
7078 root_objectid, (int)owner,
7079 BTRFS_DROP_DELAYED_REF, NULL,
7080 &old_ref_mod, &new_ref_mod);
7081 } else {
7082 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7083 num_bytes, parent,
7084 root_objectid, owner, offset,
7085 0, BTRFS_DROP_DELAYED_REF,
7086 &old_ref_mod, &new_ref_mod);
7087 }
7088
7089 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7090 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7091
7092 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7093 }
7094
7095 return ret;
7096}
7097
7098/*
7099 * when we wait for progress in the block group caching, its because
7100 * our allocation attempt failed at least once. So, we must sleep
7101 * and let some progress happen before we try again.
7102 *
7103 * This function will sleep at least once waiting for new free space to
7104 * show up, and then it will check the block group free space numbers
7105 * for our min num_bytes. Another option is to have it go ahead
7106 * and look in the rbtree for a free extent of a given size, but this
7107 * is a good start.
7108 *
7109 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7110 * any of the information in this block group.
7111 */
7112static noinline void
7113wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7114 u64 num_bytes)
7115{
7116 struct btrfs_caching_control *caching_ctl;
7117
7118 caching_ctl = get_caching_control(cache);
7119 if (!caching_ctl)
7120 return;
7121
7122 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7123 (cache->free_space_ctl->free_space >= num_bytes));
7124
7125 put_caching_control(caching_ctl);
7126}
7127
7128static noinline int
7129wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7130{
7131 struct btrfs_caching_control *caching_ctl;
7132 int ret = 0;
7133
7134 caching_ctl = get_caching_control(cache);
7135 if (!caching_ctl)
7136 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7137
7138 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7139 if (cache->cached == BTRFS_CACHE_ERROR)
7140 ret = -EIO;
7141 put_caching_control(caching_ctl);
7142 return ret;
7143}
7144
7145enum btrfs_loop_type {
7146 LOOP_CACHING_NOWAIT = 0,
7147 LOOP_CACHING_WAIT = 1,
7148 LOOP_ALLOC_CHUNK = 2,
7149 LOOP_NO_EMPTY_SIZE = 3,
7150};
7151
7152static inline void
7153btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7154 int delalloc)
7155{
7156 if (delalloc)
7157 down_read(&cache->data_rwsem);
7158}
7159
7160static inline void
7161btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7162 int delalloc)
7163{
7164 btrfs_get_block_group(cache);
7165 if (delalloc)
7166 down_read(&cache->data_rwsem);
7167}
7168
7169static struct btrfs_block_group_cache *
7170btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7171 struct btrfs_free_cluster *cluster,
7172 int delalloc)
7173{
7174 struct btrfs_block_group_cache *used_bg = NULL;
7175
7176 spin_lock(&cluster->refill_lock);
7177 while (1) {
7178 used_bg = cluster->block_group;
7179 if (!used_bg)
7180 return NULL;
7181
7182 if (used_bg == block_group)
7183 return used_bg;
7184
7185 btrfs_get_block_group(used_bg);
7186
7187 if (!delalloc)
7188 return used_bg;
7189
7190 if (down_read_trylock(&used_bg->data_rwsem))
7191 return used_bg;
7192
7193 spin_unlock(&cluster->refill_lock);
7194
7195 /* We should only have one-level nested. */
7196 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7197
7198 spin_lock(&cluster->refill_lock);
7199 if (used_bg == cluster->block_group)
7200 return used_bg;
7201
7202 up_read(&used_bg->data_rwsem);
7203 btrfs_put_block_group(used_bg);
7204 }
7205}
7206
7207static inline void
7208btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7209 int delalloc)
7210{
7211 if (delalloc)
7212 up_read(&cache->data_rwsem);
7213 btrfs_put_block_group(cache);
7214}
7215
7216/*
7217 * walks the btree of allocated extents and find a hole of a given size.
7218 * The key ins is changed to record the hole:
7219 * ins->objectid == start position
7220 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7221 * ins->offset == the size of the hole.
7222 * Any available blocks before search_start are skipped.
7223 *
7224 * If there is no suitable free space, we will record the max size of
7225 * the free space extent currently.
7226 */
7227static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7228 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7229 u64 hint_byte, struct btrfs_key *ins,
7230 u64 flags, int delalloc)
7231{
7232 int ret = 0;
7233 struct btrfs_root *root = fs_info->extent_root;
7234 struct btrfs_free_cluster *last_ptr = NULL;
7235 struct btrfs_block_group_cache *block_group = NULL;
7236 u64 search_start = 0;
7237 u64 max_extent_size = 0;
7238 u64 max_free_space = 0;
7239 u64 empty_cluster = 0;
7240 struct btrfs_space_info *space_info;
7241 int loop = 0;
7242 int index = btrfs_bg_flags_to_raid_index(flags);
7243 bool failed_cluster_refill = false;
7244 bool failed_alloc = false;
7245 bool use_cluster = true;
7246 bool have_caching_bg = false;
7247 bool orig_have_caching_bg = false;
7248 bool full_search = false;
7249
7250 WARN_ON(num_bytes < fs_info->sectorsize);
7251 ins->type = BTRFS_EXTENT_ITEM_KEY;
7252 ins->objectid = 0;
7253 ins->offset = 0;
7254
7255 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7256
7257 space_info = __find_space_info(fs_info, flags);
7258 if (!space_info) {
7259 btrfs_err(fs_info, "No space info for %llu", flags);
7260 return -ENOSPC;
7261 }
7262
7263 /*
7264 * If our free space is heavily fragmented we may not be able to make
7265 * big contiguous allocations, so instead of doing the expensive search
7266 * for free space, simply return ENOSPC with our max_extent_size so we
7267 * can go ahead and search for a more manageable chunk.
7268 *
7269 * If our max_extent_size is large enough for our allocation simply
7270 * disable clustering since we will likely not be able to find enough
7271 * space to create a cluster and induce latency trying.
7272 */
7273 if (unlikely(space_info->max_extent_size)) {
7274 spin_lock(&space_info->lock);
7275 if (space_info->max_extent_size &&
7276 num_bytes > space_info->max_extent_size) {
7277 ins->offset = space_info->max_extent_size;
7278 spin_unlock(&space_info->lock);
7279 return -ENOSPC;
7280 } else if (space_info->max_extent_size) {
7281 use_cluster = false;
7282 }
7283 spin_unlock(&space_info->lock);
7284 }
7285
7286 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7287 if (last_ptr) {
7288 spin_lock(&last_ptr->lock);
7289 if (last_ptr->block_group)
7290 hint_byte = last_ptr->window_start;
7291 if (last_ptr->fragmented) {
7292 /*
7293 * We still set window_start so we can keep track of the
7294 * last place we found an allocation to try and save
7295 * some time.
7296 */
7297 hint_byte = last_ptr->window_start;
7298 use_cluster = false;
7299 }
7300 spin_unlock(&last_ptr->lock);
7301 }
7302
7303 search_start = max(search_start, first_logical_byte(fs_info, 0));
7304 search_start = max(search_start, hint_byte);
7305 if (search_start == hint_byte) {
7306 block_group = btrfs_lookup_block_group(fs_info, search_start);
7307 /*
7308 * we don't want to use the block group if it doesn't match our
7309 * allocation bits, or if its not cached.
7310 *
7311 * However if we are re-searching with an ideal block group
7312 * picked out then we don't care that the block group is cached.
7313 */
7314 if (block_group && block_group_bits(block_group, flags) &&
7315 block_group->cached != BTRFS_CACHE_NO) {
7316 down_read(&space_info->groups_sem);
7317 if (list_empty(&block_group->list) ||
7318 block_group->ro) {
7319 /*
7320 * someone is removing this block group,
7321 * we can't jump into the have_block_group
7322 * target because our list pointers are not
7323 * valid
7324 */
7325 btrfs_put_block_group(block_group);
7326 up_read(&space_info->groups_sem);
7327 } else {
7328 index = btrfs_bg_flags_to_raid_index(
7329 block_group->flags);
7330 btrfs_lock_block_group(block_group, delalloc);
7331 goto have_block_group;
7332 }
7333 } else if (block_group) {
7334 btrfs_put_block_group(block_group);
7335 }
7336 }
7337search:
7338 have_caching_bg = false;
7339 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7340 full_search = true;
7341 down_read(&space_info->groups_sem);
7342 list_for_each_entry(block_group, &space_info->block_groups[index],
7343 list) {
7344 u64 offset;
7345 int cached;
7346
7347 /* If the block group is read-only, we can skip it entirely. */
7348 if (unlikely(block_group->ro))
7349 continue;
7350
7351 btrfs_grab_block_group(block_group, delalloc);
7352 search_start = block_group->key.objectid;
7353
7354 /*
7355 * this can happen if we end up cycling through all the
7356 * raid types, but we want to make sure we only allocate
7357 * for the proper type.
7358 */
7359 if (!block_group_bits(block_group, flags)) {
7360 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7361 BTRFS_BLOCK_GROUP_RAID1 |
7362 BTRFS_BLOCK_GROUP_RAID5 |
7363 BTRFS_BLOCK_GROUP_RAID6 |
7364 BTRFS_BLOCK_GROUP_RAID10;
7365
7366 /*
7367 * if they asked for extra copies and this block group
7368 * doesn't provide them, bail. This does allow us to
7369 * fill raid0 from raid1.
7370 */
7371 if ((flags & extra) && !(block_group->flags & extra))
7372 goto loop;
7373
7374 /*
7375 * This block group has different flags than we want.
7376 * It's possible that we have MIXED_GROUP flag but no
7377 * block group is mixed. Just skip such block group.
7378 */
7379 btrfs_release_block_group(block_group, delalloc);
7380 continue;
7381 }
7382
7383have_block_group:
7384 cached = block_group_cache_done(block_group);
7385 if (unlikely(!cached)) {
7386 have_caching_bg = true;
7387 ret = cache_block_group(block_group, 0);
7388 BUG_ON(ret < 0);
7389 ret = 0;
7390 }
7391
7392 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7393 goto loop;
7394
7395 /*
7396 * Ok we want to try and use the cluster allocator, so
7397 * lets look there
7398 */
7399 if (last_ptr && use_cluster) {
7400 struct btrfs_block_group_cache *used_block_group;
7401 unsigned long aligned_cluster;
7402 /*
7403 * the refill lock keeps out other
7404 * people trying to start a new cluster
7405 */
7406 used_block_group = btrfs_lock_cluster(block_group,
7407 last_ptr,
7408 delalloc);
7409 if (!used_block_group)
7410 goto refill_cluster;
7411
7412 if (used_block_group != block_group &&
7413 (used_block_group->ro ||
7414 !block_group_bits(used_block_group, flags)))
7415 goto release_cluster;
7416
7417 offset = btrfs_alloc_from_cluster(used_block_group,
7418 last_ptr,
7419 num_bytes,
7420 used_block_group->key.objectid,
7421 &max_extent_size);
7422 if (offset) {
7423 /* we have a block, we're done */
7424 spin_unlock(&last_ptr->refill_lock);
7425 trace_btrfs_reserve_extent_cluster(
7426 used_block_group,
7427 search_start, num_bytes);
7428 if (used_block_group != block_group) {
7429 btrfs_release_block_group(block_group,
7430 delalloc);
7431 block_group = used_block_group;
7432 }
7433 goto checks;
7434 }
7435
7436 WARN_ON(last_ptr->block_group != used_block_group);
7437release_cluster:
7438 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7439 * set up a new clusters, so lets just skip it
7440 * and let the allocator find whatever block
7441 * it can find. If we reach this point, we
7442 * will have tried the cluster allocator
7443 * plenty of times and not have found
7444 * anything, so we are likely way too
7445 * fragmented for the clustering stuff to find
7446 * anything.
7447 *
7448 * However, if the cluster is taken from the
7449 * current block group, release the cluster
7450 * first, so that we stand a better chance of
7451 * succeeding in the unclustered
7452 * allocation. */
7453 if (loop >= LOOP_NO_EMPTY_SIZE &&
7454 used_block_group != block_group) {
7455 spin_unlock(&last_ptr->refill_lock);
7456 btrfs_release_block_group(used_block_group,
7457 delalloc);
7458 goto unclustered_alloc;
7459 }
7460
7461 /*
7462 * this cluster didn't work out, free it and
7463 * start over
7464 */
7465 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7466
7467 if (used_block_group != block_group)
7468 btrfs_release_block_group(used_block_group,
7469 delalloc);
7470refill_cluster:
7471 if (loop >= LOOP_NO_EMPTY_SIZE) {
7472 spin_unlock(&last_ptr->refill_lock);
7473 goto unclustered_alloc;
7474 }
7475
7476 aligned_cluster = max_t(unsigned long,
7477 empty_cluster + empty_size,
7478 block_group->full_stripe_len);
7479
7480 /* allocate a cluster in this block group */
7481 ret = btrfs_find_space_cluster(fs_info, block_group,
7482 last_ptr, search_start,
7483 num_bytes,
7484 aligned_cluster);
7485 if (ret == 0) {
7486 /*
7487 * now pull our allocation out of this
7488 * cluster
7489 */
7490 offset = btrfs_alloc_from_cluster(block_group,
7491 last_ptr,
7492 num_bytes,
7493 search_start,
7494 &max_extent_size);
7495 if (offset) {
7496 /* we found one, proceed */
7497 spin_unlock(&last_ptr->refill_lock);
7498 trace_btrfs_reserve_extent_cluster(
7499 block_group, search_start,
7500 num_bytes);
7501 goto checks;
7502 }
7503 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7504 && !failed_cluster_refill) {
7505 spin_unlock(&last_ptr->refill_lock);
7506
7507 failed_cluster_refill = true;
7508 wait_block_group_cache_progress(block_group,
7509 num_bytes + empty_cluster + empty_size);
7510 goto have_block_group;
7511 }
7512
7513 /*
7514 * at this point we either didn't find a cluster
7515 * or we weren't able to allocate a block from our
7516 * cluster. Free the cluster we've been trying
7517 * to use, and go to the next block group
7518 */
7519 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7520 spin_unlock(&last_ptr->refill_lock);
7521 goto loop;
7522 }
7523
7524unclustered_alloc:
7525 /*
7526 * We are doing an unclustered alloc, set the fragmented flag so
7527 * we don't bother trying to setup a cluster again until we get
7528 * more space.
7529 */
7530 if (unlikely(last_ptr)) {
7531 spin_lock(&last_ptr->lock);
7532 last_ptr->fragmented = 1;
7533 spin_unlock(&last_ptr->lock);
7534 }
7535 if (cached) {
7536 struct btrfs_free_space_ctl *ctl =
7537 block_group->free_space_ctl;
7538
7539 spin_lock(&ctl->tree_lock);
7540 if (ctl->free_space <
7541 num_bytes + empty_cluster + empty_size) {
7542 max_free_space = max(max_free_space,
7543 ctl->free_space);
7544 spin_unlock(&ctl->tree_lock);
7545 goto loop;
7546 }
7547 spin_unlock(&ctl->tree_lock);
7548 }
7549
7550 offset = btrfs_find_space_for_alloc(block_group, search_start,
7551 num_bytes, empty_size,
7552 &max_extent_size);
7553 /*
7554 * If we didn't find a chunk, and we haven't failed on this
7555 * block group before, and this block group is in the middle of
7556 * caching and we are ok with waiting, then go ahead and wait
7557 * for progress to be made, and set failed_alloc to true.
7558 *
7559 * If failed_alloc is true then we've already waited on this
7560 * block group once and should move on to the next block group.
7561 */
7562 if (!offset && !failed_alloc && !cached &&
7563 loop > LOOP_CACHING_NOWAIT) {
7564 wait_block_group_cache_progress(block_group,
7565 num_bytes + empty_size);
7566 failed_alloc = true;
7567 goto have_block_group;
7568 } else if (!offset) {
7569 goto loop;
7570 }
7571checks:
7572 search_start = round_up(offset, fs_info->stripesize);
7573
7574 /* move on to the next group */
7575 if (search_start + num_bytes >
7576 block_group->key.objectid + block_group->key.offset) {
7577 btrfs_add_free_space(block_group, offset, num_bytes);
7578 goto loop;
7579 }
7580
7581 if (offset < search_start)
7582 btrfs_add_free_space(block_group, offset,
7583 search_start - offset);
7584
7585 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7586 num_bytes, delalloc);
7587 if (ret == -EAGAIN) {
7588 btrfs_add_free_space(block_group, offset, num_bytes);
7589 goto loop;
7590 }
7591 btrfs_inc_block_group_reservations(block_group);
7592
7593 /* we are all good, lets return */
7594 ins->objectid = search_start;
7595 ins->offset = num_bytes;
7596
7597 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7598 btrfs_release_block_group(block_group, delalloc);
7599 break;
7600loop:
7601 failed_cluster_refill = false;
7602 failed_alloc = false;
7603 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7604 index);
7605 btrfs_release_block_group(block_group, delalloc);
7606 cond_resched();
7607 }
7608 up_read(&space_info->groups_sem);
7609
7610 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7611 && !orig_have_caching_bg)
7612 orig_have_caching_bg = true;
7613
7614 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7615 goto search;
7616
7617 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7618 goto search;
7619
7620 /*
7621 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7622 * caching kthreads as we move along
7623 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7624 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7625 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7626 * again
7627 */
7628 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7629 index = 0;
7630 if (loop == LOOP_CACHING_NOWAIT) {
7631 /*
7632 * We want to skip the LOOP_CACHING_WAIT step if we
7633 * don't have any uncached bgs and we've already done a
7634 * full search through.
7635 */
7636 if (orig_have_caching_bg || !full_search)
7637 loop = LOOP_CACHING_WAIT;
7638 else
7639 loop = LOOP_ALLOC_CHUNK;
7640 } else {
7641 loop++;
7642 }
7643
7644 if (loop == LOOP_ALLOC_CHUNK) {
7645 struct btrfs_trans_handle *trans;
7646 int exist = 0;
7647
7648 trans = current->journal_info;
7649 if (trans)
7650 exist = 1;
7651 else
7652 trans = btrfs_join_transaction(root);
7653
7654 if (IS_ERR(trans)) {
7655 ret = PTR_ERR(trans);
7656 goto out;
7657 }
7658
7659 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7660
7661 /*
7662 * If we can't allocate a new chunk we've already looped
7663 * through at least once, move on to the NO_EMPTY_SIZE
7664 * case.
7665 */
7666 if (ret == -ENOSPC)
7667 loop = LOOP_NO_EMPTY_SIZE;
7668
7669 /*
7670 * Do not bail out on ENOSPC since we
7671 * can do more things.
7672 */
7673 if (ret < 0 && ret != -ENOSPC)
7674 btrfs_abort_transaction(trans, ret);
7675 else
7676 ret = 0;
7677 if (!exist)
7678 btrfs_end_transaction(trans);
7679 if (ret)
7680 goto out;
7681 }
7682
7683 if (loop == LOOP_NO_EMPTY_SIZE) {
7684 /*
7685 * Don't loop again if we already have no empty_size and
7686 * no empty_cluster.
7687 */
7688 if (empty_size == 0 &&
7689 empty_cluster == 0) {
7690 ret = -ENOSPC;
7691 goto out;
7692 }
7693 empty_size = 0;
7694 empty_cluster = 0;
7695 }
7696
7697 goto search;
7698 } else if (!ins->objectid) {
7699 ret = -ENOSPC;
7700 } else if (ins->objectid) {
7701 if (!use_cluster && last_ptr) {
7702 spin_lock(&last_ptr->lock);
7703 last_ptr->window_start = ins->objectid;
7704 spin_unlock(&last_ptr->lock);
7705 }
7706 ret = 0;
7707 }
7708out:
7709 if (ret == -ENOSPC) {
7710 if (!max_extent_size)
7711 max_extent_size = max_free_space;
7712 spin_lock(&space_info->lock);
7713 space_info->max_extent_size = max_extent_size;
7714 spin_unlock(&space_info->lock);
7715 ins->offset = max_extent_size;
7716 }
7717 return ret;
7718}
7719
7720static void dump_space_info(struct btrfs_fs_info *fs_info,
7721 struct btrfs_space_info *info, u64 bytes,
7722 int dump_block_groups)
7723{
7724 struct btrfs_block_group_cache *cache;
7725 int index = 0;
7726
7727 spin_lock(&info->lock);
7728 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7729 info->flags,
7730 info->total_bytes - btrfs_space_info_used(info, true),
7731 info->full ? "" : "not ");
7732 btrfs_info(fs_info,
7733 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7734 info->total_bytes, info->bytes_used, info->bytes_pinned,
7735 info->bytes_reserved, info->bytes_may_use,
7736 info->bytes_readonly);
7737 spin_unlock(&info->lock);
7738
7739 if (!dump_block_groups)
7740 return;
7741
7742 down_read(&info->groups_sem);
7743again:
7744 list_for_each_entry(cache, &info->block_groups[index], list) {
7745 spin_lock(&cache->lock);
7746 btrfs_info(fs_info,
7747 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7748 cache->key.objectid, cache->key.offset,
7749 btrfs_block_group_used(&cache->item), cache->pinned,
7750 cache->reserved, cache->ro ? "[readonly]" : "");
7751 btrfs_dump_free_space(cache, bytes);
7752 spin_unlock(&cache->lock);
7753 }
7754 if (++index < BTRFS_NR_RAID_TYPES)
7755 goto again;
7756 up_read(&info->groups_sem);
7757}
7758
7759/*
7760 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7761 * hole that is at least as big as @num_bytes.
7762 *
7763 * @root - The root that will contain this extent
7764 *
7765 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7766 * is used for accounting purposes. This value differs
7767 * from @num_bytes only in the case of compressed extents.
7768 *
7769 * @num_bytes - Number of bytes to allocate on-disk.
7770 *
7771 * @min_alloc_size - Indicates the minimum amount of space that the
7772 * allocator should try to satisfy. In some cases
7773 * @num_bytes may be larger than what is required and if
7774 * the filesystem is fragmented then allocation fails.
7775 * However, the presence of @min_alloc_size gives a
7776 * chance to try and satisfy the smaller allocation.
7777 *
7778 * @empty_size - A hint that you plan on doing more COW. This is the
7779 * size in bytes the allocator should try to find free
7780 * next to the block it returns. This is just a hint and
7781 * may be ignored by the allocator.
7782 *
7783 * @hint_byte - Hint to the allocator to start searching above the byte
7784 * address passed. It might be ignored.
7785 *
7786 * @ins - This key is modified to record the found hole. It will
7787 * have the following values:
7788 * ins->objectid == start position
7789 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7790 * ins->offset == the size of the hole.
7791 *
7792 * @is_data - Boolean flag indicating whether an extent is
7793 * allocated for data (true) or metadata (false)
7794 *
7795 * @delalloc - Boolean flag indicating whether this allocation is for
7796 * delalloc or not. If 'true' data_rwsem of block groups
7797 * is going to be acquired.
7798 *
7799 *
7800 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7801 * case -ENOSPC is returned then @ins->offset will contain the size of the
7802 * largest available hole the allocator managed to find.
7803 */
7804int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7805 u64 num_bytes, u64 min_alloc_size,
7806 u64 empty_size, u64 hint_byte,
7807 struct btrfs_key *ins, int is_data, int delalloc)
7808{
7809 struct btrfs_fs_info *fs_info = root->fs_info;
7810 bool final_tried = num_bytes == min_alloc_size;
7811 u64 flags;
7812 int ret;
7813
7814 flags = get_alloc_profile_by_root(root, is_data);
7815again:
7816 WARN_ON(num_bytes < fs_info->sectorsize);
7817 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7818 hint_byte, ins, flags, delalloc);
7819 if (!ret && !is_data) {
7820 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7821 } else if (ret == -ENOSPC) {
7822 if (!final_tried && ins->offset) {
7823 num_bytes = min(num_bytes >> 1, ins->offset);
7824 num_bytes = round_down(num_bytes,
7825 fs_info->sectorsize);
7826 num_bytes = max(num_bytes, min_alloc_size);
7827 ram_bytes = num_bytes;
7828 if (num_bytes == min_alloc_size)
7829 final_tried = true;
7830 goto again;
7831 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7832 struct btrfs_space_info *sinfo;
7833
7834 sinfo = __find_space_info(fs_info, flags);
7835 btrfs_err(fs_info,
7836 "allocation failed flags %llu, wanted %llu",
7837 flags, num_bytes);
7838 if (sinfo)
7839 dump_space_info(fs_info, sinfo, num_bytes, 1);
7840 }
7841 }
7842
7843 return ret;
7844}
7845
7846static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7847 u64 start, u64 len,
7848 int pin, int delalloc)
7849{
7850 struct btrfs_block_group_cache *cache;
7851 int ret = 0;
7852
7853 cache = btrfs_lookup_block_group(fs_info, start);
7854 if (!cache) {
7855 btrfs_err(fs_info, "Unable to find block group for %llu",
7856 start);
7857 return -ENOSPC;
7858 }
7859
7860 if (pin)
7861 pin_down_extent(fs_info, cache, start, len, 1);
7862 else {
7863 if (btrfs_test_opt(fs_info, DISCARD))
7864 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7865 btrfs_add_free_space(cache, start, len);
7866 btrfs_free_reserved_bytes(cache, len, delalloc);
7867 trace_btrfs_reserved_extent_free(fs_info, start, len);
7868 }
7869
7870 btrfs_put_block_group(cache);
7871 return ret;
7872}
7873
7874int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7875 u64 start, u64 len, int delalloc)
7876{
7877 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7878}
7879
7880int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7881 u64 start, u64 len)
7882{
7883 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7884}
7885
7886static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7887 u64 parent, u64 root_objectid,
7888 u64 flags, u64 owner, u64 offset,
7889 struct btrfs_key *ins, int ref_mod)
7890{
7891 struct btrfs_fs_info *fs_info = trans->fs_info;
7892 int ret;
7893 struct btrfs_extent_item *extent_item;
7894 struct btrfs_extent_inline_ref *iref;
7895 struct btrfs_path *path;
7896 struct extent_buffer *leaf;
7897 int type;
7898 u32 size;
7899
7900 if (parent > 0)
7901 type = BTRFS_SHARED_DATA_REF_KEY;
7902 else
7903 type = BTRFS_EXTENT_DATA_REF_KEY;
7904
7905 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7906
7907 path = btrfs_alloc_path();
7908 if (!path)
7909 return -ENOMEM;
7910
7911 path->leave_spinning = 1;
7912 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7913 ins, size);
7914 if (ret) {
7915 btrfs_free_path(path);
7916 return ret;
7917 }
7918
7919 leaf = path->nodes[0];
7920 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7921 struct btrfs_extent_item);
7922 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7923 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7924 btrfs_set_extent_flags(leaf, extent_item,
7925 flags | BTRFS_EXTENT_FLAG_DATA);
7926
7927 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7928 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7929 if (parent > 0) {
7930 struct btrfs_shared_data_ref *ref;
7931 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7932 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7933 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7934 } else {
7935 struct btrfs_extent_data_ref *ref;
7936 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7937 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7938 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7939 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7940 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7941 }
7942
7943 btrfs_mark_buffer_dirty(path->nodes[0]);
7944 btrfs_free_path(path);
7945
7946 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7947 if (ret)
7948 return ret;
7949
7950 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7951 if (ret) { /* -ENOENT, logic error */
7952 btrfs_err(fs_info, "update block group failed for %llu %llu",
7953 ins->objectid, ins->offset);
7954 BUG();
7955 }
7956 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7957 return ret;
7958}
7959
7960static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7961 struct btrfs_delayed_ref_node *node,
7962 struct btrfs_delayed_extent_op *extent_op)
7963{
7964 struct btrfs_fs_info *fs_info = trans->fs_info;
7965 int ret;
7966 struct btrfs_extent_item *extent_item;
7967 struct btrfs_key extent_key;
7968 struct btrfs_tree_block_info *block_info;
7969 struct btrfs_extent_inline_ref *iref;
7970 struct btrfs_path *path;
7971 struct extent_buffer *leaf;
7972 struct btrfs_delayed_tree_ref *ref;
7973 u32 size = sizeof(*extent_item) + sizeof(*iref);
7974 u64 num_bytes;
7975 u64 flags = extent_op->flags_to_set;
7976 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7977
7978 ref = btrfs_delayed_node_to_tree_ref(node);
7979
7980 extent_key.objectid = node->bytenr;
7981 if (skinny_metadata) {
7982 extent_key.offset = ref->level;
7983 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7984 num_bytes = fs_info->nodesize;
7985 } else {
7986 extent_key.offset = node->num_bytes;
7987 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7988 size += sizeof(*block_info);
7989 num_bytes = node->num_bytes;
7990 }
7991
7992 path = btrfs_alloc_path();
7993 if (!path)
7994 return -ENOMEM;
7995
7996 path->leave_spinning = 1;
7997 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7998 &extent_key, size);
7999 if (ret) {
8000 btrfs_free_path(path);
8001 return ret;
8002 }
8003
8004 leaf = path->nodes[0];
8005 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8006 struct btrfs_extent_item);
8007 btrfs_set_extent_refs(leaf, extent_item, 1);
8008 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8009 btrfs_set_extent_flags(leaf, extent_item,
8010 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8011
8012 if (skinny_metadata) {
8013 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8014 } else {
8015 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8016 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8017 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8018 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8019 }
8020
8021 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8022 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8023 btrfs_set_extent_inline_ref_type(leaf, iref,
8024 BTRFS_SHARED_BLOCK_REF_KEY);
8025 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8026 } else {
8027 btrfs_set_extent_inline_ref_type(leaf, iref,
8028 BTRFS_TREE_BLOCK_REF_KEY);
8029 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8030 }
8031
8032 btrfs_mark_buffer_dirty(leaf);
8033 btrfs_free_path(path);
8034
8035 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8036 num_bytes);
8037 if (ret)
8038 return ret;
8039
8040 ret = update_block_group(trans, fs_info, extent_key.objectid,
8041 fs_info->nodesize, 1);
8042 if (ret) { /* -ENOENT, logic error */
8043 btrfs_err(fs_info, "update block group failed for %llu %llu",
8044 extent_key.objectid, extent_key.offset);
8045 BUG();
8046 }
8047
8048 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8049 fs_info->nodesize);
8050 return ret;
8051}
8052
8053int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8054 struct btrfs_root *root, u64 owner,
8055 u64 offset, u64 ram_bytes,
8056 struct btrfs_key *ins)
8057{
8058 int ret;
8059
8060 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8061
8062 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8063 root->root_key.objectid, owner, offset,
8064 BTRFS_ADD_DELAYED_EXTENT);
8065
8066 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8067 ins->offset, 0,
8068 root->root_key.objectid, owner,
8069 offset, ram_bytes,
8070 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8071 return ret;
8072}
8073
8074/*
8075 * this is used by the tree logging recovery code. It records that
8076 * an extent has been allocated and makes sure to clear the free
8077 * space cache bits as well
8078 */
8079int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8080 u64 root_objectid, u64 owner, u64 offset,
8081 struct btrfs_key *ins)
8082{
8083 struct btrfs_fs_info *fs_info = trans->fs_info;
8084 int ret;
8085 struct btrfs_block_group_cache *block_group;
8086 struct btrfs_space_info *space_info;
8087
8088 /*
8089 * Mixed block groups will exclude before processing the log so we only
8090 * need to do the exclude dance if this fs isn't mixed.
8091 */
8092 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8093 ret = __exclude_logged_extent(fs_info, ins->objectid,
8094 ins->offset);
8095 if (ret)
8096 return ret;
8097 }
8098
8099 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8100 if (!block_group)
8101 return -EINVAL;
8102
8103 space_info = block_group->space_info;
8104 spin_lock(&space_info->lock);
8105 spin_lock(&block_group->lock);
8106 space_info->bytes_reserved += ins->offset;
8107 block_group->reserved += ins->offset;
8108 spin_unlock(&block_group->lock);
8109 spin_unlock(&space_info->lock);
8110
8111 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8112 offset, ins, 1);
8113 btrfs_put_block_group(block_group);
8114 return ret;
8115}
8116
8117static struct extent_buffer *
8118btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8119 u64 bytenr, int level, u64 owner)
8120{
8121 struct btrfs_fs_info *fs_info = root->fs_info;
8122 struct extent_buffer *buf;
8123
8124 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8125 if (IS_ERR(buf))
8126 return buf;
8127
8128 /*
8129 * Extra safety check in case the extent tree is corrupted and extent
8130 * allocator chooses to use a tree block which is already used and
8131 * locked.
8132 */
8133 if (buf->lock_owner == current->pid) {
8134 btrfs_err_rl(fs_info,
8135"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8136 buf->start, btrfs_header_owner(buf), current->pid);
8137 free_extent_buffer(buf);
8138 return ERR_PTR(-EUCLEAN);
8139 }
8140
8141 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8142 btrfs_tree_lock(buf);
8143 clean_tree_block(fs_info, buf);
8144 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8145
8146 btrfs_set_lock_blocking(buf);
8147 set_extent_buffer_uptodate(buf);
8148
8149 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8150 btrfs_set_header_level(buf, level);
8151 btrfs_set_header_bytenr(buf, buf->start);
8152 btrfs_set_header_generation(buf, trans->transid);
8153 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8154 btrfs_set_header_owner(buf, owner);
8155 write_extent_buffer_fsid(buf, fs_info->fsid);
8156 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8157 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8158 buf->log_index = root->log_transid % 2;
8159 /*
8160 * we allow two log transactions at a time, use different
8161 * EXENT bit to differentiate dirty pages.
8162 */
8163 if (buf->log_index == 0)
8164 set_extent_dirty(&root->dirty_log_pages, buf->start,
8165 buf->start + buf->len - 1, GFP_NOFS);
8166 else
8167 set_extent_new(&root->dirty_log_pages, buf->start,
8168 buf->start + buf->len - 1);
8169 } else {
8170 buf->log_index = -1;
8171 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8172 buf->start + buf->len - 1, GFP_NOFS);
8173 }
8174 trans->dirty = true;
8175 /* this returns a buffer locked for blocking */
8176 return buf;
8177}
8178
8179static struct btrfs_block_rsv *
8180use_block_rsv(struct btrfs_trans_handle *trans,
8181 struct btrfs_root *root, u32 blocksize)
8182{
8183 struct btrfs_fs_info *fs_info = root->fs_info;
8184 struct btrfs_block_rsv *block_rsv;
8185 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8186 int ret;
8187 bool global_updated = false;
8188
8189 block_rsv = get_block_rsv(trans, root);
8190
8191 if (unlikely(block_rsv->size == 0))
8192 goto try_reserve;
8193again:
8194 ret = block_rsv_use_bytes(block_rsv, blocksize);
8195 if (!ret)
8196 return block_rsv;
8197
8198 if (block_rsv->failfast)
8199 return ERR_PTR(ret);
8200
8201 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8202 global_updated = true;
8203 update_global_block_rsv(fs_info);
8204 goto again;
8205 }
8206
8207 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8208 static DEFINE_RATELIMIT_STATE(_rs,
8209 DEFAULT_RATELIMIT_INTERVAL * 10,
8210 /*DEFAULT_RATELIMIT_BURST*/ 1);
8211 if (__ratelimit(&_rs))
8212 WARN(1, KERN_DEBUG
8213 "BTRFS: block rsv returned %d\n", ret);
8214 }
8215try_reserve:
8216 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8217 BTRFS_RESERVE_NO_FLUSH);
8218 if (!ret)
8219 return block_rsv;
8220 /*
8221 * If we couldn't reserve metadata bytes try and use some from
8222 * the global reserve if its space type is the same as the global
8223 * reservation.
8224 */
8225 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8226 block_rsv->space_info == global_rsv->space_info) {
8227 ret = block_rsv_use_bytes(global_rsv, blocksize);
8228 if (!ret)
8229 return global_rsv;
8230 }
8231 return ERR_PTR(ret);
8232}
8233
8234static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8235 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8236{
8237 block_rsv_add_bytes(block_rsv, blocksize, 0);
8238 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8239}
8240
8241/*
8242 * finds a free extent and does all the dirty work required for allocation
8243 * returns the tree buffer or an ERR_PTR on error.
8244 */
8245struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8246 struct btrfs_root *root,
8247 u64 parent, u64 root_objectid,
8248 const struct btrfs_disk_key *key,
8249 int level, u64 hint,
8250 u64 empty_size)
8251{
8252 struct btrfs_fs_info *fs_info = root->fs_info;
8253 struct btrfs_key ins;
8254 struct btrfs_block_rsv *block_rsv;
8255 struct extent_buffer *buf;
8256 struct btrfs_delayed_extent_op *extent_op;
8257 u64 flags = 0;
8258 int ret;
8259 u32 blocksize = fs_info->nodesize;
8260 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8261
8262#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8263 if (btrfs_is_testing(fs_info)) {
8264 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8265 level, root_objectid);
8266 if (!IS_ERR(buf))
8267 root->alloc_bytenr += blocksize;
8268 return buf;
8269 }
8270#endif
8271
8272 block_rsv = use_block_rsv(trans, root, blocksize);
8273 if (IS_ERR(block_rsv))
8274 return ERR_CAST(block_rsv);
8275
8276 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8277 empty_size, hint, &ins, 0, 0);
8278 if (ret)
8279 goto out_unuse;
8280
8281 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8282 root_objectid);
8283 if (IS_ERR(buf)) {
8284 ret = PTR_ERR(buf);
8285 goto out_free_reserved;
8286 }
8287
8288 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8289 if (parent == 0)
8290 parent = ins.objectid;
8291 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8292 } else
8293 BUG_ON(parent > 0);
8294
8295 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8296 extent_op = btrfs_alloc_delayed_extent_op();
8297 if (!extent_op) {
8298 ret = -ENOMEM;
8299 goto out_free_buf;
8300 }
8301 if (key)
8302 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8303 else
8304 memset(&extent_op->key, 0, sizeof(extent_op->key));
8305 extent_op->flags_to_set = flags;
8306 extent_op->update_key = skinny_metadata ? false : true;
8307 extent_op->update_flags = true;
8308 extent_op->is_data = false;
8309 extent_op->level = level;
8310
8311 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8312 root_objectid, level, 0,
8313 BTRFS_ADD_DELAYED_EXTENT);
8314 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8315 ins.offset, parent,
8316 root_objectid, level,
8317 BTRFS_ADD_DELAYED_EXTENT,
8318 extent_op, NULL, NULL);
8319 if (ret)
8320 goto out_free_delayed;
8321 }
8322 return buf;
8323
8324out_free_delayed:
8325 btrfs_free_delayed_extent_op(extent_op);
8326out_free_buf:
8327 free_extent_buffer(buf);
8328out_free_reserved:
8329 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8330out_unuse:
8331 unuse_block_rsv(fs_info, block_rsv, blocksize);
8332 return ERR_PTR(ret);
8333}
8334
8335struct walk_control {
8336 u64 refs[BTRFS_MAX_LEVEL];
8337 u64 flags[BTRFS_MAX_LEVEL];
8338 struct btrfs_key update_progress;
8339 int stage;
8340 int level;
8341 int shared_level;
8342 int update_ref;
8343 int keep_locks;
8344 int reada_slot;
8345 int reada_count;
8346};
8347
8348#define DROP_REFERENCE 1
8349#define UPDATE_BACKREF 2
8350
8351static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8352 struct btrfs_root *root,
8353 struct walk_control *wc,
8354 struct btrfs_path *path)
8355{
8356 struct btrfs_fs_info *fs_info = root->fs_info;
8357 u64 bytenr;
8358 u64 generation;
8359 u64 refs;
8360 u64 flags;
8361 u32 nritems;
8362 struct btrfs_key key;
8363 struct extent_buffer *eb;
8364 int ret;
8365 int slot;
8366 int nread = 0;
8367
8368 if (path->slots[wc->level] < wc->reada_slot) {
8369 wc->reada_count = wc->reada_count * 2 / 3;
8370 wc->reada_count = max(wc->reada_count, 2);
8371 } else {
8372 wc->reada_count = wc->reada_count * 3 / 2;
8373 wc->reada_count = min_t(int, wc->reada_count,
8374 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8375 }
8376
8377 eb = path->nodes[wc->level];
8378 nritems = btrfs_header_nritems(eb);
8379
8380 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8381 if (nread >= wc->reada_count)
8382 break;
8383
8384 cond_resched();
8385 bytenr = btrfs_node_blockptr(eb, slot);
8386 generation = btrfs_node_ptr_generation(eb, slot);
8387
8388 if (slot == path->slots[wc->level])
8389 goto reada;
8390
8391 if (wc->stage == UPDATE_BACKREF &&
8392 generation <= root->root_key.offset)
8393 continue;
8394
8395 /* We don't lock the tree block, it's OK to be racy here */
8396 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8397 wc->level - 1, 1, &refs,
8398 &flags);
8399 /* We don't care about errors in readahead. */
8400 if (ret < 0)
8401 continue;
8402 BUG_ON(refs == 0);
8403
8404 if (wc->stage == DROP_REFERENCE) {
8405 if (refs == 1)
8406 goto reada;
8407
8408 if (wc->level == 1 &&
8409 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8410 continue;
8411 if (!wc->update_ref ||
8412 generation <= root->root_key.offset)
8413 continue;
8414 btrfs_node_key_to_cpu(eb, &key, slot);
8415 ret = btrfs_comp_cpu_keys(&key,
8416 &wc->update_progress);
8417 if (ret < 0)
8418 continue;
8419 } else {
8420 if (wc->level == 1 &&
8421 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8422 continue;
8423 }
8424reada:
8425 readahead_tree_block(fs_info, bytenr);
8426 nread++;
8427 }
8428 wc->reada_slot = slot;
8429}
8430
8431/*
8432 * helper to process tree block while walking down the tree.
8433 *
8434 * when wc->stage == UPDATE_BACKREF, this function updates
8435 * back refs for pointers in the block.
8436 *
8437 * NOTE: return value 1 means we should stop walking down.
8438 */
8439static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8440 struct btrfs_root *root,
8441 struct btrfs_path *path,
8442 struct walk_control *wc, int lookup_info)
8443{
8444 struct btrfs_fs_info *fs_info = root->fs_info;
8445 int level = wc->level;
8446 struct extent_buffer *eb = path->nodes[level];
8447 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8448 int ret;
8449
8450 if (wc->stage == UPDATE_BACKREF &&
8451 btrfs_header_owner(eb) != root->root_key.objectid)
8452 return 1;
8453
8454 /*
8455 * when reference count of tree block is 1, it won't increase
8456 * again. once full backref flag is set, we never clear it.
8457 */
8458 if (lookup_info &&
8459 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8460 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8461 BUG_ON(!path->locks[level]);
8462 ret = btrfs_lookup_extent_info(trans, fs_info,
8463 eb->start, level, 1,
8464 &wc->refs[level],
8465 &wc->flags[level]);
8466 BUG_ON(ret == -ENOMEM);
8467 if (ret)
8468 return ret;
8469 BUG_ON(wc->refs[level] == 0);
8470 }
8471
8472 if (wc->stage == DROP_REFERENCE) {
8473 if (wc->refs[level] > 1)
8474 return 1;
8475
8476 if (path->locks[level] && !wc->keep_locks) {
8477 btrfs_tree_unlock_rw(eb, path->locks[level]);
8478 path->locks[level] = 0;
8479 }
8480 return 0;
8481 }
8482
8483 /* wc->stage == UPDATE_BACKREF */
8484 if (!(wc->flags[level] & flag)) {
8485 BUG_ON(!path->locks[level]);
8486 ret = btrfs_inc_ref(trans, root, eb, 1);
8487 BUG_ON(ret); /* -ENOMEM */
8488 ret = btrfs_dec_ref(trans, root, eb, 0);
8489 BUG_ON(ret); /* -ENOMEM */
8490 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8491 eb->len, flag,
8492 btrfs_header_level(eb), 0);
8493 BUG_ON(ret); /* -ENOMEM */
8494 wc->flags[level] |= flag;
8495 }
8496
8497 /*
8498 * the block is shared by multiple trees, so it's not good to
8499 * keep the tree lock
8500 */
8501 if (path->locks[level] && level > 0) {
8502 btrfs_tree_unlock_rw(eb, path->locks[level]);
8503 path->locks[level] = 0;
8504 }
8505 return 0;
8506}
8507
8508/*
8509 * helper to process tree block pointer.
8510 *
8511 * when wc->stage == DROP_REFERENCE, this function checks
8512 * reference count of the block pointed to. if the block
8513 * is shared and we need update back refs for the subtree
8514 * rooted at the block, this function changes wc->stage to
8515 * UPDATE_BACKREF. if the block is shared and there is no
8516 * need to update back, this function drops the reference
8517 * to the block.
8518 *
8519 * NOTE: return value 1 means we should stop walking down.
8520 */
8521static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8522 struct btrfs_root *root,
8523 struct btrfs_path *path,
8524 struct walk_control *wc, int *lookup_info)
8525{
8526 struct btrfs_fs_info *fs_info = root->fs_info;
8527 u64 bytenr;
8528 u64 generation;
8529 u64 parent;
8530 u32 blocksize;
8531 struct btrfs_key key;
8532 struct btrfs_key first_key;
8533 struct extent_buffer *next;
8534 int level = wc->level;
8535 int reada = 0;
8536 int ret = 0;
8537 bool need_account = false;
8538
8539 generation = btrfs_node_ptr_generation(path->nodes[level],
8540 path->slots[level]);
8541 /*
8542 * if the lower level block was created before the snapshot
8543 * was created, we know there is no need to update back refs
8544 * for the subtree
8545 */
8546 if (wc->stage == UPDATE_BACKREF &&
8547 generation <= root->root_key.offset) {
8548 *lookup_info = 1;
8549 return 1;
8550 }
8551
8552 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8553 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8554 path->slots[level]);
8555 blocksize = fs_info->nodesize;
8556
8557 next = find_extent_buffer(fs_info, bytenr);
8558 if (!next) {
8559 next = btrfs_find_create_tree_block(fs_info, bytenr);
8560 if (IS_ERR(next))
8561 return PTR_ERR(next);
8562
8563 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8564 level - 1);
8565 reada = 1;
8566 }
8567 btrfs_tree_lock(next);
8568 btrfs_set_lock_blocking(next);
8569
8570 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8571 &wc->refs[level - 1],
8572 &wc->flags[level - 1]);
8573 if (ret < 0)
8574 goto out_unlock;
8575
8576 if (unlikely(wc->refs[level - 1] == 0)) {
8577 btrfs_err(fs_info, "Missing references.");
8578 ret = -EIO;
8579 goto out_unlock;
8580 }
8581 *lookup_info = 0;
8582
8583 if (wc->stage == DROP_REFERENCE) {
8584 if (wc->refs[level - 1] > 1) {
8585 need_account = true;
8586 if (level == 1 &&
8587 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8588 goto skip;
8589
8590 if (!wc->update_ref ||
8591 generation <= root->root_key.offset)
8592 goto skip;
8593
8594 btrfs_node_key_to_cpu(path->nodes[level], &key,
8595 path->slots[level]);
8596 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8597 if (ret < 0)
8598 goto skip;
8599
8600 wc->stage = UPDATE_BACKREF;
8601 wc->shared_level = level - 1;
8602 }
8603 } else {
8604 if (level == 1 &&
8605 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8606 goto skip;
8607 }
8608
8609 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8610 btrfs_tree_unlock(next);
8611 free_extent_buffer(next);
8612 next = NULL;
8613 *lookup_info = 1;
8614 }
8615
8616 if (!next) {
8617 if (reada && level == 1)
8618 reada_walk_down(trans, root, wc, path);
8619 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8620 &first_key);
8621 if (IS_ERR(next)) {
8622 return PTR_ERR(next);
8623 } else if (!extent_buffer_uptodate(next)) {
8624 free_extent_buffer(next);
8625 return -EIO;
8626 }
8627 btrfs_tree_lock(next);
8628 btrfs_set_lock_blocking(next);
8629 }
8630
8631 level--;
8632 ASSERT(level == btrfs_header_level(next));
8633 if (level != btrfs_header_level(next)) {
8634 btrfs_err(root->fs_info, "mismatched level");
8635 ret = -EIO;
8636 goto out_unlock;
8637 }
8638 path->nodes[level] = next;
8639 path->slots[level] = 0;
8640 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8641 wc->level = level;
8642 if (wc->level == 1)
8643 wc->reada_slot = 0;
8644 return 0;
8645skip:
8646 wc->refs[level - 1] = 0;
8647 wc->flags[level - 1] = 0;
8648 if (wc->stage == DROP_REFERENCE) {
8649 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8650 parent = path->nodes[level]->start;
8651 } else {
8652 ASSERT(root->root_key.objectid ==
8653 btrfs_header_owner(path->nodes[level]));
8654 if (root->root_key.objectid !=
8655 btrfs_header_owner(path->nodes[level])) {
8656 btrfs_err(root->fs_info,
8657 "mismatched block owner");
8658 ret = -EIO;
8659 goto out_unlock;
8660 }
8661 parent = 0;
8662 }
8663
8664 if (need_account) {
8665 ret = btrfs_qgroup_trace_subtree(trans, next,
8666 generation, level - 1);
8667 if (ret) {
8668 btrfs_err_rl(fs_info,
8669 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8670 ret);
8671 }
8672 }
8673 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8674 parent, root->root_key.objectid,
8675 level - 1, 0);
8676 if (ret)
8677 goto out_unlock;
8678 }
8679
8680 *lookup_info = 1;
8681 ret = 1;
8682
8683out_unlock:
8684 btrfs_tree_unlock(next);
8685 free_extent_buffer(next);
8686
8687 return ret;
8688}
8689
8690/*
8691 * helper to process tree block while walking up the tree.
8692 *
8693 * when wc->stage == DROP_REFERENCE, this function drops
8694 * reference count on the block.
8695 *
8696 * when wc->stage == UPDATE_BACKREF, this function changes
8697 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8698 * to UPDATE_BACKREF previously while processing the block.
8699 *
8700 * NOTE: return value 1 means we should stop walking up.
8701 */
8702static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8703 struct btrfs_root *root,
8704 struct btrfs_path *path,
8705 struct walk_control *wc)
8706{
8707 struct btrfs_fs_info *fs_info = root->fs_info;
8708 int ret;
8709 int level = wc->level;
8710 struct extent_buffer *eb = path->nodes[level];
8711 u64 parent = 0;
8712
8713 if (wc->stage == UPDATE_BACKREF) {
8714 BUG_ON(wc->shared_level < level);
8715 if (level < wc->shared_level)
8716 goto out;
8717
8718 ret = find_next_key(path, level + 1, &wc->update_progress);
8719 if (ret > 0)
8720 wc->update_ref = 0;
8721
8722 wc->stage = DROP_REFERENCE;
8723 wc->shared_level = -1;
8724 path->slots[level] = 0;
8725
8726 /*
8727 * check reference count again if the block isn't locked.
8728 * we should start walking down the tree again if reference
8729 * count is one.
8730 */
8731 if (!path->locks[level]) {
8732 BUG_ON(level == 0);
8733 btrfs_tree_lock(eb);
8734 btrfs_set_lock_blocking(eb);
8735 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8736
8737 ret = btrfs_lookup_extent_info(trans, fs_info,
8738 eb->start, level, 1,
8739 &wc->refs[level],
8740 &wc->flags[level]);
8741 if (ret < 0) {
8742 btrfs_tree_unlock_rw(eb, path->locks[level]);
8743 path->locks[level] = 0;
8744 return ret;
8745 }
8746 BUG_ON(wc->refs[level] == 0);
8747 if (wc->refs[level] == 1) {
8748 btrfs_tree_unlock_rw(eb, path->locks[level]);
8749 path->locks[level] = 0;
8750 return 1;
8751 }
8752 }
8753 }
8754
8755 /* wc->stage == DROP_REFERENCE */
8756 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8757
8758 if (wc->refs[level] == 1) {
8759 if (level == 0) {
8760 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8761 ret = btrfs_dec_ref(trans, root, eb, 1);
8762 else
8763 ret = btrfs_dec_ref(trans, root, eb, 0);
8764 BUG_ON(ret); /* -ENOMEM */
8765 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8766 if (ret) {
8767 btrfs_err_rl(fs_info,
8768 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8769 ret);
8770 }
8771 }
8772 /* make block locked assertion in clean_tree_block happy */
8773 if (!path->locks[level] &&
8774 btrfs_header_generation(eb) == trans->transid) {
8775 btrfs_tree_lock(eb);
8776 btrfs_set_lock_blocking(eb);
8777 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8778 }
8779 clean_tree_block(fs_info, eb);
8780 }
8781
8782 if (eb == root->node) {
8783 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8784 parent = eb->start;
8785 else if (root->root_key.objectid != btrfs_header_owner(eb))
8786 goto owner_mismatch;
8787 } else {
8788 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8789 parent = path->nodes[level + 1]->start;
8790 else if (root->root_key.objectid !=
8791 btrfs_header_owner(path->nodes[level + 1]))
8792 goto owner_mismatch;
8793 }
8794
8795 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8796out:
8797 wc->refs[level] = 0;
8798 wc->flags[level] = 0;
8799 return 0;
8800
8801owner_mismatch:
8802 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8803 btrfs_header_owner(eb), root->root_key.objectid);
8804 return -EUCLEAN;
8805}
8806
8807static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8808 struct btrfs_root *root,
8809 struct btrfs_path *path,
8810 struct walk_control *wc)
8811{
8812 int level = wc->level;
8813 int lookup_info = 1;
8814 int ret;
8815
8816 while (level >= 0) {
8817 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8818 if (ret > 0)
8819 break;
8820
8821 if (level == 0)
8822 break;
8823
8824 if (path->slots[level] >=
8825 btrfs_header_nritems(path->nodes[level]))
8826 break;
8827
8828 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8829 if (ret > 0) {
8830 path->slots[level]++;
8831 continue;
8832 } else if (ret < 0)
8833 return ret;
8834 level = wc->level;
8835 }
8836 return 0;
8837}
8838
8839static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8840 struct btrfs_root *root,
8841 struct btrfs_path *path,
8842 struct walk_control *wc, int max_level)
8843{
8844 int level = wc->level;
8845 int ret;
8846
8847 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8848 while (level < max_level && path->nodes[level]) {
8849 wc->level = level;
8850 if (path->slots[level] + 1 <
8851 btrfs_header_nritems(path->nodes[level])) {
8852 path->slots[level]++;
8853 return 0;
8854 } else {
8855 ret = walk_up_proc(trans, root, path, wc);
8856 if (ret > 0)
8857 return 0;
8858 if (ret < 0)
8859 return ret;
8860
8861 if (path->locks[level]) {
8862 btrfs_tree_unlock_rw(path->nodes[level],
8863 path->locks[level]);
8864 path->locks[level] = 0;
8865 }
8866 free_extent_buffer(path->nodes[level]);
8867 path->nodes[level] = NULL;
8868 level++;
8869 }
8870 }
8871 return 1;
8872}
8873
8874/*
8875 * drop a subvolume tree.
8876 *
8877 * this function traverses the tree freeing any blocks that only
8878 * referenced by the tree.
8879 *
8880 * when a shared tree block is found. this function decreases its
8881 * reference count by one. if update_ref is true, this function
8882 * also make sure backrefs for the shared block and all lower level
8883 * blocks are properly updated.
8884 *
8885 * If called with for_reloc == 0, may exit early with -EAGAIN
8886 */
8887int btrfs_drop_snapshot(struct btrfs_root *root,
8888 struct btrfs_block_rsv *block_rsv, int update_ref,
8889 int for_reloc)
8890{
8891 struct btrfs_fs_info *fs_info = root->fs_info;
8892 struct btrfs_path *path;
8893 struct btrfs_trans_handle *trans;
8894 struct btrfs_root *tree_root = fs_info->tree_root;
8895 struct btrfs_root_item *root_item = &root->root_item;
8896 struct walk_control *wc;
8897 struct btrfs_key key;
8898 int err = 0;
8899 int ret;
8900 int level;
8901 bool root_dropped = false;
8902
8903 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8904
8905 path = btrfs_alloc_path();
8906 if (!path) {
8907 err = -ENOMEM;
8908 goto out;
8909 }
8910
8911 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8912 if (!wc) {
8913 btrfs_free_path(path);
8914 err = -ENOMEM;
8915 goto out;
8916 }
8917
8918 trans = btrfs_start_transaction(tree_root, 0);
8919 if (IS_ERR(trans)) {
8920 err = PTR_ERR(trans);
8921 goto out_free;
8922 }
8923
8924 err = btrfs_run_delayed_items(trans);
8925 if (err)
8926 goto out_end_trans;
8927
8928 if (block_rsv)
8929 trans->block_rsv = block_rsv;
8930
8931 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8932 level = btrfs_header_level(root->node);
8933 path->nodes[level] = btrfs_lock_root_node(root);
8934 btrfs_set_lock_blocking(path->nodes[level]);
8935 path->slots[level] = 0;
8936 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8937 memset(&wc->update_progress, 0,
8938 sizeof(wc->update_progress));
8939 } else {
8940 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8941 memcpy(&wc->update_progress, &key,
8942 sizeof(wc->update_progress));
8943
8944 level = root_item->drop_level;
8945 BUG_ON(level == 0);
8946 path->lowest_level = level;
8947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8948 path->lowest_level = 0;
8949 if (ret < 0) {
8950 err = ret;
8951 goto out_end_trans;
8952 }
8953 WARN_ON(ret > 0);
8954
8955 /*
8956 * unlock our path, this is safe because only this
8957 * function is allowed to delete this snapshot
8958 */
8959 btrfs_unlock_up_safe(path, 0);
8960
8961 level = btrfs_header_level(root->node);
8962 while (1) {
8963 btrfs_tree_lock(path->nodes[level]);
8964 btrfs_set_lock_blocking(path->nodes[level]);
8965 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8966
8967 ret = btrfs_lookup_extent_info(trans, fs_info,
8968 path->nodes[level]->start,
8969 level, 1, &wc->refs[level],
8970 &wc->flags[level]);
8971 if (ret < 0) {
8972 err = ret;
8973 goto out_end_trans;
8974 }
8975 BUG_ON(wc->refs[level] == 0);
8976
8977 if (level == root_item->drop_level)
8978 break;
8979
8980 btrfs_tree_unlock(path->nodes[level]);
8981 path->locks[level] = 0;
8982 WARN_ON(wc->refs[level] != 1);
8983 level--;
8984 }
8985 }
8986
8987 wc->level = level;
8988 wc->shared_level = -1;
8989 wc->stage = DROP_REFERENCE;
8990 wc->update_ref = update_ref;
8991 wc->keep_locks = 0;
8992 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8993
8994 while (1) {
8995
8996 ret = walk_down_tree(trans, root, path, wc);
8997 if (ret < 0) {
8998 err = ret;
8999 break;
9000 }
9001
9002 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9003 if (ret < 0) {
9004 err = ret;
9005 break;
9006 }
9007
9008 if (ret > 0) {
9009 BUG_ON(wc->stage != DROP_REFERENCE);
9010 break;
9011 }
9012
9013 if (wc->stage == DROP_REFERENCE) {
9014 level = wc->level;
9015 btrfs_node_key(path->nodes[level],
9016 &root_item->drop_progress,
9017 path->slots[level]);
9018 root_item->drop_level = level;
9019 }
9020
9021 BUG_ON(wc->level == 0);
9022 if (btrfs_should_end_transaction(trans) ||
9023 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9024 ret = btrfs_update_root(trans, tree_root,
9025 &root->root_key,
9026 root_item);
9027 if (ret) {
9028 btrfs_abort_transaction(trans, ret);
9029 err = ret;
9030 goto out_end_trans;
9031 }
9032
9033 btrfs_end_transaction_throttle(trans);
9034 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9035 btrfs_debug(fs_info,
9036 "drop snapshot early exit");
9037 err = -EAGAIN;
9038 goto out_free;
9039 }
9040
9041 trans = btrfs_start_transaction(tree_root, 0);
9042 if (IS_ERR(trans)) {
9043 err = PTR_ERR(trans);
9044 goto out_free;
9045 }
9046 if (block_rsv)
9047 trans->block_rsv = block_rsv;
9048 }
9049 }
9050 btrfs_release_path(path);
9051 if (err)
9052 goto out_end_trans;
9053
9054 ret = btrfs_del_root(trans, &root->root_key);
9055 if (ret) {
9056 btrfs_abort_transaction(trans, ret);
9057 err = ret;
9058 goto out_end_trans;
9059 }
9060
9061 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9062 ret = btrfs_find_root(tree_root, &root->root_key, path,
9063 NULL, NULL);
9064 if (ret < 0) {
9065 btrfs_abort_transaction(trans, ret);
9066 err = ret;
9067 goto out_end_trans;
9068 } else if (ret > 0) {
9069 /* if we fail to delete the orphan item this time
9070 * around, it'll get picked up the next time.
9071 *
9072 * The most common failure here is just -ENOENT.
9073 */
9074 btrfs_del_orphan_item(trans, tree_root,
9075 root->root_key.objectid);
9076 }
9077 }
9078
9079 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9080 btrfs_add_dropped_root(trans, root);
9081 } else {
9082 free_extent_buffer(root->node);
9083 free_extent_buffer(root->commit_root);
9084 btrfs_put_fs_root(root);
9085 }
9086 root_dropped = true;
9087out_end_trans:
9088 btrfs_end_transaction_throttle(trans);
9089out_free:
9090 kfree(wc);
9091 btrfs_free_path(path);
9092out:
9093 /*
9094 * So if we need to stop dropping the snapshot for whatever reason we
9095 * need to make sure to add it back to the dead root list so that we
9096 * keep trying to do the work later. This also cleans up roots if we
9097 * don't have it in the radix (like when we recover after a power fail
9098 * or unmount) so we don't leak memory.
9099 */
9100 if (!for_reloc && !root_dropped)
9101 btrfs_add_dead_root(root);
9102 if (err && err != -EAGAIN)
9103 btrfs_handle_fs_error(fs_info, err, NULL);
9104 return err;
9105}
9106
9107/*
9108 * drop subtree rooted at tree block 'node'.
9109 *
9110 * NOTE: this function will unlock and release tree block 'node'
9111 * only used by relocation code
9112 */
9113int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9114 struct btrfs_root *root,
9115 struct extent_buffer *node,
9116 struct extent_buffer *parent)
9117{
9118 struct btrfs_fs_info *fs_info = root->fs_info;
9119 struct btrfs_path *path;
9120 struct walk_control *wc;
9121 int level;
9122 int parent_level;
9123 int ret = 0;
9124 int wret;
9125
9126 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9127
9128 path = btrfs_alloc_path();
9129 if (!path)
9130 return -ENOMEM;
9131
9132 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9133 if (!wc) {
9134 btrfs_free_path(path);
9135 return -ENOMEM;
9136 }
9137
9138 btrfs_assert_tree_locked(parent);
9139 parent_level = btrfs_header_level(parent);
9140 extent_buffer_get(parent);
9141 path->nodes[parent_level] = parent;
9142 path->slots[parent_level] = btrfs_header_nritems(parent);
9143
9144 btrfs_assert_tree_locked(node);
9145 level = btrfs_header_level(node);
9146 path->nodes[level] = node;
9147 path->slots[level] = 0;
9148 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9149
9150 wc->refs[parent_level] = 1;
9151 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9152 wc->level = level;
9153 wc->shared_level = -1;
9154 wc->stage = DROP_REFERENCE;
9155 wc->update_ref = 0;
9156 wc->keep_locks = 1;
9157 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9158
9159 while (1) {
9160 wret = walk_down_tree(trans, root, path, wc);
9161 if (wret < 0) {
9162 ret = wret;
9163 break;
9164 }
9165
9166 wret = walk_up_tree(trans, root, path, wc, parent_level);
9167 if (wret < 0)
9168 ret = wret;
9169 if (wret != 0)
9170 break;
9171 }
9172
9173 kfree(wc);
9174 btrfs_free_path(path);
9175 return ret;
9176}
9177
9178static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9179{
9180 u64 num_devices;
9181 u64 stripped;
9182
9183 /*
9184 * if restripe for this chunk_type is on pick target profile and
9185 * return, otherwise do the usual balance
9186 */
9187 stripped = get_restripe_target(fs_info, flags);
9188 if (stripped)
9189 return extended_to_chunk(stripped);
9190
9191 num_devices = fs_info->fs_devices->rw_devices;
9192
9193 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9194 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9195 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9196
9197 if (num_devices == 1) {
9198 stripped |= BTRFS_BLOCK_GROUP_DUP;
9199 stripped = flags & ~stripped;
9200
9201 /* turn raid0 into single device chunks */
9202 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9203 return stripped;
9204
9205 /* turn mirroring into duplication */
9206 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9207 BTRFS_BLOCK_GROUP_RAID10))
9208 return stripped | BTRFS_BLOCK_GROUP_DUP;
9209 } else {
9210 /* they already had raid on here, just return */
9211 if (flags & stripped)
9212 return flags;
9213
9214 stripped |= BTRFS_BLOCK_GROUP_DUP;
9215 stripped = flags & ~stripped;
9216
9217 /* switch duplicated blocks with raid1 */
9218 if (flags & BTRFS_BLOCK_GROUP_DUP)
9219 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9220
9221 /* this is drive concat, leave it alone */
9222 }
9223
9224 return flags;
9225}
9226
9227static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9228{
9229 struct btrfs_space_info *sinfo = cache->space_info;
9230 u64 num_bytes;
9231 u64 min_allocable_bytes;
9232 int ret = -ENOSPC;
9233
9234 /*
9235 * We need some metadata space and system metadata space for
9236 * allocating chunks in some corner cases until we force to set
9237 * it to be readonly.
9238 */
9239 if ((sinfo->flags &
9240 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9241 !force)
9242 min_allocable_bytes = SZ_1M;
9243 else
9244 min_allocable_bytes = 0;
9245
9246 spin_lock(&sinfo->lock);
9247 spin_lock(&cache->lock);
9248
9249 if (cache->ro) {
9250 cache->ro++;
9251 ret = 0;
9252 goto out;
9253 }
9254
9255 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9256 cache->bytes_super - btrfs_block_group_used(&cache->item);
9257
9258 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9259 min_allocable_bytes <= sinfo->total_bytes) {
9260 sinfo->bytes_readonly += num_bytes;
9261 cache->ro++;
9262 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9263 ret = 0;
9264 }
9265out:
9266 spin_unlock(&cache->lock);
9267 spin_unlock(&sinfo->lock);
9268 return ret;
9269}
9270
9271int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9272
9273{
9274 struct btrfs_fs_info *fs_info = cache->fs_info;
9275 struct btrfs_trans_handle *trans;
9276 u64 alloc_flags;
9277 int ret;
9278
9279again:
9280 trans = btrfs_join_transaction(fs_info->extent_root);
9281 if (IS_ERR(trans))
9282 return PTR_ERR(trans);
9283
9284 /*
9285 * we're not allowed to set block groups readonly after the dirty
9286 * block groups cache has started writing. If it already started,
9287 * back off and let this transaction commit
9288 */
9289 mutex_lock(&fs_info->ro_block_group_mutex);
9290 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9291 u64 transid = trans->transid;
9292
9293 mutex_unlock(&fs_info->ro_block_group_mutex);
9294 btrfs_end_transaction(trans);
9295
9296 ret = btrfs_wait_for_commit(fs_info, transid);
9297 if (ret)
9298 return ret;
9299 goto again;
9300 }
9301
9302 /*
9303 * if we are changing raid levels, try to allocate a corresponding
9304 * block group with the new raid level.
9305 */
9306 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9307 if (alloc_flags != cache->flags) {
9308 ret = do_chunk_alloc(trans, alloc_flags,
9309 CHUNK_ALLOC_FORCE);
9310 /*
9311 * ENOSPC is allowed here, we may have enough space
9312 * already allocated at the new raid level to
9313 * carry on
9314 */
9315 if (ret == -ENOSPC)
9316 ret = 0;
9317 if (ret < 0)
9318 goto out;
9319 }
9320
9321 ret = inc_block_group_ro(cache, 0);
9322 if (!ret)
9323 goto out;
9324 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9325 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9326 if (ret < 0)
9327 goto out;
9328 ret = inc_block_group_ro(cache, 0);
9329out:
9330 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9331 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9332 mutex_lock(&fs_info->chunk_mutex);
9333 check_system_chunk(trans, alloc_flags);
9334 mutex_unlock(&fs_info->chunk_mutex);
9335 }
9336 mutex_unlock(&fs_info->ro_block_group_mutex);
9337
9338 btrfs_end_transaction(trans);
9339 return ret;
9340}
9341
9342int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9343{
9344 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9345
9346 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9347}
9348
9349/*
9350 * helper to account the unused space of all the readonly block group in the
9351 * space_info. takes mirrors into account.
9352 */
9353u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9354{
9355 struct btrfs_block_group_cache *block_group;
9356 u64 free_bytes = 0;
9357 int factor;
9358
9359 /* It's df, we don't care if it's racy */
9360 if (list_empty(&sinfo->ro_bgs))
9361 return 0;
9362
9363 spin_lock(&sinfo->lock);
9364 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9365 spin_lock(&block_group->lock);
9366
9367 if (!block_group->ro) {
9368 spin_unlock(&block_group->lock);
9369 continue;
9370 }
9371
9372 factor = btrfs_bg_type_to_factor(block_group->flags);
9373 free_bytes += (block_group->key.offset -
9374 btrfs_block_group_used(&block_group->item)) *
9375 factor;
9376
9377 spin_unlock(&block_group->lock);
9378 }
9379 spin_unlock(&sinfo->lock);
9380
9381 return free_bytes;
9382}
9383
9384void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9385{
9386 struct btrfs_space_info *sinfo = cache->space_info;
9387 u64 num_bytes;
9388
9389 BUG_ON(!cache->ro);
9390
9391 spin_lock(&sinfo->lock);
9392 spin_lock(&cache->lock);
9393 if (!--cache->ro) {
9394 num_bytes = cache->key.offset - cache->reserved -
9395 cache->pinned - cache->bytes_super -
9396 btrfs_block_group_used(&cache->item);
9397 sinfo->bytes_readonly -= num_bytes;
9398 list_del_init(&cache->ro_list);
9399 }
9400 spin_unlock(&cache->lock);
9401 spin_unlock(&sinfo->lock);
9402}
9403
9404/*
9405 * checks to see if its even possible to relocate this block group.
9406 *
9407 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9408 * ok to go ahead and try.
9409 */
9410int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9411{
9412 struct btrfs_root *root = fs_info->extent_root;
9413 struct btrfs_block_group_cache *block_group;
9414 struct btrfs_space_info *space_info;
9415 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9416 struct btrfs_device *device;
9417 struct btrfs_trans_handle *trans;
9418 u64 min_free;
9419 u64 dev_min = 1;
9420 u64 dev_nr = 0;
9421 u64 target;
9422 int debug;
9423 int index;
9424 int full = 0;
9425 int ret = 0;
9426
9427 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9428
9429 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9430
9431 /* odd, couldn't find the block group, leave it alone */
9432 if (!block_group) {
9433 if (debug)
9434 btrfs_warn(fs_info,
9435 "can't find block group for bytenr %llu",
9436 bytenr);
9437 return -1;
9438 }
9439
9440 min_free = btrfs_block_group_used(&block_group->item);
9441
9442 /* no bytes used, we're good */
9443 if (!min_free)
9444 goto out;
9445
9446 space_info = block_group->space_info;
9447 spin_lock(&space_info->lock);
9448
9449 full = space_info->full;
9450
9451 /*
9452 * if this is the last block group we have in this space, we can't
9453 * relocate it unless we're able to allocate a new chunk below.
9454 *
9455 * Otherwise, we need to make sure we have room in the space to handle
9456 * all of the extents from this block group. If we can, we're good
9457 */
9458 if ((space_info->total_bytes != block_group->key.offset) &&
9459 (btrfs_space_info_used(space_info, false) + min_free <
9460 space_info->total_bytes)) {
9461 spin_unlock(&space_info->lock);
9462 goto out;
9463 }
9464 spin_unlock(&space_info->lock);
9465
9466 /*
9467 * ok we don't have enough space, but maybe we have free space on our
9468 * devices to allocate new chunks for relocation, so loop through our
9469 * alloc devices and guess if we have enough space. if this block
9470 * group is going to be restriped, run checks against the target
9471 * profile instead of the current one.
9472 */
9473 ret = -1;
9474
9475 /*
9476 * index:
9477 * 0: raid10
9478 * 1: raid1
9479 * 2: dup
9480 * 3: raid0
9481 * 4: single
9482 */
9483 target = get_restripe_target(fs_info, block_group->flags);
9484 if (target) {
9485 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9486 } else {
9487 /*
9488 * this is just a balance, so if we were marked as full
9489 * we know there is no space for a new chunk
9490 */
9491 if (full) {
9492 if (debug)
9493 btrfs_warn(fs_info,
9494 "no space to alloc new chunk for block group %llu",
9495 block_group->key.objectid);
9496 goto out;
9497 }
9498
9499 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9500 }
9501
9502 if (index == BTRFS_RAID_RAID10) {
9503 dev_min = 4;
9504 /* Divide by 2 */
9505 min_free >>= 1;
9506 } else if (index == BTRFS_RAID_RAID1) {
9507 dev_min = 2;
9508 } else if (index == BTRFS_RAID_DUP) {
9509 /* Multiply by 2 */
9510 min_free <<= 1;
9511 } else if (index == BTRFS_RAID_RAID0) {
9512 dev_min = fs_devices->rw_devices;
9513 min_free = div64_u64(min_free, dev_min);
9514 }
9515
9516 /* We need to do this so that we can look at pending chunks */
9517 trans = btrfs_join_transaction(root);
9518 if (IS_ERR(trans)) {
9519 ret = PTR_ERR(trans);
9520 goto out;
9521 }
9522
9523 mutex_lock(&fs_info->chunk_mutex);
9524 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9525 u64 dev_offset;
9526
9527 /*
9528 * check to make sure we can actually find a chunk with enough
9529 * space to fit our block group in.
9530 */
9531 if (device->total_bytes > device->bytes_used + min_free &&
9532 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9533 ret = find_free_dev_extent(trans, device, min_free,
9534 &dev_offset, NULL);
9535 if (!ret)
9536 dev_nr++;
9537
9538 if (dev_nr >= dev_min)
9539 break;
9540
9541 ret = -1;
9542 }
9543 }
9544 if (debug && ret == -1)
9545 btrfs_warn(fs_info,
9546 "no space to allocate a new chunk for block group %llu",
9547 block_group->key.objectid);
9548 mutex_unlock(&fs_info->chunk_mutex);
9549 btrfs_end_transaction(trans);
9550out:
9551 btrfs_put_block_group(block_group);
9552 return ret;
9553}
9554
9555static int find_first_block_group(struct btrfs_fs_info *fs_info,
9556 struct btrfs_path *path,
9557 struct btrfs_key *key)
9558{
9559 struct btrfs_root *root = fs_info->extent_root;
9560 int ret = 0;
9561 struct btrfs_key found_key;
9562 struct extent_buffer *leaf;
9563 struct btrfs_block_group_item bg;
9564 u64 flags;
9565 int slot;
9566
9567 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9568 if (ret < 0)
9569 goto out;
9570
9571 while (1) {
9572 slot = path->slots[0];
9573 leaf = path->nodes[0];
9574 if (slot >= btrfs_header_nritems(leaf)) {
9575 ret = btrfs_next_leaf(root, path);
9576 if (ret == 0)
9577 continue;
9578 if (ret < 0)
9579 goto out;
9580 break;
9581 }
9582 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9583
9584 if (found_key.objectid >= key->objectid &&
9585 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9586 struct extent_map_tree *em_tree;
9587 struct extent_map *em;
9588
9589 em_tree = &root->fs_info->mapping_tree.map_tree;
9590 read_lock(&em_tree->lock);
9591 em = lookup_extent_mapping(em_tree, found_key.objectid,
9592 found_key.offset);
9593 read_unlock(&em_tree->lock);
9594 if (!em) {
9595 btrfs_err(fs_info,
9596 "logical %llu len %llu found bg but no related chunk",
9597 found_key.objectid, found_key.offset);
9598 ret = -ENOENT;
9599 } else if (em->start != found_key.objectid ||
9600 em->len != found_key.offset) {
9601 btrfs_err(fs_info,
9602 "block group %llu len %llu mismatch with chunk %llu len %llu",
9603 found_key.objectid, found_key.offset,
9604 em->start, em->len);
9605 ret = -EUCLEAN;
9606 } else {
9607 read_extent_buffer(leaf, &bg,
9608 btrfs_item_ptr_offset(leaf, slot),
9609 sizeof(bg));
9610 flags = btrfs_block_group_flags(&bg) &
9611 BTRFS_BLOCK_GROUP_TYPE_MASK;
9612
9613 if (flags != (em->map_lookup->type &
9614 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9615 btrfs_err(fs_info,
9616"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9617 found_key.objectid,
9618 found_key.offset, flags,
9619 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9620 em->map_lookup->type));
9621 ret = -EUCLEAN;
9622 } else {
9623 ret = 0;
9624 }
9625 }
9626 free_extent_map(em);
9627 goto out;
9628 }
9629 path->slots[0]++;
9630 }
9631out:
9632 return ret;
9633}
9634
9635void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9636{
9637 struct btrfs_block_group_cache *block_group;
9638 u64 last = 0;
9639
9640 while (1) {
9641 struct inode *inode;
9642
9643 block_group = btrfs_lookup_first_block_group(info, last);
9644 while (block_group) {
9645 wait_block_group_cache_done(block_group);
9646 spin_lock(&block_group->lock);
9647 if (block_group->iref)
9648 break;
9649 spin_unlock(&block_group->lock);
9650 block_group = next_block_group(info, block_group);
9651 }
9652 if (!block_group) {
9653 if (last == 0)
9654 break;
9655 last = 0;
9656 continue;
9657 }
9658
9659 inode = block_group->inode;
9660 block_group->iref = 0;
9661 block_group->inode = NULL;
9662 spin_unlock(&block_group->lock);
9663 ASSERT(block_group->io_ctl.inode == NULL);
9664 iput(inode);
9665 last = block_group->key.objectid + block_group->key.offset;
9666 btrfs_put_block_group(block_group);
9667 }
9668}
9669
9670/*
9671 * Must be called only after stopping all workers, since we could have block
9672 * group caching kthreads running, and therefore they could race with us if we
9673 * freed the block groups before stopping them.
9674 */
9675int btrfs_free_block_groups(struct btrfs_fs_info *info)
9676{
9677 struct btrfs_block_group_cache *block_group;
9678 struct btrfs_space_info *space_info;
9679 struct btrfs_caching_control *caching_ctl;
9680 struct rb_node *n;
9681
9682 down_write(&info->commit_root_sem);
9683 while (!list_empty(&info->caching_block_groups)) {
9684 caching_ctl = list_entry(info->caching_block_groups.next,
9685 struct btrfs_caching_control, list);
9686 list_del(&caching_ctl->list);
9687 put_caching_control(caching_ctl);
9688 }
9689 up_write(&info->commit_root_sem);
9690
9691 spin_lock(&info->unused_bgs_lock);
9692 while (!list_empty(&info->unused_bgs)) {
9693 block_group = list_first_entry(&info->unused_bgs,
9694 struct btrfs_block_group_cache,
9695 bg_list);
9696 list_del_init(&block_group->bg_list);
9697 btrfs_put_block_group(block_group);
9698 }
9699 spin_unlock(&info->unused_bgs_lock);
9700
9701 spin_lock(&info->block_group_cache_lock);
9702 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9703 block_group = rb_entry(n, struct btrfs_block_group_cache,
9704 cache_node);
9705 rb_erase(&block_group->cache_node,
9706 &info->block_group_cache_tree);
9707 RB_CLEAR_NODE(&block_group->cache_node);
9708 spin_unlock(&info->block_group_cache_lock);
9709
9710 down_write(&block_group->space_info->groups_sem);
9711 list_del(&block_group->list);
9712 up_write(&block_group->space_info->groups_sem);
9713
9714 /*
9715 * We haven't cached this block group, which means we could
9716 * possibly have excluded extents on this block group.
9717 */
9718 if (block_group->cached == BTRFS_CACHE_NO ||
9719 block_group->cached == BTRFS_CACHE_ERROR)
9720 free_excluded_extents(block_group);
9721
9722 btrfs_remove_free_space_cache(block_group);
9723 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9724 ASSERT(list_empty(&block_group->dirty_list));
9725 ASSERT(list_empty(&block_group->io_list));
9726 ASSERT(list_empty(&block_group->bg_list));
9727 ASSERT(atomic_read(&block_group->count) == 1);
9728 btrfs_put_block_group(block_group);
9729
9730 spin_lock(&info->block_group_cache_lock);
9731 }
9732 spin_unlock(&info->block_group_cache_lock);
9733
9734 /* now that all the block groups are freed, go through and
9735 * free all the space_info structs. This is only called during
9736 * the final stages of unmount, and so we know nobody is
9737 * using them. We call synchronize_rcu() once before we start,
9738 * just to be on the safe side.
9739 */
9740 synchronize_rcu();
9741
9742 release_global_block_rsv(info);
9743
9744 while (!list_empty(&info->space_info)) {
9745 int i;
9746
9747 space_info = list_entry(info->space_info.next,
9748 struct btrfs_space_info,
9749 list);
9750
9751 /*
9752 * Do not hide this behind enospc_debug, this is actually
9753 * important and indicates a real bug if this happens.
9754 */
9755 if (WARN_ON(space_info->bytes_pinned > 0 ||
9756 space_info->bytes_reserved > 0 ||
9757 space_info->bytes_may_use > 0))
9758 dump_space_info(info, space_info, 0, 0);
9759 list_del(&space_info->list);
9760 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9761 struct kobject *kobj;
9762 kobj = space_info->block_group_kobjs[i];
9763 space_info->block_group_kobjs[i] = NULL;
9764 if (kobj) {
9765 kobject_del(kobj);
9766 kobject_put(kobj);
9767 }
9768 }
9769 kobject_del(&space_info->kobj);
9770 kobject_put(&space_info->kobj);
9771 }
9772 return 0;
9773}
9774
9775/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9776void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9777{
9778 struct btrfs_space_info *space_info;
9779 struct raid_kobject *rkobj;
9780 LIST_HEAD(list);
9781 int index;
9782 int ret = 0;
9783
9784 spin_lock(&fs_info->pending_raid_kobjs_lock);
9785 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9786 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9787
9788 list_for_each_entry(rkobj, &list, list) {
9789 space_info = __find_space_info(fs_info, rkobj->flags);
9790 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9791
9792 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9793 "%s", get_raid_name(index));
9794 if (ret) {
9795 kobject_put(&rkobj->kobj);
9796 break;
9797 }
9798 }
9799 if (ret)
9800 btrfs_warn(fs_info,
9801 "failed to add kobject for block cache, ignoring");
9802}
9803
9804static void link_block_group(struct btrfs_block_group_cache *cache)
9805{
9806 struct btrfs_space_info *space_info = cache->space_info;
9807 struct btrfs_fs_info *fs_info = cache->fs_info;
9808 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9809 bool first = false;
9810
9811 down_write(&space_info->groups_sem);
9812 if (list_empty(&space_info->block_groups[index]))
9813 first = true;
9814 list_add_tail(&cache->list, &space_info->block_groups[index]);
9815 up_write(&space_info->groups_sem);
9816
9817 if (first) {
9818 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9819 if (!rkobj) {
9820 btrfs_warn(cache->fs_info,
9821 "couldn't alloc memory for raid level kobject");
9822 return;
9823 }
9824 rkobj->flags = cache->flags;
9825 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9826
9827 spin_lock(&fs_info->pending_raid_kobjs_lock);
9828 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9829 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9830 space_info->block_group_kobjs[index] = &rkobj->kobj;
9831 }
9832}
9833
9834static struct btrfs_block_group_cache *
9835btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9836 u64 start, u64 size)
9837{
9838 struct btrfs_block_group_cache *cache;
9839
9840 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9841 if (!cache)
9842 return NULL;
9843
9844 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9845 GFP_NOFS);
9846 if (!cache->free_space_ctl) {
9847 kfree(cache);
9848 return NULL;
9849 }
9850
9851 cache->key.objectid = start;
9852 cache->key.offset = size;
9853 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9854
9855 cache->fs_info = fs_info;
9856 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9857 set_free_space_tree_thresholds(cache);
9858
9859 atomic_set(&cache->count, 1);
9860 spin_lock_init(&cache->lock);
9861 init_rwsem(&cache->data_rwsem);
9862 INIT_LIST_HEAD(&cache->list);
9863 INIT_LIST_HEAD(&cache->cluster_list);
9864 INIT_LIST_HEAD(&cache->bg_list);
9865 INIT_LIST_HEAD(&cache->ro_list);
9866 INIT_LIST_HEAD(&cache->dirty_list);
9867 INIT_LIST_HEAD(&cache->io_list);
9868 btrfs_init_free_space_ctl(cache);
9869 atomic_set(&cache->trimming, 0);
9870 mutex_init(&cache->free_space_lock);
9871 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9872
9873 return cache;
9874}
9875
9876
9877/*
9878 * Iterate all chunks and verify that each of them has the corresponding block
9879 * group
9880 */
9881static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9882{
9883 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9884 struct extent_map *em;
9885 struct btrfs_block_group_cache *bg;
9886 u64 start = 0;
9887 int ret = 0;
9888
9889 while (1) {
9890 read_lock(&map_tree->map_tree.lock);
9891 /*
9892 * lookup_extent_mapping will return the first extent map
9893 * intersecting the range, so setting @len to 1 is enough to
9894 * get the first chunk.
9895 */
9896 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9897 read_unlock(&map_tree->map_tree.lock);
9898 if (!em)
9899 break;
9900
9901 bg = btrfs_lookup_block_group(fs_info, em->start);
9902 if (!bg) {
9903 btrfs_err(fs_info,
9904 "chunk start=%llu len=%llu doesn't have corresponding block group",
9905 em->start, em->len);
9906 ret = -EUCLEAN;
9907 free_extent_map(em);
9908 break;
9909 }
9910 if (bg->key.objectid != em->start ||
9911 bg->key.offset != em->len ||
9912 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9913 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9914 btrfs_err(fs_info,
9915"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9916 em->start, em->len,
9917 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9918 bg->key.objectid, bg->key.offset,
9919 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9920 ret = -EUCLEAN;
9921 free_extent_map(em);
9922 btrfs_put_block_group(bg);
9923 break;
9924 }
9925 start = em->start + em->len;
9926 free_extent_map(em);
9927 btrfs_put_block_group(bg);
9928 }
9929 return ret;
9930}
9931
9932int btrfs_read_block_groups(struct btrfs_fs_info *info)
9933{
9934 struct btrfs_path *path;
9935 int ret;
9936 struct btrfs_block_group_cache *cache;
9937 struct btrfs_space_info *space_info;
9938 struct btrfs_key key;
9939 struct btrfs_key found_key;
9940 struct extent_buffer *leaf;
9941 int need_clear = 0;
9942 u64 cache_gen;
9943 u64 feature;
9944 int mixed;
9945
9946 feature = btrfs_super_incompat_flags(info->super_copy);
9947 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9948
9949 key.objectid = 0;
9950 key.offset = 0;
9951 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9952 path = btrfs_alloc_path();
9953 if (!path)
9954 return -ENOMEM;
9955 path->reada = READA_FORWARD;
9956
9957 cache_gen = btrfs_super_cache_generation(info->super_copy);
9958 if (btrfs_test_opt(info, SPACE_CACHE) &&
9959 btrfs_super_generation(info->super_copy) != cache_gen)
9960 need_clear = 1;
9961 if (btrfs_test_opt(info, CLEAR_CACHE))
9962 need_clear = 1;
9963
9964 while (1) {
9965 ret = find_first_block_group(info, path, &key);
9966 if (ret > 0)
9967 break;
9968 if (ret != 0)
9969 goto error;
9970
9971 leaf = path->nodes[0];
9972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9973
9974 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9975 found_key.offset);
9976 if (!cache) {
9977 ret = -ENOMEM;
9978 goto error;
9979 }
9980
9981 if (need_clear) {
9982 /*
9983 * When we mount with old space cache, we need to
9984 * set BTRFS_DC_CLEAR and set dirty flag.
9985 *
9986 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9987 * truncate the old free space cache inode and
9988 * setup a new one.
9989 * b) Setting 'dirty flag' makes sure that we flush
9990 * the new space cache info onto disk.
9991 */
9992 if (btrfs_test_opt(info, SPACE_CACHE))
9993 cache->disk_cache_state = BTRFS_DC_CLEAR;
9994 }
9995
9996 read_extent_buffer(leaf, &cache->item,
9997 btrfs_item_ptr_offset(leaf, path->slots[0]),
9998 sizeof(cache->item));
9999 cache->flags = btrfs_block_group_flags(&cache->item);
10000 if (!mixed &&
10001 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10002 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10003 btrfs_err(info,
10004"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10005 cache->key.objectid);
10006 btrfs_put_block_group(cache);
10007 ret = -EINVAL;
10008 goto error;
10009 }
10010
10011 key.objectid = found_key.objectid + found_key.offset;
10012 btrfs_release_path(path);
10013
10014 /*
10015 * We need to exclude the super stripes now so that the space
10016 * info has super bytes accounted for, otherwise we'll think
10017 * we have more space than we actually do.
10018 */
10019 ret = exclude_super_stripes(cache);
10020 if (ret) {
10021 /*
10022 * We may have excluded something, so call this just in
10023 * case.
10024 */
10025 free_excluded_extents(cache);
10026 btrfs_put_block_group(cache);
10027 goto error;
10028 }
10029
10030 /*
10031 * check for two cases, either we are full, and therefore
10032 * don't need to bother with the caching work since we won't
10033 * find any space, or we are empty, and we can just add all
10034 * the space in and be done with it. This saves us _alot_ of
10035 * time, particularly in the full case.
10036 */
10037 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10038 cache->last_byte_to_unpin = (u64)-1;
10039 cache->cached = BTRFS_CACHE_FINISHED;
10040 free_excluded_extents(cache);
10041 } else if (btrfs_block_group_used(&cache->item) == 0) {
10042 cache->last_byte_to_unpin = (u64)-1;
10043 cache->cached = BTRFS_CACHE_FINISHED;
10044 add_new_free_space(cache, found_key.objectid,
10045 found_key.objectid +
10046 found_key.offset);
10047 free_excluded_extents(cache);
10048 }
10049
10050 ret = btrfs_add_block_group_cache(info, cache);
10051 if (ret) {
10052 btrfs_remove_free_space_cache(cache);
10053 btrfs_put_block_group(cache);
10054 goto error;
10055 }
10056
10057 trace_btrfs_add_block_group(info, cache, 0);
10058 update_space_info(info, cache->flags, found_key.offset,
10059 btrfs_block_group_used(&cache->item),
10060 cache->bytes_super, &space_info);
10061
10062 cache->space_info = space_info;
10063
10064 link_block_group(cache);
10065
10066 set_avail_alloc_bits(info, cache->flags);
10067 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10068 inc_block_group_ro(cache, 1);
10069 } else if (btrfs_block_group_used(&cache->item) == 0) {
10070 ASSERT(list_empty(&cache->bg_list));
10071 btrfs_mark_bg_unused(cache);
10072 }
10073 }
10074
10075 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10076 if (!(get_alloc_profile(info, space_info->flags) &
10077 (BTRFS_BLOCK_GROUP_RAID10 |
10078 BTRFS_BLOCK_GROUP_RAID1 |
10079 BTRFS_BLOCK_GROUP_RAID5 |
10080 BTRFS_BLOCK_GROUP_RAID6 |
10081 BTRFS_BLOCK_GROUP_DUP)))
10082 continue;
10083 /*
10084 * avoid allocating from un-mirrored block group if there are
10085 * mirrored block groups.
10086 */
10087 list_for_each_entry(cache,
10088 &space_info->block_groups[BTRFS_RAID_RAID0],
10089 list)
10090 inc_block_group_ro(cache, 1);
10091 list_for_each_entry(cache,
10092 &space_info->block_groups[BTRFS_RAID_SINGLE],
10093 list)
10094 inc_block_group_ro(cache, 1);
10095 }
10096
10097 btrfs_add_raid_kobjects(info);
10098 init_global_block_rsv(info);
10099 ret = check_chunk_block_group_mappings(info);
10100error:
10101 btrfs_free_path(path);
10102 return ret;
10103}
10104
10105void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10106{
10107 struct btrfs_fs_info *fs_info = trans->fs_info;
10108 struct btrfs_block_group_cache *block_group;
10109 struct btrfs_root *extent_root = fs_info->extent_root;
10110 struct btrfs_block_group_item item;
10111 struct btrfs_key key;
10112 int ret = 0;
10113
10114 if (!trans->can_flush_pending_bgs)
10115 return;
10116
10117 while (!list_empty(&trans->new_bgs)) {
10118 block_group = list_first_entry(&trans->new_bgs,
10119 struct btrfs_block_group_cache,
10120 bg_list);
10121 if (ret)
10122 goto next;
10123
10124 spin_lock(&block_group->lock);
10125 memcpy(&item, &block_group->item, sizeof(item));
10126 memcpy(&key, &block_group->key, sizeof(key));
10127 spin_unlock(&block_group->lock);
10128
10129 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10130 sizeof(item));
10131 if (ret)
10132 btrfs_abort_transaction(trans, ret);
10133 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10134 if (ret)
10135 btrfs_abort_transaction(trans, ret);
10136 add_block_group_free_space(trans, block_group);
10137 /* already aborted the transaction if it failed. */
10138next:
10139 list_del_init(&block_group->bg_list);
10140 }
10141 btrfs_trans_release_chunk_metadata(trans);
10142}
10143
10144int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10145 u64 type, u64 chunk_offset, u64 size)
10146{
10147 struct btrfs_fs_info *fs_info = trans->fs_info;
10148 struct btrfs_block_group_cache *cache;
10149 int ret;
10150
10151 btrfs_set_log_full_commit(fs_info, trans);
10152
10153 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10154 if (!cache)
10155 return -ENOMEM;
10156
10157 btrfs_set_block_group_used(&cache->item, bytes_used);
10158 btrfs_set_block_group_chunk_objectid(&cache->item,
10159 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10160 btrfs_set_block_group_flags(&cache->item, type);
10161
10162 cache->flags = type;
10163 cache->last_byte_to_unpin = (u64)-1;
10164 cache->cached = BTRFS_CACHE_FINISHED;
10165 cache->needs_free_space = 1;
10166 ret = exclude_super_stripes(cache);
10167 if (ret) {
10168 /*
10169 * We may have excluded something, so call this just in
10170 * case.
10171 */
10172 free_excluded_extents(cache);
10173 btrfs_put_block_group(cache);
10174 return ret;
10175 }
10176
10177 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10178
10179 free_excluded_extents(cache);
10180
10181#ifdef CONFIG_BTRFS_DEBUG
10182 if (btrfs_should_fragment_free_space(cache)) {
10183 u64 new_bytes_used = size - bytes_used;
10184
10185 bytes_used += new_bytes_used >> 1;
10186 fragment_free_space(cache);
10187 }
10188#endif
10189 /*
10190 * Ensure the corresponding space_info object is created and
10191 * assigned to our block group. We want our bg to be added to the rbtree
10192 * with its ->space_info set.
10193 */
10194 cache->space_info = __find_space_info(fs_info, cache->flags);
10195 ASSERT(cache->space_info);
10196
10197 ret = btrfs_add_block_group_cache(fs_info, cache);
10198 if (ret) {
10199 btrfs_remove_free_space_cache(cache);
10200 btrfs_put_block_group(cache);
10201 return ret;
10202 }
10203
10204 /*
10205 * Now that our block group has its ->space_info set and is inserted in
10206 * the rbtree, update the space info's counters.
10207 */
10208 trace_btrfs_add_block_group(fs_info, cache, 1);
10209 update_space_info(fs_info, cache->flags, size, bytes_used,
10210 cache->bytes_super, &cache->space_info);
10211 update_global_block_rsv(fs_info);
10212
10213 link_block_group(cache);
10214
10215 list_add_tail(&cache->bg_list, &trans->new_bgs);
10216
10217 set_avail_alloc_bits(fs_info, type);
10218 return 0;
10219}
10220
10221static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10222{
10223 u64 extra_flags = chunk_to_extended(flags) &
10224 BTRFS_EXTENDED_PROFILE_MASK;
10225
10226 write_seqlock(&fs_info->profiles_lock);
10227 if (flags & BTRFS_BLOCK_GROUP_DATA)
10228 fs_info->avail_data_alloc_bits &= ~extra_flags;
10229 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10230 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10231 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10232 fs_info->avail_system_alloc_bits &= ~extra_flags;
10233 write_sequnlock(&fs_info->profiles_lock);
10234}
10235
10236int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10237 u64 group_start, struct extent_map *em)
10238{
10239 struct btrfs_fs_info *fs_info = trans->fs_info;
10240 struct btrfs_root *root = fs_info->extent_root;
10241 struct btrfs_path *path;
10242 struct btrfs_block_group_cache *block_group;
10243 struct btrfs_free_cluster *cluster;
10244 struct btrfs_root *tree_root = fs_info->tree_root;
10245 struct btrfs_key key;
10246 struct inode *inode;
10247 struct kobject *kobj = NULL;
10248 int ret;
10249 int index;
10250 int factor;
10251 struct btrfs_caching_control *caching_ctl = NULL;
10252 bool remove_em;
10253
10254 block_group = btrfs_lookup_block_group(fs_info, group_start);
10255 BUG_ON(!block_group);
10256 BUG_ON(!block_group->ro);
10257
10258 trace_btrfs_remove_block_group(block_group);
10259 /*
10260 * Free the reserved super bytes from this block group before
10261 * remove it.
10262 */
10263 free_excluded_extents(block_group);
10264 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10265 block_group->key.offset);
10266
10267 memcpy(&key, &block_group->key, sizeof(key));
10268 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10269 factor = btrfs_bg_type_to_factor(block_group->flags);
10270
10271 /* make sure this block group isn't part of an allocation cluster */
10272 cluster = &fs_info->data_alloc_cluster;
10273 spin_lock(&cluster->refill_lock);
10274 btrfs_return_cluster_to_free_space(block_group, cluster);
10275 spin_unlock(&cluster->refill_lock);
10276
10277 /*
10278 * make sure this block group isn't part of a metadata
10279 * allocation cluster
10280 */
10281 cluster = &fs_info->meta_alloc_cluster;
10282 spin_lock(&cluster->refill_lock);
10283 btrfs_return_cluster_to_free_space(block_group, cluster);
10284 spin_unlock(&cluster->refill_lock);
10285
10286 path = btrfs_alloc_path();
10287 if (!path) {
10288 ret = -ENOMEM;
10289 goto out;
10290 }
10291
10292 /*
10293 * get the inode first so any iput calls done for the io_list
10294 * aren't the final iput (no unlinks allowed now)
10295 */
10296 inode = lookup_free_space_inode(fs_info, block_group, path);
10297
10298 mutex_lock(&trans->transaction->cache_write_mutex);
10299 /*
10300 * make sure our free spache cache IO is done before remove the
10301 * free space inode
10302 */
10303 spin_lock(&trans->transaction->dirty_bgs_lock);
10304 if (!list_empty(&block_group->io_list)) {
10305 list_del_init(&block_group->io_list);
10306
10307 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10308
10309 spin_unlock(&trans->transaction->dirty_bgs_lock);
10310 btrfs_wait_cache_io(trans, block_group, path);
10311 btrfs_put_block_group(block_group);
10312 spin_lock(&trans->transaction->dirty_bgs_lock);
10313 }
10314
10315 if (!list_empty(&block_group->dirty_list)) {
10316 list_del_init(&block_group->dirty_list);
10317 btrfs_put_block_group(block_group);
10318 }
10319 spin_unlock(&trans->transaction->dirty_bgs_lock);
10320 mutex_unlock(&trans->transaction->cache_write_mutex);
10321
10322 if (!IS_ERR(inode)) {
10323 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10324 if (ret) {
10325 btrfs_add_delayed_iput(inode);
10326 goto out;
10327 }
10328 clear_nlink(inode);
10329 /* One for the block groups ref */
10330 spin_lock(&block_group->lock);
10331 if (block_group->iref) {
10332 block_group->iref = 0;
10333 block_group->inode = NULL;
10334 spin_unlock(&block_group->lock);
10335 iput(inode);
10336 } else {
10337 spin_unlock(&block_group->lock);
10338 }
10339 /* One for our lookup ref */
10340 btrfs_add_delayed_iput(inode);
10341 }
10342
10343 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10344 key.offset = block_group->key.objectid;
10345 key.type = 0;
10346
10347 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10348 if (ret < 0)
10349 goto out;
10350 if (ret > 0)
10351 btrfs_release_path(path);
10352 if (ret == 0) {
10353 ret = btrfs_del_item(trans, tree_root, path);
10354 if (ret)
10355 goto out;
10356 btrfs_release_path(path);
10357 }
10358
10359 spin_lock(&fs_info->block_group_cache_lock);
10360 rb_erase(&block_group->cache_node,
10361 &fs_info->block_group_cache_tree);
10362 RB_CLEAR_NODE(&block_group->cache_node);
10363
10364 if (fs_info->first_logical_byte == block_group->key.objectid)
10365 fs_info->first_logical_byte = (u64)-1;
10366 spin_unlock(&fs_info->block_group_cache_lock);
10367
10368 down_write(&block_group->space_info->groups_sem);
10369 /*
10370 * we must use list_del_init so people can check to see if they
10371 * are still on the list after taking the semaphore
10372 */
10373 list_del_init(&block_group->list);
10374 if (list_empty(&block_group->space_info->block_groups[index])) {
10375 kobj = block_group->space_info->block_group_kobjs[index];
10376 block_group->space_info->block_group_kobjs[index] = NULL;
10377 clear_avail_alloc_bits(fs_info, block_group->flags);
10378 }
10379 up_write(&block_group->space_info->groups_sem);
10380 if (kobj) {
10381 kobject_del(kobj);
10382 kobject_put(kobj);
10383 }
10384
10385 if (block_group->has_caching_ctl)
10386 caching_ctl = get_caching_control(block_group);
10387 if (block_group->cached == BTRFS_CACHE_STARTED)
10388 wait_block_group_cache_done(block_group);
10389 if (block_group->has_caching_ctl) {
10390 down_write(&fs_info->commit_root_sem);
10391 if (!caching_ctl) {
10392 struct btrfs_caching_control *ctl;
10393
10394 list_for_each_entry(ctl,
10395 &fs_info->caching_block_groups, list)
10396 if (ctl->block_group == block_group) {
10397 caching_ctl = ctl;
10398 refcount_inc(&caching_ctl->count);
10399 break;
10400 }
10401 }
10402 if (caching_ctl)
10403 list_del_init(&caching_ctl->list);
10404 up_write(&fs_info->commit_root_sem);
10405 if (caching_ctl) {
10406 /* Once for the caching bgs list and once for us. */
10407 put_caching_control(caching_ctl);
10408 put_caching_control(caching_ctl);
10409 }
10410 }
10411
10412 spin_lock(&trans->transaction->dirty_bgs_lock);
10413 if (!list_empty(&block_group->dirty_list)) {
10414 WARN_ON(1);
10415 }
10416 if (!list_empty(&block_group->io_list)) {
10417 WARN_ON(1);
10418 }
10419 spin_unlock(&trans->transaction->dirty_bgs_lock);
10420 btrfs_remove_free_space_cache(block_group);
10421
10422 spin_lock(&block_group->space_info->lock);
10423 list_del_init(&block_group->ro_list);
10424
10425 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10426 WARN_ON(block_group->space_info->total_bytes
10427 < block_group->key.offset);
10428 WARN_ON(block_group->space_info->bytes_readonly
10429 < block_group->key.offset);
10430 WARN_ON(block_group->space_info->disk_total
10431 < block_group->key.offset * factor);
10432 }
10433 block_group->space_info->total_bytes -= block_group->key.offset;
10434 block_group->space_info->bytes_readonly -= block_group->key.offset;
10435 block_group->space_info->disk_total -= block_group->key.offset * factor;
10436
10437 spin_unlock(&block_group->space_info->lock);
10438
10439 memcpy(&key, &block_group->key, sizeof(key));
10440
10441 mutex_lock(&fs_info->chunk_mutex);
10442 if (!list_empty(&em->list)) {
10443 /* We're in the transaction->pending_chunks list. */
10444 free_extent_map(em);
10445 }
10446 spin_lock(&block_group->lock);
10447 block_group->removed = 1;
10448 /*
10449 * At this point trimming can't start on this block group, because we
10450 * removed the block group from the tree fs_info->block_group_cache_tree
10451 * so no one can't find it anymore and even if someone already got this
10452 * block group before we removed it from the rbtree, they have already
10453 * incremented block_group->trimming - if they didn't, they won't find
10454 * any free space entries because we already removed them all when we
10455 * called btrfs_remove_free_space_cache().
10456 *
10457 * And we must not remove the extent map from the fs_info->mapping_tree
10458 * to prevent the same logical address range and physical device space
10459 * ranges from being reused for a new block group. This is because our
10460 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10461 * completely transactionless, so while it is trimming a range the
10462 * currently running transaction might finish and a new one start,
10463 * allowing for new block groups to be created that can reuse the same
10464 * physical device locations unless we take this special care.
10465 *
10466 * There may also be an implicit trim operation if the file system
10467 * is mounted with -odiscard. The same protections must remain
10468 * in place until the extents have been discarded completely when
10469 * the transaction commit has completed.
10470 */
10471 remove_em = (atomic_read(&block_group->trimming) == 0);
10472 /*
10473 * Make sure a trimmer task always sees the em in the pinned_chunks list
10474 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10475 * before checking block_group->removed).
10476 */
10477 if (!remove_em) {
10478 /*
10479 * Our em might be in trans->transaction->pending_chunks which
10480 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10481 * and so is the fs_info->pinned_chunks list.
10482 *
10483 * So at this point we must be holding the chunk_mutex to avoid
10484 * any races with chunk allocation (more specifically at
10485 * volumes.c:contains_pending_extent()), to ensure it always
10486 * sees the em, either in the pending_chunks list or in the
10487 * pinned_chunks list.
10488 */
10489 list_move_tail(&em->list, &fs_info->pinned_chunks);
10490 }
10491 spin_unlock(&block_group->lock);
10492
10493 mutex_unlock(&fs_info->chunk_mutex);
10494
10495 ret = remove_block_group_free_space(trans, block_group);
10496 if (ret)
10497 goto out;
10498
10499 btrfs_put_block_group(block_group);
10500 btrfs_put_block_group(block_group);
10501
10502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10503 if (ret > 0)
10504 ret = -EIO;
10505 if (ret < 0)
10506 goto out;
10507
10508 ret = btrfs_del_item(trans, root, path);
10509 if (ret)
10510 goto out;
10511
10512 if (remove_em) {
10513 struct extent_map_tree *em_tree;
10514
10515 em_tree = &fs_info->mapping_tree.map_tree;
10516 write_lock(&em_tree->lock);
10517 /*
10518 * The em might be in the pending_chunks list, so make sure the
10519 * chunk mutex is locked, since remove_extent_mapping() will
10520 * delete us from that list.
10521 */
10522 remove_extent_mapping(em_tree, em);
10523 write_unlock(&em_tree->lock);
10524 /* once for the tree */
10525 free_extent_map(em);
10526 }
10527out:
10528 btrfs_free_path(path);
10529 return ret;
10530}
10531
10532struct btrfs_trans_handle *
10533btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10534 const u64 chunk_offset)
10535{
10536 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10537 struct extent_map *em;
10538 struct map_lookup *map;
10539 unsigned int num_items;
10540
10541 read_lock(&em_tree->lock);
10542 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10543 read_unlock(&em_tree->lock);
10544 ASSERT(em && em->start == chunk_offset);
10545
10546 /*
10547 * We need to reserve 3 + N units from the metadata space info in order
10548 * to remove a block group (done at btrfs_remove_chunk() and at
10549 * btrfs_remove_block_group()), which are used for:
10550 *
10551 * 1 unit for adding the free space inode's orphan (located in the tree
10552 * of tree roots).
10553 * 1 unit for deleting the block group item (located in the extent
10554 * tree).
10555 * 1 unit for deleting the free space item (located in tree of tree
10556 * roots).
10557 * N units for deleting N device extent items corresponding to each
10558 * stripe (located in the device tree).
10559 *
10560 * In order to remove a block group we also need to reserve units in the
10561 * system space info in order to update the chunk tree (update one or
10562 * more device items and remove one chunk item), but this is done at
10563 * btrfs_remove_chunk() through a call to check_system_chunk().
10564 */
10565 map = em->map_lookup;
10566 num_items = 3 + map->num_stripes;
10567 free_extent_map(em);
10568
10569 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10570 num_items, 1);
10571}
10572
10573/*
10574 * Process the unused_bgs list and remove any that don't have any allocated
10575 * space inside of them.
10576 */
10577void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10578{
10579 struct btrfs_block_group_cache *block_group;
10580 struct btrfs_space_info *space_info;
10581 struct btrfs_trans_handle *trans;
10582 int ret = 0;
10583
10584 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10585 return;
10586
10587 spin_lock(&fs_info->unused_bgs_lock);
10588 while (!list_empty(&fs_info->unused_bgs)) {
10589 u64 start, end;
10590 int trimming;
10591
10592 block_group = list_first_entry(&fs_info->unused_bgs,
10593 struct btrfs_block_group_cache,
10594 bg_list);
10595 list_del_init(&block_group->bg_list);
10596
10597 space_info = block_group->space_info;
10598
10599 if (ret || btrfs_mixed_space_info(space_info)) {
10600 btrfs_put_block_group(block_group);
10601 continue;
10602 }
10603 spin_unlock(&fs_info->unused_bgs_lock);
10604
10605 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10606
10607 /* Don't want to race with allocators so take the groups_sem */
10608 down_write(&space_info->groups_sem);
10609 spin_lock(&block_group->lock);
10610 if (block_group->reserved || block_group->pinned ||
10611 btrfs_block_group_used(&block_group->item) ||
10612 block_group->ro ||
10613 list_is_singular(&block_group->list)) {
10614 /*
10615 * We want to bail if we made new allocations or have
10616 * outstanding allocations in this block group. We do
10617 * the ro check in case balance is currently acting on
10618 * this block group.
10619 */
10620 trace_btrfs_skip_unused_block_group(block_group);
10621 spin_unlock(&block_group->lock);
10622 up_write(&space_info->groups_sem);
10623 goto next;
10624 }
10625 spin_unlock(&block_group->lock);
10626
10627 /* We don't want to force the issue, only flip if it's ok. */
10628 ret = inc_block_group_ro(block_group, 0);
10629 up_write(&space_info->groups_sem);
10630 if (ret < 0) {
10631 ret = 0;
10632 goto next;
10633 }
10634
10635 /*
10636 * Want to do this before we do anything else so we can recover
10637 * properly if we fail to join the transaction.
10638 */
10639 trans = btrfs_start_trans_remove_block_group(fs_info,
10640 block_group->key.objectid);
10641 if (IS_ERR(trans)) {
10642 btrfs_dec_block_group_ro(block_group);
10643 ret = PTR_ERR(trans);
10644 goto next;
10645 }
10646
10647 /*
10648 * We could have pending pinned extents for this block group,
10649 * just delete them, we don't care about them anymore.
10650 */
10651 start = block_group->key.objectid;
10652 end = start + block_group->key.offset - 1;
10653 /*
10654 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10655 * btrfs_finish_extent_commit(). If we are at transaction N,
10656 * another task might be running finish_extent_commit() for the
10657 * previous transaction N - 1, and have seen a range belonging
10658 * to the block group in freed_extents[] before we were able to
10659 * clear the whole block group range from freed_extents[]. This
10660 * means that task can lookup for the block group after we
10661 * unpinned it from freed_extents[] and removed it, leading to
10662 * a BUG_ON() at btrfs_unpin_extent_range().
10663 */
10664 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10665 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10666 EXTENT_DIRTY);
10667 if (ret) {
10668 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10669 btrfs_dec_block_group_ro(block_group);
10670 goto end_trans;
10671 }
10672 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10673 EXTENT_DIRTY);
10674 if (ret) {
10675 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10676 btrfs_dec_block_group_ro(block_group);
10677 goto end_trans;
10678 }
10679 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10680
10681 /* Reset pinned so btrfs_put_block_group doesn't complain */
10682 spin_lock(&space_info->lock);
10683 spin_lock(&block_group->lock);
10684
10685 space_info->bytes_pinned -= block_group->pinned;
10686 space_info->bytes_readonly += block_group->pinned;
10687 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10688 -block_group->pinned,
10689 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10690 block_group->pinned = 0;
10691
10692 spin_unlock(&block_group->lock);
10693 spin_unlock(&space_info->lock);
10694
10695 /* DISCARD can flip during remount */
10696 trimming = btrfs_test_opt(fs_info, DISCARD);
10697
10698 /* Implicit trim during transaction commit. */
10699 if (trimming)
10700 btrfs_get_block_group_trimming(block_group);
10701
10702 /*
10703 * Btrfs_remove_chunk will abort the transaction if things go
10704 * horribly wrong.
10705 */
10706 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10707
10708 if (ret) {
10709 if (trimming)
10710 btrfs_put_block_group_trimming(block_group);
10711 goto end_trans;
10712 }
10713
10714 /*
10715 * If we're not mounted with -odiscard, we can just forget
10716 * about this block group. Otherwise we'll need to wait
10717 * until transaction commit to do the actual discard.
10718 */
10719 if (trimming) {
10720 spin_lock(&fs_info->unused_bgs_lock);
10721 /*
10722 * A concurrent scrub might have added us to the list
10723 * fs_info->unused_bgs, so use a list_move operation
10724 * to add the block group to the deleted_bgs list.
10725 */
10726 list_move(&block_group->bg_list,
10727 &trans->transaction->deleted_bgs);
10728 spin_unlock(&fs_info->unused_bgs_lock);
10729 btrfs_get_block_group(block_group);
10730 }
10731end_trans:
10732 btrfs_end_transaction(trans);
10733next:
10734 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10735 btrfs_put_block_group(block_group);
10736 spin_lock(&fs_info->unused_bgs_lock);
10737 }
10738 spin_unlock(&fs_info->unused_bgs_lock);
10739}
10740
10741int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10742{
10743 struct btrfs_super_block *disk_super;
10744 u64 features;
10745 u64 flags;
10746 int mixed = 0;
10747 int ret;
10748
10749 disk_super = fs_info->super_copy;
10750 if (!btrfs_super_root(disk_super))
10751 return -EINVAL;
10752
10753 features = btrfs_super_incompat_flags(disk_super);
10754 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10755 mixed = 1;
10756
10757 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10758 ret = create_space_info(fs_info, flags);
10759 if (ret)
10760 goto out;
10761
10762 if (mixed) {
10763 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10764 ret = create_space_info(fs_info, flags);
10765 } else {
10766 flags = BTRFS_BLOCK_GROUP_METADATA;
10767 ret = create_space_info(fs_info, flags);
10768 if (ret)
10769 goto out;
10770
10771 flags = BTRFS_BLOCK_GROUP_DATA;
10772 ret = create_space_info(fs_info, flags);
10773 }
10774out:
10775 return ret;
10776}
10777
10778int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10779 u64 start, u64 end)
10780{
10781 return unpin_extent_range(fs_info, start, end, false);
10782}
10783
10784/*
10785 * It used to be that old block groups would be left around forever.
10786 * Iterating over them would be enough to trim unused space. Since we
10787 * now automatically remove them, we also need to iterate over unallocated
10788 * space.
10789 *
10790 * We don't want a transaction for this since the discard may take a
10791 * substantial amount of time. We don't require that a transaction be
10792 * running, but we do need to take a running transaction into account
10793 * to ensure that we're not discarding chunks that were released or
10794 * allocated in the current transaction.
10795 *
10796 * Holding the chunks lock will prevent other threads from allocating
10797 * or releasing chunks, but it won't prevent a running transaction
10798 * from committing and releasing the memory that the pending chunks
10799 * list head uses. For that, we need to take a reference to the
10800 * transaction and hold the commit root sem. We only need to hold
10801 * it while performing the free space search since we have already
10802 * held back allocations.
10803 */
10804static int btrfs_trim_free_extents(struct btrfs_device *device,
10805 u64 minlen, u64 *trimmed)
10806{
10807 u64 start = 0, len = 0;
10808 int ret;
10809
10810 *trimmed = 0;
10811
10812 /* Discard not supported = nothing to do. */
10813 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10814 return 0;
10815
10816 /* Not writeable = nothing to do. */
10817 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10818 return 0;
10819
10820 /* No free space = nothing to do. */
10821 if (device->total_bytes <= device->bytes_used)
10822 return 0;
10823
10824 ret = 0;
10825
10826 while (1) {
10827 struct btrfs_fs_info *fs_info = device->fs_info;
10828 struct btrfs_transaction *trans;
10829 u64 bytes;
10830
10831 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10832 if (ret)
10833 break;
10834
10835 ret = down_read_killable(&fs_info->commit_root_sem);
10836 if (ret) {
10837 mutex_unlock(&fs_info->chunk_mutex);
10838 break;
10839 }
10840
10841 spin_lock(&fs_info->trans_lock);
10842 trans = fs_info->running_transaction;
10843 if (trans)
10844 refcount_inc(&trans->use_count);
10845 spin_unlock(&fs_info->trans_lock);
10846
10847 if (!trans)
10848 up_read(&fs_info->commit_root_sem);
10849
10850 ret = find_free_dev_extent_start(trans, device, minlen, start,
10851 &start, &len);
10852 if (trans) {
10853 up_read(&fs_info->commit_root_sem);
10854 btrfs_put_transaction(trans);
10855 }
10856
10857 if (ret) {
10858 mutex_unlock(&fs_info->chunk_mutex);
10859 if (ret == -ENOSPC)
10860 ret = 0;
10861 break;
10862 }
10863
10864 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10865 mutex_unlock(&fs_info->chunk_mutex);
10866
10867 if (ret)
10868 break;
10869
10870 start += len;
10871 *trimmed += bytes;
10872
10873 if (fatal_signal_pending(current)) {
10874 ret = -ERESTARTSYS;
10875 break;
10876 }
10877
10878 cond_resched();
10879 }
10880
10881 return ret;
10882}
10883
10884/*
10885 * Trim the whole filesystem by:
10886 * 1) trimming the free space in each block group
10887 * 2) trimming the unallocated space on each device
10888 *
10889 * This will also continue trimming even if a block group or device encounters
10890 * an error. The return value will be the last error, or 0 if nothing bad
10891 * happens.
10892 */
10893int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10894{
10895 struct btrfs_block_group_cache *cache = NULL;
10896 struct btrfs_device *device;
10897 struct list_head *devices;
10898 u64 group_trimmed;
10899 u64 start;
10900 u64 end;
10901 u64 trimmed = 0;
10902 u64 bg_failed = 0;
10903 u64 dev_failed = 0;
10904 int bg_ret = 0;
10905 int dev_ret = 0;
10906 int ret = 0;
10907
10908 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10909 for (; cache; cache = next_block_group(fs_info, cache)) {
10910 if (cache->key.objectid >= (range->start + range->len)) {
10911 btrfs_put_block_group(cache);
10912 break;
10913 }
10914
10915 start = max(range->start, cache->key.objectid);
10916 end = min(range->start + range->len,
10917 cache->key.objectid + cache->key.offset);
10918
10919 if (end - start >= range->minlen) {
10920 if (!block_group_cache_done(cache)) {
10921 ret = cache_block_group(cache, 0);
10922 if (ret) {
10923 bg_failed++;
10924 bg_ret = ret;
10925 continue;
10926 }
10927 ret = wait_block_group_cache_done(cache);
10928 if (ret) {
10929 bg_failed++;
10930 bg_ret = ret;
10931 continue;
10932 }
10933 }
10934 ret = btrfs_trim_block_group(cache,
10935 &group_trimmed,
10936 start,
10937 end,
10938 range->minlen);
10939
10940 trimmed += group_trimmed;
10941 if (ret) {
10942 bg_failed++;
10943 bg_ret = ret;
10944 continue;
10945 }
10946 }
10947 }
10948
10949 if (bg_failed)
10950 btrfs_warn(fs_info,
10951 "failed to trim %llu block group(s), last error %d",
10952 bg_failed, bg_ret);
10953 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10954 devices = &fs_info->fs_devices->devices;
10955 list_for_each_entry(device, devices, dev_list) {
10956 ret = btrfs_trim_free_extents(device, range->minlen,
10957 &group_trimmed);
10958 if (ret) {
10959 dev_failed++;
10960 dev_ret = ret;
10961 break;
10962 }
10963
10964 trimmed += group_trimmed;
10965 }
10966 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10967
10968 if (dev_failed)
10969 btrfs_warn(fs_info,
10970 "failed to trim %llu device(s), last error %d",
10971 dev_failed, dev_ret);
10972 range->len = trimmed;
10973 if (bg_ret)
10974 return bg_ret;
10975 return dev_ret;
10976}
10977
10978/*
10979 * btrfs_{start,end}_write_no_snapshotting() are similar to
10980 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10981 * data into the page cache through nocow before the subvolume is snapshoted,
10982 * but flush the data into disk after the snapshot creation, or to prevent
10983 * operations while snapshotting is ongoing and that cause the snapshot to be
10984 * inconsistent (writes followed by expanding truncates for example).
10985 */
10986void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10987{
10988 percpu_counter_dec(&root->subv_writers->counter);
10989 cond_wake_up(&root->subv_writers->wait);
10990}
10991
10992int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10993{
10994 if (atomic_read(&root->will_be_snapshotted))
10995 return 0;
10996
10997 percpu_counter_inc(&root->subv_writers->counter);
10998 /*
10999 * Make sure counter is updated before we check for snapshot creation.
11000 */
11001 smp_mb();
11002 if (atomic_read(&root->will_be_snapshotted)) {
11003 btrfs_end_write_no_snapshotting(root);
11004 return 0;
11005 }
11006 return 1;
11007}
11008
11009void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11010{
11011 while (true) {
11012 int ret;
11013
11014 ret = btrfs_start_write_no_snapshotting(root);
11015 if (ret)
11016 break;
11017 wait_var_event(&root->will_be_snapshotted,
11018 !atomic_read(&root->will_be_snapshotted));
11019 }
11020}
11021
11022void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11023{
11024 struct btrfs_fs_info *fs_info = bg->fs_info;
11025
11026 spin_lock(&fs_info->unused_bgs_lock);
11027 if (list_empty(&bg->bg_list)) {
11028 btrfs_get_block_group(bg);
11029 trace_btrfs_add_unused_block_group(bg);
11030 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11031 }
11032 spin_unlock(&fs_info->unused_bgs_lock);
11033}