blob: 0c319061fcedb14cb6f64d664d00795cbfd7dbfd [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2#include <linux/mm.h>
3#include <linux/vmacache.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/seq_file.h>
8#include <linux/highmem.h>
9#include <linux/ptrace.h>
10#include <linux/slab.h>
11#include <linux/pagemap.h>
12#include <linux/mempolicy.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/sched/mm.h>
16#include <linux/swapops.h>
17#include <linux/mmu_notifier.h>
18#include <linux/page_idle.h>
19#include <linux/shmem_fs.h>
20#include <linux/uaccess.h>
21#include <linux/pkeys.h>
22
23#include <asm/elf.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include "internal.h"
27
28#define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30void task_mem(struct seq_file *m, struct mm_struct *mm)
31{
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79}
80#undef SEQ_PUT_DEC
81
82unsigned long task_vsize(struct mm_struct *mm)
83{
84 return PAGE_SIZE * mm->total_vm;
85}
86
87unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90{
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98}
99
100#ifdef CONFIG_NUMA
101/*
102 * Save get_task_policy() for show_numa_map().
103 */
104static void hold_task_mempolicy(struct proc_maps_private *priv)
105{
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112}
113static void release_task_mempolicy(struct proc_maps_private *priv)
114{
115 mpol_put(priv->task_mempolicy);
116}
117#else
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120}
121static void release_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124#endif
125
126static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
127{
128 const char __user *name = vma_get_anon_name(vma);
129 struct mm_struct *mm = vma->vm_mm;
130
131 unsigned long page_start_vaddr;
132 unsigned long page_offset;
133 unsigned long num_pages;
134 unsigned long max_len = NAME_MAX;
135 int i;
136
137 page_start_vaddr = (unsigned long)name & PAGE_MASK;
138 page_offset = (unsigned long)name - page_start_vaddr;
139 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
140
141 seq_puts(m, "[anon:");
142
143 for (i = 0; i < num_pages; i++) {
144 int len;
145 int write_len;
146 const char *kaddr;
147 long pages_pinned;
148 struct page *page;
149
150 pages_pinned = get_user_pages_remote(current, mm,
151 page_start_vaddr, 1, 0, &page, NULL, NULL);
152 if (pages_pinned < 1) {
153 seq_puts(m, "<fault>]");
154 return;
155 }
156
157 kaddr = (const char *)kmap(page);
158 len = min(max_len, PAGE_SIZE - page_offset);
159 write_len = strnlen(kaddr + page_offset, len);
160 seq_write(m, kaddr + page_offset, write_len);
161 kunmap(page);
162 put_page(page);
163
164 /* if strnlen hit a null terminator then we're done */
165 if (write_len != len)
166 break;
167
168 max_len -= len;
169 page_offset = 0;
170 page_start_vaddr += PAGE_SIZE;
171 }
172
173 seq_putc(m, ']');
174}
175
176static void vma_stop(struct proc_maps_private *priv)
177{
178 struct mm_struct *mm = priv->mm;
179
180 release_task_mempolicy(priv);
181 up_read(&mm->mmap_sem);
182 mmput(mm);
183}
184
185static struct vm_area_struct *
186m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
187{
188 if (vma == priv->tail_vma)
189 return NULL;
190 return vma->vm_next ?: priv->tail_vma;
191}
192
193static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
194{
195 if (m->count < m->size) /* vma is copied successfully */
196 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
197}
198
199static void *m_start(struct seq_file *m, loff_t *ppos)
200{
201 struct proc_maps_private *priv = m->private;
202 unsigned long last_addr = m->version;
203 struct mm_struct *mm;
204 struct vm_area_struct *vma;
205 unsigned int pos = *ppos;
206
207 /* See m_cache_vma(). Zero at the start or after lseek. */
208 if (last_addr == -1UL)
209 return NULL;
210
211 priv->task = get_proc_task(priv->inode);
212 if (!priv->task)
213 return ERR_PTR(-ESRCH);
214
215 mm = priv->mm;
216 if (!mm || !mmget_not_zero(mm))
217 return NULL;
218
219 if (down_read_killable(&mm->mmap_sem)) {
220 mmput(mm);
221 return ERR_PTR(-EINTR);
222 }
223
224 hold_task_mempolicy(priv);
225 priv->tail_vma = get_gate_vma(mm);
226
227 if (last_addr) {
228 vma = find_vma(mm, last_addr - 1);
229 if (vma && vma->vm_start <= last_addr)
230 vma = m_next_vma(priv, vma);
231 if (vma)
232 return vma;
233 }
234
235 m->version = 0;
236 if (pos < mm->map_count) {
237 for (vma = mm->mmap; pos; pos--) {
238 m->version = vma->vm_start;
239 vma = vma->vm_next;
240 }
241 return vma;
242 }
243
244 /* we do not bother to update m->version in this case */
245 if (pos == mm->map_count && priv->tail_vma)
246 return priv->tail_vma;
247
248 vma_stop(priv);
249 return NULL;
250}
251
252static void *m_next(struct seq_file *m, void *v, loff_t *pos)
253{
254 struct proc_maps_private *priv = m->private;
255 struct vm_area_struct *next;
256
257 (*pos)++;
258 next = m_next_vma(priv, v);
259 if (!next)
260 vma_stop(priv);
261 return next;
262}
263
264static void m_stop(struct seq_file *m, void *v)
265{
266 struct proc_maps_private *priv = m->private;
267
268 if (!IS_ERR_OR_NULL(v))
269 vma_stop(priv);
270 if (priv->task) {
271 put_task_struct(priv->task);
272 priv->task = NULL;
273 }
274}
275
276static int proc_maps_open(struct inode *inode, struct file *file,
277 const struct seq_operations *ops, int psize)
278{
279 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
280
281 if (!priv)
282 return -ENOMEM;
283
284 priv->inode = inode;
285 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
286 if (IS_ERR(priv->mm)) {
287 int err = PTR_ERR(priv->mm);
288
289 seq_release_private(inode, file);
290 return err;
291 }
292
293 return 0;
294}
295
296static int proc_map_release(struct inode *inode, struct file *file)
297{
298 struct seq_file *seq = file->private_data;
299 struct proc_maps_private *priv = seq->private;
300
301 if (priv->mm)
302 mmdrop(priv->mm);
303
304 return seq_release_private(inode, file);
305}
306
307static int do_maps_open(struct inode *inode, struct file *file,
308 const struct seq_operations *ops)
309{
310 return proc_maps_open(inode, file, ops,
311 sizeof(struct proc_maps_private));
312}
313
314/*
315 * Indicate if the VMA is a stack for the given task; for
316 * /proc/PID/maps that is the stack of the main task.
317 */
318static int is_stack(struct vm_area_struct *vma)
319{
320 /*
321 * We make no effort to guess what a given thread considers to be
322 * its "stack". It's not even well-defined for programs written
323 * languages like Go.
324 */
325 return vma->vm_start <= vma->vm_mm->start_stack &&
326 vma->vm_end >= vma->vm_mm->start_stack;
327}
328
329static void show_vma_header_prefix(struct seq_file *m,
330 unsigned long start, unsigned long end,
331 vm_flags_t flags, unsigned long long pgoff,
332 dev_t dev, unsigned long ino)
333{
334 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
335 seq_put_hex_ll(m, NULL, start, 8);
336 seq_put_hex_ll(m, "-", end, 8);
337 seq_putc(m, ' ');
338 seq_putc(m, flags & VM_READ ? 'r' : '-');
339 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
340 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
341 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
342 seq_put_hex_ll(m, " ", pgoff, 8);
343 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
344 seq_put_hex_ll(m, ":", MINOR(dev), 2);
345 seq_put_decimal_ull(m, " ", ino);
346 seq_putc(m, ' ');
347}
348
349static void
350show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
351{
352 struct mm_struct *mm = vma->vm_mm;
353 struct file *file = vma->vm_file;
354 vm_flags_t flags = vma->vm_flags;
355 unsigned long ino = 0;
356 unsigned long long pgoff = 0;
357 unsigned long start, end;
358 dev_t dev = 0;
359 const char *name = NULL;
360
361 if (file) {
362 struct inode *inode = file_inode(vma->vm_file);
363 dev = inode->i_sb->s_dev;
364 ino = inode->i_ino;
365 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
366 }
367
368 start = vma->vm_start;
369 end = vma->vm_end;
370 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
371
372 /*
373 * Print the dentry name for named mappings, and a
374 * special [heap] marker for the heap:
375 */
376 if (file) {
377 seq_pad(m, ' ');
378 seq_file_path(m, file, "\n");
379 goto done;
380 }
381
382 if (vma->vm_ops && vma->vm_ops->name) {
383 name = vma->vm_ops->name(vma);
384 if (name)
385 goto done;
386 }
387
388 name = arch_vma_name(vma);
389 if (!name) {
390 if (!mm) {
391 name = "[vdso]";
392 goto done;
393 }
394
395 if (vma->vm_start <= mm->brk &&
396 vma->vm_end >= mm->start_brk) {
397 name = "[heap]";
398 goto done;
399 }
400
401 if (is_stack(vma)) {
402 name = "[stack]";
403 goto done;
404 }
405
406 if (vma_get_anon_name(vma)) {
407 seq_pad(m, ' ');
408 seq_print_vma_name(m, vma);
409 }
410 }
411
412done:
413 if (name) {
414 seq_pad(m, ' ');
415 seq_puts(m, name);
416 }
417 seq_putc(m, '\n');
418}
419
420static int show_map(struct seq_file *m, void *v)
421{
422 show_map_vma(m, v);
423 m_cache_vma(m, v);
424 return 0;
425}
426
427static const struct seq_operations proc_pid_maps_op = {
428 .start = m_start,
429 .next = m_next,
430 .stop = m_stop,
431 .show = show_map
432};
433
434static int pid_maps_open(struct inode *inode, struct file *file)
435{
436 return do_maps_open(inode, file, &proc_pid_maps_op);
437}
438
439const struct file_operations proc_pid_maps_operations = {
440 .open = pid_maps_open,
441 .read = seq_read,
442 .llseek = seq_lseek,
443 .release = proc_map_release,
444};
445
446/*
447 * Proportional Set Size(PSS): my share of RSS.
448 *
449 * PSS of a process is the count of pages it has in memory, where each
450 * page is divided by the number of processes sharing it. So if a
451 * process has 1000 pages all to itself, and 1000 shared with one other
452 * process, its PSS will be 1500.
453 *
454 * To keep (accumulated) division errors low, we adopt a 64bit
455 * fixed-point pss counter to minimize division errors. So (pss >>
456 * PSS_SHIFT) would be the real byte count.
457 *
458 * A shift of 12 before division means (assuming 4K page size):
459 * - 1M 3-user-pages add up to 8KB errors;
460 * - supports mapcount up to 2^24, or 16M;
461 * - supports PSS up to 2^52 bytes, or 4PB.
462 */
463#define PSS_SHIFT 12
464
465#ifdef CONFIG_PROC_PAGE_MONITOR
466struct mem_size_stats {
467 unsigned long resident;
468 unsigned long shared_clean;
469 unsigned long shared_dirty;
470 unsigned long private_clean;
471 unsigned long private_dirty;
472 unsigned long referenced;
473 unsigned long anonymous;
474 unsigned long lazyfree;
475 unsigned long anonymous_thp;
476 unsigned long shmem_thp;
477 unsigned long swap;
478 unsigned long shared_hugetlb;
479 unsigned long private_hugetlb;
480 u64 pss;
481 u64 pss_locked;
482 u64 swap_pss;
483 bool check_shmem_swap;
484};
485
486static void smaps_account(struct mem_size_stats *mss, struct page *page,
487 bool compound, bool young, bool dirty, bool locked)
488{
489 int i, nr = compound ? 1 << compound_order(page) : 1;
490 unsigned long size = nr * PAGE_SIZE;
491
492 if (PageAnon(page)) {
493 mss->anonymous += size;
494 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
495 mss->lazyfree += size;
496 }
497
498 mss->resident += size;
499 /* Accumulate the size in pages that have been accessed. */
500 if (young || page_is_young(page) || PageReferenced(page))
501 mss->referenced += size;
502
503 /*
504 * page_count(page) == 1 guarantees the page is mapped exactly once.
505 * If any subpage of the compound page mapped with PTE it would elevate
506 * page_count().
507 */
508 if (page_count(page) == 1) {
509 if (dirty || PageDirty(page))
510 mss->private_dirty += size;
511 else
512 mss->private_clean += size;
513 mss->pss += (u64)size << PSS_SHIFT;
514 if (locked)
515 mss->pss_locked += (u64)size << PSS_SHIFT;
516 return;
517 }
518
519 for (i = 0; i < nr; i++, page++) {
520 int mapcount = page_mapcount(page);
521 unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
522
523 if (mapcount >= 2) {
524 if (dirty || PageDirty(page))
525 mss->shared_dirty += PAGE_SIZE;
526 else
527 mss->shared_clean += PAGE_SIZE;
528 mss->pss += pss / mapcount;
529 if (locked)
530 mss->pss_locked += pss / mapcount;
531 } else {
532 if (dirty || PageDirty(page))
533 mss->private_dirty += PAGE_SIZE;
534 else
535 mss->private_clean += PAGE_SIZE;
536 mss->pss += pss;
537 if (locked)
538 mss->pss_locked += pss;
539 }
540 }
541}
542
543#ifdef CONFIG_SHMEM
544static int smaps_pte_hole(unsigned long addr, unsigned long end,
545 struct mm_walk *walk)
546{
547 struct mem_size_stats *mss = walk->private;
548
549 mss->swap += shmem_partial_swap_usage(
550 walk->vma->vm_file->f_mapping, addr, end);
551
552 return 0;
553}
554#endif
555
556static void smaps_pte_entry(pte_t *pte, unsigned long addr,
557 struct mm_walk *walk)
558{
559 struct mem_size_stats *mss = walk->private;
560 struct vm_area_struct *vma = walk->vma;
561 bool locked = !!(vma->vm_flags & VM_LOCKED);
562 struct page *page = NULL;
563
564 if (pte_present(*pte)) {
565 page = vm_normal_page(vma, addr, *pte);
566 } else if (is_swap_pte(*pte)) {
567 swp_entry_t swpent = pte_to_swp_entry(*pte);
568
569 if (!non_swap_entry(swpent)) {
570 int mapcount;
571
572 mss->swap += PAGE_SIZE;
573 mapcount = swp_swapcount(swpent);
574 if (mapcount >= 2) {
575 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
576
577 do_div(pss_delta, mapcount);
578 mss->swap_pss += pss_delta;
579 } else {
580 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
581 }
582 } else if (is_migration_entry(swpent))
583 page = migration_entry_to_page(swpent);
584 else if (is_device_private_entry(swpent))
585 page = device_private_entry_to_page(swpent);
586 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
587 && pte_none(*pte))) {
588 page = find_get_entry(vma->vm_file->f_mapping,
589 linear_page_index(vma, addr));
590 if (!page)
591 return;
592
593 if (radix_tree_exceptional_entry(page))
594 mss->swap += PAGE_SIZE;
595 else
596 put_page(page);
597
598 return;
599 }
600
601 if (!page)
602 return;
603
604 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
605}
606
607#ifdef CONFIG_TRANSPARENT_HUGEPAGE
608static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
609 struct mm_walk *walk)
610{
611 struct mem_size_stats *mss = walk->private;
612 struct vm_area_struct *vma = walk->vma;
613 bool locked = !!(vma->vm_flags & VM_LOCKED);
614 struct page *page;
615
616 /* FOLL_DUMP will return -EFAULT on huge zero page */
617 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
618 if (IS_ERR_OR_NULL(page))
619 return;
620 if (PageAnon(page))
621 mss->anonymous_thp += HPAGE_PMD_SIZE;
622 else if (PageSwapBacked(page))
623 mss->shmem_thp += HPAGE_PMD_SIZE;
624 else if (is_zone_device_page(page))
625 /* pass */;
626 else
627 VM_BUG_ON_PAGE(1, page);
628 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
629}
630#else
631static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
632 struct mm_walk *walk)
633{
634}
635#endif
636
637static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
638 struct mm_walk *walk)
639{
640 struct vm_area_struct *vma = walk->vma;
641 pte_t *pte;
642 spinlock_t *ptl;
643
644 ptl = pmd_trans_huge_lock(pmd, vma);
645 if (ptl) {
646 if (pmd_present(*pmd))
647 smaps_pmd_entry(pmd, addr, walk);
648 spin_unlock(ptl);
649 goto out;
650 }
651
652 if (pmd_trans_unstable(pmd))
653 goto out;
654 /*
655 * The mmap_sem held all the way back in m_start() is what
656 * keeps khugepaged out of here and from collapsing things
657 * in here.
658 */
659 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
660 for (; addr != end; pte++, addr += PAGE_SIZE)
661 smaps_pte_entry(pte, addr, walk);
662 pte_unmap_unlock(pte - 1, ptl);
663out:
664 cond_resched();
665 return 0;
666}
667
668static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
669{
670 /*
671 * Don't forget to update Documentation/ on changes.
672 */
673 static const char mnemonics[BITS_PER_LONG][2] = {
674 /*
675 * In case if we meet a flag we don't know about.
676 */
677 [0 ... (BITS_PER_LONG-1)] = "??",
678
679 [ilog2(VM_READ)] = "rd",
680 [ilog2(VM_WRITE)] = "wr",
681 [ilog2(VM_EXEC)] = "ex",
682 [ilog2(VM_SHARED)] = "sh",
683 [ilog2(VM_MAYREAD)] = "mr",
684 [ilog2(VM_MAYWRITE)] = "mw",
685 [ilog2(VM_MAYEXEC)] = "me",
686 [ilog2(VM_MAYSHARE)] = "ms",
687 [ilog2(VM_GROWSDOWN)] = "gd",
688 [ilog2(VM_PFNMAP)] = "pf",
689 [ilog2(VM_DENYWRITE)] = "dw",
690#ifdef CONFIG_X86_INTEL_MPX
691 [ilog2(VM_MPX)] = "mp",
692#endif
693 [ilog2(VM_LOCKED)] = "lo",
694 [ilog2(VM_IO)] = "io",
695 [ilog2(VM_SEQ_READ)] = "sr",
696 [ilog2(VM_RAND_READ)] = "rr",
697 [ilog2(VM_DONTCOPY)] = "dc",
698 [ilog2(VM_DONTEXPAND)] = "de",
699 [ilog2(VM_ACCOUNT)] = "ac",
700 [ilog2(VM_NORESERVE)] = "nr",
701 [ilog2(VM_HUGETLB)] = "ht",
702 [ilog2(VM_SYNC)] = "sf",
703 [ilog2(VM_ARCH_1)] = "ar",
704 [ilog2(VM_WIPEONFORK)] = "wf",
705 [ilog2(VM_DONTDUMP)] = "dd",
706#ifdef CONFIG_MEM_SOFT_DIRTY
707 [ilog2(VM_SOFTDIRTY)] = "sd",
708#endif
709 [ilog2(VM_MIXEDMAP)] = "mm",
710 [ilog2(VM_HUGEPAGE)] = "hg",
711 [ilog2(VM_NOHUGEPAGE)] = "nh",
712 [ilog2(VM_MERGEABLE)] = "mg",
713 [ilog2(VM_UFFD_MISSING)]= "um",
714 [ilog2(VM_UFFD_WP)] = "uw",
715#ifdef CONFIG_ARCH_HAS_PKEYS
716 /* These come out via ProtectionKey: */
717 [ilog2(VM_PKEY_BIT0)] = "",
718 [ilog2(VM_PKEY_BIT1)] = "",
719 [ilog2(VM_PKEY_BIT2)] = "",
720 [ilog2(VM_PKEY_BIT3)] = "",
721#if VM_PKEY_BIT4
722 [ilog2(VM_PKEY_BIT4)] = "",
723#endif
724#endif /* CONFIG_ARCH_HAS_PKEYS */
725 };
726 size_t i;
727
728 seq_puts(m, "VmFlags: ");
729 for (i = 0; i < BITS_PER_LONG; i++) {
730 if (!mnemonics[i][0])
731 continue;
732 if (vma->vm_flags & (1UL << i)) {
733 seq_putc(m, mnemonics[i][0]);
734 seq_putc(m, mnemonics[i][1]);
735 seq_putc(m, ' ');
736 }
737 }
738 seq_putc(m, '\n');
739}
740
741#ifdef CONFIG_HUGETLB_PAGE
742static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
743 unsigned long addr, unsigned long end,
744 struct mm_walk *walk)
745{
746 struct mem_size_stats *mss = walk->private;
747 struct vm_area_struct *vma = walk->vma;
748 struct page *page = NULL;
749
750 if (pte_present(*pte)) {
751 page = vm_normal_page(vma, addr, *pte);
752 } else if (is_swap_pte(*pte)) {
753 swp_entry_t swpent = pte_to_swp_entry(*pte);
754
755 if (is_migration_entry(swpent))
756 page = migration_entry_to_page(swpent);
757 else if (is_device_private_entry(swpent))
758 page = device_private_entry_to_page(swpent);
759 }
760 if (page) {
761 int mapcount = page_mapcount(page);
762
763 if (mapcount >= 2)
764 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
765 else
766 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
767 }
768 return 0;
769}
770#endif /* HUGETLB_PAGE */
771
772static void smap_gather_stats(struct vm_area_struct *vma,
773 struct mem_size_stats *mss)
774{
775 struct mm_walk smaps_walk = {
776 .pmd_entry = smaps_pte_range,
777#ifdef CONFIG_HUGETLB_PAGE
778 .hugetlb_entry = smaps_hugetlb_range,
779#endif
780 .mm = vma->vm_mm,
781 };
782
783 smaps_walk.private = mss;
784
785#ifdef CONFIG_SHMEM
786 /* In case of smaps_rollup, reset the value from previous vma */
787 mss->check_shmem_swap = false;
788 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
789 /*
790 * For shared or readonly shmem mappings we know that all
791 * swapped out pages belong to the shmem object, and we can
792 * obtain the swap value much more efficiently. For private
793 * writable mappings, we might have COW pages that are
794 * not affected by the parent swapped out pages of the shmem
795 * object, so we have to distinguish them during the page walk.
796 * Unless we know that the shmem object (or the part mapped by
797 * our VMA) has no swapped out pages at all.
798 */
799 unsigned long shmem_swapped = shmem_swap_usage(vma);
800
801 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
802 !(vma->vm_flags & VM_WRITE)) {
803 mss->swap += shmem_swapped;
804 } else {
805 mss->check_shmem_swap = true;
806 smaps_walk.pte_hole = smaps_pte_hole;
807 }
808 }
809#endif
810 /* mmap_sem is held in m_start */
811 walk_page_vma(vma, &smaps_walk);
812}
813
814#define SEQ_PUT_DEC(str, val) \
815 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
816
817/* Show the contents common for smaps and smaps_rollup */
818static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
819{
820 SEQ_PUT_DEC("Rss: ", mss->resident);
821 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
822 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
823 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
824 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
825 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
826 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
827 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
828 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
829 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
830 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
831 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
832 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
833 mss->private_hugetlb >> 10, 7);
834 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
835 SEQ_PUT_DEC(" kB\nSwapPss: ",
836 mss->swap_pss >> PSS_SHIFT);
837 SEQ_PUT_DEC(" kB\nLocked: ",
838 mss->pss_locked >> PSS_SHIFT);
839 seq_puts(m, " kB\n");
840}
841
842static int show_smap(struct seq_file *m, void *v)
843{
844 struct vm_area_struct *vma = v;
845 struct mem_size_stats mss;
846
847 memset(&mss, 0, sizeof(mss));
848
849 smap_gather_stats(vma, &mss);
850
851 show_map_vma(m, vma);
852 if (vma_get_anon_name(vma)) {
853 seq_puts(m, "Name: ");
854 seq_print_vma_name(m, vma);
855 seq_putc(m, '\n');
856 }
857
858 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
859 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
860 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
861 seq_puts(m, " kB\n");
862
863 __show_smap(m, &mss);
864
865 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
866
867 if (arch_pkeys_enabled())
868 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
869 show_smap_vma_flags(m, vma);
870
871 m_cache_vma(m, vma);
872
873 return 0;
874}
875
876static int show_smaps_rollup(struct seq_file *m, void *v)
877{
878 struct proc_maps_private *priv = m->private;
879 struct mem_size_stats mss;
880 struct mm_struct *mm;
881 struct vm_area_struct *vma;
882 unsigned long last_vma_end = 0;
883 int ret = 0;
884
885 priv->task = get_proc_task(priv->inode);
886 if (!priv->task)
887 return -ESRCH;
888
889 mm = priv->mm;
890 if (!mm || !mmget_not_zero(mm)) {
891 ret = -ESRCH;
892 goto out_put_task;
893 }
894
895 memset(&mss, 0, sizeof(mss));
896
897 ret = down_read_killable(&mm->mmap_sem);
898 if (ret)
899 goto out_put_mm;
900
901 hold_task_mempolicy(priv);
902
903 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
904 smap_gather_stats(vma, &mss);
905 last_vma_end = vma->vm_end;
906 }
907
908 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
909 last_vma_end, 0, 0, 0, 0);
910 seq_pad(m, ' ');
911 seq_puts(m, "[rollup]\n");
912
913 __show_smap(m, &mss);
914
915 release_task_mempolicy(priv);
916 up_read(&mm->mmap_sem);
917
918out_put_mm:
919 mmput(mm);
920out_put_task:
921 put_task_struct(priv->task);
922 priv->task = NULL;
923
924 return ret;
925}
926#undef SEQ_PUT_DEC
927
928static const struct seq_operations proc_pid_smaps_op = {
929 .start = m_start,
930 .next = m_next,
931 .stop = m_stop,
932 .show = show_smap
933};
934
935static int pid_smaps_open(struct inode *inode, struct file *file)
936{
937 return do_maps_open(inode, file, &proc_pid_smaps_op);
938}
939
940static int smaps_rollup_open(struct inode *inode, struct file *file)
941{
942 int ret;
943 struct proc_maps_private *priv;
944
945 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
946 if (!priv)
947 return -ENOMEM;
948
949 ret = single_open(file, show_smaps_rollup, priv);
950 if (ret)
951 goto out_free;
952
953 priv->inode = inode;
954 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
955 if (IS_ERR(priv->mm)) {
956 ret = PTR_ERR(priv->mm);
957
958 single_release(inode, file);
959 goto out_free;
960 }
961
962 return 0;
963
964out_free:
965 kfree(priv);
966 return ret;
967}
968
969static int smaps_rollup_release(struct inode *inode, struct file *file)
970{
971 struct seq_file *seq = file->private_data;
972 struct proc_maps_private *priv = seq->private;
973
974 if (priv->mm)
975 mmdrop(priv->mm);
976
977 kfree(priv);
978 return single_release(inode, file);
979}
980
981const struct file_operations proc_pid_smaps_operations = {
982 .open = pid_smaps_open,
983 .read = seq_read,
984 .llseek = seq_lseek,
985 .release = proc_map_release,
986};
987
988const struct file_operations proc_pid_smaps_rollup_operations = {
989 .open = smaps_rollup_open,
990 .read = seq_read,
991 .llseek = seq_lseek,
992 .release = smaps_rollup_release,
993};
994
995enum clear_refs_types {
996 CLEAR_REFS_ALL = 1,
997 CLEAR_REFS_ANON,
998 CLEAR_REFS_MAPPED,
999 CLEAR_REFS_SOFT_DIRTY,
1000 CLEAR_REFS_MM_HIWATER_RSS,
1001 CLEAR_REFS_LAST,
1002};
1003
1004struct clear_refs_private {
1005 enum clear_refs_types type;
1006};
1007
1008#ifdef CONFIG_MEM_SOFT_DIRTY
1009static inline void clear_soft_dirty(struct vm_area_struct *vma,
1010 unsigned long addr, pte_t *pte)
1011{
1012 /*
1013 * The soft-dirty tracker uses #PF-s to catch writes
1014 * to pages, so write-protect the pte as well. See the
1015 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1016 * of how soft-dirty works.
1017 */
1018 pte_t ptent = *pte;
1019
1020 if (pte_present(ptent)) {
1021 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
1022 ptent = pte_wrprotect(ptent);
1023 ptent = pte_clear_soft_dirty(ptent);
1024 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
1025 } else if (is_swap_pte(ptent)) {
1026 ptent = pte_swp_clear_soft_dirty(ptent);
1027 set_pte_at(vma->vm_mm, addr, pte, ptent);
1028 }
1029}
1030#else
1031static inline void clear_soft_dirty(struct vm_area_struct *vma,
1032 unsigned long addr, pte_t *pte)
1033{
1034}
1035#endif
1036
1037#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1038static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1039 unsigned long addr, pmd_t *pmdp)
1040{
1041 pmd_t old, pmd = *pmdp;
1042
1043 if (pmd_present(pmd)) {
1044 /* See comment in change_huge_pmd() */
1045 old = pmdp_invalidate(vma, addr, pmdp);
1046 if (pmd_dirty(old))
1047 pmd = pmd_mkdirty(pmd);
1048 if (pmd_young(old))
1049 pmd = pmd_mkyoung(pmd);
1050
1051 pmd = pmd_wrprotect(pmd);
1052 pmd = pmd_clear_soft_dirty(pmd);
1053
1054 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1055 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1056 pmd = pmd_swp_clear_soft_dirty(pmd);
1057 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1058 }
1059}
1060#else
1061static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1062 unsigned long addr, pmd_t *pmdp)
1063{
1064}
1065#endif
1066
1067static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1068 unsigned long end, struct mm_walk *walk)
1069{
1070 struct clear_refs_private *cp = walk->private;
1071 struct vm_area_struct *vma = walk->vma;
1072 pte_t *pte, ptent;
1073 spinlock_t *ptl;
1074 struct page *page;
1075
1076 ptl = pmd_trans_huge_lock(pmd, vma);
1077 if (ptl) {
1078 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1079 clear_soft_dirty_pmd(vma, addr, pmd);
1080 goto out;
1081 }
1082
1083 if (!pmd_present(*pmd))
1084 goto out;
1085
1086 page = pmd_page(*pmd);
1087
1088 /* Clear accessed and referenced bits. */
1089 pmdp_test_and_clear_young(vma, addr, pmd);
1090 test_and_clear_page_young(page);
1091 ClearPageReferenced(page);
1092out:
1093 spin_unlock(ptl);
1094 return 0;
1095 }
1096
1097 if (pmd_trans_unstable(pmd))
1098 return 0;
1099
1100 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1101 for (; addr != end; pte++, addr += PAGE_SIZE) {
1102 ptent = *pte;
1103
1104 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1105 clear_soft_dirty(vma, addr, pte);
1106 continue;
1107 }
1108
1109 if (!pte_present(ptent))
1110 continue;
1111
1112 page = vm_normal_page(vma, addr, ptent);
1113 if (!page)
1114 continue;
1115
1116 /* Clear accessed and referenced bits. */
1117 ptep_test_and_clear_young(vma, addr, pte);
1118 test_and_clear_page_young(page);
1119 ClearPageReferenced(page);
1120 }
1121 pte_unmap_unlock(pte - 1, ptl);
1122 cond_resched();
1123 return 0;
1124}
1125
1126static int clear_refs_test_walk(unsigned long start, unsigned long end,
1127 struct mm_walk *walk)
1128{
1129 struct clear_refs_private *cp = walk->private;
1130 struct vm_area_struct *vma = walk->vma;
1131
1132 if (vma->vm_flags & VM_PFNMAP)
1133 return 1;
1134
1135 /*
1136 * Writing 1 to /proc/pid/clear_refs affects all pages.
1137 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1138 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1139 * Writing 4 to /proc/pid/clear_refs affects all pages.
1140 */
1141 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1142 return 1;
1143 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1144 return 1;
1145 return 0;
1146}
1147
1148static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1149 size_t count, loff_t *ppos)
1150{
1151 struct task_struct *task;
1152 char buffer[PROC_NUMBUF];
1153 struct mm_struct *mm;
1154 struct vm_area_struct *vma;
1155 enum clear_refs_types type;
1156 struct mmu_gather tlb;
1157 int itype;
1158 int rv;
1159
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count))
1164 return -EFAULT;
1165 rv = kstrtoint(strstrip(buffer), 10, &itype);
1166 if (rv < 0)
1167 return rv;
1168 type = (enum clear_refs_types)itype;
1169 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1170 return -EINVAL;
1171
1172 task = get_proc_task(file_inode(file));
1173 if (!task)
1174 return -ESRCH;
1175 mm = get_task_mm(task);
1176 if (mm) {
1177 struct clear_refs_private cp = {
1178 .type = type,
1179 };
1180 struct mm_walk clear_refs_walk = {
1181 .pmd_entry = clear_refs_pte_range,
1182 .test_walk = clear_refs_test_walk,
1183 .mm = mm,
1184 .private = &cp,
1185 };
1186
1187 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1188 if (down_write_killable(&mm->mmap_sem)) {
1189 count = -EINTR;
1190 goto out_mm;
1191 }
1192
1193 /*
1194 * Writing 5 to /proc/pid/clear_refs resets the peak
1195 * resident set size to this mm's current rss value.
1196 */
1197 reset_mm_hiwater_rss(mm);
1198 up_write(&mm->mmap_sem);
1199 goto out_mm;
1200 }
1201
1202 if (down_read_killable(&mm->mmap_sem)) {
1203 count = -EINTR;
1204 goto out_mm;
1205 }
1206 tlb_gather_mmu(&tlb, mm, 0, -1);
1207 if (type == CLEAR_REFS_SOFT_DIRTY) {
1208 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1209 if (!(vma->vm_flags & VM_SOFTDIRTY))
1210 continue;
1211 up_read(&mm->mmap_sem);
1212 if (down_write_killable(&mm->mmap_sem)) {
1213 count = -EINTR;
1214 goto out_mm;
1215 }
1216 /*
1217 * Avoid to modify vma->vm_flags
1218 * without locked ops while the
1219 * coredump reads the vm_flags.
1220 */
1221 if (!mmget_still_valid(mm)) {
1222 /*
1223 * Silently return "count"
1224 * like if get_task_mm()
1225 * failed. FIXME: should this
1226 * function have returned
1227 * -ESRCH if get_task_mm()
1228 * failed like if
1229 * get_proc_task() fails?
1230 */
1231 up_write(&mm->mmap_sem);
1232 goto out_mm;
1233 }
1234 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1235 vma->vm_flags &= ~VM_SOFTDIRTY;
1236 vma_set_page_prot(vma);
1237 }
1238 downgrade_write(&mm->mmap_sem);
1239 break;
1240 }
1241 mmu_notifier_invalidate_range_start(mm, 0, -1);
1242 }
1243 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1244 if (type == CLEAR_REFS_SOFT_DIRTY)
1245 mmu_notifier_invalidate_range_end(mm, 0, -1);
1246 tlb_finish_mmu(&tlb, 0, -1);
1247 up_read(&mm->mmap_sem);
1248out_mm:
1249 mmput(mm);
1250 }
1251 put_task_struct(task);
1252
1253 return count;
1254}
1255
1256const struct file_operations proc_clear_refs_operations = {
1257 .write = clear_refs_write,
1258 .llseek = noop_llseek,
1259};
1260
1261typedef struct {
1262 u64 pme;
1263} pagemap_entry_t;
1264
1265struct pagemapread {
1266 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1267 pagemap_entry_t *buffer;
1268 bool show_pfn;
1269};
1270
1271#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1272#define PAGEMAP_WALK_MASK (PMD_MASK)
1273
1274#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1275#define PM_PFRAME_BITS 55
1276#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1277#define PM_SOFT_DIRTY BIT_ULL(55)
1278#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1279#define PM_FILE BIT_ULL(61)
1280#define PM_SWAP BIT_ULL(62)
1281#define PM_PRESENT BIT_ULL(63)
1282
1283#define PM_END_OF_BUFFER 1
1284
1285static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1286{
1287 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1288}
1289
1290static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1291 struct pagemapread *pm)
1292{
1293 pm->buffer[pm->pos++] = *pme;
1294 if (pm->pos >= pm->len)
1295 return PM_END_OF_BUFFER;
1296 return 0;
1297}
1298
1299static int pagemap_pte_hole(unsigned long start, unsigned long end,
1300 struct mm_walk *walk)
1301{
1302 struct pagemapread *pm = walk->private;
1303 unsigned long addr = start;
1304 int err = 0;
1305
1306 while (addr < end) {
1307 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1308 pagemap_entry_t pme = make_pme(0, 0);
1309 /* End of address space hole, which we mark as non-present. */
1310 unsigned long hole_end;
1311
1312 if (vma)
1313 hole_end = min(end, vma->vm_start);
1314 else
1315 hole_end = end;
1316
1317 for (; addr < hole_end; addr += PAGE_SIZE) {
1318 err = add_to_pagemap(addr, &pme, pm);
1319 if (err)
1320 goto out;
1321 }
1322
1323 if (!vma)
1324 break;
1325
1326 /* Addresses in the VMA. */
1327 if (vma->vm_flags & VM_SOFTDIRTY)
1328 pme = make_pme(0, PM_SOFT_DIRTY);
1329 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1330 err = add_to_pagemap(addr, &pme, pm);
1331 if (err)
1332 goto out;
1333 }
1334 }
1335out:
1336 return err;
1337}
1338
1339static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1340 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1341{
1342 u64 frame = 0, flags = 0;
1343 struct page *page = NULL;
1344
1345 if (pte_present(pte)) {
1346 if (pm->show_pfn)
1347 frame = pte_pfn(pte);
1348 flags |= PM_PRESENT;
1349 page = _vm_normal_page(vma, addr, pte, true);
1350 if (pte_soft_dirty(pte))
1351 flags |= PM_SOFT_DIRTY;
1352 } else if (is_swap_pte(pte)) {
1353 swp_entry_t entry;
1354 if (pte_swp_soft_dirty(pte))
1355 flags |= PM_SOFT_DIRTY;
1356 entry = pte_to_swp_entry(pte);
1357 if (pm->show_pfn)
1358 frame = swp_type(entry) |
1359 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1360 flags |= PM_SWAP;
1361 if (is_migration_entry(entry))
1362 page = migration_entry_to_page(entry);
1363
1364 if (is_device_private_entry(entry))
1365 page = device_private_entry_to_page(entry);
1366 }
1367
1368 if (page && !PageAnon(page))
1369 flags |= PM_FILE;
1370 if (page && page_mapcount(page) == 1)
1371 flags |= PM_MMAP_EXCLUSIVE;
1372 if (vma->vm_flags & VM_SOFTDIRTY)
1373 flags |= PM_SOFT_DIRTY;
1374
1375 return make_pme(frame, flags);
1376}
1377
1378static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1379 struct mm_walk *walk)
1380{
1381 struct vm_area_struct *vma = walk->vma;
1382 struct pagemapread *pm = walk->private;
1383 spinlock_t *ptl;
1384 pte_t *pte, *orig_pte;
1385 int err = 0;
1386
1387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1388 ptl = pmd_trans_huge_lock(pmdp, vma);
1389 if (ptl) {
1390 u64 flags = 0, frame = 0;
1391 pmd_t pmd = *pmdp;
1392 struct page *page = NULL;
1393
1394 if (vma->vm_flags & VM_SOFTDIRTY)
1395 flags |= PM_SOFT_DIRTY;
1396
1397 if (pmd_present(pmd)) {
1398 page = pmd_page(pmd);
1399
1400 flags |= PM_PRESENT;
1401 if (pmd_soft_dirty(pmd))
1402 flags |= PM_SOFT_DIRTY;
1403 if (pm->show_pfn)
1404 frame = pmd_pfn(pmd) +
1405 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1406 }
1407#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1408 else if (is_swap_pmd(pmd)) {
1409 swp_entry_t entry = pmd_to_swp_entry(pmd);
1410 unsigned long offset;
1411
1412 if (pm->show_pfn) {
1413 offset = swp_offset(entry) +
1414 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1415 frame = swp_type(entry) |
1416 (offset << MAX_SWAPFILES_SHIFT);
1417 }
1418 flags |= PM_SWAP;
1419 if (pmd_swp_soft_dirty(pmd))
1420 flags |= PM_SOFT_DIRTY;
1421 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1422 page = migration_entry_to_page(entry);
1423 }
1424#endif
1425
1426 if (page && page_mapcount(page) == 1)
1427 flags |= PM_MMAP_EXCLUSIVE;
1428
1429 for (; addr != end; addr += PAGE_SIZE) {
1430 pagemap_entry_t pme = make_pme(frame, flags);
1431
1432 err = add_to_pagemap(addr, &pme, pm);
1433 if (err)
1434 break;
1435 if (pm->show_pfn) {
1436 if (flags & PM_PRESENT)
1437 frame++;
1438 else if (flags & PM_SWAP)
1439 frame += (1 << MAX_SWAPFILES_SHIFT);
1440 }
1441 }
1442 spin_unlock(ptl);
1443 return err;
1444 }
1445
1446 if (pmd_trans_unstable(pmdp))
1447 return 0;
1448#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1449
1450 /*
1451 * We can assume that @vma always points to a valid one and @end never
1452 * goes beyond vma->vm_end.
1453 */
1454 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1455 for (; addr < end; pte++, addr += PAGE_SIZE) {
1456 pagemap_entry_t pme;
1457
1458 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1459 err = add_to_pagemap(addr, &pme, pm);
1460 if (err)
1461 break;
1462 }
1463 pte_unmap_unlock(orig_pte, ptl);
1464
1465 cond_resched();
1466
1467 return err;
1468}
1469
1470#ifdef CONFIG_HUGETLB_PAGE
1471/* This function walks within one hugetlb entry in the single call */
1472static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1473 unsigned long addr, unsigned long end,
1474 struct mm_walk *walk)
1475{
1476 struct pagemapread *pm = walk->private;
1477 struct vm_area_struct *vma = walk->vma;
1478 u64 flags = 0, frame = 0;
1479 int err = 0;
1480 pte_t pte;
1481
1482 if (vma->vm_flags & VM_SOFTDIRTY)
1483 flags |= PM_SOFT_DIRTY;
1484
1485 pte = huge_ptep_get(ptep);
1486 if (pte_present(pte)) {
1487 struct page *page = pte_page(pte);
1488
1489 if (!PageAnon(page))
1490 flags |= PM_FILE;
1491
1492 if (page_mapcount(page) == 1)
1493 flags |= PM_MMAP_EXCLUSIVE;
1494
1495 flags |= PM_PRESENT;
1496 if (pm->show_pfn)
1497 frame = pte_pfn(pte) +
1498 ((addr & ~hmask) >> PAGE_SHIFT);
1499 }
1500
1501 for (; addr != end; addr += PAGE_SIZE) {
1502 pagemap_entry_t pme = make_pme(frame, flags);
1503
1504 err = add_to_pagemap(addr, &pme, pm);
1505 if (err)
1506 return err;
1507 if (pm->show_pfn && (flags & PM_PRESENT))
1508 frame++;
1509 }
1510
1511 cond_resched();
1512
1513 return err;
1514}
1515#endif /* HUGETLB_PAGE */
1516
1517/*
1518 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1519 *
1520 * For each page in the address space, this file contains one 64-bit entry
1521 * consisting of the following:
1522 *
1523 * Bits 0-54 page frame number (PFN) if present
1524 * Bits 0-4 swap type if swapped
1525 * Bits 5-54 swap offset if swapped
1526 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1527 * Bit 56 page exclusively mapped
1528 * Bits 57-60 zero
1529 * Bit 61 page is file-page or shared-anon
1530 * Bit 62 page swapped
1531 * Bit 63 page present
1532 *
1533 * If the page is not present but in swap, then the PFN contains an
1534 * encoding of the swap file number and the page's offset into the
1535 * swap. Unmapped pages return a null PFN. This allows determining
1536 * precisely which pages are mapped (or in swap) and comparing mapped
1537 * pages between processes.
1538 *
1539 * Efficient users of this interface will use /proc/pid/maps to
1540 * determine which areas of memory are actually mapped and llseek to
1541 * skip over unmapped regions.
1542 */
1543static ssize_t pagemap_read(struct file *file, char __user *buf,
1544 size_t count, loff_t *ppos)
1545{
1546 struct mm_struct *mm = file->private_data;
1547 struct pagemapread pm;
1548 struct mm_walk pagemap_walk = {};
1549 unsigned long src;
1550 unsigned long svpfn;
1551 unsigned long start_vaddr;
1552 unsigned long end_vaddr;
1553 int ret = 0, copied = 0;
1554
1555 if (!mm || !mmget_not_zero(mm))
1556 goto out;
1557
1558 ret = -EINVAL;
1559 /* file position must be aligned */
1560 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1561 goto out_mm;
1562
1563 ret = 0;
1564 if (!count)
1565 goto out_mm;
1566
1567 /* do not disclose physical addresses: attack vector */
1568 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1569
1570 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1571 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1572 ret = -ENOMEM;
1573 if (!pm.buffer)
1574 goto out_mm;
1575
1576 pagemap_walk.pmd_entry = pagemap_pmd_range;
1577 pagemap_walk.pte_hole = pagemap_pte_hole;
1578#ifdef CONFIG_HUGETLB_PAGE
1579 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1580#endif
1581 pagemap_walk.mm = mm;
1582 pagemap_walk.private = &pm;
1583
1584 src = *ppos;
1585 svpfn = src / PM_ENTRY_BYTES;
1586 start_vaddr = svpfn << PAGE_SHIFT;
1587 end_vaddr = mm->task_size;
1588
1589 /* watch out for wraparound */
1590 if (svpfn > mm->task_size >> PAGE_SHIFT)
1591 start_vaddr = end_vaddr;
1592
1593 /*
1594 * The odds are that this will stop walking way
1595 * before end_vaddr, because the length of the
1596 * user buffer is tracked in "pm", and the walk
1597 * will stop when we hit the end of the buffer.
1598 */
1599 ret = 0;
1600 while (count && (start_vaddr < end_vaddr)) {
1601 int len;
1602 unsigned long end;
1603
1604 pm.pos = 0;
1605 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1606 /* overflow ? */
1607 if (end < start_vaddr || end > end_vaddr)
1608 end = end_vaddr;
1609 ret = down_read_killable(&mm->mmap_sem);
1610 if (ret)
1611 goto out_free;
1612 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1613 up_read(&mm->mmap_sem);
1614 start_vaddr = end;
1615
1616 len = min(count, PM_ENTRY_BYTES * pm.pos);
1617 if (copy_to_user(buf, pm.buffer, len)) {
1618 ret = -EFAULT;
1619 goto out_free;
1620 }
1621 copied += len;
1622 buf += len;
1623 count -= len;
1624 }
1625 *ppos += copied;
1626 if (!ret || ret == PM_END_OF_BUFFER)
1627 ret = copied;
1628
1629out_free:
1630 kfree(pm.buffer);
1631out_mm:
1632 mmput(mm);
1633out:
1634 return ret;
1635}
1636
1637static int pagemap_open(struct inode *inode, struct file *file)
1638{
1639 struct mm_struct *mm;
1640
1641 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1642 if (IS_ERR(mm))
1643 return PTR_ERR(mm);
1644 file->private_data = mm;
1645 return 0;
1646}
1647
1648static int pagemap_release(struct inode *inode, struct file *file)
1649{
1650 struct mm_struct *mm = file->private_data;
1651
1652 if (mm)
1653 mmdrop(mm);
1654 return 0;
1655}
1656
1657const struct file_operations proc_pagemap_operations = {
1658 .llseek = mem_lseek, /* borrow this */
1659 .read = pagemap_read,
1660 .open = pagemap_open,
1661 .release = pagemap_release,
1662};
1663#endif /* CONFIG_PROC_PAGE_MONITOR */
1664
1665#ifdef CONFIG_NUMA
1666
1667struct numa_maps {
1668 unsigned long pages;
1669 unsigned long anon;
1670 unsigned long active;
1671 unsigned long writeback;
1672 unsigned long mapcount_max;
1673 unsigned long dirty;
1674 unsigned long swapcache;
1675 unsigned long node[MAX_NUMNODES];
1676};
1677
1678struct numa_maps_private {
1679 struct proc_maps_private proc_maps;
1680 struct numa_maps md;
1681};
1682
1683static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1684 unsigned long nr_pages)
1685{
1686 int count = page_mapcount(page);
1687
1688 md->pages += nr_pages;
1689 if (pte_dirty || PageDirty(page))
1690 md->dirty += nr_pages;
1691
1692 if (PageSwapCache(page))
1693 md->swapcache += nr_pages;
1694
1695 if (PageActive(page) || PageUnevictable(page))
1696 md->active += nr_pages;
1697
1698 if (PageWriteback(page))
1699 md->writeback += nr_pages;
1700
1701 if (PageAnon(page))
1702 md->anon += nr_pages;
1703
1704 if (count > md->mapcount_max)
1705 md->mapcount_max = count;
1706
1707 md->node[page_to_nid(page)] += nr_pages;
1708}
1709
1710static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1711 unsigned long addr)
1712{
1713 struct page *page;
1714 int nid;
1715
1716 if (!pte_present(pte))
1717 return NULL;
1718
1719 page = vm_normal_page(vma, addr, pte);
1720 if (!page)
1721 return NULL;
1722
1723 if (PageReserved(page))
1724 return NULL;
1725
1726 nid = page_to_nid(page);
1727 if (!node_isset(nid, node_states[N_MEMORY]))
1728 return NULL;
1729
1730 return page;
1731}
1732
1733#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1734static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1735 struct vm_area_struct *vma,
1736 unsigned long addr)
1737{
1738 struct page *page;
1739 int nid;
1740
1741 if (!pmd_present(pmd))
1742 return NULL;
1743
1744 page = vm_normal_page_pmd(vma, addr, pmd);
1745 if (!page)
1746 return NULL;
1747
1748 if (PageReserved(page))
1749 return NULL;
1750
1751 nid = page_to_nid(page);
1752 if (!node_isset(nid, node_states[N_MEMORY]))
1753 return NULL;
1754
1755 return page;
1756}
1757#endif
1758
1759static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1760 unsigned long end, struct mm_walk *walk)
1761{
1762 struct numa_maps *md = walk->private;
1763 struct vm_area_struct *vma = walk->vma;
1764 spinlock_t *ptl;
1765 pte_t *orig_pte;
1766 pte_t *pte;
1767
1768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1769 ptl = pmd_trans_huge_lock(pmd, vma);
1770 if (ptl) {
1771 struct page *page;
1772
1773 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1774 if (page)
1775 gather_stats(page, md, pmd_dirty(*pmd),
1776 HPAGE_PMD_SIZE/PAGE_SIZE);
1777 spin_unlock(ptl);
1778 return 0;
1779 }
1780
1781 if (pmd_trans_unstable(pmd))
1782 return 0;
1783#endif
1784 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1785 do {
1786 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1787 if (!page)
1788 continue;
1789 gather_stats(page, md, pte_dirty(*pte), 1);
1790
1791 } while (pte++, addr += PAGE_SIZE, addr != end);
1792 pte_unmap_unlock(orig_pte, ptl);
1793 cond_resched();
1794 return 0;
1795}
1796#ifdef CONFIG_HUGETLB_PAGE
1797static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1798 unsigned long addr, unsigned long end, struct mm_walk *walk)
1799{
1800 pte_t huge_pte = huge_ptep_get(pte);
1801 struct numa_maps *md;
1802 struct page *page;
1803
1804 if (!pte_present(huge_pte))
1805 return 0;
1806
1807 page = pte_page(huge_pte);
1808 if (!page)
1809 return 0;
1810
1811 md = walk->private;
1812 gather_stats(page, md, pte_dirty(huge_pte), 1);
1813 return 0;
1814}
1815
1816#else
1817static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1818 unsigned long addr, unsigned long end, struct mm_walk *walk)
1819{
1820 return 0;
1821}
1822#endif
1823
1824/*
1825 * Display pages allocated per node and memory policy via /proc.
1826 */
1827static int show_numa_map(struct seq_file *m, void *v)
1828{
1829 struct numa_maps_private *numa_priv = m->private;
1830 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1831 struct vm_area_struct *vma = v;
1832 struct numa_maps *md = &numa_priv->md;
1833 struct file *file = vma->vm_file;
1834 struct mm_struct *mm = vma->vm_mm;
1835 struct mm_walk walk = {
1836 .hugetlb_entry = gather_hugetlb_stats,
1837 .pmd_entry = gather_pte_stats,
1838 .private = md,
1839 .mm = mm,
1840 };
1841 struct mempolicy *pol;
1842 char buffer[64];
1843 int nid;
1844
1845 if (!mm)
1846 return 0;
1847
1848 /* Ensure we start with an empty set of numa_maps statistics. */
1849 memset(md, 0, sizeof(*md));
1850
1851 pol = __get_vma_policy(vma, vma->vm_start);
1852 if (pol) {
1853 mpol_to_str(buffer, sizeof(buffer), pol);
1854 mpol_cond_put(pol);
1855 } else {
1856 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1857 }
1858
1859 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1860
1861 if (file) {
1862 seq_puts(m, " file=");
1863 seq_file_path(m, file, "\n\t= ");
1864 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1865 seq_puts(m, " heap");
1866 } else if (is_stack(vma)) {
1867 seq_puts(m, " stack");
1868 }
1869
1870 if (is_vm_hugetlb_page(vma))
1871 seq_puts(m, " huge");
1872
1873 /* mmap_sem is held by m_start */
1874 walk_page_vma(vma, &walk);
1875
1876 if (!md->pages)
1877 goto out;
1878
1879 if (md->anon)
1880 seq_printf(m, " anon=%lu", md->anon);
1881
1882 if (md->dirty)
1883 seq_printf(m, " dirty=%lu", md->dirty);
1884
1885 if (md->pages != md->anon && md->pages != md->dirty)
1886 seq_printf(m, " mapped=%lu", md->pages);
1887
1888 if (md->mapcount_max > 1)
1889 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1890
1891 if (md->swapcache)
1892 seq_printf(m, " swapcache=%lu", md->swapcache);
1893
1894 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1895 seq_printf(m, " active=%lu", md->active);
1896
1897 if (md->writeback)
1898 seq_printf(m, " writeback=%lu", md->writeback);
1899
1900 for_each_node_state(nid, N_MEMORY)
1901 if (md->node[nid])
1902 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1903
1904 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1905out:
1906 seq_putc(m, '\n');
1907 m_cache_vma(m, vma);
1908 return 0;
1909}
1910
1911static const struct seq_operations proc_pid_numa_maps_op = {
1912 .start = m_start,
1913 .next = m_next,
1914 .stop = m_stop,
1915 .show = show_numa_map,
1916};
1917
1918static int pid_numa_maps_open(struct inode *inode, struct file *file)
1919{
1920 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1921 sizeof(struct numa_maps_private));
1922}
1923
1924const struct file_operations proc_pid_numa_maps_operations = {
1925 .open = pid_numa_maps_open,
1926 .read = seq_read,
1927 .llseek = seq_lseek,
1928 .release = proc_map_release,
1929};
1930
1931#endif /* CONFIG_NUMA */