blob: f98913061a40cfa52148cc94d0526cad873b22b5 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "volumes.h"
16#include "locking.h"
17#include "btrfs_inode.h"
18#include "async-thread.h"
19#include "free-space-cache.h"
20#include "inode-map.h"
21#include "qgroup.h"
22#include "print-tree.h"
23
24/*
25 * backref_node, mapping_node and tree_block start with this
26 */
27struct tree_entry {
28 struct rb_node rb_node;
29 u64 bytenr;
30};
31
32/*
33 * present a tree block in the backref cache
34 */
35struct backref_node {
36 struct rb_node rb_node;
37 u64 bytenr;
38
39 u64 new_bytenr;
40 /* objectid of tree block owner, can be not uptodate */
41 u64 owner;
42 /* link to pending, changed or detached list */
43 struct list_head list;
44 /* list of upper level blocks reference this block */
45 struct list_head upper;
46 /* list of child blocks in the cache */
47 struct list_head lower;
48 /* NULL if this node is not tree root */
49 struct btrfs_root *root;
50 /* extent buffer got by COW the block */
51 struct extent_buffer *eb;
52 /* level of tree block */
53 unsigned int level:8;
54 /* is the block in non-reference counted tree */
55 unsigned int cowonly:1;
56 /* 1 if no child node in the cache */
57 unsigned int lowest:1;
58 /* is the extent buffer locked */
59 unsigned int locked:1;
60 /* has the block been processed */
61 unsigned int processed:1;
62 /* have backrefs of this block been checked */
63 unsigned int checked:1;
64 /*
65 * 1 if corresponding block has been cowed but some upper
66 * level block pointers may not point to the new location
67 */
68 unsigned int pending:1;
69 /*
70 * 1 if the backref node isn't connected to any other
71 * backref node.
72 */
73 unsigned int detached:1;
74};
75
76/*
77 * present a block pointer in the backref cache
78 */
79struct backref_edge {
80 struct list_head list[2];
81 struct backref_node *node[2];
82};
83
84#define LOWER 0
85#define UPPER 1
86#define RELOCATION_RESERVED_NODES 256
87
88struct backref_cache {
89 /* red black tree of all backref nodes in the cache */
90 struct rb_root rb_root;
91 /* for passing backref nodes to btrfs_reloc_cow_block */
92 struct backref_node *path[BTRFS_MAX_LEVEL];
93 /*
94 * list of blocks that have been cowed but some block
95 * pointers in upper level blocks may not reflect the
96 * new location
97 */
98 struct list_head pending[BTRFS_MAX_LEVEL];
99 /* list of backref nodes with no child node */
100 struct list_head leaves;
101 /* list of blocks that have been cowed in current transaction */
102 struct list_head changed;
103 /* list of detached backref node. */
104 struct list_head detached;
105
106 u64 last_trans;
107
108 int nr_nodes;
109 int nr_edges;
110};
111
112/*
113 * map address of tree root to tree
114 */
115struct mapping_node {
116 struct rb_node rb_node;
117 u64 bytenr;
118 void *data;
119};
120
121struct mapping_tree {
122 struct rb_root rb_root;
123 spinlock_t lock;
124};
125
126/*
127 * present a tree block to process
128 */
129struct tree_block {
130 struct rb_node rb_node;
131 u64 bytenr;
132 struct btrfs_key key;
133 unsigned int level:8;
134 unsigned int key_ready:1;
135};
136
137#define MAX_EXTENTS 128
138
139struct file_extent_cluster {
140 u64 start;
141 u64 end;
142 u64 boundary[MAX_EXTENTS];
143 unsigned int nr;
144};
145
146struct reloc_control {
147 /* block group to relocate */
148 struct btrfs_block_group_cache *block_group;
149 /* extent tree */
150 struct btrfs_root *extent_root;
151 /* inode for moving data */
152 struct inode *data_inode;
153
154 struct btrfs_block_rsv *block_rsv;
155
156 struct backref_cache backref_cache;
157
158 struct file_extent_cluster cluster;
159 /* tree blocks have been processed */
160 struct extent_io_tree processed_blocks;
161 /* map start of tree root to corresponding reloc tree */
162 struct mapping_tree reloc_root_tree;
163 /* list of reloc trees */
164 struct list_head reloc_roots;
165 /* size of metadata reservation for merging reloc trees */
166 u64 merging_rsv_size;
167 /* size of relocated tree nodes */
168 u64 nodes_relocated;
169 /* reserved size for block group relocation*/
170 u64 reserved_bytes;
171
172 u64 search_start;
173 u64 extents_found;
174
175 unsigned int stage:8;
176 unsigned int create_reloc_tree:1;
177 unsigned int merge_reloc_tree:1;
178 unsigned int found_file_extent:1;
179};
180
181/* stages of data relocation */
182#define MOVE_DATA_EXTENTS 0
183#define UPDATE_DATA_PTRS 1
184
185static void remove_backref_node(struct backref_cache *cache,
186 struct backref_node *node);
187static void __mark_block_processed(struct reloc_control *rc,
188 struct backref_node *node);
189
190static void mapping_tree_init(struct mapping_tree *tree)
191{
192 tree->rb_root = RB_ROOT;
193 spin_lock_init(&tree->lock);
194}
195
196static void backref_cache_init(struct backref_cache *cache)
197{
198 int i;
199 cache->rb_root = RB_ROOT;
200 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 INIT_LIST_HEAD(&cache->pending[i]);
202 INIT_LIST_HEAD(&cache->changed);
203 INIT_LIST_HEAD(&cache->detached);
204 INIT_LIST_HEAD(&cache->leaves);
205}
206
207static void backref_cache_cleanup(struct backref_cache *cache)
208{
209 struct backref_node *node;
210 int i;
211
212 while (!list_empty(&cache->detached)) {
213 node = list_entry(cache->detached.next,
214 struct backref_node, list);
215 remove_backref_node(cache, node);
216 }
217
218 while (!list_empty(&cache->leaves)) {
219 node = list_entry(cache->leaves.next,
220 struct backref_node, lower);
221 remove_backref_node(cache, node);
222 }
223
224 cache->last_trans = 0;
225
226 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 ASSERT(list_empty(&cache->pending[i]));
228 ASSERT(list_empty(&cache->changed));
229 ASSERT(list_empty(&cache->detached));
230 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 ASSERT(!cache->nr_nodes);
232 ASSERT(!cache->nr_edges);
233}
234
235static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236{
237 struct backref_node *node;
238
239 node = kzalloc(sizeof(*node), GFP_NOFS);
240 if (node) {
241 INIT_LIST_HEAD(&node->list);
242 INIT_LIST_HEAD(&node->upper);
243 INIT_LIST_HEAD(&node->lower);
244 RB_CLEAR_NODE(&node->rb_node);
245 cache->nr_nodes++;
246 }
247 return node;
248}
249
250static void free_backref_node(struct backref_cache *cache,
251 struct backref_node *node)
252{
253 if (node) {
254 cache->nr_nodes--;
255 kfree(node);
256 }
257}
258
259static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260{
261 struct backref_edge *edge;
262
263 edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 if (edge)
265 cache->nr_edges++;
266 return edge;
267}
268
269static void free_backref_edge(struct backref_cache *cache,
270 struct backref_edge *edge)
271{
272 if (edge) {
273 cache->nr_edges--;
274 kfree(edge);
275 }
276}
277
278static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 struct rb_node *node)
280{
281 struct rb_node **p = &root->rb_node;
282 struct rb_node *parent = NULL;
283 struct tree_entry *entry;
284
285 while (*p) {
286 parent = *p;
287 entry = rb_entry(parent, struct tree_entry, rb_node);
288
289 if (bytenr < entry->bytenr)
290 p = &(*p)->rb_left;
291 else if (bytenr > entry->bytenr)
292 p = &(*p)->rb_right;
293 else
294 return parent;
295 }
296
297 rb_link_node(node, parent, p);
298 rb_insert_color(node, root);
299 return NULL;
300}
301
302static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303{
304 struct rb_node *n = root->rb_node;
305 struct tree_entry *entry;
306
307 while (n) {
308 entry = rb_entry(n, struct tree_entry, rb_node);
309
310 if (bytenr < entry->bytenr)
311 n = n->rb_left;
312 else if (bytenr > entry->bytenr)
313 n = n->rb_right;
314 else
315 return n;
316 }
317 return NULL;
318}
319
320static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321{
322
323 struct btrfs_fs_info *fs_info = NULL;
324 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 rb_node);
326 if (bnode->root)
327 fs_info = bnode->root->fs_info;
328 btrfs_panic(fs_info, errno,
329 "Inconsistency in backref cache found at offset %llu",
330 bytenr);
331}
332
333/*
334 * walk up backref nodes until reach node presents tree root
335 */
336static struct backref_node *walk_up_backref(struct backref_node *node,
337 struct backref_edge *edges[],
338 int *index)
339{
340 struct backref_edge *edge;
341 int idx = *index;
342
343 while (!list_empty(&node->upper)) {
344 edge = list_entry(node->upper.next,
345 struct backref_edge, list[LOWER]);
346 edges[idx++] = edge;
347 node = edge->node[UPPER];
348 }
349 BUG_ON(node->detached);
350 *index = idx;
351 return node;
352}
353
354/*
355 * walk down backref nodes to find start of next reference path
356 */
357static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 int *index)
359{
360 struct backref_edge *edge;
361 struct backref_node *lower;
362 int idx = *index;
363
364 while (idx > 0) {
365 edge = edges[idx - 1];
366 lower = edge->node[LOWER];
367 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 idx--;
369 continue;
370 }
371 edge = list_entry(edge->list[LOWER].next,
372 struct backref_edge, list[LOWER]);
373 edges[idx - 1] = edge;
374 *index = idx;
375 return edge->node[UPPER];
376 }
377 *index = 0;
378 return NULL;
379}
380
381static void unlock_node_buffer(struct backref_node *node)
382{
383 if (node->locked) {
384 btrfs_tree_unlock(node->eb);
385 node->locked = 0;
386 }
387}
388
389static void drop_node_buffer(struct backref_node *node)
390{
391 if (node->eb) {
392 unlock_node_buffer(node);
393 free_extent_buffer(node->eb);
394 node->eb = NULL;
395 }
396}
397
398static void drop_backref_node(struct backref_cache *tree,
399 struct backref_node *node)
400{
401 BUG_ON(!list_empty(&node->upper));
402
403 drop_node_buffer(node);
404 list_del(&node->list);
405 list_del(&node->lower);
406 if (!RB_EMPTY_NODE(&node->rb_node))
407 rb_erase(&node->rb_node, &tree->rb_root);
408 free_backref_node(tree, node);
409}
410
411/*
412 * remove a backref node from the backref cache
413 */
414static void remove_backref_node(struct backref_cache *cache,
415 struct backref_node *node)
416{
417 struct backref_node *upper;
418 struct backref_edge *edge;
419
420 if (!node)
421 return;
422
423 BUG_ON(!node->lowest && !node->detached);
424 while (!list_empty(&node->upper)) {
425 edge = list_entry(node->upper.next, struct backref_edge,
426 list[LOWER]);
427 upper = edge->node[UPPER];
428 list_del(&edge->list[LOWER]);
429 list_del(&edge->list[UPPER]);
430 free_backref_edge(cache, edge);
431
432 if (RB_EMPTY_NODE(&upper->rb_node)) {
433 BUG_ON(!list_empty(&node->upper));
434 drop_backref_node(cache, node);
435 node = upper;
436 node->lowest = 1;
437 continue;
438 }
439 /*
440 * add the node to leaf node list if no other
441 * child block cached.
442 */
443 if (list_empty(&upper->lower)) {
444 list_add_tail(&upper->lower, &cache->leaves);
445 upper->lowest = 1;
446 }
447 }
448
449 drop_backref_node(cache, node);
450}
451
452static void update_backref_node(struct backref_cache *cache,
453 struct backref_node *node, u64 bytenr)
454{
455 struct rb_node *rb_node;
456 rb_erase(&node->rb_node, &cache->rb_root);
457 node->bytenr = bytenr;
458 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 if (rb_node)
460 backref_tree_panic(rb_node, -EEXIST, bytenr);
461}
462
463/*
464 * update backref cache after a transaction commit
465 */
466static int update_backref_cache(struct btrfs_trans_handle *trans,
467 struct backref_cache *cache)
468{
469 struct backref_node *node;
470 int level = 0;
471
472 if (cache->last_trans == 0) {
473 cache->last_trans = trans->transid;
474 return 0;
475 }
476
477 if (cache->last_trans == trans->transid)
478 return 0;
479
480 /*
481 * detached nodes are used to avoid unnecessary backref
482 * lookup. transaction commit changes the extent tree.
483 * so the detached nodes are no longer useful.
484 */
485 while (!list_empty(&cache->detached)) {
486 node = list_entry(cache->detached.next,
487 struct backref_node, list);
488 remove_backref_node(cache, node);
489 }
490
491 while (!list_empty(&cache->changed)) {
492 node = list_entry(cache->changed.next,
493 struct backref_node, list);
494 list_del_init(&node->list);
495 BUG_ON(node->pending);
496 update_backref_node(cache, node, node->new_bytenr);
497 }
498
499 /*
500 * some nodes can be left in the pending list if there were
501 * errors during processing the pending nodes.
502 */
503 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 list_for_each_entry(node, &cache->pending[level], list) {
505 BUG_ON(!node->pending);
506 if (node->bytenr == node->new_bytenr)
507 continue;
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510 }
511
512 cache->last_trans = 0;
513 return 1;
514}
515
516
517static int should_ignore_root(struct btrfs_root *root)
518{
519 struct btrfs_root *reloc_root;
520
521 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 return 0;
523
524 reloc_root = root->reloc_root;
525 if (!reloc_root)
526 return 0;
527
528 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
529 root->fs_info->running_transaction->transid - 1)
530 return 0;
531 /*
532 * if there is reloc tree and it was created in previous
533 * transaction backref lookup can find the reloc tree,
534 * so backref node for the fs tree root is useless for
535 * relocation.
536 */
537 return 1;
538}
539/*
540 * find reloc tree by address of tree root
541 */
542static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 u64 bytenr)
544{
545 struct rb_node *rb_node;
546 struct mapping_node *node;
547 struct btrfs_root *root = NULL;
548
549 spin_lock(&rc->reloc_root_tree.lock);
550 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 if (rb_node) {
552 node = rb_entry(rb_node, struct mapping_node, rb_node);
553 root = (struct btrfs_root *)node->data;
554 }
555 spin_unlock(&rc->reloc_root_tree.lock);
556 return root;
557}
558
559static int is_cowonly_root(u64 root_objectid)
560{
561 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 return 1;
571 return 0;
572}
573
574static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 u64 root_objectid)
576{
577 struct btrfs_key key;
578
579 key.objectid = root_objectid;
580 key.type = BTRFS_ROOT_ITEM_KEY;
581 if (is_cowonly_root(root_objectid))
582 key.offset = 0;
583 else
584 key.offset = (u64)-1;
585
586 return btrfs_get_fs_root(fs_info, &key, false);
587}
588
589static noinline_for_stack
590int find_inline_backref(struct extent_buffer *leaf, int slot,
591 unsigned long *ptr, unsigned long *end)
592{
593 struct btrfs_key key;
594 struct btrfs_extent_item *ei;
595 struct btrfs_tree_block_info *bi;
596 u32 item_size;
597
598 btrfs_item_key_to_cpu(leaf, &key, slot);
599
600 item_size = btrfs_item_size_nr(leaf, slot);
601 if (item_size < sizeof(*ei)) {
602 btrfs_print_v0_err(leaf->fs_info);
603 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
604 return 1;
605 }
606 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
607 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
608 BTRFS_EXTENT_FLAG_TREE_BLOCK));
609
610 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
611 item_size <= sizeof(*ei) + sizeof(*bi)) {
612 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
613 return 1;
614 }
615 if (key.type == BTRFS_METADATA_ITEM_KEY &&
616 item_size <= sizeof(*ei)) {
617 WARN_ON(item_size < sizeof(*ei));
618 return 1;
619 }
620
621 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
622 bi = (struct btrfs_tree_block_info *)(ei + 1);
623 *ptr = (unsigned long)(bi + 1);
624 } else {
625 *ptr = (unsigned long)(ei + 1);
626 }
627 *end = (unsigned long)ei + item_size;
628 return 0;
629}
630
631/*
632 * build backref tree for a given tree block. root of the backref tree
633 * corresponds the tree block, leaves of the backref tree correspond
634 * roots of b-trees that reference the tree block.
635 *
636 * the basic idea of this function is check backrefs of a given block
637 * to find upper level blocks that reference the block, and then check
638 * backrefs of these upper level blocks recursively. the recursion stop
639 * when tree root is reached or backrefs for the block is cached.
640 *
641 * NOTE: if we find backrefs for a block are cached, we know backrefs
642 * for all upper level blocks that directly/indirectly reference the
643 * block are also cached.
644 */
645static noinline_for_stack
646struct backref_node *build_backref_tree(struct reloc_control *rc,
647 struct btrfs_key *node_key,
648 int level, u64 bytenr)
649{
650 struct backref_cache *cache = &rc->backref_cache;
651 struct btrfs_path *path1;
652 struct btrfs_path *path2;
653 struct extent_buffer *eb;
654 struct btrfs_root *root;
655 struct backref_node *cur;
656 struct backref_node *upper;
657 struct backref_node *lower;
658 struct backref_node *node = NULL;
659 struct backref_node *exist = NULL;
660 struct backref_edge *edge;
661 struct rb_node *rb_node;
662 struct btrfs_key key;
663 unsigned long end;
664 unsigned long ptr;
665 LIST_HEAD(list);
666 LIST_HEAD(useless);
667 int cowonly;
668 int ret;
669 int err = 0;
670 bool need_check = true;
671
672 path1 = btrfs_alloc_path();
673 path2 = btrfs_alloc_path();
674 if (!path1 || !path2) {
675 err = -ENOMEM;
676 goto out;
677 }
678 path1->reada = READA_FORWARD;
679 path2->reada = READA_FORWARD;
680
681 node = alloc_backref_node(cache);
682 if (!node) {
683 err = -ENOMEM;
684 goto out;
685 }
686
687 node->bytenr = bytenr;
688 node->level = level;
689 node->lowest = 1;
690 cur = node;
691again:
692 end = 0;
693 ptr = 0;
694 key.objectid = cur->bytenr;
695 key.type = BTRFS_METADATA_ITEM_KEY;
696 key.offset = (u64)-1;
697
698 path1->search_commit_root = 1;
699 path1->skip_locking = 1;
700 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
701 0, 0);
702 if (ret < 0) {
703 err = ret;
704 goto out;
705 }
706 ASSERT(ret);
707 ASSERT(path1->slots[0]);
708
709 path1->slots[0]--;
710
711 WARN_ON(cur->checked);
712 if (!list_empty(&cur->upper)) {
713 /*
714 * the backref was added previously when processing
715 * backref of type BTRFS_TREE_BLOCK_REF_KEY
716 */
717 ASSERT(list_is_singular(&cur->upper));
718 edge = list_entry(cur->upper.next, struct backref_edge,
719 list[LOWER]);
720 ASSERT(list_empty(&edge->list[UPPER]));
721 exist = edge->node[UPPER];
722 /*
723 * add the upper level block to pending list if we need
724 * check its backrefs
725 */
726 if (!exist->checked)
727 list_add_tail(&edge->list[UPPER], &list);
728 } else {
729 exist = NULL;
730 }
731
732 while (1) {
733 cond_resched();
734 eb = path1->nodes[0];
735
736 if (ptr >= end) {
737 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
738 ret = btrfs_next_leaf(rc->extent_root, path1);
739 if (ret < 0) {
740 err = ret;
741 goto out;
742 }
743 if (ret > 0)
744 break;
745 eb = path1->nodes[0];
746 }
747
748 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
749 if (key.objectid != cur->bytenr) {
750 WARN_ON(exist);
751 break;
752 }
753
754 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
755 key.type == BTRFS_METADATA_ITEM_KEY) {
756 ret = find_inline_backref(eb, path1->slots[0],
757 &ptr, &end);
758 if (ret)
759 goto next;
760 }
761 }
762
763 if (ptr < end) {
764 /* update key for inline back ref */
765 struct btrfs_extent_inline_ref *iref;
766 int type;
767 iref = (struct btrfs_extent_inline_ref *)ptr;
768 type = btrfs_get_extent_inline_ref_type(eb, iref,
769 BTRFS_REF_TYPE_BLOCK);
770 if (type == BTRFS_REF_TYPE_INVALID) {
771 err = -EUCLEAN;
772 goto out;
773 }
774 key.type = type;
775 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776
777 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
778 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
779 }
780
781 if (exist &&
782 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
783 exist->owner == key.offset) ||
784 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
785 exist->bytenr == key.offset))) {
786 exist = NULL;
787 goto next;
788 }
789
790 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
791 if (key.objectid == key.offset) {
792 /*
793 * only root blocks of reloc trees use
794 * backref of this type.
795 */
796 root = find_reloc_root(rc, cur->bytenr);
797 ASSERT(root);
798 cur->root = root;
799 break;
800 }
801
802 edge = alloc_backref_edge(cache);
803 if (!edge) {
804 err = -ENOMEM;
805 goto out;
806 }
807 rb_node = tree_search(&cache->rb_root, key.offset);
808 if (!rb_node) {
809 upper = alloc_backref_node(cache);
810 if (!upper) {
811 free_backref_edge(cache, edge);
812 err = -ENOMEM;
813 goto out;
814 }
815 upper->bytenr = key.offset;
816 upper->level = cur->level + 1;
817 /*
818 * backrefs for the upper level block isn't
819 * cached, add the block to pending list
820 */
821 list_add_tail(&edge->list[UPPER], &list);
822 } else {
823 upper = rb_entry(rb_node, struct backref_node,
824 rb_node);
825 ASSERT(upper->checked);
826 INIT_LIST_HEAD(&edge->list[UPPER]);
827 }
828 list_add_tail(&edge->list[LOWER], &cur->upper);
829 edge->node[LOWER] = cur;
830 edge->node[UPPER] = upper;
831
832 goto next;
833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 err = -EINVAL;
835 btrfs_print_v0_err(rc->extent_root->fs_info);
836 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
837 NULL);
838 goto out;
839 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
840 goto next;
841 }
842
843 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
844 root = read_fs_root(rc->extent_root->fs_info, key.offset);
845 if (IS_ERR(root)) {
846 err = PTR_ERR(root);
847 goto out;
848 }
849
850 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 cur->cowonly = 1;
852
853 if (btrfs_root_level(&root->root_item) == cur->level) {
854 /* tree root */
855 ASSERT(btrfs_root_bytenr(&root->root_item) ==
856 cur->bytenr);
857 if (should_ignore_root(root))
858 list_add(&cur->list, &useless);
859 else
860 cur->root = root;
861 break;
862 }
863
864 level = cur->level + 1;
865
866 /*
867 * searching the tree to find upper level blocks
868 * reference the block.
869 */
870 path2->search_commit_root = 1;
871 path2->skip_locking = 1;
872 path2->lowest_level = level;
873 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
874 path2->lowest_level = 0;
875 if (ret < 0) {
876 err = ret;
877 goto out;
878 }
879 if (ret > 0 && path2->slots[level] > 0)
880 path2->slots[level]--;
881
882 eb = path2->nodes[level];
883 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
884 cur->bytenr) {
885 btrfs_err(root->fs_info,
886 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
887 cur->bytenr, level - 1, root->objectid,
888 node_key->objectid, node_key->type,
889 node_key->offset);
890 err = -ENOENT;
891 goto out;
892 }
893 lower = cur;
894 need_check = true;
895 for (; level < BTRFS_MAX_LEVEL; level++) {
896 if (!path2->nodes[level]) {
897 ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 lower->bytenr);
899 if (should_ignore_root(root))
900 list_add(&lower->list, &useless);
901 else
902 lower->root = root;
903 break;
904 }
905
906 edge = alloc_backref_edge(cache);
907 if (!edge) {
908 err = -ENOMEM;
909 goto out;
910 }
911
912 eb = path2->nodes[level];
913 rb_node = tree_search(&cache->rb_root, eb->start);
914 if (!rb_node) {
915 upper = alloc_backref_node(cache);
916 if (!upper) {
917 free_backref_edge(cache, edge);
918 err = -ENOMEM;
919 goto out;
920 }
921 upper->bytenr = eb->start;
922 upper->owner = btrfs_header_owner(eb);
923 upper->level = lower->level + 1;
924 if (!test_bit(BTRFS_ROOT_REF_COWS,
925 &root->state))
926 upper->cowonly = 1;
927
928 /*
929 * if we know the block isn't shared
930 * we can void checking its backrefs.
931 */
932 if (btrfs_block_can_be_shared(root, eb))
933 upper->checked = 0;
934 else
935 upper->checked = 1;
936
937 /*
938 * add the block to pending list if we
939 * need check its backrefs, we only do this once
940 * while walking up a tree as we will catch
941 * anything else later on.
942 */
943 if (!upper->checked && need_check) {
944 need_check = false;
945 list_add_tail(&edge->list[UPPER],
946 &list);
947 } else {
948 if (upper->checked)
949 need_check = true;
950 INIT_LIST_HEAD(&edge->list[UPPER]);
951 }
952 } else {
953 upper = rb_entry(rb_node, struct backref_node,
954 rb_node);
955 ASSERT(upper->checked);
956 INIT_LIST_HEAD(&edge->list[UPPER]);
957 if (!upper->owner)
958 upper->owner = btrfs_header_owner(eb);
959 }
960 list_add_tail(&edge->list[LOWER], &lower->upper);
961 edge->node[LOWER] = lower;
962 edge->node[UPPER] = upper;
963
964 if (rb_node)
965 break;
966 lower = upper;
967 upper = NULL;
968 }
969 btrfs_release_path(path2);
970next:
971 if (ptr < end) {
972 ptr += btrfs_extent_inline_ref_size(key.type);
973 if (ptr >= end) {
974 WARN_ON(ptr > end);
975 ptr = 0;
976 end = 0;
977 }
978 }
979 if (ptr >= end)
980 path1->slots[0]++;
981 }
982 btrfs_release_path(path1);
983
984 cur->checked = 1;
985 WARN_ON(exist);
986
987 /* the pending list isn't empty, take the first block to process */
988 if (!list_empty(&list)) {
989 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
990 list_del_init(&edge->list[UPPER]);
991 cur = edge->node[UPPER];
992 goto again;
993 }
994
995 /*
996 * everything goes well, connect backref nodes and insert backref nodes
997 * into the cache.
998 */
999 ASSERT(node->checked);
1000 cowonly = node->cowonly;
1001 if (!cowonly) {
1002 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1003 &node->rb_node);
1004 if (rb_node)
1005 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 list_add_tail(&node->lower, &cache->leaves);
1007 }
1008
1009 list_for_each_entry(edge, &node->upper, list[LOWER])
1010 list_add_tail(&edge->list[UPPER], &list);
1011
1012 while (!list_empty(&list)) {
1013 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1014 list_del_init(&edge->list[UPPER]);
1015 upper = edge->node[UPPER];
1016 if (upper->detached) {
1017 list_del(&edge->list[LOWER]);
1018 lower = edge->node[LOWER];
1019 free_backref_edge(cache, edge);
1020 if (list_empty(&lower->upper))
1021 list_add(&lower->list, &useless);
1022 continue;
1023 }
1024
1025 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1026 if (upper->lowest) {
1027 list_del_init(&upper->lower);
1028 upper->lowest = 0;
1029 }
1030
1031 list_add_tail(&edge->list[UPPER], &upper->lower);
1032 continue;
1033 }
1034
1035 if (!upper->checked) {
1036 /*
1037 * Still want to blow up for developers since this is a
1038 * logic bug.
1039 */
1040 ASSERT(0);
1041 err = -EINVAL;
1042 goto out;
1043 }
1044 if (cowonly != upper->cowonly) {
1045 ASSERT(0);
1046 err = -EINVAL;
1047 goto out;
1048 }
1049
1050 if (!cowonly) {
1051 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1052 &upper->rb_node);
1053 if (rb_node)
1054 backref_tree_panic(rb_node, -EEXIST,
1055 upper->bytenr);
1056 }
1057
1058 list_add_tail(&edge->list[UPPER], &upper->lower);
1059
1060 list_for_each_entry(edge, &upper->upper, list[LOWER])
1061 list_add_tail(&edge->list[UPPER], &list);
1062 }
1063 /*
1064 * process useless backref nodes. backref nodes for tree leaves
1065 * are deleted from the cache. backref nodes for upper level
1066 * tree blocks are left in the cache to avoid unnecessary backref
1067 * lookup.
1068 */
1069 while (!list_empty(&useless)) {
1070 upper = list_entry(useless.next, struct backref_node, list);
1071 list_del_init(&upper->list);
1072 ASSERT(list_empty(&upper->upper));
1073 if (upper == node)
1074 node = NULL;
1075 if (upper->lowest) {
1076 list_del_init(&upper->lower);
1077 upper->lowest = 0;
1078 }
1079 while (!list_empty(&upper->lower)) {
1080 edge = list_entry(upper->lower.next,
1081 struct backref_edge, list[UPPER]);
1082 list_del(&edge->list[UPPER]);
1083 list_del(&edge->list[LOWER]);
1084 lower = edge->node[LOWER];
1085 free_backref_edge(cache, edge);
1086
1087 if (list_empty(&lower->upper))
1088 list_add(&lower->list, &useless);
1089 }
1090 __mark_block_processed(rc, upper);
1091 if (upper->level > 0) {
1092 list_add(&upper->list, &cache->detached);
1093 upper->detached = 1;
1094 } else {
1095 rb_erase(&upper->rb_node, &cache->rb_root);
1096 free_backref_node(cache, upper);
1097 }
1098 }
1099out:
1100 btrfs_free_path(path1);
1101 btrfs_free_path(path2);
1102 if (err) {
1103 while (!list_empty(&useless)) {
1104 lower = list_entry(useless.next,
1105 struct backref_node, list);
1106 list_del_init(&lower->list);
1107 }
1108 while (!list_empty(&list)) {
1109 edge = list_first_entry(&list, struct backref_edge,
1110 list[UPPER]);
1111 list_del(&edge->list[UPPER]);
1112 list_del(&edge->list[LOWER]);
1113 lower = edge->node[LOWER];
1114 upper = edge->node[UPPER];
1115 free_backref_edge(cache, edge);
1116
1117 /*
1118 * Lower is no longer linked to any upper backref nodes
1119 * and isn't in the cache, we can free it ourselves.
1120 */
1121 if (list_empty(&lower->upper) &&
1122 RB_EMPTY_NODE(&lower->rb_node))
1123 list_add(&lower->list, &useless);
1124
1125 if (!RB_EMPTY_NODE(&upper->rb_node))
1126 continue;
1127
1128 /* Add this guy's upper edges to the list to process */
1129 list_for_each_entry(edge, &upper->upper, list[LOWER])
1130 list_add_tail(&edge->list[UPPER], &list);
1131 if (list_empty(&upper->upper))
1132 list_add(&upper->list, &useless);
1133 }
1134
1135 while (!list_empty(&useless)) {
1136 lower = list_entry(useless.next,
1137 struct backref_node, list);
1138 list_del_init(&lower->list);
1139 if (lower == node)
1140 node = NULL;
1141 free_backref_node(cache, lower);
1142 }
1143
1144 free_backref_node(cache, node);
1145 return ERR_PTR(err);
1146 }
1147 ASSERT(!node || !node->detached);
1148 return node;
1149}
1150
1151/*
1152 * helper to add backref node for the newly created snapshot.
1153 * the backref node is created by cloning backref node that
1154 * corresponds to root of source tree
1155 */
1156static int clone_backref_node(struct btrfs_trans_handle *trans,
1157 struct reloc_control *rc,
1158 struct btrfs_root *src,
1159 struct btrfs_root *dest)
1160{
1161 struct btrfs_root *reloc_root = src->reloc_root;
1162 struct backref_cache *cache = &rc->backref_cache;
1163 struct backref_node *node = NULL;
1164 struct backref_node *new_node;
1165 struct backref_edge *edge;
1166 struct backref_edge *new_edge;
1167 struct rb_node *rb_node;
1168
1169 if (cache->last_trans > 0)
1170 update_backref_cache(trans, cache);
1171
1172 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1173 if (rb_node) {
1174 node = rb_entry(rb_node, struct backref_node, rb_node);
1175 if (node->detached)
1176 node = NULL;
1177 else
1178 BUG_ON(node->new_bytenr != reloc_root->node->start);
1179 }
1180
1181 if (!node) {
1182 rb_node = tree_search(&cache->rb_root,
1183 reloc_root->commit_root->start);
1184 if (rb_node) {
1185 node = rb_entry(rb_node, struct backref_node,
1186 rb_node);
1187 BUG_ON(node->detached);
1188 }
1189 }
1190
1191 if (!node)
1192 return 0;
1193
1194 new_node = alloc_backref_node(cache);
1195 if (!new_node)
1196 return -ENOMEM;
1197
1198 new_node->bytenr = dest->node->start;
1199 new_node->level = node->level;
1200 new_node->lowest = node->lowest;
1201 new_node->checked = 1;
1202 new_node->root = dest;
1203
1204 if (!node->lowest) {
1205 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1206 new_edge = alloc_backref_edge(cache);
1207 if (!new_edge)
1208 goto fail;
1209
1210 new_edge->node[UPPER] = new_node;
1211 new_edge->node[LOWER] = edge->node[LOWER];
1212 list_add_tail(&new_edge->list[UPPER],
1213 &new_node->lower);
1214 }
1215 } else {
1216 list_add_tail(&new_node->lower, &cache->leaves);
1217 }
1218
1219 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1220 &new_node->rb_node);
1221 if (rb_node)
1222 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223
1224 if (!new_node->lowest) {
1225 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1226 list_add_tail(&new_edge->list[LOWER],
1227 &new_edge->node[LOWER]->upper);
1228 }
1229 }
1230 return 0;
1231fail:
1232 while (!list_empty(&new_node->lower)) {
1233 new_edge = list_entry(new_node->lower.next,
1234 struct backref_edge, list[UPPER]);
1235 list_del(&new_edge->list[UPPER]);
1236 free_backref_edge(cache, new_edge);
1237 }
1238 free_backref_node(cache, new_node);
1239 return -ENOMEM;
1240}
1241
1242/*
1243 * helper to add 'address of tree root -> reloc tree' mapping
1244 */
1245static int __must_check __add_reloc_root(struct btrfs_root *root)
1246{
1247 struct btrfs_fs_info *fs_info = root->fs_info;
1248 struct rb_node *rb_node;
1249 struct mapping_node *node;
1250 struct reloc_control *rc = fs_info->reloc_ctl;
1251
1252 node = kmalloc(sizeof(*node), GFP_NOFS);
1253 if (!node)
1254 return -ENOMEM;
1255
1256 node->bytenr = root->node->start;
1257 node->data = root;
1258
1259 spin_lock(&rc->reloc_root_tree.lock);
1260 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1261 node->bytenr, &node->rb_node);
1262 spin_unlock(&rc->reloc_root_tree.lock);
1263 if (rb_node) {
1264 btrfs_panic(fs_info, -EEXIST,
1265 "Duplicate root found for start=%llu while inserting into relocation tree",
1266 node->bytenr);
1267 }
1268
1269 list_add_tail(&root->root_list, &rc->reloc_roots);
1270 return 0;
1271}
1272
1273/*
1274 * helper to delete the 'address of tree root -> reloc tree'
1275 * mapping
1276 */
1277static void __del_reloc_root(struct btrfs_root *root)
1278{
1279 struct btrfs_fs_info *fs_info = root->fs_info;
1280 struct rb_node *rb_node;
1281 struct mapping_node *node = NULL;
1282 struct reloc_control *rc = fs_info->reloc_ctl;
1283
1284 if (rc && root->node) {
1285 spin_lock(&rc->reloc_root_tree.lock);
1286 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1287 root->node->start);
1288 if (rb_node) {
1289 node = rb_entry(rb_node, struct mapping_node, rb_node);
1290 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1291 }
1292 spin_unlock(&rc->reloc_root_tree.lock);
1293 if (!node)
1294 return;
1295 BUG_ON((struct btrfs_root *)node->data != root);
1296 }
1297
1298 spin_lock(&fs_info->trans_lock);
1299 list_del_init(&root->root_list);
1300 spin_unlock(&fs_info->trans_lock);
1301 kfree(node);
1302}
1303
1304/*
1305 * helper to update the 'address of tree root -> reloc tree'
1306 * mapping
1307 */
1308static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1309{
1310 struct btrfs_fs_info *fs_info = root->fs_info;
1311 struct rb_node *rb_node;
1312 struct mapping_node *node = NULL;
1313 struct reloc_control *rc = fs_info->reloc_ctl;
1314
1315 spin_lock(&rc->reloc_root_tree.lock);
1316 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317 root->node->start);
1318 if (rb_node) {
1319 node = rb_entry(rb_node, struct mapping_node, rb_node);
1320 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321 }
1322 spin_unlock(&rc->reloc_root_tree.lock);
1323
1324 if (!node)
1325 return 0;
1326 BUG_ON((struct btrfs_root *)node->data != root);
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 node->bytenr = new_bytenr;
1330 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1331 node->bytenr, &node->rb_node);
1332 spin_unlock(&rc->reloc_root_tree.lock);
1333 if (rb_node)
1334 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1335 return 0;
1336}
1337
1338static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1339 struct btrfs_root *root, u64 objectid)
1340{
1341 struct btrfs_fs_info *fs_info = root->fs_info;
1342 struct btrfs_root *reloc_root;
1343 struct extent_buffer *eb;
1344 struct btrfs_root_item *root_item;
1345 struct btrfs_key root_key;
1346 int ret;
1347
1348 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1349 BUG_ON(!root_item);
1350
1351 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1352 root_key.type = BTRFS_ROOT_ITEM_KEY;
1353 root_key.offset = objectid;
1354
1355 if (root->root_key.objectid == objectid) {
1356 u64 commit_root_gen;
1357
1358 /* called by btrfs_init_reloc_root */
1359 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1360 BTRFS_TREE_RELOC_OBJECTID);
1361 BUG_ON(ret);
1362 /*
1363 * Set the last_snapshot field to the generation of the commit
1364 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1365 * correctly (returns true) when the relocation root is created
1366 * either inside the critical section of a transaction commit
1367 * (through transaction.c:qgroup_account_snapshot()) and when
1368 * it's created before the transaction commit is started.
1369 */
1370 commit_root_gen = btrfs_header_generation(root->commit_root);
1371 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1372 } else {
1373 /*
1374 * called by btrfs_reloc_post_snapshot_hook.
1375 * the source tree is a reloc tree, all tree blocks
1376 * modified after it was created have RELOC flag
1377 * set in their headers. so it's OK to not update
1378 * the 'last_snapshot'.
1379 */
1380 ret = btrfs_copy_root(trans, root, root->node, &eb,
1381 BTRFS_TREE_RELOC_OBJECTID);
1382 BUG_ON(ret);
1383 }
1384
1385 memcpy(root_item, &root->root_item, sizeof(*root_item));
1386 btrfs_set_root_bytenr(root_item, eb->start);
1387 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1388 btrfs_set_root_generation(root_item, trans->transid);
1389
1390 if (root->root_key.objectid == objectid) {
1391 btrfs_set_root_refs(root_item, 0);
1392 memset(&root_item->drop_progress, 0,
1393 sizeof(struct btrfs_disk_key));
1394 root_item->drop_level = 0;
1395 }
1396
1397 btrfs_tree_unlock(eb);
1398 free_extent_buffer(eb);
1399
1400 ret = btrfs_insert_root(trans, fs_info->tree_root,
1401 &root_key, root_item);
1402 BUG_ON(ret);
1403 kfree(root_item);
1404
1405 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1406 BUG_ON(IS_ERR(reloc_root));
1407 reloc_root->last_trans = trans->transid;
1408 return reloc_root;
1409}
1410
1411/*
1412 * create reloc tree for a given fs tree. reloc tree is just a
1413 * snapshot of the fs tree with special root objectid.
1414 */
1415int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root)
1417{
1418 struct btrfs_fs_info *fs_info = root->fs_info;
1419 struct btrfs_root *reloc_root;
1420 struct reloc_control *rc = fs_info->reloc_ctl;
1421 struct btrfs_block_rsv *rsv;
1422 int clear_rsv = 0;
1423 int ret;
1424
1425 if (root->reloc_root) {
1426 reloc_root = root->reloc_root;
1427 reloc_root->last_trans = trans->transid;
1428 return 0;
1429 }
1430
1431 if (!rc || !rc->create_reloc_tree ||
1432 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1433 return 0;
1434
1435 if (!trans->reloc_reserved) {
1436 rsv = trans->block_rsv;
1437 trans->block_rsv = rc->block_rsv;
1438 clear_rsv = 1;
1439 }
1440 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1441 if (clear_rsv)
1442 trans->block_rsv = rsv;
1443
1444 ret = __add_reloc_root(reloc_root);
1445 BUG_ON(ret < 0);
1446 root->reloc_root = reloc_root;
1447 return 0;
1448}
1449
1450/*
1451 * update root item of reloc tree
1452 */
1453int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root)
1455{
1456 struct btrfs_fs_info *fs_info = root->fs_info;
1457 struct btrfs_root *reloc_root;
1458 struct btrfs_root_item *root_item;
1459 int ret;
1460
1461 if (!root->reloc_root)
1462 goto out;
1463
1464 reloc_root = root->reloc_root;
1465 root_item = &reloc_root->root_item;
1466
1467 if (fs_info->reloc_ctl->merge_reloc_tree &&
1468 btrfs_root_refs(root_item) == 0) {
1469 root->reloc_root = NULL;
1470 __del_reloc_root(reloc_root);
1471 }
1472
1473 if (reloc_root->commit_root != reloc_root->node) {
1474 btrfs_set_root_node(root_item, reloc_root->node);
1475 free_extent_buffer(reloc_root->commit_root);
1476 reloc_root->commit_root = btrfs_root_node(reloc_root);
1477 }
1478
1479 ret = btrfs_update_root(trans, fs_info->tree_root,
1480 &reloc_root->root_key, root_item);
1481 BUG_ON(ret);
1482
1483out:
1484 return 0;
1485}
1486
1487/*
1488 * helper to find first cached inode with inode number >= objectid
1489 * in a subvolume
1490 */
1491static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1492{
1493 struct rb_node *node;
1494 struct rb_node *prev;
1495 struct btrfs_inode *entry;
1496 struct inode *inode;
1497
1498 spin_lock(&root->inode_lock);
1499again:
1500 node = root->inode_tree.rb_node;
1501 prev = NULL;
1502 while (node) {
1503 prev = node;
1504 entry = rb_entry(node, struct btrfs_inode, rb_node);
1505
1506 if (objectid < btrfs_ino(entry))
1507 node = node->rb_left;
1508 else if (objectid > btrfs_ino(entry))
1509 node = node->rb_right;
1510 else
1511 break;
1512 }
1513 if (!node) {
1514 while (prev) {
1515 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1516 if (objectid <= btrfs_ino(entry)) {
1517 node = prev;
1518 break;
1519 }
1520 prev = rb_next(prev);
1521 }
1522 }
1523 while (node) {
1524 entry = rb_entry(node, struct btrfs_inode, rb_node);
1525 inode = igrab(&entry->vfs_inode);
1526 if (inode) {
1527 spin_unlock(&root->inode_lock);
1528 return inode;
1529 }
1530
1531 objectid = btrfs_ino(entry) + 1;
1532 if (cond_resched_lock(&root->inode_lock))
1533 goto again;
1534
1535 node = rb_next(node);
1536 }
1537 spin_unlock(&root->inode_lock);
1538 return NULL;
1539}
1540
1541static int in_block_group(u64 bytenr,
1542 struct btrfs_block_group_cache *block_group)
1543{
1544 if (bytenr >= block_group->key.objectid &&
1545 bytenr < block_group->key.objectid + block_group->key.offset)
1546 return 1;
1547 return 0;
1548}
1549
1550/*
1551 * get new location of data
1552 */
1553static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1554 u64 bytenr, u64 num_bytes)
1555{
1556 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1557 struct btrfs_path *path;
1558 struct btrfs_file_extent_item *fi;
1559 struct extent_buffer *leaf;
1560 int ret;
1561
1562 path = btrfs_alloc_path();
1563 if (!path)
1564 return -ENOMEM;
1565
1566 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1567 ret = btrfs_lookup_file_extent(NULL, root, path,
1568 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1569 if (ret < 0)
1570 goto out;
1571 if (ret > 0) {
1572 ret = -ENOENT;
1573 goto out;
1574 }
1575
1576 leaf = path->nodes[0];
1577 fi = btrfs_item_ptr(leaf, path->slots[0],
1578 struct btrfs_file_extent_item);
1579
1580 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1581 btrfs_file_extent_compression(leaf, fi) ||
1582 btrfs_file_extent_encryption(leaf, fi) ||
1583 btrfs_file_extent_other_encoding(leaf, fi));
1584
1585 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1586 ret = -EINVAL;
1587 goto out;
1588 }
1589
1590 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1591 ret = 0;
1592out:
1593 btrfs_free_path(path);
1594 return ret;
1595}
1596
1597/*
1598 * update file extent items in the tree leaf to point to
1599 * the new locations.
1600 */
1601static noinline_for_stack
1602int replace_file_extents(struct btrfs_trans_handle *trans,
1603 struct reloc_control *rc,
1604 struct btrfs_root *root,
1605 struct extent_buffer *leaf)
1606{
1607 struct btrfs_fs_info *fs_info = root->fs_info;
1608 struct btrfs_key key;
1609 struct btrfs_file_extent_item *fi;
1610 struct inode *inode = NULL;
1611 u64 parent;
1612 u64 bytenr;
1613 u64 new_bytenr = 0;
1614 u64 num_bytes;
1615 u64 end;
1616 u32 nritems;
1617 u32 i;
1618 int ret = 0;
1619 int first = 1;
1620 int dirty = 0;
1621
1622 if (rc->stage != UPDATE_DATA_PTRS)
1623 return 0;
1624
1625 /* reloc trees always use full backref */
1626 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1627 parent = leaf->start;
1628 else
1629 parent = 0;
1630
1631 nritems = btrfs_header_nritems(leaf);
1632 for (i = 0; i < nritems; i++) {
1633 cond_resched();
1634 btrfs_item_key_to_cpu(leaf, &key, i);
1635 if (key.type != BTRFS_EXTENT_DATA_KEY)
1636 continue;
1637 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1638 if (btrfs_file_extent_type(leaf, fi) ==
1639 BTRFS_FILE_EXTENT_INLINE)
1640 continue;
1641 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1642 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1643 if (bytenr == 0)
1644 continue;
1645 if (!in_block_group(bytenr, rc->block_group))
1646 continue;
1647
1648 /*
1649 * if we are modifying block in fs tree, wait for readpage
1650 * to complete and drop the extent cache
1651 */
1652 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1653 if (first) {
1654 inode = find_next_inode(root, key.objectid);
1655 first = 0;
1656 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1657 btrfs_add_delayed_iput(inode);
1658 inode = find_next_inode(root, key.objectid);
1659 }
1660 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1661 end = key.offset +
1662 btrfs_file_extent_num_bytes(leaf, fi);
1663 WARN_ON(!IS_ALIGNED(key.offset,
1664 fs_info->sectorsize));
1665 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1666 end--;
1667 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1668 key.offset, end);
1669 if (!ret)
1670 continue;
1671
1672 btrfs_drop_extent_cache(BTRFS_I(inode),
1673 key.offset, end, 1);
1674 unlock_extent(&BTRFS_I(inode)->io_tree,
1675 key.offset, end);
1676 }
1677 }
1678
1679 ret = get_new_location(rc->data_inode, &new_bytenr,
1680 bytenr, num_bytes);
1681 if (ret) {
1682 /*
1683 * Don't have to abort since we've not changed anything
1684 * in the file extent yet.
1685 */
1686 break;
1687 }
1688
1689 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1690 dirty = 1;
1691
1692 key.offset -= btrfs_file_extent_offset(leaf, fi);
1693 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1694 num_bytes, parent,
1695 btrfs_header_owner(leaf),
1696 key.objectid, key.offset);
1697 if (ret) {
1698 btrfs_abort_transaction(trans, ret);
1699 break;
1700 }
1701
1702 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1703 parent, btrfs_header_owner(leaf),
1704 key.objectid, key.offset);
1705 if (ret) {
1706 btrfs_abort_transaction(trans, ret);
1707 break;
1708 }
1709 }
1710 if (dirty)
1711 btrfs_mark_buffer_dirty(leaf);
1712 if (inode)
1713 btrfs_add_delayed_iput(inode);
1714 return ret;
1715}
1716
1717static noinline_for_stack
1718int memcmp_node_keys(struct extent_buffer *eb, int slot,
1719 struct btrfs_path *path, int level)
1720{
1721 struct btrfs_disk_key key1;
1722 struct btrfs_disk_key key2;
1723 btrfs_node_key(eb, &key1, slot);
1724 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1725 return memcmp(&key1, &key2, sizeof(key1));
1726}
1727
1728/*
1729 * try to replace tree blocks in fs tree with the new blocks
1730 * in reloc tree. tree blocks haven't been modified since the
1731 * reloc tree was create can be replaced.
1732 *
1733 * if a block was replaced, level of the block + 1 is returned.
1734 * if no block got replaced, 0 is returned. if there are other
1735 * errors, a negative error number is returned.
1736 */
1737static noinline_for_stack
1738int replace_path(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *dest, struct btrfs_root *src,
1740 struct btrfs_path *path, struct btrfs_key *next_key,
1741 int lowest_level, int max_level)
1742{
1743 struct btrfs_fs_info *fs_info = dest->fs_info;
1744 struct extent_buffer *eb;
1745 struct extent_buffer *parent;
1746 struct btrfs_key key;
1747 u64 old_bytenr;
1748 u64 new_bytenr;
1749 u64 old_ptr_gen;
1750 u64 new_ptr_gen;
1751 u64 last_snapshot;
1752 u32 blocksize;
1753 int cow = 0;
1754 int level;
1755 int ret;
1756 int slot;
1757
1758 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1759 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1760
1761 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1762again:
1763 slot = path->slots[lowest_level];
1764 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1765
1766 eb = btrfs_lock_root_node(dest);
1767 btrfs_set_lock_blocking(eb);
1768 level = btrfs_header_level(eb);
1769
1770 if (level < lowest_level) {
1771 btrfs_tree_unlock(eb);
1772 free_extent_buffer(eb);
1773 return 0;
1774 }
1775
1776 if (cow) {
1777 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1778 BUG_ON(ret);
1779 }
1780 btrfs_set_lock_blocking(eb);
1781
1782 if (next_key) {
1783 next_key->objectid = (u64)-1;
1784 next_key->type = (u8)-1;
1785 next_key->offset = (u64)-1;
1786 }
1787
1788 parent = eb;
1789 while (1) {
1790 struct btrfs_key first_key;
1791
1792 level = btrfs_header_level(parent);
1793 BUG_ON(level < lowest_level);
1794
1795 ret = btrfs_bin_search(parent, &key, level, &slot);
1796 if (ret && slot > 0)
1797 slot--;
1798
1799 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1800 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1801
1802 old_bytenr = btrfs_node_blockptr(parent, slot);
1803 blocksize = fs_info->nodesize;
1804 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1805 btrfs_node_key_to_cpu(parent, &first_key, slot);
1806
1807 if (level <= max_level) {
1808 eb = path->nodes[level];
1809 new_bytenr = btrfs_node_blockptr(eb,
1810 path->slots[level]);
1811 new_ptr_gen = btrfs_node_ptr_generation(eb,
1812 path->slots[level]);
1813 } else {
1814 new_bytenr = 0;
1815 new_ptr_gen = 0;
1816 }
1817
1818 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1819 ret = level;
1820 break;
1821 }
1822
1823 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1824 memcmp_node_keys(parent, slot, path, level)) {
1825 if (level <= lowest_level) {
1826 ret = 0;
1827 break;
1828 }
1829
1830 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1831 level - 1, &first_key);
1832 if (IS_ERR(eb)) {
1833 ret = PTR_ERR(eb);
1834 break;
1835 } else if (!extent_buffer_uptodate(eb)) {
1836 ret = -EIO;
1837 free_extent_buffer(eb);
1838 break;
1839 }
1840 btrfs_tree_lock(eb);
1841 if (cow) {
1842 ret = btrfs_cow_block(trans, dest, eb, parent,
1843 slot, &eb);
1844 BUG_ON(ret);
1845 }
1846 btrfs_set_lock_blocking(eb);
1847
1848 btrfs_tree_unlock(parent);
1849 free_extent_buffer(parent);
1850
1851 parent = eb;
1852 continue;
1853 }
1854
1855 if (!cow) {
1856 btrfs_tree_unlock(parent);
1857 free_extent_buffer(parent);
1858 cow = 1;
1859 goto again;
1860 }
1861
1862 btrfs_node_key_to_cpu(path->nodes[level], &key,
1863 path->slots[level]);
1864 btrfs_release_path(path);
1865
1866 path->lowest_level = level;
1867 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1868 path->lowest_level = 0;
1869 BUG_ON(ret);
1870
1871 /*
1872 * Info qgroup to trace both subtrees.
1873 *
1874 * We must trace both trees.
1875 * 1) Tree reloc subtree
1876 * If not traced, we will leak data numbers
1877 * 2) Fs subtree
1878 * If not traced, we will double count old data
1879 * and tree block numbers, if current trans doesn't free
1880 * data reloc tree inode.
1881 */
1882 ret = btrfs_qgroup_trace_subtree(trans, parent,
1883 btrfs_header_generation(parent),
1884 btrfs_header_level(parent));
1885 if (ret < 0)
1886 break;
1887 ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
1888 btrfs_header_generation(path->nodes[level]),
1889 btrfs_header_level(path->nodes[level]));
1890 if (ret < 0)
1891 break;
1892
1893 /*
1894 * swap blocks in fs tree and reloc tree.
1895 */
1896 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1897 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1898 btrfs_mark_buffer_dirty(parent);
1899
1900 btrfs_set_node_blockptr(path->nodes[level],
1901 path->slots[level], old_bytenr);
1902 btrfs_set_node_ptr_generation(path->nodes[level],
1903 path->slots[level], old_ptr_gen);
1904 btrfs_mark_buffer_dirty(path->nodes[level]);
1905
1906 ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1907 blocksize, path->nodes[level]->start,
1908 src->root_key.objectid, level - 1, 0);
1909 BUG_ON(ret);
1910 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1911 blocksize, 0, dest->root_key.objectid,
1912 level - 1, 0);
1913 BUG_ON(ret);
1914
1915 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1916 path->nodes[level]->start,
1917 src->root_key.objectid, level - 1, 0);
1918 BUG_ON(ret);
1919
1920 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1921 0, dest->root_key.objectid, level - 1,
1922 0);
1923 BUG_ON(ret);
1924
1925 btrfs_unlock_up_safe(path, 0);
1926
1927 ret = level;
1928 break;
1929 }
1930 btrfs_tree_unlock(parent);
1931 free_extent_buffer(parent);
1932 return ret;
1933}
1934
1935/*
1936 * helper to find next relocated block in reloc tree
1937 */
1938static noinline_for_stack
1939int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1940 int *level)
1941{
1942 struct extent_buffer *eb;
1943 int i;
1944 u64 last_snapshot;
1945 u32 nritems;
1946
1947 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1948
1949 for (i = 0; i < *level; i++) {
1950 free_extent_buffer(path->nodes[i]);
1951 path->nodes[i] = NULL;
1952 }
1953
1954 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1955 eb = path->nodes[i];
1956 nritems = btrfs_header_nritems(eb);
1957 while (path->slots[i] + 1 < nritems) {
1958 path->slots[i]++;
1959 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1960 last_snapshot)
1961 continue;
1962
1963 *level = i;
1964 return 0;
1965 }
1966 free_extent_buffer(path->nodes[i]);
1967 path->nodes[i] = NULL;
1968 }
1969 return 1;
1970}
1971
1972/*
1973 * walk down reloc tree to find relocated block of lowest level
1974 */
1975static noinline_for_stack
1976int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1977 int *level)
1978{
1979 struct btrfs_fs_info *fs_info = root->fs_info;
1980 struct extent_buffer *eb = NULL;
1981 int i;
1982 u64 bytenr;
1983 u64 ptr_gen = 0;
1984 u64 last_snapshot;
1985 u32 nritems;
1986
1987 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988
1989 for (i = *level; i > 0; i--) {
1990 struct btrfs_key first_key;
1991
1992 eb = path->nodes[i];
1993 nritems = btrfs_header_nritems(eb);
1994 while (path->slots[i] < nritems) {
1995 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1996 if (ptr_gen > last_snapshot)
1997 break;
1998 path->slots[i]++;
1999 }
2000 if (path->slots[i] >= nritems) {
2001 if (i == *level)
2002 break;
2003 *level = i + 1;
2004 return 0;
2005 }
2006 if (i == 1) {
2007 *level = i;
2008 return 0;
2009 }
2010
2011 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2012 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2013 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2014 &first_key);
2015 if (IS_ERR(eb)) {
2016 return PTR_ERR(eb);
2017 } else if (!extent_buffer_uptodate(eb)) {
2018 free_extent_buffer(eb);
2019 return -EIO;
2020 }
2021 BUG_ON(btrfs_header_level(eb) != i - 1);
2022 path->nodes[i - 1] = eb;
2023 path->slots[i - 1] = 0;
2024 }
2025 return 1;
2026}
2027
2028/*
2029 * invalidate extent cache for file extents whose key in range of
2030 * [min_key, max_key)
2031 */
2032static int invalidate_extent_cache(struct btrfs_root *root,
2033 struct btrfs_key *min_key,
2034 struct btrfs_key *max_key)
2035{
2036 struct btrfs_fs_info *fs_info = root->fs_info;
2037 struct inode *inode = NULL;
2038 u64 objectid;
2039 u64 start, end;
2040 u64 ino;
2041
2042 objectid = min_key->objectid;
2043 while (1) {
2044 cond_resched();
2045 iput(inode);
2046
2047 if (objectid > max_key->objectid)
2048 break;
2049
2050 inode = find_next_inode(root, objectid);
2051 if (!inode)
2052 break;
2053 ino = btrfs_ino(BTRFS_I(inode));
2054
2055 if (ino > max_key->objectid) {
2056 iput(inode);
2057 break;
2058 }
2059
2060 objectid = ino + 1;
2061 if (!S_ISREG(inode->i_mode))
2062 continue;
2063
2064 if (unlikely(min_key->objectid == ino)) {
2065 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2066 continue;
2067 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2068 start = 0;
2069 else {
2070 start = min_key->offset;
2071 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2072 }
2073 } else {
2074 start = 0;
2075 }
2076
2077 if (unlikely(max_key->objectid == ino)) {
2078 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2079 continue;
2080 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2081 end = (u64)-1;
2082 } else {
2083 if (max_key->offset == 0)
2084 continue;
2085 end = max_key->offset;
2086 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2087 end--;
2088 }
2089 } else {
2090 end = (u64)-1;
2091 }
2092
2093 /* the lock_extent waits for readpage to complete */
2094 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2095 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2096 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2097 }
2098 return 0;
2099}
2100
2101static int find_next_key(struct btrfs_path *path, int level,
2102 struct btrfs_key *key)
2103
2104{
2105 while (level < BTRFS_MAX_LEVEL) {
2106 if (!path->nodes[level])
2107 break;
2108 if (path->slots[level] + 1 <
2109 btrfs_header_nritems(path->nodes[level])) {
2110 btrfs_node_key_to_cpu(path->nodes[level], key,
2111 path->slots[level] + 1);
2112 return 0;
2113 }
2114 level++;
2115 }
2116 return 1;
2117}
2118
2119/*
2120 * merge the relocated tree blocks in reloc tree with corresponding
2121 * fs tree.
2122 */
2123static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2124 struct btrfs_root *root)
2125{
2126 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2127 LIST_HEAD(inode_list);
2128 struct btrfs_key key;
2129 struct btrfs_key next_key;
2130 struct btrfs_trans_handle *trans = NULL;
2131 struct btrfs_root *reloc_root;
2132 struct btrfs_root_item *root_item;
2133 struct btrfs_path *path;
2134 struct extent_buffer *leaf;
2135 int level;
2136 int max_level;
2137 int replaced = 0;
2138 int ret;
2139 int err = 0;
2140 u32 min_reserved;
2141
2142 path = btrfs_alloc_path();
2143 if (!path)
2144 return -ENOMEM;
2145 path->reada = READA_FORWARD;
2146
2147 reloc_root = root->reloc_root;
2148 root_item = &reloc_root->root_item;
2149
2150 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2151 level = btrfs_root_level(root_item);
2152 extent_buffer_get(reloc_root->node);
2153 path->nodes[level] = reloc_root->node;
2154 path->slots[level] = 0;
2155 } else {
2156 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2157
2158 level = root_item->drop_level;
2159 BUG_ON(level == 0);
2160 path->lowest_level = level;
2161 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2162 path->lowest_level = 0;
2163 if (ret < 0) {
2164 btrfs_free_path(path);
2165 return ret;
2166 }
2167
2168 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2169 path->slots[level]);
2170 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2171
2172 btrfs_unlock_up_safe(path, 0);
2173 }
2174
2175 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2176 memset(&next_key, 0, sizeof(next_key));
2177
2178 while (1) {
2179 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2180 BTRFS_RESERVE_FLUSH_ALL);
2181 if (ret) {
2182 err = ret;
2183 goto out;
2184 }
2185 trans = btrfs_start_transaction(root, 0);
2186 if (IS_ERR(trans)) {
2187 err = PTR_ERR(trans);
2188 trans = NULL;
2189 goto out;
2190 }
2191 trans->block_rsv = rc->block_rsv;
2192
2193 replaced = 0;
2194 max_level = level;
2195
2196 ret = walk_down_reloc_tree(reloc_root, path, &level);
2197 if (ret < 0) {
2198 err = ret;
2199 goto out;
2200 }
2201 if (ret > 0)
2202 break;
2203
2204 if (!find_next_key(path, level, &key) &&
2205 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2206 ret = 0;
2207 } else {
2208 ret = replace_path(trans, root, reloc_root, path,
2209 &next_key, level, max_level);
2210 }
2211 if (ret < 0) {
2212 err = ret;
2213 goto out;
2214 }
2215
2216 if (ret > 0) {
2217 level = ret;
2218 btrfs_node_key_to_cpu(path->nodes[level], &key,
2219 path->slots[level]);
2220 replaced = 1;
2221 }
2222
2223 ret = walk_up_reloc_tree(reloc_root, path, &level);
2224 if (ret > 0)
2225 break;
2226
2227 BUG_ON(level == 0);
2228 /*
2229 * save the merging progress in the drop_progress.
2230 * this is OK since root refs == 1 in this case.
2231 */
2232 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2233 path->slots[level]);
2234 root_item->drop_level = level;
2235
2236 btrfs_end_transaction_throttle(trans);
2237 trans = NULL;
2238
2239 btrfs_btree_balance_dirty(fs_info);
2240
2241 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2242 invalidate_extent_cache(root, &key, &next_key);
2243 }
2244
2245 /*
2246 * handle the case only one block in the fs tree need to be
2247 * relocated and the block is tree root.
2248 */
2249 leaf = btrfs_lock_root_node(root);
2250 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2251 btrfs_tree_unlock(leaf);
2252 free_extent_buffer(leaf);
2253 if (ret < 0)
2254 err = ret;
2255out:
2256 btrfs_free_path(path);
2257
2258 if (err == 0) {
2259 memset(&root_item->drop_progress, 0,
2260 sizeof(root_item->drop_progress));
2261 root_item->drop_level = 0;
2262 btrfs_set_root_refs(root_item, 0);
2263 btrfs_update_reloc_root(trans, root);
2264 }
2265
2266 if (trans)
2267 btrfs_end_transaction_throttle(trans);
2268
2269 btrfs_btree_balance_dirty(fs_info);
2270
2271 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2272 invalidate_extent_cache(root, &key, &next_key);
2273
2274 return err;
2275}
2276
2277static noinline_for_stack
2278int prepare_to_merge(struct reloc_control *rc, int err)
2279{
2280 struct btrfs_root *root = rc->extent_root;
2281 struct btrfs_fs_info *fs_info = root->fs_info;
2282 struct btrfs_root *reloc_root;
2283 struct btrfs_trans_handle *trans;
2284 LIST_HEAD(reloc_roots);
2285 u64 num_bytes = 0;
2286 int ret;
2287
2288 mutex_lock(&fs_info->reloc_mutex);
2289 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2290 rc->merging_rsv_size += rc->nodes_relocated * 2;
2291 mutex_unlock(&fs_info->reloc_mutex);
2292
2293again:
2294 if (!err) {
2295 num_bytes = rc->merging_rsv_size;
2296 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2297 BTRFS_RESERVE_FLUSH_ALL);
2298 if (ret)
2299 err = ret;
2300 }
2301
2302 trans = btrfs_join_transaction(rc->extent_root);
2303 if (IS_ERR(trans)) {
2304 if (!err)
2305 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2306 num_bytes);
2307 return PTR_ERR(trans);
2308 }
2309
2310 if (!err) {
2311 if (num_bytes != rc->merging_rsv_size) {
2312 btrfs_end_transaction(trans);
2313 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2314 num_bytes);
2315 goto again;
2316 }
2317 }
2318
2319 rc->merge_reloc_tree = 1;
2320
2321 while (!list_empty(&rc->reloc_roots)) {
2322 reloc_root = list_entry(rc->reloc_roots.next,
2323 struct btrfs_root, root_list);
2324 list_del_init(&reloc_root->root_list);
2325
2326 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2327 BUG_ON(IS_ERR(root));
2328 BUG_ON(root->reloc_root != reloc_root);
2329
2330 /*
2331 * set reference count to 1, so btrfs_recover_relocation
2332 * knows it should resumes merging
2333 */
2334 if (!err)
2335 btrfs_set_root_refs(&reloc_root->root_item, 1);
2336 btrfs_update_reloc_root(trans, root);
2337
2338 list_add(&reloc_root->root_list, &reloc_roots);
2339 }
2340
2341 list_splice(&reloc_roots, &rc->reloc_roots);
2342
2343 if (!err)
2344 btrfs_commit_transaction(trans);
2345 else
2346 btrfs_end_transaction(trans);
2347 return err;
2348}
2349
2350static noinline_for_stack
2351void free_reloc_roots(struct list_head *list)
2352{
2353 struct btrfs_root *reloc_root;
2354
2355 while (!list_empty(list)) {
2356 reloc_root = list_entry(list->next, struct btrfs_root,
2357 root_list);
2358 __del_reloc_root(reloc_root);
2359 free_extent_buffer(reloc_root->node);
2360 free_extent_buffer(reloc_root->commit_root);
2361 reloc_root->node = NULL;
2362 reloc_root->commit_root = NULL;
2363 }
2364}
2365
2366static noinline_for_stack
2367void merge_reloc_roots(struct reloc_control *rc)
2368{
2369 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2370 struct btrfs_root *root;
2371 struct btrfs_root *reloc_root;
2372 LIST_HEAD(reloc_roots);
2373 int found = 0;
2374 int ret = 0;
2375again:
2376 root = rc->extent_root;
2377
2378 /*
2379 * this serializes us with btrfs_record_root_in_transaction,
2380 * we have to make sure nobody is in the middle of
2381 * adding their roots to the list while we are
2382 * doing this splice
2383 */
2384 mutex_lock(&fs_info->reloc_mutex);
2385 list_splice_init(&rc->reloc_roots, &reloc_roots);
2386 mutex_unlock(&fs_info->reloc_mutex);
2387
2388 while (!list_empty(&reloc_roots)) {
2389 found = 1;
2390 reloc_root = list_entry(reloc_roots.next,
2391 struct btrfs_root, root_list);
2392
2393 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2394 root = read_fs_root(fs_info,
2395 reloc_root->root_key.offset);
2396 BUG_ON(IS_ERR(root));
2397 BUG_ON(root->reloc_root != reloc_root);
2398
2399 ret = merge_reloc_root(rc, root);
2400 if (ret) {
2401 if (list_empty(&reloc_root->root_list))
2402 list_add_tail(&reloc_root->root_list,
2403 &reloc_roots);
2404 goto out;
2405 }
2406 } else {
2407 list_del_init(&reloc_root->root_list);
2408 }
2409
2410 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 if (ret < 0) {
2412 if (list_empty(&reloc_root->root_list))
2413 list_add_tail(&reloc_root->root_list,
2414 &reloc_roots);
2415 goto out;
2416 }
2417 }
2418
2419 if (found) {
2420 found = 0;
2421 goto again;
2422 }
2423out:
2424 if (ret) {
2425 btrfs_handle_fs_error(fs_info, ret, NULL);
2426 if (!list_empty(&reloc_roots))
2427 free_reloc_roots(&reloc_roots);
2428
2429 /* new reloc root may be added */
2430 mutex_lock(&fs_info->reloc_mutex);
2431 list_splice_init(&rc->reloc_roots, &reloc_roots);
2432 mutex_unlock(&fs_info->reloc_mutex);
2433 if (!list_empty(&reloc_roots))
2434 free_reloc_roots(&reloc_roots);
2435 }
2436
2437 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2438}
2439
2440static void free_block_list(struct rb_root *blocks)
2441{
2442 struct tree_block *block;
2443 struct rb_node *rb_node;
2444 while ((rb_node = rb_first(blocks))) {
2445 block = rb_entry(rb_node, struct tree_block, rb_node);
2446 rb_erase(rb_node, blocks);
2447 kfree(block);
2448 }
2449}
2450
2451static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2452 struct btrfs_root *reloc_root)
2453{
2454 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2455 struct btrfs_root *root;
2456
2457 if (reloc_root->last_trans == trans->transid)
2458 return 0;
2459
2460 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2461 BUG_ON(IS_ERR(root));
2462 BUG_ON(root->reloc_root != reloc_root);
2463
2464 return btrfs_record_root_in_trans(trans, root);
2465}
2466
2467static noinline_for_stack
2468struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2469 struct reloc_control *rc,
2470 struct backref_node *node,
2471 struct backref_edge *edges[])
2472{
2473 struct backref_node *next;
2474 struct btrfs_root *root;
2475 int index = 0;
2476
2477 next = node;
2478 while (1) {
2479 cond_resched();
2480 next = walk_up_backref(next, edges, &index);
2481 root = next->root;
2482 BUG_ON(!root);
2483 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2484
2485 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2486 record_reloc_root_in_trans(trans, root);
2487 break;
2488 }
2489
2490 btrfs_record_root_in_trans(trans, root);
2491 root = root->reloc_root;
2492
2493 if (next->new_bytenr != root->node->start) {
2494 BUG_ON(next->new_bytenr);
2495 BUG_ON(!list_empty(&next->list));
2496 next->new_bytenr = root->node->start;
2497 next->root = root;
2498 list_add_tail(&next->list,
2499 &rc->backref_cache.changed);
2500 __mark_block_processed(rc, next);
2501 break;
2502 }
2503
2504 WARN_ON(1);
2505 root = NULL;
2506 next = walk_down_backref(edges, &index);
2507 if (!next || next->level <= node->level)
2508 break;
2509 }
2510 if (!root)
2511 return NULL;
2512
2513 next = node;
2514 /* setup backref node path for btrfs_reloc_cow_block */
2515 while (1) {
2516 rc->backref_cache.path[next->level] = next;
2517 if (--index < 0)
2518 break;
2519 next = edges[index]->node[UPPER];
2520 }
2521 return root;
2522}
2523
2524/*
2525 * select a tree root for relocation. return NULL if the block
2526 * is reference counted. we should use do_relocation() in this
2527 * case. return a tree root pointer if the block isn't reference
2528 * counted. return -ENOENT if the block is root of reloc tree.
2529 */
2530static noinline_for_stack
2531struct btrfs_root *select_one_root(struct backref_node *node)
2532{
2533 struct backref_node *next;
2534 struct btrfs_root *root;
2535 struct btrfs_root *fs_root = NULL;
2536 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2537 int index = 0;
2538
2539 next = node;
2540 while (1) {
2541 cond_resched();
2542 next = walk_up_backref(next, edges, &index);
2543 root = next->root;
2544 BUG_ON(!root);
2545
2546 /* no other choice for non-references counted tree */
2547 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2548 return root;
2549
2550 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2551 fs_root = root;
2552
2553 if (next != node)
2554 return NULL;
2555
2556 next = walk_down_backref(edges, &index);
2557 if (!next || next->level <= node->level)
2558 break;
2559 }
2560
2561 if (!fs_root)
2562 return ERR_PTR(-ENOENT);
2563 return fs_root;
2564}
2565
2566static noinline_for_stack
2567u64 calcu_metadata_size(struct reloc_control *rc,
2568 struct backref_node *node, int reserve)
2569{
2570 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2571 struct backref_node *next = node;
2572 struct backref_edge *edge;
2573 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2574 u64 num_bytes = 0;
2575 int index = 0;
2576
2577 BUG_ON(reserve && node->processed);
2578
2579 while (next) {
2580 cond_resched();
2581 while (1) {
2582 if (next->processed && (reserve || next != node))
2583 break;
2584
2585 num_bytes += fs_info->nodesize;
2586
2587 if (list_empty(&next->upper))
2588 break;
2589
2590 edge = list_entry(next->upper.next,
2591 struct backref_edge, list[LOWER]);
2592 edges[index++] = edge;
2593 next = edge->node[UPPER];
2594 }
2595 next = walk_down_backref(edges, &index);
2596 }
2597 return num_bytes;
2598}
2599
2600static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2601 struct reloc_control *rc,
2602 struct backref_node *node)
2603{
2604 struct btrfs_root *root = rc->extent_root;
2605 struct btrfs_fs_info *fs_info = root->fs_info;
2606 u64 num_bytes;
2607 int ret;
2608 u64 tmp;
2609
2610 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2611
2612 trans->block_rsv = rc->block_rsv;
2613 rc->reserved_bytes += num_bytes;
2614
2615 /*
2616 * We are under a transaction here so we can only do limited flushing.
2617 * If we get an enospc just kick back -EAGAIN so we know to drop the
2618 * transaction and try to refill when we can flush all the things.
2619 */
2620 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2621 BTRFS_RESERVE_FLUSH_LIMIT);
2622 if (ret) {
2623 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2624 while (tmp <= rc->reserved_bytes)
2625 tmp <<= 1;
2626 /*
2627 * only one thread can access block_rsv at this point,
2628 * so we don't need hold lock to protect block_rsv.
2629 * we expand more reservation size here to allow enough
2630 * space for relocation and we will return eailer in
2631 * enospc case.
2632 */
2633 rc->block_rsv->size = tmp + fs_info->nodesize *
2634 RELOCATION_RESERVED_NODES;
2635 return -EAGAIN;
2636 }
2637
2638 return 0;
2639}
2640
2641/*
2642 * relocate a block tree, and then update pointers in upper level
2643 * blocks that reference the block to point to the new location.
2644 *
2645 * if called by link_to_upper, the block has already been relocated.
2646 * in that case this function just updates pointers.
2647 */
2648static int do_relocation(struct btrfs_trans_handle *trans,
2649 struct reloc_control *rc,
2650 struct backref_node *node,
2651 struct btrfs_key *key,
2652 struct btrfs_path *path, int lowest)
2653{
2654 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2655 struct backref_node *upper;
2656 struct backref_edge *edge;
2657 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2658 struct btrfs_root *root;
2659 struct extent_buffer *eb;
2660 u32 blocksize;
2661 u64 bytenr;
2662 u64 generation;
2663 int slot;
2664 int ret;
2665 int err = 0;
2666
2667 BUG_ON(lowest && node->eb);
2668
2669 path->lowest_level = node->level + 1;
2670 rc->backref_cache.path[node->level] = node;
2671 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2672 struct btrfs_key first_key;
2673
2674 cond_resched();
2675
2676 upper = edge->node[UPPER];
2677 root = select_reloc_root(trans, rc, upper, edges);
2678 BUG_ON(!root);
2679
2680 if (upper->eb && !upper->locked) {
2681 if (!lowest) {
2682 ret = btrfs_bin_search(upper->eb, key,
2683 upper->level, &slot);
2684 BUG_ON(ret);
2685 bytenr = btrfs_node_blockptr(upper->eb, slot);
2686 if (node->eb->start == bytenr)
2687 goto next;
2688 }
2689 drop_node_buffer(upper);
2690 }
2691
2692 if (!upper->eb) {
2693 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694 if (ret) {
2695 if (ret < 0)
2696 err = ret;
2697 else
2698 err = -ENOENT;
2699
2700 btrfs_release_path(path);
2701 break;
2702 }
2703
2704 if (!upper->eb) {
2705 upper->eb = path->nodes[upper->level];
2706 path->nodes[upper->level] = NULL;
2707 } else {
2708 BUG_ON(upper->eb != path->nodes[upper->level]);
2709 }
2710
2711 upper->locked = 1;
2712 path->locks[upper->level] = 0;
2713
2714 slot = path->slots[upper->level];
2715 btrfs_release_path(path);
2716 } else {
2717 ret = btrfs_bin_search(upper->eb, key, upper->level,
2718 &slot);
2719 BUG_ON(ret);
2720 }
2721
2722 bytenr = btrfs_node_blockptr(upper->eb, slot);
2723 if (lowest) {
2724 if (bytenr != node->bytenr) {
2725 btrfs_err(root->fs_info,
2726 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2727 bytenr, node->bytenr, slot,
2728 upper->eb->start);
2729 err = -EIO;
2730 goto next;
2731 }
2732 } else {
2733 if (node->eb->start == bytenr)
2734 goto next;
2735 }
2736
2737 blocksize = root->fs_info->nodesize;
2738 generation = btrfs_node_ptr_generation(upper->eb, slot);
2739 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2740 eb = read_tree_block(fs_info, bytenr, generation,
2741 upper->level - 1, &first_key);
2742 if (IS_ERR(eb)) {
2743 err = PTR_ERR(eb);
2744 goto next;
2745 } else if (!extent_buffer_uptodate(eb)) {
2746 free_extent_buffer(eb);
2747 err = -EIO;
2748 goto next;
2749 }
2750 btrfs_tree_lock(eb);
2751 btrfs_set_lock_blocking(eb);
2752
2753 if (!node->eb) {
2754 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2755 slot, &eb);
2756 btrfs_tree_unlock(eb);
2757 free_extent_buffer(eb);
2758 if (ret < 0) {
2759 err = ret;
2760 goto next;
2761 }
2762 BUG_ON(node->eb != eb);
2763 } else {
2764 btrfs_set_node_blockptr(upper->eb, slot,
2765 node->eb->start);
2766 btrfs_set_node_ptr_generation(upper->eb, slot,
2767 trans->transid);
2768 btrfs_mark_buffer_dirty(upper->eb);
2769
2770 ret = btrfs_inc_extent_ref(trans, root,
2771 node->eb->start, blocksize,
2772 upper->eb->start,
2773 btrfs_header_owner(upper->eb),
2774 node->level, 0);
2775 BUG_ON(ret);
2776
2777 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2778 BUG_ON(ret);
2779 }
2780next:
2781 if (!upper->pending)
2782 drop_node_buffer(upper);
2783 else
2784 unlock_node_buffer(upper);
2785 if (err)
2786 break;
2787 }
2788
2789 if (!err && node->pending) {
2790 drop_node_buffer(node);
2791 list_move_tail(&node->list, &rc->backref_cache.changed);
2792 node->pending = 0;
2793 }
2794
2795 path->lowest_level = 0;
2796 BUG_ON(err == -ENOSPC);
2797 return err;
2798}
2799
2800static int link_to_upper(struct btrfs_trans_handle *trans,
2801 struct reloc_control *rc,
2802 struct backref_node *node,
2803 struct btrfs_path *path)
2804{
2805 struct btrfs_key key;
2806
2807 btrfs_node_key_to_cpu(node->eb, &key, 0);
2808 return do_relocation(trans, rc, node, &key, path, 0);
2809}
2810
2811static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2812 struct reloc_control *rc,
2813 struct btrfs_path *path, int err)
2814{
2815 LIST_HEAD(list);
2816 struct backref_cache *cache = &rc->backref_cache;
2817 struct backref_node *node;
2818 int level;
2819 int ret;
2820
2821 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2822 while (!list_empty(&cache->pending[level])) {
2823 node = list_entry(cache->pending[level].next,
2824 struct backref_node, list);
2825 list_move_tail(&node->list, &list);
2826 BUG_ON(!node->pending);
2827
2828 if (!err) {
2829 ret = link_to_upper(trans, rc, node, path);
2830 if (ret < 0)
2831 err = ret;
2832 }
2833 }
2834 list_splice_init(&list, &cache->pending[level]);
2835 }
2836 return err;
2837}
2838
2839static void mark_block_processed(struct reloc_control *rc,
2840 u64 bytenr, u32 blocksize)
2841{
2842 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2843 EXTENT_DIRTY);
2844}
2845
2846static void __mark_block_processed(struct reloc_control *rc,
2847 struct backref_node *node)
2848{
2849 u32 blocksize;
2850 if (node->level == 0 ||
2851 in_block_group(node->bytenr, rc->block_group)) {
2852 blocksize = rc->extent_root->fs_info->nodesize;
2853 mark_block_processed(rc, node->bytenr, blocksize);
2854 }
2855 node->processed = 1;
2856}
2857
2858/*
2859 * mark a block and all blocks directly/indirectly reference the block
2860 * as processed.
2861 */
2862static void update_processed_blocks(struct reloc_control *rc,
2863 struct backref_node *node)
2864{
2865 struct backref_node *next = node;
2866 struct backref_edge *edge;
2867 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2868 int index = 0;
2869
2870 while (next) {
2871 cond_resched();
2872 while (1) {
2873 if (next->processed)
2874 break;
2875
2876 __mark_block_processed(rc, next);
2877
2878 if (list_empty(&next->upper))
2879 break;
2880
2881 edge = list_entry(next->upper.next,
2882 struct backref_edge, list[LOWER]);
2883 edges[index++] = edge;
2884 next = edge->node[UPPER];
2885 }
2886 next = walk_down_backref(edges, &index);
2887 }
2888}
2889
2890static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2891{
2892 u32 blocksize = rc->extent_root->fs_info->nodesize;
2893
2894 if (test_range_bit(&rc->processed_blocks, bytenr,
2895 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2896 return 1;
2897 return 0;
2898}
2899
2900static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2901 struct tree_block *block)
2902{
2903 struct extent_buffer *eb;
2904
2905 BUG_ON(block->key_ready);
2906 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2907 block->level, NULL);
2908 if (IS_ERR(eb)) {
2909 return PTR_ERR(eb);
2910 } else if (!extent_buffer_uptodate(eb)) {
2911 free_extent_buffer(eb);
2912 return -EIO;
2913 }
2914 WARN_ON(btrfs_header_level(eb) != block->level);
2915 if (block->level == 0)
2916 btrfs_item_key_to_cpu(eb, &block->key, 0);
2917 else
2918 btrfs_node_key_to_cpu(eb, &block->key, 0);
2919 free_extent_buffer(eb);
2920 block->key_ready = 1;
2921 return 0;
2922}
2923
2924/*
2925 * helper function to relocate a tree block
2926 */
2927static int relocate_tree_block(struct btrfs_trans_handle *trans,
2928 struct reloc_control *rc,
2929 struct backref_node *node,
2930 struct btrfs_key *key,
2931 struct btrfs_path *path)
2932{
2933 struct btrfs_root *root;
2934 int ret = 0;
2935
2936 if (!node)
2937 return 0;
2938
2939 BUG_ON(node->processed);
2940 root = select_one_root(node);
2941 if (root == ERR_PTR(-ENOENT)) {
2942 update_processed_blocks(rc, node);
2943 goto out;
2944 }
2945
2946 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2947 ret = reserve_metadata_space(trans, rc, node);
2948 if (ret)
2949 goto out;
2950 }
2951
2952 if (root) {
2953 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2954 BUG_ON(node->new_bytenr);
2955 BUG_ON(!list_empty(&node->list));
2956 btrfs_record_root_in_trans(trans, root);
2957 root = root->reloc_root;
2958 node->new_bytenr = root->node->start;
2959 node->root = root;
2960 list_add_tail(&node->list, &rc->backref_cache.changed);
2961 } else {
2962 path->lowest_level = node->level;
2963 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2964 btrfs_release_path(path);
2965 if (ret > 0)
2966 ret = 0;
2967 }
2968 if (!ret)
2969 update_processed_blocks(rc, node);
2970 } else {
2971 ret = do_relocation(trans, rc, node, key, path, 1);
2972 }
2973out:
2974 if (ret || node->level == 0 || node->cowonly)
2975 remove_backref_node(&rc->backref_cache, node);
2976 return ret;
2977}
2978
2979/*
2980 * relocate a list of blocks
2981 */
2982static noinline_for_stack
2983int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2984 struct reloc_control *rc, struct rb_root *blocks)
2985{
2986 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2987 struct backref_node *node;
2988 struct btrfs_path *path;
2989 struct tree_block *block;
2990 struct rb_node *rb_node;
2991 int ret;
2992 int err = 0;
2993
2994 path = btrfs_alloc_path();
2995 if (!path) {
2996 err = -ENOMEM;
2997 goto out_free_blocks;
2998 }
2999
3000 rb_node = rb_first(blocks);
3001 while (rb_node) {
3002 block = rb_entry(rb_node, struct tree_block, rb_node);
3003 if (!block->key_ready)
3004 readahead_tree_block(fs_info, block->bytenr);
3005 rb_node = rb_next(rb_node);
3006 }
3007
3008 rb_node = rb_first(blocks);
3009 while (rb_node) {
3010 block = rb_entry(rb_node, struct tree_block, rb_node);
3011 if (!block->key_ready) {
3012 err = get_tree_block_key(fs_info, block);
3013 if (err)
3014 goto out_free_path;
3015 }
3016 rb_node = rb_next(rb_node);
3017 }
3018
3019 rb_node = rb_first(blocks);
3020 while (rb_node) {
3021 block = rb_entry(rb_node, struct tree_block, rb_node);
3022
3023 node = build_backref_tree(rc, &block->key,
3024 block->level, block->bytenr);
3025 if (IS_ERR(node)) {
3026 err = PTR_ERR(node);
3027 goto out;
3028 }
3029
3030 ret = relocate_tree_block(trans, rc, node, &block->key,
3031 path);
3032 if (ret < 0) {
3033 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3034 err = ret;
3035 goto out;
3036 }
3037 rb_node = rb_next(rb_node);
3038 }
3039out:
3040 err = finish_pending_nodes(trans, rc, path, err);
3041
3042out_free_path:
3043 btrfs_free_path(path);
3044out_free_blocks:
3045 free_block_list(blocks);
3046 return err;
3047}
3048
3049static noinline_for_stack
3050int prealloc_file_extent_cluster(struct inode *inode,
3051 struct file_extent_cluster *cluster)
3052{
3053 u64 alloc_hint = 0;
3054 u64 start;
3055 u64 end;
3056 u64 offset = BTRFS_I(inode)->index_cnt;
3057 u64 num_bytes;
3058 int nr = 0;
3059 int ret = 0;
3060 u64 prealloc_start = cluster->start - offset;
3061 u64 prealloc_end = cluster->end - offset;
3062 u64 cur_offset;
3063 struct extent_changeset *data_reserved = NULL;
3064
3065 BUG_ON(cluster->start != cluster->boundary[0]);
3066 inode_lock(inode);
3067
3068 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3069 prealloc_end + 1 - prealloc_start);
3070 if (ret)
3071 goto out;
3072
3073 cur_offset = prealloc_start;
3074 while (nr < cluster->nr) {
3075 start = cluster->boundary[nr] - offset;
3076 if (nr + 1 < cluster->nr)
3077 end = cluster->boundary[nr + 1] - 1 - offset;
3078 else
3079 end = cluster->end - offset;
3080
3081 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3082 num_bytes = end + 1 - start;
3083 if (cur_offset < start)
3084 btrfs_free_reserved_data_space(inode, data_reserved,
3085 cur_offset, start - cur_offset);
3086 ret = btrfs_prealloc_file_range(inode, 0, start,
3087 num_bytes, num_bytes,
3088 end + 1, &alloc_hint);
3089 cur_offset = end + 1;
3090 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3091 if (ret)
3092 break;
3093 nr++;
3094 }
3095 if (cur_offset < prealloc_end)
3096 btrfs_free_reserved_data_space(inode, data_reserved,
3097 cur_offset, prealloc_end + 1 - cur_offset);
3098out:
3099 inode_unlock(inode);
3100 extent_changeset_free(data_reserved);
3101 return ret;
3102}
3103
3104static noinline_for_stack
3105int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3106 u64 block_start)
3107{
3108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3109 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3110 struct extent_map *em;
3111 int ret = 0;
3112
3113 em = alloc_extent_map();
3114 if (!em)
3115 return -ENOMEM;
3116
3117 em->start = start;
3118 em->len = end + 1 - start;
3119 em->block_len = em->len;
3120 em->block_start = block_start;
3121 em->bdev = fs_info->fs_devices->latest_bdev;
3122 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3123
3124 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3125 while (1) {
3126 write_lock(&em_tree->lock);
3127 ret = add_extent_mapping(em_tree, em, 0);
3128 write_unlock(&em_tree->lock);
3129 if (ret != -EEXIST) {
3130 free_extent_map(em);
3131 break;
3132 }
3133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3134 }
3135 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3136 return ret;
3137}
3138
3139static int relocate_file_extent_cluster(struct inode *inode,
3140 struct file_extent_cluster *cluster)
3141{
3142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3143 u64 page_start;
3144 u64 page_end;
3145 u64 offset = BTRFS_I(inode)->index_cnt;
3146 unsigned long index;
3147 unsigned long last_index;
3148 struct page *page;
3149 struct file_ra_state *ra;
3150 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3151 int nr = 0;
3152 int ret = 0;
3153
3154 if (!cluster->nr)
3155 return 0;
3156
3157 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3158 if (!ra)
3159 return -ENOMEM;
3160
3161 ret = prealloc_file_extent_cluster(inode, cluster);
3162 if (ret)
3163 goto out;
3164
3165 file_ra_state_init(ra, inode->i_mapping);
3166
3167 ret = setup_extent_mapping(inode, cluster->start - offset,
3168 cluster->end - offset, cluster->start);
3169 if (ret)
3170 goto out;
3171
3172 index = (cluster->start - offset) >> PAGE_SHIFT;
3173 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3174 while (index <= last_index) {
3175 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3176 PAGE_SIZE);
3177 if (ret)
3178 goto out;
3179
3180 page = find_lock_page(inode->i_mapping, index);
3181 if (!page) {
3182 page_cache_sync_readahead(inode->i_mapping,
3183 ra, NULL, index,
3184 last_index + 1 - index);
3185 page = find_or_create_page(inode->i_mapping, index,
3186 mask);
3187 if (!page) {
3188 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3189 PAGE_SIZE, true);
3190 btrfs_delalloc_release_extents(BTRFS_I(inode),
3191 PAGE_SIZE);
3192 ret = -ENOMEM;
3193 goto out;
3194 }
3195 }
3196
3197 if (PageReadahead(page)) {
3198 page_cache_async_readahead(inode->i_mapping,
3199 ra, NULL, page, index,
3200 last_index + 1 - index);
3201 }
3202
3203 if (!PageUptodate(page)) {
3204 btrfs_readpage(NULL, page);
3205 lock_page(page);
3206 if (!PageUptodate(page)) {
3207 unlock_page(page);
3208 put_page(page);
3209 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3210 PAGE_SIZE, true);
3211 btrfs_delalloc_release_extents(BTRFS_I(inode),
3212 PAGE_SIZE);
3213 ret = -EIO;
3214 goto out;
3215 }
3216 }
3217
3218 page_start = page_offset(page);
3219 page_end = page_start + PAGE_SIZE - 1;
3220
3221 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3222
3223 set_page_extent_mapped(page);
3224
3225 if (nr < cluster->nr &&
3226 page_start + offset == cluster->boundary[nr]) {
3227 set_extent_bits(&BTRFS_I(inode)->io_tree,
3228 page_start, page_end,
3229 EXTENT_BOUNDARY);
3230 nr++;
3231 }
3232
3233 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3234 NULL, 0);
3235 if (ret) {
3236 unlock_page(page);
3237 put_page(page);
3238 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3239 PAGE_SIZE, true);
3240 btrfs_delalloc_release_extents(BTRFS_I(inode),
3241 PAGE_SIZE);
3242
3243 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3244 page_start, page_end,
3245 EXTENT_LOCKED | EXTENT_BOUNDARY);
3246 goto out;
3247
3248 }
3249 set_page_dirty(page);
3250
3251 unlock_extent(&BTRFS_I(inode)->io_tree,
3252 page_start, page_end);
3253 unlock_page(page);
3254 put_page(page);
3255
3256 index++;
3257 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3258 balance_dirty_pages_ratelimited(inode->i_mapping);
3259 btrfs_throttle(fs_info);
3260 }
3261 WARN_ON(nr != cluster->nr);
3262out:
3263 kfree(ra);
3264 return ret;
3265}
3266
3267static noinline_for_stack
3268int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3269 struct file_extent_cluster *cluster)
3270{
3271 int ret;
3272
3273 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3274 ret = relocate_file_extent_cluster(inode, cluster);
3275 if (ret)
3276 return ret;
3277 cluster->nr = 0;
3278 }
3279
3280 if (!cluster->nr)
3281 cluster->start = extent_key->objectid;
3282 else
3283 BUG_ON(cluster->nr >= MAX_EXTENTS);
3284 cluster->end = extent_key->objectid + extent_key->offset - 1;
3285 cluster->boundary[cluster->nr] = extent_key->objectid;
3286 cluster->nr++;
3287
3288 if (cluster->nr >= MAX_EXTENTS) {
3289 ret = relocate_file_extent_cluster(inode, cluster);
3290 if (ret)
3291 return ret;
3292 cluster->nr = 0;
3293 }
3294 return 0;
3295}
3296
3297/*
3298 * helper to add a tree block to the list.
3299 * the major work is getting the generation and level of the block
3300 */
3301static int add_tree_block(struct reloc_control *rc,
3302 struct btrfs_key *extent_key,
3303 struct btrfs_path *path,
3304 struct rb_root *blocks)
3305{
3306 struct extent_buffer *eb;
3307 struct btrfs_extent_item *ei;
3308 struct btrfs_tree_block_info *bi;
3309 struct tree_block *block;
3310 struct rb_node *rb_node;
3311 u32 item_size;
3312 int level = -1;
3313 u64 generation;
3314
3315 eb = path->nodes[0];
3316 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3317
3318 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3319 item_size >= sizeof(*ei) + sizeof(*bi)) {
3320 ei = btrfs_item_ptr(eb, path->slots[0],
3321 struct btrfs_extent_item);
3322 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3323 bi = (struct btrfs_tree_block_info *)(ei + 1);
3324 level = btrfs_tree_block_level(eb, bi);
3325 } else {
3326 level = (int)extent_key->offset;
3327 }
3328 generation = btrfs_extent_generation(eb, ei);
3329 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3330 btrfs_print_v0_err(eb->fs_info);
3331 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3332 return -EINVAL;
3333 } else {
3334 BUG();
3335 }
3336
3337 btrfs_release_path(path);
3338
3339 BUG_ON(level == -1);
3340
3341 block = kmalloc(sizeof(*block), GFP_NOFS);
3342 if (!block)
3343 return -ENOMEM;
3344
3345 block->bytenr = extent_key->objectid;
3346 block->key.objectid = rc->extent_root->fs_info->nodesize;
3347 block->key.offset = generation;
3348 block->level = level;
3349 block->key_ready = 0;
3350
3351 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3352 if (rb_node)
3353 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3354
3355 return 0;
3356}
3357
3358/*
3359 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3360 */
3361static int __add_tree_block(struct reloc_control *rc,
3362 u64 bytenr, u32 blocksize,
3363 struct rb_root *blocks)
3364{
3365 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366 struct btrfs_path *path;
3367 struct btrfs_key key;
3368 int ret;
3369 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3370
3371 if (tree_block_processed(bytenr, rc))
3372 return 0;
3373
3374 if (tree_search(blocks, bytenr))
3375 return 0;
3376
3377 path = btrfs_alloc_path();
3378 if (!path)
3379 return -ENOMEM;
3380again:
3381 key.objectid = bytenr;
3382 if (skinny) {
3383 key.type = BTRFS_METADATA_ITEM_KEY;
3384 key.offset = (u64)-1;
3385 } else {
3386 key.type = BTRFS_EXTENT_ITEM_KEY;
3387 key.offset = blocksize;
3388 }
3389
3390 path->search_commit_root = 1;
3391 path->skip_locking = 1;
3392 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3393 if (ret < 0)
3394 goto out;
3395
3396 if (ret > 0 && skinny) {
3397 if (path->slots[0]) {
3398 path->slots[0]--;
3399 btrfs_item_key_to_cpu(path->nodes[0], &key,
3400 path->slots[0]);
3401 if (key.objectid == bytenr &&
3402 (key.type == BTRFS_METADATA_ITEM_KEY ||
3403 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3404 key.offset == blocksize)))
3405 ret = 0;
3406 }
3407
3408 if (ret) {
3409 skinny = false;
3410 btrfs_release_path(path);
3411 goto again;
3412 }
3413 }
3414 if (ret) {
3415 ASSERT(ret == 1);
3416 btrfs_print_leaf(path->nodes[0]);
3417 btrfs_err(fs_info,
3418 "tree block extent item (%llu) is not found in extent tree",
3419 bytenr);
3420 WARN_ON(1);
3421 ret = -EINVAL;
3422 goto out;
3423 }
3424
3425 ret = add_tree_block(rc, &key, path, blocks);
3426out:
3427 btrfs_free_path(path);
3428 return ret;
3429}
3430
3431/*
3432 * helper to check if the block use full backrefs for pointers in it
3433 */
3434static int block_use_full_backref(struct reloc_control *rc,
3435 struct extent_buffer *eb)
3436{
3437 u64 flags;
3438 int ret;
3439
3440 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3441 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3442 return 1;
3443
3444 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3445 eb->start, btrfs_header_level(eb), 1,
3446 NULL, &flags);
3447 BUG_ON(ret);
3448
3449 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3450 ret = 1;
3451 else
3452 ret = 0;
3453 return ret;
3454}
3455
3456static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3457 struct btrfs_block_group_cache *block_group,
3458 struct inode *inode,
3459 u64 ino)
3460{
3461 struct btrfs_key key;
3462 struct btrfs_root *root = fs_info->tree_root;
3463 struct btrfs_trans_handle *trans;
3464 int ret = 0;
3465
3466 if (inode)
3467 goto truncate;
3468
3469 key.objectid = ino;
3470 key.type = BTRFS_INODE_ITEM_KEY;
3471 key.offset = 0;
3472
3473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3474 if (IS_ERR(inode))
3475 return -ENOENT;
3476
3477truncate:
3478 ret = btrfs_check_trunc_cache_free_space(fs_info,
3479 &fs_info->global_block_rsv);
3480 if (ret)
3481 goto out;
3482
3483 trans = btrfs_join_transaction(root);
3484 if (IS_ERR(trans)) {
3485 ret = PTR_ERR(trans);
3486 goto out;
3487 }
3488
3489 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3490
3491 btrfs_end_transaction(trans);
3492 btrfs_btree_balance_dirty(fs_info);
3493out:
3494 iput(inode);
3495 return ret;
3496}
3497
3498/*
3499 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3500 * this function scans fs tree to find blocks reference the data extent
3501 */
3502static int find_data_references(struct reloc_control *rc,
3503 struct btrfs_key *extent_key,
3504 struct extent_buffer *leaf,
3505 struct btrfs_extent_data_ref *ref,
3506 struct rb_root *blocks)
3507{
3508 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3509 struct btrfs_path *path;
3510 struct tree_block *block;
3511 struct btrfs_root *root;
3512 struct btrfs_file_extent_item *fi;
3513 struct rb_node *rb_node;
3514 struct btrfs_key key;
3515 u64 ref_root;
3516 u64 ref_objectid;
3517 u64 ref_offset;
3518 u32 ref_count;
3519 u32 nritems;
3520 int err = 0;
3521 int added = 0;
3522 int counted;
3523 int ret;
3524
3525 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3526 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3527 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3528 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3529
3530 /*
3531 * This is an extent belonging to the free space cache, lets just delete
3532 * it and redo the search.
3533 */
3534 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3535 ret = delete_block_group_cache(fs_info, rc->block_group,
3536 NULL, ref_objectid);
3537 if (ret != -ENOENT)
3538 return ret;
3539 ret = 0;
3540 }
3541
3542 path = btrfs_alloc_path();
3543 if (!path)
3544 return -ENOMEM;
3545 path->reada = READA_FORWARD;
3546
3547 root = read_fs_root(fs_info, ref_root);
3548 if (IS_ERR(root)) {
3549 err = PTR_ERR(root);
3550 goto out;
3551 }
3552
3553 key.objectid = ref_objectid;
3554 key.type = BTRFS_EXTENT_DATA_KEY;
3555 if (ref_offset > ((u64)-1 << 32))
3556 key.offset = 0;
3557 else
3558 key.offset = ref_offset;
3559
3560 path->search_commit_root = 1;
3561 path->skip_locking = 1;
3562 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3563 if (ret < 0) {
3564 err = ret;
3565 goto out;
3566 }
3567
3568 leaf = path->nodes[0];
3569 nritems = btrfs_header_nritems(leaf);
3570 /*
3571 * the references in tree blocks that use full backrefs
3572 * are not counted in
3573 */
3574 if (block_use_full_backref(rc, leaf))
3575 counted = 0;
3576 else
3577 counted = 1;
3578 rb_node = tree_search(blocks, leaf->start);
3579 if (rb_node) {
3580 if (counted)
3581 added = 1;
3582 else
3583 path->slots[0] = nritems;
3584 }
3585
3586 while (ref_count > 0) {
3587 while (path->slots[0] >= nritems) {
3588 ret = btrfs_next_leaf(root, path);
3589 if (ret < 0) {
3590 err = ret;
3591 goto out;
3592 }
3593 if (WARN_ON(ret > 0))
3594 goto out;
3595
3596 leaf = path->nodes[0];
3597 nritems = btrfs_header_nritems(leaf);
3598 added = 0;
3599
3600 if (block_use_full_backref(rc, leaf))
3601 counted = 0;
3602 else
3603 counted = 1;
3604 rb_node = tree_search(blocks, leaf->start);
3605 if (rb_node) {
3606 if (counted)
3607 added = 1;
3608 else
3609 path->slots[0] = nritems;
3610 }
3611 }
3612
3613 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3614 if (WARN_ON(key.objectid != ref_objectid ||
3615 key.type != BTRFS_EXTENT_DATA_KEY))
3616 break;
3617
3618 fi = btrfs_item_ptr(leaf, path->slots[0],
3619 struct btrfs_file_extent_item);
3620
3621 if (btrfs_file_extent_type(leaf, fi) ==
3622 BTRFS_FILE_EXTENT_INLINE)
3623 goto next;
3624
3625 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3626 extent_key->objectid)
3627 goto next;
3628
3629 key.offset -= btrfs_file_extent_offset(leaf, fi);
3630 if (key.offset != ref_offset)
3631 goto next;
3632
3633 if (counted)
3634 ref_count--;
3635 if (added)
3636 goto next;
3637
3638 if (!tree_block_processed(leaf->start, rc)) {
3639 block = kmalloc(sizeof(*block), GFP_NOFS);
3640 if (!block) {
3641 err = -ENOMEM;
3642 break;
3643 }
3644 block->bytenr = leaf->start;
3645 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3646 block->level = 0;
3647 block->key_ready = 1;
3648 rb_node = tree_insert(blocks, block->bytenr,
3649 &block->rb_node);
3650 if (rb_node)
3651 backref_tree_panic(rb_node, -EEXIST,
3652 block->bytenr);
3653 }
3654 if (counted)
3655 added = 1;
3656 else
3657 path->slots[0] = nritems;
3658next:
3659 path->slots[0]++;
3660
3661 }
3662out:
3663 btrfs_free_path(path);
3664 return err;
3665}
3666
3667/*
3668 * helper to find all tree blocks that reference a given data extent
3669 */
3670static noinline_for_stack
3671int add_data_references(struct reloc_control *rc,
3672 struct btrfs_key *extent_key,
3673 struct btrfs_path *path,
3674 struct rb_root *blocks)
3675{
3676 struct btrfs_key key;
3677 struct extent_buffer *eb;
3678 struct btrfs_extent_data_ref *dref;
3679 struct btrfs_extent_inline_ref *iref;
3680 unsigned long ptr;
3681 unsigned long end;
3682 u32 blocksize = rc->extent_root->fs_info->nodesize;
3683 int ret = 0;
3684 int err = 0;
3685
3686 eb = path->nodes[0];
3687 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3688 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3689 ptr += sizeof(struct btrfs_extent_item);
3690
3691 while (ptr < end) {
3692 iref = (struct btrfs_extent_inline_ref *)ptr;
3693 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3694 BTRFS_REF_TYPE_DATA);
3695 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3696 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3697 ret = __add_tree_block(rc, key.offset, blocksize,
3698 blocks);
3699 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3700 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3701 ret = find_data_references(rc, extent_key,
3702 eb, dref, blocks);
3703 } else {
3704 ret = -EUCLEAN;
3705 btrfs_err(rc->extent_root->fs_info,
3706 "extent %llu slot %d has an invalid inline ref type",
3707 eb->start, path->slots[0]);
3708 }
3709 if (ret) {
3710 err = ret;
3711 goto out;
3712 }
3713 ptr += btrfs_extent_inline_ref_size(key.type);
3714 }
3715 WARN_ON(ptr > end);
3716
3717 while (1) {
3718 cond_resched();
3719 eb = path->nodes[0];
3720 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3721 ret = btrfs_next_leaf(rc->extent_root, path);
3722 if (ret < 0) {
3723 err = ret;
3724 break;
3725 }
3726 if (ret > 0)
3727 break;
3728 eb = path->nodes[0];
3729 }
3730
3731 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3732 if (key.objectid != extent_key->objectid)
3733 break;
3734
3735 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3736 ret = __add_tree_block(rc, key.offset, blocksize,
3737 blocks);
3738 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3739 dref = btrfs_item_ptr(eb, path->slots[0],
3740 struct btrfs_extent_data_ref);
3741 ret = find_data_references(rc, extent_key,
3742 eb, dref, blocks);
3743 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3744 btrfs_print_v0_err(eb->fs_info);
3745 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3746 ret = -EINVAL;
3747 } else {
3748 ret = 0;
3749 }
3750 if (ret) {
3751 err = ret;
3752 break;
3753 }
3754 path->slots[0]++;
3755 }
3756out:
3757 btrfs_release_path(path);
3758 if (err)
3759 free_block_list(blocks);
3760 return err;
3761}
3762
3763/*
3764 * helper to find next unprocessed extent
3765 */
3766static noinline_for_stack
3767int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3768 struct btrfs_key *extent_key)
3769{
3770 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3771 struct btrfs_key key;
3772 struct extent_buffer *leaf;
3773 u64 start, end, last;
3774 int ret;
3775
3776 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3777 while (1) {
3778 cond_resched();
3779 if (rc->search_start >= last) {
3780 ret = 1;
3781 break;
3782 }
3783
3784 key.objectid = rc->search_start;
3785 key.type = BTRFS_EXTENT_ITEM_KEY;
3786 key.offset = 0;
3787
3788 path->search_commit_root = 1;
3789 path->skip_locking = 1;
3790 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3791 0, 0);
3792 if (ret < 0)
3793 break;
3794next:
3795 leaf = path->nodes[0];
3796 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3797 ret = btrfs_next_leaf(rc->extent_root, path);
3798 if (ret != 0)
3799 break;
3800 leaf = path->nodes[0];
3801 }
3802
3803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3804 if (key.objectid >= last) {
3805 ret = 1;
3806 break;
3807 }
3808
3809 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3810 key.type != BTRFS_METADATA_ITEM_KEY) {
3811 path->slots[0]++;
3812 goto next;
3813 }
3814
3815 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3816 key.objectid + key.offset <= rc->search_start) {
3817 path->slots[0]++;
3818 goto next;
3819 }
3820
3821 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3822 key.objectid + fs_info->nodesize <=
3823 rc->search_start) {
3824 path->slots[0]++;
3825 goto next;
3826 }
3827
3828 ret = find_first_extent_bit(&rc->processed_blocks,
3829 key.objectid, &start, &end,
3830 EXTENT_DIRTY, NULL);
3831
3832 if (ret == 0 && start <= key.objectid) {
3833 btrfs_release_path(path);
3834 rc->search_start = end + 1;
3835 } else {
3836 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3837 rc->search_start = key.objectid + key.offset;
3838 else
3839 rc->search_start = key.objectid +
3840 fs_info->nodesize;
3841 memcpy(extent_key, &key, sizeof(key));
3842 return 0;
3843 }
3844 }
3845 btrfs_release_path(path);
3846 return ret;
3847}
3848
3849static void set_reloc_control(struct reloc_control *rc)
3850{
3851 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3852
3853 mutex_lock(&fs_info->reloc_mutex);
3854 fs_info->reloc_ctl = rc;
3855 mutex_unlock(&fs_info->reloc_mutex);
3856}
3857
3858static void unset_reloc_control(struct reloc_control *rc)
3859{
3860 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861
3862 mutex_lock(&fs_info->reloc_mutex);
3863 fs_info->reloc_ctl = NULL;
3864 mutex_unlock(&fs_info->reloc_mutex);
3865}
3866
3867static int check_extent_flags(u64 flags)
3868{
3869 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3870 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3871 return 1;
3872 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3873 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3874 return 1;
3875 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3876 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3877 return 1;
3878 return 0;
3879}
3880
3881static noinline_for_stack
3882int prepare_to_relocate(struct reloc_control *rc)
3883{
3884 struct btrfs_trans_handle *trans;
3885 int ret;
3886
3887 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3888 BTRFS_BLOCK_RSV_TEMP);
3889 if (!rc->block_rsv)
3890 return -ENOMEM;
3891
3892 memset(&rc->cluster, 0, sizeof(rc->cluster));
3893 rc->search_start = rc->block_group->key.objectid;
3894 rc->extents_found = 0;
3895 rc->nodes_relocated = 0;
3896 rc->merging_rsv_size = 0;
3897 rc->reserved_bytes = 0;
3898 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3899 RELOCATION_RESERVED_NODES;
3900 ret = btrfs_block_rsv_refill(rc->extent_root,
3901 rc->block_rsv, rc->block_rsv->size,
3902 BTRFS_RESERVE_FLUSH_ALL);
3903 if (ret)
3904 return ret;
3905
3906 rc->create_reloc_tree = 1;
3907 set_reloc_control(rc);
3908
3909 trans = btrfs_join_transaction(rc->extent_root);
3910 if (IS_ERR(trans)) {
3911 unset_reloc_control(rc);
3912 /*
3913 * extent tree is not a ref_cow tree and has no reloc_root to
3914 * cleanup. And callers are responsible to free the above
3915 * block rsv.
3916 */
3917 return PTR_ERR(trans);
3918 }
3919 btrfs_commit_transaction(trans);
3920 return 0;
3921}
3922
3923static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3924{
3925 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3926 struct rb_root blocks = RB_ROOT;
3927 struct btrfs_key key;
3928 struct btrfs_trans_handle *trans = NULL;
3929 struct btrfs_path *path;
3930 struct btrfs_extent_item *ei;
3931 u64 flags;
3932 u32 item_size;
3933 int ret;
3934 int err = 0;
3935 int progress = 0;
3936
3937 path = btrfs_alloc_path();
3938 if (!path)
3939 return -ENOMEM;
3940 path->reada = READA_FORWARD;
3941
3942 ret = prepare_to_relocate(rc);
3943 if (ret) {
3944 err = ret;
3945 goto out_free;
3946 }
3947
3948 while (1) {
3949 rc->reserved_bytes = 0;
3950 ret = btrfs_block_rsv_refill(rc->extent_root,
3951 rc->block_rsv, rc->block_rsv->size,
3952 BTRFS_RESERVE_FLUSH_ALL);
3953 if (ret) {
3954 err = ret;
3955 break;
3956 }
3957 progress++;
3958 trans = btrfs_start_transaction(rc->extent_root, 0);
3959 if (IS_ERR(trans)) {
3960 err = PTR_ERR(trans);
3961 trans = NULL;
3962 break;
3963 }
3964restart:
3965 if (update_backref_cache(trans, &rc->backref_cache)) {
3966 btrfs_end_transaction(trans);
3967 trans = NULL;
3968 continue;
3969 }
3970
3971 ret = find_next_extent(rc, path, &key);
3972 if (ret < 0)
3973 err = ret;
3974 if (ret != 0)
3975 break;
3976
3977 rc->extents_found++;
3978
3979 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3980 struct btrfs_extent_item);
3981 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3982 if (item_size >= sizeof(*ei)) {
3983 flags = btrfs_extent_flags(path->nodes[0], ei);
3984 ret = check_extent_flags(flags);
3985 BUG_ON(ret);
3986 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3987 err = -EINVAL;
3988 btrfs_print_v0_err(trans->fs_info);
3989 btrfs_abort_transaction(trans, err);
3990 break;
3991 } else {
3992 BUG();
3993 }
3994
3995 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3996 ret = add_tree_block(rc, &key, path, &blocks);
3997 } else if (rc->stage == UPDATE_DATA_PTRS &&
3998 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3999 ret = add_data_references(rc, &key, path, &blocks);
4000 } else {
4001 btrfs_release_path(path);
4002 ret = 0;
4003 }
4004 if (ret < 0) {
4005 err = ret;
4006 break;
4007 }
4008
4009 if (!RB_EMPTY_ROOT(&blocks)) {
4010 ret = relocate_tree_blocks(trans, rc, &blocks);
4011 if (ret < 0) {
4012 /*
4013 * if we fail to relocate tree blocks, force to update
4014 * backref cache when committing transaction.
4015 */
4016 rc->backref_cache.last_trans = trans->transid - 1;
4017
4018 if (ret != -EAGAIN) {
4019 err = ret;
4020 break;
4021 }
4022 rc->extents_found--;
4023 rc->search_start = key.objectid;
4024 }
4025 }
4026
4027 btrfs_end_transaction_throttle(trans);
4028 btrfs_btree_balance_dirty(fs_info);
4029 trans = NULL;
4030
4031 if (rc->stage == MOVE_DATA_EXTENTS &&
4032 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4033 rc->found_file_extent = 1;
4034 ret = relocate_data_extent(rc->data_inode,
4035 &key, &rc->cluster);
4036 if (ret < 0) {
4037 err = ret;
4038 break;
4039 }
4040 }
4041 }
4042 if (trans && progress && err == -ENOSPC) {
4043 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4044 if (ret == 1) {
4045 err = 0;
4046 progress = 0;
4047 goto restart;
4048 }
4049 }
4050
4051 btrfs_release_path(path);
4052 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4053
4054 if (trans) {
4055 btrfs_end_transaction_throttle(trans);
4056 btrfs_btree_balance_dirty(fs_info);
4057 }
4058
4059 if (!err) {
4060 ret = relocate_file_extent_cluster(rc->data_inode,
4061 &rc->cluster);
4062 if (ret < 0)
4063 err = ret;
4064 }
4065
4066 rc->create_reloc_tree = 0;
4067 set_reloc_control(rc);
4068
4069 backref_cache_cleanup(&rc->backref_cache);
4070 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4071
4072 err = prepare_to_merge(rc, err);
4073
4074 merge_reloc_roots(rc);
4075
4076 rc->merge_reloc_tree = 0;
4077 unset_reloc_control(rc);
4078 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4079
4080 /* get rid of pinned extents */
4081 trans = btrfs_join_transaction(rc->extent_root);
4082 if (IS_ERR(trans)) {
4083 err = PTR_ERR(trans);
4084 goto out_free;
4085 }
4086 btrfs_commit_transaction(trans);
4087out_free:
4088 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4089 btrfs_free_path(path);
4090 return err;
4091}
4092
4093static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4094 struct btrfs_root *root, u64 objectid)
4095{
4096 struct btrfs_path *path;
4097 struct btrfs_inode_item *item;
4098 struct extent_buffer *leaf;
4099 int ret;
4100
4101 path = btrfs_alloc_path();
4102 if (!path)
4103 return -ENOMEM;
4104
4105 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4106 if (ret)
4107 goto out;
4108
4109 leaf = path->nodes[0];
4110 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4111 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4112 btrfs_set_inode_generation(leaf, item, 1);
4113 btrfs_set_inode_size(leaf, item, 0);
4114 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4115 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4116 BTRFS_INODE_PREALLOC);
4117 btrfs_mark_buffer_dirty(leaf);
4118out:
4119 btrfs_free_path(path);
4120 return ret;
4121}
4122
4123/*
4124 * helper to create inode for data relocation.
4125 * the inode is in data relocation tree and its link count is 0
4126 */
4127static noinline_for_stack
4128struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4129 struct btrfs_block_group_cache *group)
4130{
4131 struct inode *inode = NULL;
4132 struct btrfs_trans_handle *trans;
4133 struct btrfs_root *root;
4134 struct btrfs_key key;
4135 u64 objectid;
4136 int err = 0;
4137
4138 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4139 if (IS_ERR(root))
4140 return ERR_CAST(root);
4141
4142 trans = btrfs_start_transaction(root, 6);
4143 if (IS_ERR(trans))
4144 return ERR_CAST(trans);
4145
4146 err = btrfs_find_free_objectid(root, &objectid);
4147 if (err)
4148 goto out;
4149
4150 err = __insert_orphan_inode(trans, root, objectid);
4151 BUG_ON(err);
4152
4153 key.objectid = objectid;
4154 key.type = BTRFS_INODE_ITEM_KEY;
4155 key.offset = 0;
4156 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4157 BUG_ON(IS_ERR(inode));
4158 BTRFS_I(inode)->index_cnt = group->key.objectid;
4159
4160 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4161out:
4162 btrfs_end_transaction(trans);
4163 btrfs_btree_balance_dirty(fs_info);
4164 if (err) {
4165 if (inode)
4166 iput(inode);
4167 inode = ERR_PTR(err);
4168 }
4169 return inode;
4170}
4171
4172static struct reloc_control *alloc_reloc_control(void)
4173{
4174 struct reloc_control *rc;
4175
4176 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4177 if (!rc)
4178 return NULL;
4179
4180 INIT_LIST_HEAD(&rc->reloc_roots);
4181 backref_cache_init(&rc->backref_cache);
4182 mapping_tree_init(&rc->reloc_root_tree);
4183 extent_io_tree_init(&rc->processed_blocks, NULL);
4184 return rc;
4185}
4186
4187/*
4188 * Print the block group being relocated
4189 */
4190static void describe_relocation(struct btrfs_fs_info *fs_info,
4191 struct btrfs_block_group_cache *block_group)
4192{
4193 char buf[128]; /* prefixed by a '|' that'll be dropped */
4194 u64 flags = block_group->flags;
4195
4196 /* Shouldn't happen */
4197 if (!flags) {
4198 strcpy(buf, "|NONE");
4199 } else {
4200 char *bp = buf;
4201
4202#define DESCRIBE_FLAG(f, d) \
4203 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4204 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4205 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4206 }
4207 DESCRIBE_FLAG(DATA, "data");
4208 DESCRIBE_FLAG(SYSTEM, "system");
4209 DESCRIBE_FLAG(METADATA, "metadata");
4210 DESCRIBE_FLAG(RAID0, "raid0");
4211 DESCRIBE_FLAG(RAID1, "raid1");
4212 DESCRIBE_FLAG(DUP, "dup");
4213 DESCRIBE_FLAG(RAID10, "raid10");
4214 DESCRIBE_FLAG(RAID5, "raid5");
4215 DESCRIBE_FLAG(RAID6, "raid6");
4216 if (flags)
4217 snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4218#undef DESCRIBE_FLAG
4219 }
4220
4221 btrfs_info(fs_info,
4222 "relocating block group %llu flags %s",
4223 block_group->key.objectid, buf + 1);
4224}
4225
4226/*
4227 * function to relocate all extents in a block group.
4228 */
4229int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4230{
4231 struct btrfs_root *extent_root = fs_info->extent_root;
4232 struct reloc_control *rc;
4233 struct inode *inode;
4234 struct btrfs_path *path;
4235 int ret;
4236 int rw = 0;
4237 int err = 0;
4238
4239 rc = alloc_reloc_control();
4240 if (!rc)
4241 return -ENOMEM;
4242
4243 rc->extent_root = extent_root;
4244
4245 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4246 BUG_ON(!rc->block_group);
4247
4248 ret = btrfs_inc_block_group_ro(rc->block_group);
4249 if (ret) {
4250 err = ret;
4251 goto out;
4252 }
4253 rw = 1;
4254
4255 path = btrfs_alloc_path();
4256 if (!path) {
4257 err = -ENOMEM;
4258 goto out;
4259 }
4260
4261 inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4262 btrfs_free_path(path);
4263
4264 if (!IS_ERR(inode))
4265 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4266 else
4267 ret = PTR_ERR(inode);
4268
4269 if (ret && ret != -ENOENT) {
4270 err = ret;
4271 goto out;
4272 }
4273
4274 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4275 if (IS_ERR(rc->data_inode)) {
4276 err = PTR_ERR(rc->data_inode);
4277 rc->data_inode = NULL;
4278 goto out;
4279 }
4280
4281 describe_relocation(fs_info, rc->block_group);
4282
4283 btrfs_wait_block_group_reservations(rc->block_group);
4284 btrfs_wait_nocow_writers(rc->block_group);
4285 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4286 rc->block_group->key.objectid,
4287 rc->block_group->key.offset);
4288
4289 while (1) {
4290 mutex_lock(&fs_info->cleaner_mutex);
4291 ret = relocate_block_group(rc);
4292 mutex_unlock(&fs_info->cleaner_mutex);
4293 if (ret < 0)
4294 err = ret;
4295
4296 /*
4297 * We may have gotten ENOSPC after we already dirtied some
4298 * extents. If writeout happens while we're relocating a
4299 * different block group we could end up hitting the
4300 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4301 * btrfs_reloc_cow_block. Make sure we write everything out
4302 * properly so we don't trip over this problem, and then break
4303 * out of the loop if we hit an error.
4304 */
4305 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4306 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4307 (u64)-1);
4308 if (ret)
4309 err = ret;
4310 invalidate_mapping_pages(rc->data_inode->i_mapping,
4311 0, -1);
4312 rc->stage = UPDATE_DATA_PTRS;
4313 }
4314
4315 if (err < 0)
4316 goto out;
4317
4318 if (rc->extents_found == 0)
4319 break;
4320
4321 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4322
4323 }
4324
4325 WARN_ON(rc->block_group->pinned > 0);
4326 WARN_ON(rc->block_group->reserved > 0);
4327 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4328out:
4329 if (err && rw)
4330 btrfs_dec_block_group_ro(rc->block_group);
4331 iput(rc->data_inode);
4332 btrfs_put_block_group(rc->block_group);
4333 kfree(rc);
4334 return err;
4335}
4336
4337static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4338{
4339 struct btrfs_fs_info *fs_info = root->fs_info;
4340 struct btrfs_trans_handle *trans;
4341 int ret, err;
4342
4343 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4344 if (IS_ERR(trans))
4345 return PTR_ERR(trans);
4346
4347 memset(&root->root_item.drop_progress, 0,
4348 sizeof(root->root_item.drop_progress));
4349 root->root_item.drop_level = 0;
4350 btrfs_set_root_refs(&root->root_item, 0);
4351 ret = btrfs_update_root(trans, fs_info->tree_root,
4352 &root->root_key, &root->root_item);
4353
4354 err = btrfs_end_transaction(trans);
4355 if (err)
4356 return err;
4357 return ret;
4358}
4359
4360/*
4361 * recover relocation interrupted by system crash.
4362 *
4363 * this function resumes merging reloc trees with corresponding fs trees.
4364 * this is important for keeping the sharing of tree blocks
4365 */
4366int btrfs_recover_relocation(struct btrfs_root *root)
4367{
4368 struct btrfs_fs_info *fs_info = root->fs_info;
4369 LIST_HEAD(reloc_roots);
4370 struct btrfs_key key;
4371 struct btrfs_root *fs_root;
4372 struct btrfs_root *reloc_root;
4373 struct btrfs_path *path;
4374 struct extent_buffer *leaf;
4375 struct reloc_control *rc = NULL;
4376 struct btrfs_trans_handle *trans;
4377 int ret;
4378 int err = 0;
4379
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383 path->reada = READA_BACK;
4384
4385 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4386 key.type = BTRFS_ROOT_ITEM_KEY;
4387 key.offset = (u64)-1;
4388
4389 while (1) {
4390 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4391 path, 0, 0);
4392 if (ret < 0) {
4393 err = ret;
4394 goto out;
4395 }
4396 if (ret > 0) {
4397 if (path->slots[0] == 0)
4398 break;
4399 path->slots[0]--;
4400 }
4401 leaf = path->nodes[0];
4402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4403 btrfs_release_path(path);
4404
4405 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4406 key.type != BTRFS_ROOT_ITEM_KEY)
4407 break;
4408
4409 reloc_root = btrfs_read_fs_root(root, &key);
4410 if (IS_ERR(reloc_root)) {
4411 err = PTR_ERR(reloc_root);
4412 goto out;
4413 }
4414
4415 list_add(&reloc_root->root_list, &reloc_roots);
4416
4417 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4418 fs_root = read_fs_root(fs_info,
4419 reloc_root->root_key.offset);
4420 if (IS_ERR(fs_root)) {
4421 ret = PTR_ERR(fs_root);
4422 if (ret != -ENOENT) {
4423 err = ret;
4424 goto out;
4425 }
4426 ret = mark_garbage_root(reloc_root);
4427 if (ret < 0) {
4428 err = ret;
4429 goto out;
4430 }
4431 }
4432 }
4433
4434 if (key.offset == 0)
4435 break;
4436
4437 key.offset--;
4438 }
4439 btrfs_release_path(path);
4440
4441 if (list_empty(&reloc_roots))
4442 goto out;
4443
4444 rc = alloc_reloc_control();
4445 if (!rc) {
4446 err = -ENOMEM;
4447 goto out;
4448 }
4449
4450 rc->extent_root = fs_info->extent_root;
4451
4452 set_reloc_control(rc);
4453
4454 trans = btrfs_join_transaction(rc->extent_root);
4455 if (IS_ERR(trans)) {
4456 unset_reloc_control(rc);
4457 err = PTR_ERR(trans);
4458 goto out_free;
4459 }
4460
4461 rc->merge_reloc_tree = 1;
4462
4463 while (!list_empty(&reloc_roots)) {
4464 reloc_root = list_entry(reloc_roots.next,
4465 struct btrfs_root, root_list);
4466 list_del(&reloc_root->root_list);
4467
4468 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4469 list_add_tail(&reloc_root->root_list,
4470 &rc->reloc_roots);
4471 continue;
4472 }
4473
4474 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4475 if (IS_ERR(fs_root)) {
4476 err = PTR_ERR(fs_root);
4477 list_add_tail(&reloc_root->root_list, &reloc_roots);
4478 goto out_free;
4479 }
4480
4481 err = __add_reloc_root(reloc_root);
4482 BUG_ON(err < 0); /* -ENOMEM or logic error */
4483 fs_root->reloc_root = reloc_root;
4484 }
4485
4486 err = btrfs_commit_transaction(trans);
4487 if (err)
4488 goto out_free;
4489
4490 merge_reloc_roots(rc);
4491
4492 unset_reloc_control(rc);
4493
4494 trans = btrfs_join_transaction(rc->extent_root);
4495 if (IS_ERR(trans)) {
4496 err = PTR_ERR(trans);
4497 goto out_free;
4498 }
4499 err = btrfs_commit_transaction(trans);
4500out_free:
4501 kfree(rc);
4502out:
4503 if (!list_empty(&reloc_roots))
4504 free_reloc_roots(&reloc_roots);
4505
4506 btrfs_free_path(path);
4507
4508 if (err == 0) {
4509 /* cleanup orphan inode in data relocation tree */
4510 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4511 if (IS_ERR(fs_root))
4512 err = PTR_ERR(fs_root);
4513 else
4514 err = btrfs_orphan_cleanup(fs_root);
4515 }
4516 return err;
4517}
4518
4519/*
4520 * helper to add ordered checksum for data relocation.
4521 *
4522 * cloning checksum properly handles the nodatasum extents.
4523 * it also saves CPU time to re-calculate the checksum.
4524 */
4525int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4526{
4527 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4528 struct btrfs_ordered_sum *sums;
4529 struct btrfs_ordered_extent *ordered;
4530 int ret;
4531 u64 disk_bytenr;
4532 u64 new_bytenr;
4533 LIST_HEAD(list);
4534
4535 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4536 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4537
4538 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4539 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4540 disk_bytenr + len - 1, &list, 0);
4541 if (ret)
4542 goto out;
4543
4544 while (!list_empty(&list)) {
4545 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4546 list_del_init(&sums->list);
4547
4548 /*
4549 * We need to offset the new_bytenr based on where the csum is.
4550 * We need to do this because we will read in entire prealloc
4551 * extents but we may have written to say the middle of the
4552 * prealloc extent, so we need to make sure the csum goes with
4553 * the right disk offset.
4554 *
4555 * We can do this because the data reloc inode refers strictly
4556 * to the on disk bytes, so we don't have to worry about
4557 * disk_len vs real len like with real inodes since it's all
4558 * disk length.
4559 */
4560 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4561 sums->bytenr = new_bytenr;
4562
4563 btrfs_add_ordered_sum(inode, ordered, sums);
4564 }
4565out:
4566 btrfs_put_ordered_extent(ordered);
4567 return ret;
4568}
4569
4570int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4571 struct btrfs_root *root, struct extent_buffer *buf,
4572 struct extent_buffer *cow)
4573{
4574 struct btrfs_fs_info *fs_info = root->fs_info;
4575 struct reloc_control *rc;
4576 struct backref_node *node;
4577 int first_cow = 0;
4578 int level;
4579 int ret = 0;
4580
4581 rc = fs_info->reloc_ctl;
4582 if (!rc)
4583 return 0;
4584
4585 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4586 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4587
4588 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4589 if (buf == root->node)
4590 __update_reloc_root(root, cow->start);
4591 }
4592
4593 level = btrfs_header_level(buf);
4594 if (btrfs_header_generation(buf) <=
4595 btrfs_root_last_snapshot(&root->root_item))
4596 first_cow = 1;
4597
4598 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4599 rc->create_reloc_tree) {
4600 WARN_ON(!first_cow && level == 0);
4601
4602 node = rc->backref_cache.path[level];
4603 BUG_ON(node->bytenr != buf->start &&
4604 node->new_bytenr != buf->start);
4605
4606 drop_node_buffer(node);
4607 extent_buffer_get(cow);
4608 node->eb = cow;
4609 node->new_bytenr = cow->start;
4610
4611 if (!node->pending) {
4612 list_move_tail(&node->list,
4613 &rc->backref_cache.pending[level]);
4614 node->pending = 1;
4615 }
4616
4617 if (first_cow)
4618 __mark_block_processed(rc, node);
4619
4620 if (first_cow && level > 0)
4621 rc->nodes_relocated += buf->len;
4622 }
4623
4624 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4625 ret = replace_file_extents(trans, rc, root, cow);
4626 return ret;
4627}
4628
4629/*
4630 * called before creating snapshot. it calculates metadata reservation
4631 * required for relocating tree blocks in the snapshot
4632 */
4633void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4634 u64 *bytes_to_reserve)
4635{
4636 struct btrfs_root *root;
4637 struct reloc_control *rc;
4638
4639 root = pending->root;
4640 if (!root->reloc_root)
4641 return;
4642
4643 rc = root->fs_info->reloc_ctl;
4644 if (!rc->merge_reloc_tree)
4645 return;
4646
4647 root = root->reloc_root;
4648 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4649 /*
4650 * relocation is in the stage of merging trees. the space
4651 * used by merging a reloc tree is twice the size of
4652 * relocated tree nodes in the worst case. half for cowing
4653 * the reloc tree, half for cowing the fs tree. the space
4654 * used by cowing the reloc tree will be freed after the
4655 * tree is dropped. if we create snapshot, cowing the fs
4656 * tree may use more space than it frees. so we need
4657 * reserve extra space.
4658 */
4659 *bytes_to_reserve += rc->nodes_relocated;
4660}
4661
4662/*
4663 * called after snapshot is created. migrate block reservation
4664 * and create reloc root for the newly created snapshot
4665 */
4666int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4667 struct btrfs_pending_snapshot *pending)
4668{
4669 struct btrfs_root *root = pending->root;
4670 struct btrfs_root *reloc_root;
4671 struct btrfs_root *new_root;
4672 struct reloc_control *rc;
4673 int ret;
4674
4675 if (!root->reloc_root)
4676 return 0;
4677
4678 rc = root->fs_info->reloc_ctl;
4679 rc->merging_rsv_size += rc->nodes_relocated;
4680
4681 if (rc->merge_reloc_tree) {
4682 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4683 rc->block_rsv,
4684 rc->nodes_relocated, 1);
4685 if (ret)
4686 return ret;
4687 }
4688
4689 new_root = pending->snap;
4690 reloc_root = create_reloc_root(trans, root->reloc_root,
4691 new_root->root_key.objectid);
4692 if (IS_ERR(reloc_root))
4693 return PTR_ERR(reloc_root);
4694
4695 ret = __add_reloc_root(reloc_root);
4696 BUG_ON(ret < 0);
4697 new_root->reloc_root = reloc_root;
4698
4699 if (rc->create_reloc_tree)
4700 ret = clone_backref_node(trans, rc, root, reloc_root);
4701 return ret;
4702}