blob: 7f96dd3d6dbd51855f82c1820d8705eb0ec97d4a [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/sched/coredump.h>
13#include <linux/sched/numa_balancing.h>
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
19#include <linux/shrinker.h>
20#include <linux/mm_inline.h>
21#include <linux/swapops.h>
22#include <linux/dax.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/page_owner.h>
37
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
42/*
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50unsigned long transparent_hugepage_flags __read_mostly =
51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61static struct shrinker deferred_split_shrinker;
62
63static atomic_t huge_zero_refcount;
64struct page *huge_zero_page __read_mostly;
65
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
68 if (vma_is_anonymous(vma))
69 return __transparent_hugepage_enabled(vma);
70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 return __transparent_hugepage_enabled(vma);
72
73 return false;
74}
75
76static struct page *get_huge_zero_page(void)
77{
78 struct page *zero_page;
79retry:
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81 return READ_ONCE(huge_zero_page);
82
83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84 HPAGE_PMD_ORDER);
85 if (!zero_page) {
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87 return NULL;
88 }
89 count_vm_event(THP_ZERO_PAGE_ALLOC);
90 preempt_disable();
91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92 preempt_enable();
93 __free_pages(zero_page, compound_order(zero_page));
94 goto retry;
95 }
96
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount, 2);
99 preempt_enable();
100 return READ_ONCE(huge_zero_page);
101}
102
103static void put_huge_zero_page(void)
104{
105 /*
106 * Counter should never go to zero here. Only shrinker can put
107 * last reference.
108 */
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110}
111
112struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 return READ_ONCE(huge_zero_page);
116
117 if (!get_huge_zero_page())
118 return NULL;
119
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 put_huge_zero_page();
122
123 return READ_ONCE(huge_zero_page);
124}
125
126void mm_put_huge_zero_page(struct mm_struct *mm)
127{
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 put_huge_zero_page();
130}
131
132static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 struct shrink_control *sc)
134{
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137}
138
139static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 struct shrink_control *sc)
141{
142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 struct page *zero_page = xchg(&huge_zero_page, NULL);
144 BUG_ON(zero_page == NULL);
145 __free_pages(zero_page, compound_order(zero_page));
146 return HPAGE_PMD_NR;
147 }
148
149 return 0;
150}
151
152static struct shrinker huge_zero_page_shrinker = {
153 .count_objects = shrink_huge_zero_page_count,
154 .scan_objects = shrink_huge_zero_page_scan,
155 .seeks = DEFAULT_SEEKS,
156};
157
158#ifdef CONFIG_SYSFS
159static ssize_t enabled_show(struct kobject *kobj,
160 struct kobj_attribute *attr, char *buf)
161{
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "always [madvise] never\n");
166 else
167 return sprintf(buf, "always madvise [never]\n");
168}
169
170static ssize_t enabled_store(struct kobject *kobj,
171 struct kobj_attribute *attr,
172 const char *buf, size_t count)
173{
174 ssize_t ret = count;
175
176 if (!memcmp("always", buf,
177 min(sizeof("always")-1, count))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 } else if (!memcmp("madvise", buf,
181 min(sizeof("madvise")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("never", buf,
185 min(sizeof("never")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else
189 ret = -EINVAL;
190
191 if (ret > 0) {
192 int err = start_stop_khugepaged();
193 if (err)
194 ret = err;
195 }
196 return ret;
197}
198static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
200
201ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
204{
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
207}
208
209ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
213{
214 unsigned long value;
215 int ret;
216
217 ret = kstrtoul(buf, 10, &value);
218 if (ret < 0)
219 return ret;
220 if (value > 1)
221 return -EINVAL;
222
223 if (value)
224 set_bit(flag, &transparent_hugepage_flags);
225 else
226 clear_bit(flag, &transparent_hugepage_flags);
227
228 return count;
229}
230
231static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
233{
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243}
244
245static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248{
249 if (!memcmp("always", buf,
250 min(sizeof("always")-1, count))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (!memcmp("defer+madvise", buf,
256 min(sizeof("defer+madvise")-1, count))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 } else if (!memcmp("defer", buf,
262 min(sizeof("defer")-1, count))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287static ssize_t use_zero_page_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
290 return single_hugepage_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292}
293static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295{
296 return single_hugepage_flag_store(kobj, attr, buf, count,
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298}
299static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301
302static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 struct kobj_attribute *attr, char *buf)
304{
305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306}
307static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
310#ifdef CONFIG_DEBUG_VM
311static ssize_t debug_cow_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313{
314 return single_hugepage_flag_show(kobj, attr, buf,
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316}
317static ssize_t debug_cow_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
321 return single_hugepage_flag_store(kobj, attr, buf, count,
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323}
324static struct kobj_attribute debug_cow_attr =
325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326#endif /* CONFIG_DEBUG_VM */
327
328static struct attribute *hugepage_attr[] = {
329 &enabled_attr.attr,
330 &defrag_attr.attr,
331 &use_zero_page_attr.attr,
332 &hpage_pmd_size_attr.attr,
333#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 &shmem_enabled_attr.attr,
335#endif
336#ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr.attr,
338#endif
339 NULL,
340};
341
342static const struct attribute_group hugepage_attr_group = {
343 .attrs = hugepage_attr,
344};
345
346static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347{
348 int err;
349
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
352 pr_err("failed to create transparent hugepage kobject\n");
353 return -ENOMEM;
354 }
355
356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 if (err) {
358 pr_err("failed to register transparent hugepage group\n");
359 goto delete_obj;
360 }
361
362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 if (err) {
364 pr_err("failed to register transparent hugepage group\n");
365 goto remove_hp_group;
366 }
367
368 return 0;
369
370remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375}
376
377static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378{
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382}
383#else
384static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385{
386 return 0;
387}
388
389static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390{
391}
392#endif /* CONFIG_SYSFS */
393
394static int __init hugepage_init(void)
395{
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags = 0;
401 return -EINVAL;
402 }
403
404 /*
405 * hugepages can't be allocated by the buddy allocator
406 */
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 /*
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413
414 err = hugepage_init_sysfs(&hugepage_kobj);
415 if (err)
416 goto err_sysfs;
417
418 err = khugepaged_init();
419 if (err)
420 goto err_slab;
421
422 err = register_shrinker(&huge_zero_page_shrinker);
423 if (err)
424 goto err_hzp_shrinker;
425 err = register_shrinker(&deferred_split_shrinker);
426 if (err)
427 goto err_split_shrinker;
428
429 /*
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
433 */
434 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
435 transparent_hugepage_flags = 0;
436 return 0;
437 }
438
439 err = start_stop_khugepaged();
440 if (err)
441 goto err_khugepaged;
442
443 return 0;
444err_khugepaged:
445 unregister_shrinker(&deferred_split_shrinker);
446err_split_shrinker:
447 unregister_shrinker(&huge_zero_page_shrinker);
448err_hzp_shrinker:
449 khugepaged_destroy();
450err_slab:
451 hugepage_exit_sysfs(hugepage_kobj);
452err_sysfs:
453 return err;
454}
455subsys_initcall(hugepage_init);
456
457static int __init setup_transparent_hugepage(char *str)
458{
459 int ret = 0;
460 if (!str)
461 goto out;
462 if (!strcmp(str, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 }
481out:
482 if (!ret)
483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 return ret;
485}
486__setup("transparent_hugepage=", setup_transparent_hugepage);
487
488pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489{
490 if (likely(vma->vm_flags & VM_WRITE))
491 pmd = pmd_mkwrite(pmd);
492 return pmd;
493}
494
495static inline struct list_head *page_deferred_list(struct page *page)
496{
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page[2].deferred_list;
499}
500
501void prep_transhuge_page(struct page *page)
502{
503 /*
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
506 */
507
508 INIT_LIST_HEAD(page_deferred_list(page));
509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510}
511
512static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
514 loff_t off, unsigned long flags, unsigned long size)
515{
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad, ret;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 off >> PAGE_SHIFT, flags);
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
535 return 0;
536
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
546}
547
548unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550{
551 unsigned long ret;
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560out:
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562}
563EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
567{
568 struct vm_area_struct *vma = vmf->vma;
569 struct mem_cgroup *memcg;
570 pgtable_t pgtable;
571 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
572 vm_fault_t ret = 0;
573
574 VM_BUG_ON_PAGE(!PageCompound(page), page);
575
576 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
577 put_page(page);
578 count_vm_event(THP_FAULT_FALLBACK);
579 return VM_FAULT_FALLBACK;
580 }
581
582 pgtable = pte_alloc_one(vma->vm_mm, haddr);
583 if (unlikely(!pgtable)) {
584 ret = VM_FAULT_OOM;
585 goto release;
586 }
587
588 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
589 /*
590 * The memory barrier inside __SetPageUptodate makes sure that
591 * clear_huge_page writes become visible before the set_pmd_at()
592 * write.
593 */
594 __SetPageUptodate(page);
595
596 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
597 if (unlikely(!pmd_none(*vmf->pmd))) {
598 goto unlock_release;
599 } else {
600 pmd_t entry;
601
602 ret = check_stable_address_space(vma->vm_mm);
603 if (ret)
604 goto unlock_release;
605
606 /* Deliver the page fault to userland */
607 if (userfaultfd_missing(vma)) {
608 vm_fault_t ret2;
609
610 spin_unlock(vmf->ptl);
611 mem_cgroup_cancel_charge(page, memcg, true);
612 put_page(page);
613 pte_free(vma->vm_mm, pgtable);
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
617 }
618
619 entry = mk_huge_pmd(page, vma->vm_page_prot);
620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 page_add_new_anon_rmap(page, vma, haddr, true);
622 mem_cgroup_commit_charge(page, memcg, false, true);
623 lru_cache_add_active_or_unevictable(page, vma);
624 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
625 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
626 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
627 mm_inc_nr_ptes(vma->vm_mm);
628 spin_unlock(vmf->ptl);
629 count_vm_event(THP_FAULT_ALLOC);
630 }
631
632 return 0;
633unlock_release:
634 spin_unlock(vmf->ptl);
635release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
638 mem_cgroup_cancel_charge(page, memcg, true);
639 put_page(page);
640 return ret;
641
642}
643
644/*
645 * always: directly stall for all thp allocations
646 * defer: wake kswapd and fail if not immediately available
647 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
648 * fail if not immediately available
649 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
650 * available
651 * never: never stall for any thp allocation
652 */
653static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
654{
655 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
656
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
660 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
663 __GFP_KSWAPD_RECLAIM);
664 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
665 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
666 0);
667 return GFP_TRANSHUGE_LIGHT;
668}
669
670/* Caller must hold page table lock. */
671static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
672 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
673 struct page *zero_page)
674{
675 pmd_t entry;
676 if (!pmd_none(*pmd))
677 return false;
678 entry = mk_pmd(zero_page, vma->vm_page_prot);
679 entry = pmd_mkhuge(entry);
680 if (pgtable)
681 pgtable_trans_huge_deposit(mm, pmd, pgtable);
682 set_pmd_at(mm, haddr, pmd, entry);
683 mm_inc_nr_ptes(mm);
684 return true;
685}
686
687vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
688{
689 struct vm_area_struct *vma = vmf->vma;
690 gfp_t gfp;
691 struct page *page;
692 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
693
694 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
695 return VM_FAULT_FALLBACK;
696 if (unlikely(anon_vma_prepare(vma)))
697 return VM_FAULT_OOM;
698 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
699 return VM_FAULT_OOM;
700 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
701 !mm_forbids_zeropage(vma->vm_mm) &&
702 transparent_hugepage_use_zero_page()) {
703 pgtable_t pgtable;
704 struct page *zero_page;
705 bool set;
706 vm_fault_t ret;
707 pgtable = pte_alloc_one(vma->vm_mm, haddr);
708 if (unlikely(!pgtable))
709 return VM_FAULT_OOM;
710 zero_page = mm_get_huge_zero_page(vma->vm_mm);
711 if (unlikely(!zero_page)) {
712 pte_free(vma->vm_mm, pgtable);
713 count_vm_event(THP_FAULT_FALLBACK);
714 return VM_FAULT_FALLBACK;
715 }
716 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
717 ret = 0;
718 set = false;
719 if (pmd_none(*vmf->pmd)) {
720 ret = check_stable_address_space(vma->vm_mm);
721 if (ret) {
722 spin_unlock(vmf->ptl);
723 } else if (userfaultfd_missing(vma)) {
724 spin_unlock(vmf->ptl);
725 ret = handle_userfault(vmf, VM_UFFD_MISSING);
726 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 } else {
728 set_huge_zero_page(pgtable, vma->vm_mm, vma,
729 haddr, vmf->pmd, zero_page);
730 spin_unlock(vmf->ptl);
731 set = true;
732 }
733 } else
734 spin_unlock(vmf->ptl);
735 if (!set)
736 pte_free(vma->vm_mm, pgtable);
737 return ret;
738 }
739 gfp = alloc_hugepage_direct_gfpmask(vma);
740 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
741 if (unlikely(!page)) {
742 count_vm_event(THP_FAULT_FALLBACK);
743 return VM_FAULT_FALLBACK;
744 }
745 prep_transhuge_page(page);
746 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
747}
748
749static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
750 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 pgtable_t pgtable)
752{
753 struct mm_struct *mm = vma->vm_mm;
754 pmd_t entry;
755 spinlock_t *ptl;
756
757 ptl = pmd_lock(mm, pmd);
758 if (!pmd_none(*pmd)) {
759 if (write) {
760 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
761 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
762 goto out_unlock;
763 }
764 entry = pmd_mkyoung(*pmd);
765 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
766 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
767 update_mmu_cache_pmd(vma, addr, pmd);
768 }
769
770 goto out_unlock;
771 }
772
773 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
774 if (pfn_t_devmap(pfn))
775 entry = pmd_mkdevmap(entry);
776 if (write) {
777 entry = pmd_mkyoung(pmd_mkdirty(entry));
778 entry = maybe_pmd_mkwrite(entry, vma);
779 }
780
781 if (pgtable) {
782 pgtable_trans_huge_deposit(mm, pmd, pgtable);
783 mm_inc_nr_ptes(mm);
784 pgtable = NULL;
785 }
786
787 set_pmd_at(mm, addr, pmd, entry);
788 update_mmu_cache_pmd(vma, addr, pmd);
789
790out_unlock:
791 spin_unlock(ptl);
792 if (pgtable)
793 pte_free(mm, pgtable);
794}
795
796vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
797{
798 unsigned long addr = vmf->address & PMD_MASK;
799 struct vm_area_struct *vma = vmf->vma;
800 pgprot_t pgprot = vma->vm_page_prot;
801 pgtable_t pgtable = NULL;
802
803 /*
804 * If we had pmd_special, we could avoid all these restrictions,
805 * but we need to be consistent with PTEs and architectures that
806 * can't support a 'special' bit.
807 */
808 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
809 !pfn_t_devmap(pfn));
810 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
811 (VM_PFNMAP|VM_MIXEDMAP));
812 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
813
814 if (addr < vma->vm_start || addr >= vma->vm_end)
815 return VM_FAULT_SIGBUS;
816
817 if (arch_needs_pgtable_deposit()) {
818 pgtable = pte_alloc_one(vma->vm_mm, addr);
819 if (!pgtable)
820 return VM_FAULT_OOM;
821 }
822
823 track_pfn_insert(vma, &pgprot, pfn);
824
825 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
826 return VM_FAULT_NOPAGE;
827}
828EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
829
830#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
831static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
832{
833 if (likely(vma->vm_flags & VM_WRITE))
834 pud = pud_mkwrite(pud);
835 return pud;
836}
837
838static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
839 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
840{
841 struct mm_struct *mm = vma->vm_mm;
842 pud_t entry;
843 spinlock_t *ptl;
844
845 ptl = pud_lock(mm, pud);
846 if (!pud_none(*pud)) {
847 if (write) {
848 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
849 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
850 goto out_unlock;
851 }
852 entry = pud_mkyoung(*pud);
853 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
854 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
855 update_mmu_cache_pud(vma, addr, pud);
856 }
857 goto out_unlock;
858 }
859
860 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
861 if (pfn_t_devmap(pfn))
862 entry = pud_mkdevmap(entry);
863 if (write) {
864 entry = pud_mkyoung(pud_mkdirty(entry));
865 entry = maybe_pud_mkwrite(entry, vma);
866 }
867 set_pud_at(mm, addr, pud, entry);
868 update_mmu_cache_pud(vma, addr, pud);
869
870out_unlock:
871 spin_unlock(ptl);
872}
873
874vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
875{
876 unsigned long addr = vmf->address & PUD_MASK;
877 struct vm_area_struct *vma = vmf->vma;
878 pgprot_t pgprot = vma->vm_page_prot;
879
880 /*
881 * If we had pud_special, we could avoid all these restrictions,
882 * but we need to be consistent with PTEs and architectures that
883 * can't support a 'special' bit.
884 */
885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
886 !pfn_t_devmap(pfn));
887 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
888 (VM_PFNMAP|VM_MIXEDMAP));
889 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
890
891 if (addr < vma->vm_start || addr >= vma->vm_end)
892 return VM_FAULT_SIGBUS;
893
894 track_pfn_insert(vma, &pgprot, pfn);
895
896 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
897 return VM_FAULT_NOPAGE;
898}
899EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
900#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
901
902static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
903 pmd_t *pmd, int flags)
904{
905 pmd_t _pmd;
906
907 _pmd = pmd_mkyoung(*pmd);
908 if (flags & FOLL_WRITE)
909 _pmd = pmd_mkdirty(_pmd);
910 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
911 pmd, _pmd, flags & FOLL_WRITE))
912 update_mmu_cache_pmd(vma, addr, pmd);
913}
914
915struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
916 pmd_t *pmd, int flags)
917{
918 unsigned long pfn = pmd_pfn(*pmd);
919 struct mm_struct *mm = vma->vm_mm;
920 struct dev_pagemap *pgmap;
921 struct page *page;
922
923 assert_spin_locked(pmd_lockptr(mm, pmd));
924
925 /*
926 * When we COW a devmap PMD entry, we split it into PTEs, so we should
927 * not be in this function with `flags & FOLL_COW` set.
928 */
929 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
930
931 if (flags & FOLL_WRITE && !pmd_write(*pmd))
932 return NULL;
933
934 if (pmd_present(*pmd) && pmd_devmap(*pmd))
935 /* pass */;
936 else
937 return NULL;
938
939 if (flags & FOLL_TOUCH)
940 touch_pmd(vma, addr, pmd, flags);
941
942 /*
943 * device mapped pages can only be returned if the
944 * caller will manage the page reference count.
945 */
946 if (!(flags & FOLL_GET))
947 return ERR_PTR(-EEXIST);
948
949 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
950 pgmap = get_dev_pagemap(pfn, NULL);
951 if (!pgmap)
952 return ERR_PTR(-EFAULT);
953 page = pfn_to_page(pfn);
954 get_page(page);
955 put_dev_pagemap(pgmap);
956
957 return page;
958}
959
960int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
961 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
962 struct vm_area_struct *vma)
963{
964 spinlock_t *dst_ptl, *src_ptl;
965 struct page *src_page;
966 pmd_t pmd;
967 pgtable_t pgtable = NULL;
968 int ret = -ENOMEM;
969
970 /* Skip if can be re-fill on fault */
971 if (!vma_is_anonymous(vma))
972 return 0;
973
974 pgtable = pte_alloc_one(dst_mm, addr);
975 if (unlikely(!pgtable))
976 goto out;
977
978 dst_ptl = pmd_lock(dst_mm, dst_pmd);
979 src_ptl = pmd_lockptr(src_mm, src_pmd);
980 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
981
982 ret = -EAGAIN;
983 pmd = *src_pmd;
984
985#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
986 if (unlikely(is_swap_pmd(pmd))) {
987 swp_entry_t entry = pmd_to_swp_entry(pmd);
988
989 VM_BUG_ON(!is_pmd_migration_entry(pmd));
990 if (is_write_migration_entry(entry)) {
991 make_migration_entry_read(&entry);
992 pmd = swp_entry_to_pmd(entry);
993 if (pmd_swp_soft_dirty(*src_pmd))
994 pmd = pmd_swp_mksoft_dirty(pmd);
995 set_pmd_at(src_mm, addr, src_pmd, pmd);
996 }
997 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
998 mm_inc_nr_ptes(dst_mm);
999 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1000 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1001 ret = 0;
1002 goto out_unlock;
1003 }
1004#endif
1005
1006 if (unlikely(!pmd_trans_huge(pmd))) {
1007 pte_free(dst_mm, pgtable);
1008 goto out_unlock;
1009 }
1010 /*
1011 * When page table lock is held, the huge zero pmd should not be
1012 * under splitting since we don't split the page itself, only pmd to
1013 * a page table.
1014 */
1015 if (is_huge_zero_pmd(pmd)) {
1016 struct page *zero_page;
1017 /*
1018 * get_huge_zero_page() will never allocate a new page here,
1019 * since we already have a zero page to copy. It just takes a
1020 * reference.
1021 */
1022 zero_page = mm_get_huge_zero_page(dst_mm);
1023 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1024 zero_page);
1025 ret = 0;
1026 goto out_unlock;
1027 }
1028
1029 src_page = pmd_page(pmd);
1030 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1031 get_page(src_page);
1032 page_dup_rmap(src_page, true);
1033 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1034 mm_inc_nr_ptes(dst_mm);
1035 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1036
1037 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1038 pmd = pmd_mkold(pmd_wrprotect(pmd));
1039 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1040
1041 ret = 0;
1042out_unlock:
1043 spin_unlock(src_ptl);
1044 spin_unlock(dst_ptl);
1045out:
1046 return ret;
1047}
1048
1049#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1050static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1051 pud_t *pud, int flags)
1052{
1053 pud_t _pud;
1054
1055 _pud = pud_mkyoung(*pud);
1056 if (flags & FOLL_WRITE)
1057 _pud = pud_mkdirty(_pud);
1058 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1059 pud, _pud, flags & FOLL_WRITE))
1060 update_mmu_cache_pud(vma, addr, pud);
1061}
1062
1063struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1064 pud_t *pud, int flags)
1065{
1066 unsigned long pfn = pud_pfn(*pud);
1067 struct mm_struct *mm = vma->vm_mm;
1068 struct dev_pagemap *pgmap;
1069 struct page *page;
1070
1071 assert_spin_locked(pud_lockptr(mm, pud));
1072
1073 if (flags & FOLL_WRITE && !pud_write(*pud))
1074 return NULL;
1075
1076 if (pud_present(*pud) && pud_devmap(*pud))
1077 /* pass */;
1078 else
1079 return NULL;
1080
1081 if (flags & FOLL_TOUCH)
1082 touch_pud(vma, addr, pud, flags);
1083
1084 /*
1085 * device mapped pages can only be returned if the
1086 * caller will manage the page reference count.
1087 */
1088 if (!(flags & FOLL_GET))
1089 return ERR_PTR(-EEXIST);
1090
1091 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1092 pgmap = get_dev_pagemap(pfn, NULL);
1093 if (!pgmap)
1094 return ERR_PTR(-EFAULT);
1095 page = pfn_to_page(pfn);
1096 get_page(page);
1097 put_dev_pagemap(pgmap);
1098
1099 return page;
1100}
1101
1102int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1103 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1104 struct vm_area_struct *vma)
1105{
1106 spinlock_t *dst_ptl, *src_ptl;
1107 pud_t pud;
1108 int ret;
1109
1110 dst_ptl = pud_lock(dst_mm, dst_pud);
1111 src_ptl = pud_lockptr(src_mm, src_pud);
1112 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1113
1114 ret = -EAGAIN;
1115 pud = *src_pud;
1116 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1117 goto out_unlock;
1118
1119 /*
1120 * When page table lock is held, the huge zero pud should not be
1121 * under splitting since we don't split the page itself, only pud to
1122 * a page table.
1123 */
1124 if (is_huge_zero_pud(pud)) {
1125 /* No huge zero pud yet */
1126 }
1127
1128 pudp_set_wrprotect(src_mm, addr, src_pud);
1129 pud = pud_mkold(pud_wrprotect(pud));
1130 set_pud_at(dst_mm, addr, dst_pud, pud);
1131
1132 ret = 0;
1133out_unlock:
1134 spin_unlock(src_ptl);
1135 spin_unlock(dst_ptl);
1136 return ret;
1137}
1138
1139void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1140{
1141 pud_t entry;
1142 unsigned long haddr;
1143 bool write = vmf->flags & FAULT_FLAG_WRITE;
1144
1145 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1146 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1147 goto unlock;
1148
1149 entry = pud_mkyoung(orig_pud);
1150 if (write)
1151 entry = pud_mkdirty(entry);
1152 haddr = vmf->address & HPAGE_PUD_MASK;
1153 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1154 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1155
1156unlock:
1157 spin_unlock(vmf->ptl);
1158}
1159#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1160
1161void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1162{
1163 pmd_t entry;
1164 unsigned long haddr;
1165 bool write = vmf->flags & FAULT_FLAG_WRITE;
1166
1167 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1168 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1169 goto unlock;
1170
1171 entry = pmd_mkyoung(orig_pmd);
1172 if (write)
1173 entry = pmd_mkdirty(entry);
1174 haddr = vmf->address & HPAGE_PMD_MASK;
1175 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1176 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1177
1178unlock:
1179 spin_unlock(vmf->ptl);
1180}
1181
1182static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1183 pmd_t orig_pmd, struct page *page)
1184{
1185 struct vm_area_struct *vma = vmf->vma;
1186 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1187 struct mem_cgroup *memcg;
1188 pgtable_t pgtable;
1189 pmd_t _pmd;
1190 int i;
1191 vm_fault_t ret = 0;
1192 struct page **pages;
1193 unsigned long mmun_start; /* For mmu_notifiers */
1194 unsigned long mmun_end; /* For mmu_notifiers */
1195
1196 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1197 GFP_KERNEL);
1198 if (unlikely(!pages)) {
1199 ret |= VM_FAULT_OOM;
1200 goto out;
1201 }
1202
1203 for (i = 0; i < HPAGE_PMD_NR; i++) {
1204 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1205 vmf->address, page_to_nid(page));
1206 if (unlikely(!pages[i] ||
1207 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1208 GFP_KERNEL, &memcg, false))) {
1209 if (pages[i])
1210 put_page(pages[i]);
1211 while (--i >= 0) {
1212 memcg = (void *)page_private(pages[i]);
1213 set_page_private(pages[i], 0);
1214 mem_cgroup_cancel_charge(pages[i], memcg,
1215 false);
1216 put_page(pages[i]);
1217 }
1218 kfree(pages);
1219 ret |= VM_FAULT_OOM;
1220 goto out;
1221 }
1222 set_page_private(pages[i], (unsigned long)memcg);
1223 }
1224
1225 for (i = 0; i < HPAGE_PMD_NR; i++) {
1226 copy_user_highpage(pages[i], page + i,
1227 haddr + PAGE_SIZE * i, vma);
1228 __SetPageUptodate(pages[i]);
1229 cond_resched();
1230 }
1231
1232 mmun_start = haddr;
1233 mmun_end = haddr + HPAGE_PMD_SIZE;
1234 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1235
1236 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1237 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1238 goto out_free_pages;
1239 VM_BUG_ON_PAGE(!PageHead(page), page);
1240
1241 /*
1242 * Leave pmd empty until pte is filled note we must notify here as
1243 * concurrent CPU thread might write to new page before the call to
1244 * mmu_notifier_invalidate_range_end() happens which can lead to a
1245 * device seeing memory write in different order than CPU.
1246 *
1247 * See Documentation/vm/mmu_notifier.rst
1248 */
1249 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1250
1251 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1252 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1253
1254 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1255 pte_t entry;
1256 entry = mk_pte(pages[i], vma->vm_page_prot);
1257 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1258 memcg = (void *)page_private(pages[i]);
1259 set_page_private(pages[i], 0);
1260 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1261 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1262 lru_cache_add_active_or_unevictable(pages[i], vma);
1263 vmf->pte = pte_offset_map(&_pmd, haddr);
1264 VM_BUG_ON(!pte_none(*vmf->pte));
1265 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1266 pte_unmap(vmf->pte);
1267 }
1268 kfree(pages);
1269
1270 smp_wmb(); /* make pte visible before pmd */
1271 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1272 page_remove_rmap(page, true);
1273 spin_unlock(vmf->ptl);
1274
1275 /*
1276 * No need to double call mmu_notifier->invalidate_range() callback as
1277 * the above pmdp_huge_clear_flush_notify() did already call it.
1278 */
1279 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1280 mmun_end);
1281
1282 ret |= VM_FAULT_WRITE;
1283 put_page(page);
1284
1285out:
1286 return ret;
1287
1288out_free_pages:
1289 spin_unlock(vmf->ptl);
1290 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1291 for (i = 0; i < HPAGE_PMD_NR; i++) {
1292 memcg = (void *)page_private(pages[i]);
1293 set_page_private(pages[i], 0);
1294 mem_cgroup_cancel_charge(pages[i], memcg, false);
1295 put_page(pages[i]);
1296 }
1297 kfree(pages);
1298 goto out;
1299}
1300
1301vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1302{
1303 struct vm_area_struct *vma = vmf->vma;
1304 struct page *page = NULL, *new_page;
1305 struct mem_cgroup *memcg;
1306 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1307 unsigned long mmun_start; /* For mmu_notifiers */
1308 unsigned long mmun_end; /* For mmu_notifiers */
1309 gfp_t huge_gfp; /* for allocation and charge */
1310 vm_fault_t ret = 0;
1311
1312 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1313 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1314 if (is_huge_zero_pmd(orig_pmd))
1315 goto alloc;
1316 spin_lock(vmf->ptl);
1317 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1318 goto out_unlock;
1319
1320 page = pmd_page(orig_pmd);
1321 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1322 /*
1323 * We can only reuse the page if nobody else maps the huge page or it's
1324 * part.
1325 */
1326 if (!trylock_page(page)) {
1327 get_page(page);
1328 spin_unlock(vmf->ptl);
1329 lock_page(page);
1330 spin_lock(vmf->ptl);
1331 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1332 unlock_page(page);
1333 put_page(page);
1334 goto out_unlock;
1335 }
1336 put_page(page);
1337 }
1338 if (reuse_swap_page(page, NULL)) {
1339 pmd_t entry;
1340 entry = pmd_mkyoung(orig_pmd);
1341 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1342 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1343 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1344 ret |= VM_FAULT_WRITE;
1345 unlock_page(page);
1346 goto out_unlock;
1347 }
1348 unlock_page(page);
1349 get_page(page);
1350 spin_unlock(vmf->ptl);
1351alloc:
1352 if (__transparent_hugepage_enabled(vma) &&
1353 !transparent_hugepage_debug_cow()) {
1354 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1355 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1356 } else
1357 new_page = NULL;
1358
1359 if (likely(new_page)) {
1360 prep_transhuge_page(new_page);
1361 } else {
1362 if (!page) {
1363 split_huge_pmd(vma, vmf->pmd, vmf->address);
1364 ret |= VM_FAULT_FALLBACK;
1365 } else {
1366 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1367 if (ret & VM_FAULT_OOM) {
1368 split_huge_pmd(vma, vmf->pmd, vmf->address);
1369 ret |= VM_FAULT_FALLBACK;
1370 }
1371 put_page(page);
1372 }
1373 count_vm_event(THP_FAULT_FALLBACK);
1374 goto out;
1375 }
1376
1377 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1378 huge_gfp, &memcg, true))) {
1379 put_page(new_page);
1380 split_huge_pmd(vma, vmf->pmd, vmf->address);
1381 if (page)
1382 put_page(page);
1383 ret |= VM_FAULT_FALLBACK;
1384 count_vm_event(THP_FAULT_FALLBACK);
1385 goto out;
1386 }
1387
1388 count_vm_event(THP_FAULT_ALLOC);
1389
1390 if (!page)
1391 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1392 else
1393 copy_user_huge_page(new_page, page, vmf->address,
1394 vma, HPAGE_PMD_NR);
1395 __SetPageUptodate(new_page);
1396
1397 mmun_start = haddr;
1398 mmun_end = haddr + HPAGE_PMD_SIZE;
1399 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1400
1401 spin_lock(vmf->ptl);
1402 if (page)
1403 put_page(page);
1404 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1405 spin_unlock(vmf->ptl);
1406 mem_cgroup_cancel_charge(new_page, memcg, true);
1407 put_page(new_page);
1408 goto out_mn;
1409 } else {
1410 pmd_t entry;
1411 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1412 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1413 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1414 page_add_new_anon_rmap(new_page, vma, haddr, true);
1415 mem_cgroup_commit_charge(new_page, memcg, false, true);
1416 lru_cache_add_active_or_unevictable(new_page, vma);
1417 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1418 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1419 if (!page) {
1420 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1421 } else {
1422 VM_BUG_ON_PAGE(!PageHead(page), page);
1423 page_remove_rmap(page, true);
1424 put_page(page);
1425 }
1426 ret |= VM_FAULT_WRITE;
1427 }
1428 spin_unlock(vmf->ptl);
1429out_mn:
1430 /*
1431 * No need to double call mmu_notifier->invalidate_range() callback as
1432 * the above pmdp_huge_clear_flush_notify() did already call it.
1433 */
1434 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1435 mmun_end);
1436out:
1437 return ret;
1438out_unlock:
1439 spin_unlock(vmf->ptl);
1440 return ret;
1441}
1442
1443/*
1444 * FOLL_FORCE can write to even unwritable pmd's, but only
1445 * after we've gone through a COW cycle and they are dirty.
1446 */
1447static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1448{
1449 return pmd_write(pmd) ||
1450 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1451}
1452
1453struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1454 unsigned long addr,
1455 pmd_t *pmd,
1456 unsigned int flags)
1457{
1458 struct mm_struct *mm = vma->vm_mm;
1459 struct page *page = NULL;
1460
1461 assert_spin_locked(pmd_lockptr(mm, pmd));
1462
1463 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1464 goto out;
1465
1466 /* Avoid dumping huge zero page */
1467 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1468 return ERR_PTR(-EFAULT);
1469
1470 /* Full NUMA hinting faults to serialise migration in fault paths */
1471 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1472 goto out;
1473
1474 page = pmd_page(*pmd);
1475 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476 if (flags & FOLL_TOUCH)
1477 touch_pmd(vma, addr, pmd, flags);
1478 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1479 /*
1480 * We don't mlock() pte-mapped THPs. This way we can avoid
1481 * leaking mlocked pages into non-VM_LOCKED VMAs.
1482 *
1483 * For anon THP:
1484 *
1485 * In most cases the pmd is the only mapping of the page as we
1486 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1487 * writable private mappings in populate_vma_page_range().
1488 *
1489 * The only scenario when we have the page shared here is if we
1490 * mlocking read-only mapping shared over fork(). We skip
1491 * mlocking such pages.
1492 *
1493 * For file THP:
1494 *
1495 * We can expect PageDoubleMap() to be stable under page lock:
1496 * for file pages we set it in page_add_file_rmap(), which
1497 * requires page to be locked.
1498 */
1499
1500 if (PageAnon(page) && compound_mapcount(page) != 1)
1501 goto skip_mlock;
1502 if (PageDoubleMap(page) || !page->mapping)
1503 goto skip_mlock;
1504 if (!trylock_page(page))
1505 goto skip_mlock;
1506 lru_add_drain();
1507 if (page->mapping && !PageDoubleMap(page))
1508 mlock_vma_page(page);
1509 unlock_page(page);
1510 }
1511skip_mlock:
1512 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1513 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1514 if (flags & FOLL_GET)
1515 get_page(page);
1516
1517out:
1518 return page;
1519}
1520
1521/* NUMA hinting page fault entry point for trans huge pmds */
1522vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1523{
1524 struct vm_area_struct *vma = vmf->vma;
1525 struct anon_vma *anon_vma = NULL;
1526 struct page *page;
1527 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1528 int page_nid = -1, this_nid = numa_node_id();
1529 int target_nid, last_cpupid = -1;
1530 bool page_locked;
1531 bool migrated = false;
1532 bool was_writable;
1533 int flags = 0;
1534
1535 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1536 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1537 goto out_unlock;
1538
1539 /*
1540 * If there are potential migrations, wait for completion and retry
1541 * without disrupting NUMA hinting information. Do not relock and
1542 * check_same as the page may no longer be mapped.
1543 */
1544 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1545 page = pmd_page(*vmf->pmd);
1546 if (!get_page_unless_zero(page))
1547 goto out_unlock;
1548 spin_unlock(vmf->ptl);
1549 wait_on_page_locked(page);
1550 put_page(page);
1551 goto out;
1552 }
1553
1554 page = pmd_page(pmd);
1555 BUG_ON(is_huge_zero_page(page));
1556 page_nid = page_to_nid(page);
1557 last_cpupid = page_cpupid_last(page);
1558 count_vm_numa_event(NUMA_HINT_FAULTS);
1559 if (page_nid == this_nid) {
1560 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1561 flags |= TNF_FAULT_LOCAL;
1562 }
1563
1564 /* See similar comment in do_numa_page for explanation */
1565 if (!pmd_savedwrite(pmd))
1566 flags |= TNF_NO_GROUP;
1567
1568 /*
1569 * Acquire the page lock to serialise THP migrations but avoid dropping
1570 * page_table_lock if at all possible
1571 */
1572 page_locked = trylock_page(page);
1573 target_nid = mpol_misplaced(page, vma, haddr);
1574 if (target_nid == -1) {
1575 /* If the page was locked, there are no parallel migrations */
1576 if (page_locked)
1577 goto clear_pmdnuma;
1578 }
1579
1580 /* Migration could have started since the pmd_trans_migrating check */
1581 if (!page_locked) {
1582 page_nid = -1;
1583 if (!get_page_unless_zero(page))
1584 goto out_unlock;
1585 spin_unlock(vmf->ptl);
1586 wait_on_page_locked(page);
1587 put_page(page);
1588 goto out;
1589 }
1590
1591 /*
1592 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1593 * to serialises splits
1594 */
1595 get_page(page);
1596 spin_unlock(vmf->ptl);
1597 anon_vma = page_lock_anon_vma_read(page);
1598
1599 /* Confirm the PMD did not change while page_table_lock was released */
1600 spin_lock(vmf->ptl);
1601 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1602 unlock_page(page);
1603 put_page(page);
1604 page_nid = -1;
1605 goto out_unlock;
1606 }
1607
1608 /* Bail if we fail to protect against THP splits for any reason */
1609 if (unlikely(!anon_vma)) {
1610 put_page(page);
1611 page_nid = -1;
1612 goto clear_pmdnuma;
1613 }
1614
1615 /*
1616 * Since we took the NUMA fault, we must have observed the !accessible
1617 * bit. Make sure all other CPUs agree with that, to avoid them
1618 * modifying the page we're about to migrate.
1619 *
1620 * Must be done under PTL such that we'll observe the relevant
1621 * inc_tlb_flush_pending().
1622 *
1623 * We are not sure a pending tlb flush here is for a huge page
1624 * mapping or not. Hence use the tlb range variant
1625 */
1626 if (mm_tlb_flush_pending(vma->vm_mm))
1627 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1628
1629 /*
1630 * Migrate the THP to the requested node, returns with page unlocked
1631 * and access rights restored.
1632 */
1633 spin_unlock(vmf->ptl);
1634
1635 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1636 vmf->pmd, pmd, vmf->address, page, target_nid);
1637 if (migrated) {
1638 flags |= TNF_MIGRATED;
1639 page_nid = target_nid;
1640 } else
1641 flags |= TNF_MIGRATE_FAIL;
1642
1643 goto out;
1644clear_pmdnuma:
1645 BUG_ON(!PageLocked(page));
1646 was_writable = pmd_savedwrite(pmd);
1647 pmd = pmd_modify(pmd, vma->vm_page_prot);
1648 pmd = pmd_mkyoung(pmd);
1649 if (was_writable)
1650 pmd = pmd_mkwrite(pmd);
1651 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1652 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1653 unlock_page(page);
1654out_unlock:
1655 spin_unlock(vmf->ptl);
1656
1657out:
1658 if (anon_vma)
1659 page_unlock_anon_vma_read(anon_vma);
1660
1661 if (page_nid != -1)
1662 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1663 flags);
1664
1665 return 0;
1666}
1667
1668/*
1669 * Return true if we do MADV_FREE successfully on entire pmd page.
1670 * Otherwise, return false.
1671 */
1672bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1673 pmd_t *pmd, unsigned long addr, unsigned long next)
1674{
1675 spinlock_t *ptl;
1676 pmd_t orig_pmd;
1677 struct page *page;
1678 struct mm_struct *mm = tlb->mm;
1679 bool ret = false;
1680
1681 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1682
1683 ptl = pmd_trans_huge_lock(pmd, vma);
1684 if (!ptl)
1685 goto out_unlocked;
1686
1687 orig_pmd = *pmd;
1688 if (is_huge_zero_pmd(orig_pmd))
1689 goto out;
1690
1691 if (unlikely(!pmd_present(orig_pmd))) {
1692 VM_BUG_ON(thp_migration_supported() &&
1693 !is_pmd_migration_entry(orig_pmd));
1694 goto out;
1695 }
1696
1697 page = pmd_page(orig_pmd);
1698 /*
1699 * If other processes are mapping this page, we couldn't discard
1700 * the page unless they all do MADV_FREE so let's skip the page.
1701 */
1702 if (page_mapcount(page) != 1)
1703 goto out;
1704
1705 if (!trylock_page(page))
1706 goto out;
1707
1708 /*
1709 * If user want to discard part-pages of THP, split it so MADV_FREE
1710 * will deactivate only them.
1711 */
1712 if (next - addr != HPAGE_PMD_SIZE) {
1713 get_page(page);
1714 spin_unlock(ptl);
1715 split_huge_page(page);
1716 unlock_page(page);
1717 put_page(page);
1718 goto out_unlocked;
1719 }
1720
1721 if (PageDirty(page))
1722 ClearPageDirty(page);
1723 unlock_page(page);
1724
1725 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1726 pmdp_invalidate(vma, addr, pmd);
1727 orig_pmd = pmd_mkold(orig_pmd);
1728 orig_pmd = pmd_mkclean(orig_pmd);
1729
1730 set_pmd_at(mm, addr, pmd, orig_pmd);
1731 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1732 }
1733
1734 mark_page_lazyfree(page);
1735 ret = true;
1736out:
1737 spin_unlock(ptl);
1738out_unlocked:
1739 return ret;
1740}
1741
1742static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1743{
1744 pgtable_t pgtable;
1745
1746 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1747 pte_free(mm, pgtable);
1748 mm_dec_nr_ptes(mm);
1749}
1750
1751int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1752 pmd_t *pmd, unsigned long addr)
1753{
1754 pmd_t orig_pmd;
1755 spinlock_t *ptl;
1756
1757 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1758
1759 ptl = __pmd_trans_huge_lock(pmd, vma);
1760 if (!ptl)
1761 return 0;
1762 /*
1763 * For architectures like ppc64 we look at deposited pgtable
1764 * when calling pmdp_huge_get_and_clear. So do the
1765 * pgtable_trans_huge_withdraw after finishing pmdp related
1766 * operations.
1767 */
1768 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1769 tlb->fullmm);
1770 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1771 if (vma_is_dax(vma)) {
1772 if (arch_needs_pgtable_deposit())
1773 zap_deposited_table(tlb->mm, pmd);
1774 spin_unlock(ptl);
1775 if (is_huge_zero_pmd(orig_pmd))
1776 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1777 } else if (is_huge_zero_pmd(orig_pmd)) {
1778 zap_deposited_table(tlb->mm, pmd);
1779 spin_unlock(ptl);
1780 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1781 } else {
1782 struct page *page = NULL;
1783 int flush_needed = 1;
1784
1785 if (pmd_present(orig_pmd)) {
1786 page = pmd_page(orig_pmd);
1787 page_remove_rmap(page, true);
1788 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1789 VM_BUG_ON_PAGE(!PageHead(page), page);
1790 } else if (thp_migration_supported()) {
1791 swp_entry_t entry;
1792
1793 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1794 entry = pmd_to_swp_entry(orig_pmd);
1795 page = pfn_to_page(swp_offset(entry));
1796 flush_needed = 0;
1797 } else
1798 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1799
1800 if (PageAnon(page)) {
1801 zap_deposited_table(tlb->mm, pmd);
1802 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1803 } else {
1804 if (arch_needs_pgtable_deposit())
1805 zap_deposited_table(tlb->mm, pmd);
1806 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1807 }
1808
1809 spin_unlock(ptl);
1810 if (flush_needed)
1811 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1812 }
1813 return 1;
1814}
1815
1816#ifndef pmd_move_must_withdraw
1817static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1818 spinlock_t *old_pmd_ptl,
1819 struct vm_area_struct *vma)
1820{
1821 /*
1822 * With split pmd lock we also need to move preallocated
1823 * PTE page table if new_pmd is on different PMD page table.
1824 *
1825 * We also don't deposit and withdraw tables for file pages.
1826 */
1827 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1828}
1829#endif
1830
1831static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1832{
1833#ifdef CONFIG_MEM_SOFT_DIRTY
1834 if (unlikely(is_pmd_migration_entry(pmd)))
1835 pmd = pmd_swp_mksoft_dirty(pmd);
1836 else if (pmd_present(pmd))
1837 pmd = pmd_mksoft_dirty(pmd);
1838#endif
1839 return pmd;
1840}
1841
1842bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1843 unsigned long new_addr, unsigned long old_end,
1844 pmd_t *old_pmd, pmd_t *new_pmd)
1845{
1846 spinlock_t *old_ptl, *new_ptl;
1847 pmd_t pmd;
1848 struct mm_struct *mm = vma->vm_mm;
1849 bool force_flush = false;
1850
1851 if ((old_addr & ~HPAGE_PMD_MASK) ||
1852 (new_addr & ~HPAGE_PMD_MASK) ||
1853 old_end - old_addr < HPAGE_PMD_SIZE)
1854 return false;
1855
1856 /*
1857 * The destination pmd shouldn't be established, free_pgtables()
1858 * should have release it.
1859 */
1860 if (WARN_ON(!pmd_none(*new_pmd))) {
1861 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1862 return false;
1863 }
1864
1865 /*
1866 * We don't have to worry about the ordering of src and dst
1867 * ptlocks because exclusive mmap_sem prevents deadlock.
1868 */
1869 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1870 if (old_ptl) {
1871 new_ptl = pmd_lockptr(mm, new_pmd);
1872 if (new_ptl != old_ptl)
1873 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1874 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1875 if (pmd_present(pmd))
1876 force_flush = true;
1877 VM_BUG_ON(!pmd_none(*new_pmd));
1878
1879 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1880 pgtable_t pgtable;
1881 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1882 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1883 }
1884 pmd = move_soft_dirty_pmd(pmd);
1885 set_pmd_at(mm, new_addr, new_pmd, pmd);
1886 if (force_flush)
1887 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1888 if (new_ptl != old_ptl)
1889 spin_unlock(new_ptl);
1890 spin_unlock(old_ptl);
1891 return true;
1892 }
1893 return false;
1894}
1895
1896/*
1897 * Returns
1898 * - 0 if PMD could not be locked
1899 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1900 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1901 */
1902int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1903 unsigned long addr, pgprot_t newprot, int prot_numa)
1904{
1905 struct mm_struct *mm = vma->vm_mm;
1906 spinlock_t *ptl;
1907 pmd_t entry;
1908 bool preserve_write;
1909 int ret;
1910
1911 ptl = __pmd_trans_huge_lock(pmd, vma);
1912 if (!ptl)
1913 return 0;
1914
1915 preserve_write = prot_numa && pmd_write(*pmd);
1916 ret = 1;
1917
1918#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1919 if (is_swap_pmd(*pmd)) {
1920 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1921
1922 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1923 if (is_write_migration_entry(entry)) {
1924 pmd_t newpmd;
1925 /*
1926 * A protection check is difficult so
1927 * just be safe and disable write
1928 */
1929 make_migration_entry_read(&entry);
1930 newpmd = swp_entry_to_pmd(entry);
1931 if (pmd_swp_soft_dirty(*pmd))
1932 newpmd = pmd_swp_mksoft_dirty(newpmd);
1933 set_pmd_at(mm, addr, pmd, newpmd);
1934 }
1935 goto unlock;
1936 }
1937#endif
1938
1939 /*
1940 * Avoid trapping faults against the zero page. The read-only
1941 * data is likely to be read-cached on the local CPU and
1942 * local/remote hits to the zero page are not interesting.
1943 */
1944 if (prot_numa && is_huge_zero_pmd(*pmd))
1945 goto unlock;
1946
1947 if (prot_numa && pmd_protnone(*pmd))
1948 goto unlock;
1949
1950 /*
1951 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1952 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1953 * which is also under down_read(mmap_sem):
1954 *
1955 * CPU0: CPU1:
1956 * change_huge_pmd(prot_numa=1)
1957 * pmdp_huge_get_and_clear_notify()
1958 * madvise_dontneed()
1959 * zap_pmd_range()
1960 * pmd_trans_huge(*pmd) == 0 (without ptl)
1961 * // skip the pmd
1962 * set_pmd_at();
1963 * // pmd is re-established
1964 *
1965 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1966 * which may break userspace.
1967 *
1968 * pmdp_invalidate() is required to make sure we don't miss
1969 * dirty/young flags set by hardware.
1970 */
1971 entry = pmdp_invalidate(vma, addr, pmd);
1972
1973 entry = pmd_modify(entry, newprot);
1974 if (preserve_write)
1975 entry = pmd_mk_savedwrite(entry);
1976 ret = HPAGE_PMD_NR;
1977 set_pmd_at(mm, addr, pmd, entry);
1978 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1979unlock:
1980 spin_unlock(ptl);
1981 return ret;
1982}
1983
1984/*
1985 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1986 *
1987 * Note that if it returns page table lock pointer, this routine returns without
1988 * unlocking page table lock. So callers must unlock it.
1989 */
1990spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1991{
1992 spinlock_t *ptl;
1993 ptl = pmd_lock(vma->vm_mm, pmd);
1994 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1995 pmd_devmap(*pmd)))
1996 return ptl;
1997 spin_unlock(ptl);
1998 return NULL;
1999}
2000
2001/*
2002 * Returns true if a given pud maps a thp, false otherwise.
2003 *
2004 * Note that if it returns true, this routine returns without unlocking page
2005 * table lock. So callers must unlock it.
2006 */
2007spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2008{
2009 spinlock_t *ptl;
2010
2011 ptl = pud_lock(vma->vm_mm, pud);
2012 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2013 return ptl;
2014 spin_unlock(ptl);
2015 return NULL;
2016}
2017
2018#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2019int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2020 pud_t *pud, unsigned long addr)
2021{
2022 pud_t orig_pud;
2023 spinlock_t *ptl;
2024
2025 ptl = __pud_trans_huge_lock(pud, vma);
2026 if (!ptl)
2027 return 0;
2028 /*
2029 * For architectures like ppc64 we look at deposited pgtable
2030 * when calling pudp_huge_get_and_clear. So do the
2031 * pgtable_trans_huge_withdraw after finishing pudp related
2032 * operations.
2033 */
2034 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2035 tlb->fullmm);
2036 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2037 if (vma_is_dax(vma)) {
2038 spin_unlock(ptl);
2039 /* No zero page support yet */
2040 } else {
2041 /* No support for anonymous PUD pages yet */
2042 BUG();
2043 }
2044 return 1;
2045}
2046
2047static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2048 unsigned long haddr)
2049{
2050 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2051 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2052 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2053 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2054
2055 count_vm_event(THP_SPLIT_PUD);
2056
2057 pudp_huge_clear_flush_notify(vma, haddr, pud);
2058}
2059
2060void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2061 unsigned long address)
2062{
2063 spinlock_t *ptl;
2064 struct mm_struct *mm = vma->vm_mm;
2065 unsigned long haddr = address & HPAGE_PUD_MASK;
2066
2067 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2068 ptl = pud_lock(mm, pud);
2069 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2070 goto out;
2071 __split_huge_pud_locked(vma, pud, haddr);
2072
2073out:
2074 spin_unlock(ptl);
2075 /*
2076 * No need to double call mmu_notifier->invalidate_range() callback as
2077 * the above pudp_huge_clear_flush_notify() did already call it.
2078 */
2079 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2080 HPAGE_PUD_SIZE);
2081}
2082#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2083
2084static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2085 unsigned long haddr, pmd_t *pmd)
2086{
2087 struct mm_struct *mm = vma->vm_mm;
2088 pgtable_t pgtable;
2089 pmd_t _pmd;
2090 int i;
2091
2092 /*
2093 * Leave pmd empty until pte is filled note that it is fine to delay
2094 * notification until mmu_notifier_invalidate_range_end() as we are
2095 * replacing a zero pmd write protected page with a zero pte write
2096 * protected page.
2097 *
2098 * See Documentation/vm/mmu_notifier.rst
2099 */
2100 pmdp_huge_clear_flush(vma, haddr, pmd);
2101
2102 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2103 pmd_populate(mm, &_pmd, pgtable);
2104
2105 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2106 pte_t *pte, entry;
2107 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2108 entry = pte_mkspecial(entry);
2109 pte = pte_offset_map(&_pmd, haddr);
2110 VM_BUG_ON(!pte_none(*pte));
2111 set_pte_at(mm, haddr, pte, entry);
2112 pte_unmap(pte);
2113 }
2114 smp_wmb(); /* make pte visible before pmd */
2115 pmd_populate(mm, pmd, pgtable);
2116}
2117
2118static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2119 unsigned long haddr, bool freeze)
2120{
2121 struct mm_struct *mm = vma->vm_mm;
2122 struct page *page;
2123 pgtable_t pgtable;
2124 pmd_t old_pmd, _pmd;
2125 bool young, write, soft_dirty, pmd_migration = false;
2126 unsigned long addr;
2127 int i;
2128
2129 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2130 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2131 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2132 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2133 && !pmd_devmap(*pmd));
2134
2135 count_vm_event(THP_SPLIT_PMD);
2136
2137 if (!vma_is_anonymous(vma)) {
2138 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2139 /*
2140 * We are going to unmap this huge page. So
2141 * just go ahead and zap it
2142 */
2143 if (arch_needs_pgtable_deposit())
2144 zap_deposited_table(mm, pmd);
2145 if (vma_is_dax(vma))
2146 return;
2147 page = pmd_page(_pmd);
2148 if (!PageDirty(page) && pmd_dirty(_pmd))
2149 set_page_dirty(page);
2150 if (!PageReferenced(page) && pmd_young(_pmd))
2151 SetPageReferenced(page);
2152 page_remove_rmap(page, true);
2153 put_page(page);
2154 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2155 return;
2156 } else if (is_huge_zero_pmd(*pmd)) {
2157 /*
2158 * FIXME: Do we want to invalidate secondary mmu by calling
2159 * mmu_notifier_invalidate_range() see comments below inside
2160 * __split_huge_pmd() ?
2161 *
2162 * We are going from a zero huge page write protected to zero
2163 * small page also write protected so it does not seems useful
2164 * to invalidate secondary mmu at this time.
2165 */
2166 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2167 }
2168
2169 /*
2170 * Up to this point the pmd is present and huge and userland has the
2171 * whole access to the hugepage during the split (which happens in
2172 * place). If we overwrite the pmd with the not-huge version pointing
2173 * to the pte here (which of course we could if all CPUs were bug
2174 * free), userland could trigger a small page size TLB miss on the
2175 * small sized TLB while the hugepage TLB entry is still established in
2176 * the huge TLB. Some CPU doesn't like that.
2177 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2178 * 383 on page 93. Intel should be safe but is also warns that it's
2179 * only safe if the permission and cache attributes of the two entries
2180 * loaded in the two TLB is identical (which should be the case here).
2181 * But it is generally safer to never allow small and huge TLB entries
2182 * for the same virtual address to be loaded simultaneously. So instead
2183 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2184 * current pmd notpresent (atomically because here the pmd_trans_huge
2185 * must remain set at all times on the pmd until the split is complete
2186 * for this pmd), then we flush the SMP TLB and finally we write the
2187 * non-huge version of the pmd entry with pmd_populate.
2188 */
2189 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2190
2191 pmd_migration = is_pmd_migration_entry(old_pmd);
2192 if (unlikely(pmd_migration)) {
2193 swp_entry_t entry;
2194
2195 entry = pmd_to_swp_entry(old_pmd);
2196 page = pfn_to_page(swp_offset(entry));
2197 write = is_write_migration_entry(entry);
2198 young = false;
2199 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2200 } else {
2201 page = pmd_page(old_pmd);
2202 if (pmd_dirty(old_pmd))
2203 SetPageDirty(page);
2204 write = pmd_write(old_pmd);
2205 young = pmd_young(old_pmd);
2206 soft_dirty = pmd_soft_dirty(old_pmd);
2207 }
2208 VM_BUG_ON_PAGE(!page_count(page), page);
2209 page_ref_add(page, HPAGE_PMD_NR - 1);
2210
2211 /*
2212 * Withdraw the table only after we mark the pmd entry invalid.
2213 * This's critical for some architectures (Power).
2214 */
2215 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2216 pmd_populate(mm, &_pmd, pgtable);
2217
2218 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2219 pte_t entry, *pte;
2220 /*
2221 * Note that NUMA hinting access restrictions are not
2222 * transferred to avoid any possibility of altering
2223 * permissions across VMAs.
2224 */
2225 if (freeze || pmd_migration) {
2226 swp_entry_t swp_entry;
2227 swp_entry = make_migration_entry(page + i, write);
2228 entry = swp_entry_to_pte(swp_entry);
2229 if (soft_dirty)
2230 entry = pte_swp_mksoft_dirty(entry);
2231 } else {
2232 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2233 entry = maybe_mkwrite(entry, vma);
2234 if (!write)
2235 entry = pte_wrprotect(entry);
2236 if (!young)
2237 entry = pte_mkold(entry);
2238 if (soft_dirty)
2239 entry = pte_mksoft_dirty(entry);
2240 }
2241 pte = pte_offset_map(&_pmd, addr);
2242 BUG_ON(!pte_none(*pte));
2243 set_pte_at(mm, addr, pte, entry);
2244 atomic_inc(&page[i]._mapcount);
2245 pte_unmap(pte);
2246 }
2247
2248 /*
2249 * Set PG_double_map before dropping compound_mapcount to avoid
2250 * false-negative page_mapped().
2251 */
2252 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2253 for (i = 0; i < HPAGE_PMD_NR; i++)
2254 atomic_inc(&page[i]._mapcount);
2255 }
2256
2257 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2258 /* Last compound_mapcount is gone. */
2259 __dec_node_page_state(page, NR_ANON_THPS);
2260 if (TestClearPageDoubleMap(page)) {
2261 /* No need in mapcount reference anymore */
2262 for (i = 0; i < HPAGE_PMD_NR; i++)
2263 atomic_dec(&page[i]._mapcount);
2264 }
2265 }
2266
2267 smp_wmb(); /* make pte visible before pmd */
2268 pmd_populate(mm, pmd, pgtable);
2269
2270 if (freeze) {
2271 for (i = 0; i < HPAGE_PMD_NR; i++) {
2272 page_remove_rmap(page + i, false);
2273 put_page(page + i);
2274 }
2275 }
2276}
2277
2278void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2279 unsigned long address, bool freeze, struct page *page)
2280{
2281 spinlock_t *ptl;
2282 struct mm_struct *mm = vma->vm_mm;
2283 unsigned long haddr = address & HPAGE_PMD_MASK;
2284
2285 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2286 ptl = pmd_lock(mm, pmd);
2287
2288 /*
2289 * If caller asks to setup a migration entries, we need a page to check
2290 * pmd against. Otherwise we can end up replacing wrong page.
2291 */
2292 VM_BUG_ON(freeze && !page);
2293 if (page && page != pmd_page(*pmd))
2294 goto out;
2295
2296 if (pmd_trans_huge(*pmd)) {
2297 page = pmd_page(*pmd);
2298 if (PageMlocked(page))
2299 clear_page_mlock(page);
2300 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2301 goto out;
2302 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2303out:
2304 spin_unlock(ptl);
2305 /*
2306 * No need to double call mmu_notifier->invalidate_range() callback.
2307 * They are 3 cases to consider inside __split_huge_pmd_locked():
2308 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2309 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2310 * fault will trigger a flush_notify before pointing to a new page
2311 * (it is fine if the secondary mmu keeps pointing to the old zero
2312 * page in the meantime)
2313 * 3) Split a huge pmd into pte pointing to the same page. No need
2314 * to invalidate secondary tlb entry they are all still valid.
2315 * any further changes to individual pte will notify. So no need
2316 * to call mmu_notifier->invalidate_range()
2317 */
2318 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2319 HPAGE_PMD_SIZE);
2320}
2321
2322void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2323 bool freeze, struct page *page)
2324{
2325 pgd_t *pgd;
2326 p4d_t *p4d;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 pgd = pgd_offset(vma->vm_mm, address);
2331 if (!pgd_present(*pgd))
2332 return;
2333
2334 p4d = p4d_offset(pgd, address);
2335 if (!p4d_present(*p4d))
2336 return;
2337
2338 pud = pud_offset(p4d, address);
2339 if (!pud_present(*pud))
2340 return;
2341
2342 pmd = pmd_offset(pud, address);
2343
2344 __split_huge_pmd(vma, pmd, address, freeze, page);
2345}
2346
2347void vma_adjust_trans_huge(struct vm_area_struct *vma,
2348 unsigned long start,
2349 unsigned long end,
2350 long adjust_next)
2351{
2352 /*
2353 * If the new start address isn't hpage aligned and it could
2354 * previously contain an hugepage: check if we need to split
2355 * an huge pmd.
2356 */
2357 if (start & ~HPAGE_PMD_MASK &&
2358 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2359 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2360 split_huge_pmd_address(vma, start, false, NULL);
2361
2362 /*
2363 * If the new end address isn't hpage aligned and it could
2364 * previously contain an hugepage: check if we need to split
2365 * an huge pmd.
2366 */
2367 if (end & ~HPAGE_PMD_MASK &&
2368 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2369 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2370 split_huge_pmd_address(vma, end, false, NULL);
2371
2372 /*
2373 * If we're also updating the vma->vm_next->vm_start, if the new
2374 * vm_next->vm_start isn't page aligned and it could previously
2375 * contain an hugepage: check if we need to split an huge pmd.
2376 */
2377 if (adjust_next > 0) {
2378 struct vm_area_struct *next = vma->vm_next;
2379 unsigned long nstart = next->vm_start;
2380 nstart += adjust_next << PAGE_SHIFT;
2381 if (nstart & ~HPAGE_PMD_MASK &&
2382 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2383 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2384 split_huge_pmd_address(next, nstart, false, NULL);
2385 }
2386}
2387
2388static void unmap_page(struct page *page)
2389{
2390 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2391 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2392 bool unmap_success;
2393
2394 VM_BUG_ON_PAGE(!PageHead(page), page);
2395
2396 if (PageAnon(page))
2397 ttu_flags |= TTU_SPLIT_FREEZE;
2398
2399 unmap_success = try_to_unmap(page, ttu_flags);
2400 VM_BUG_ON_PAGE(!unmap_success, page);
2401}
2402
2403static void remap_page(struct page *page)
2404{
2405 int i;
2406 if (PageTransHuge(page)) {
2407 remove_migration_ptes(page, page, true);
2408 } else {
2409 for (i = 0; i < HPAGE_PMD_NR; i++)
2410 remove_migration_ptes(page + i, page + i, true);
2411 }
2412}
2413
2414static void __split_huge_page_tail(struct page *head, int tail,
2415 struct lruvec *lruvec, struct list_head *list)
2416{
2417 struct page *page_tail = head + tail;
2418
2419 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2420
2421 /*
2422 * Clone page flags before unfreezing refcount.
2423 *
2424 * After successful get_page_unless_zero() might follow flags change,
2425 * for exmaple lock_page() which set PG_waiters.
2426 */
2427 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2428 page_tail->flags |= (head->flags &
2429 ((1L << PG_referenced) |
2430 (1L << PG_swapbacked) |
2431 (1L << PG_swapcache) |
2432 (1L << PG_mlocked) |
2433 (1L << PG_uptodate) |
2434 (1L << PG_active) |
2435 (1L << PG_workingset) |
2436 (1L << PG_locked) |
2437 (1L << PG_unevictable) |
2438 (1L << PG_dirty)));
2439
2440 /* ->mapping in first tail page is compound_mapcount */
2441 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2442 page_tail);
2443 page_tail->mapping = head->mapping;
2444 page_tail->index = head->index + tail;
2445
2446 /* Page flags must be visible before we make the page non-compound. */
2447 smp_wmb();
2448
2449 /*
2450 * Clear PageTail before unfreezing page refcount.
2451 *
2452 * After successful get_page_unless_zero() might follow put_page()
2453 * which needs correct compound_head().
2454 */
2455 clear_compound_head(page_tail);
2456
2457 /* Finally unfreeze refcount. Additional reference from page cache. */
2458 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2459 PageSwapCache(head)));
2460
2461 if (page_is_young(head))
2462 set_page_young(page_tail);
2463 if (page_is_idle(head))
2464 set_page_idle(page_tail);
2465
2466 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2467
2468 /*
2469 * always add to the tail because some iterators expect new
2470 * pages to show after the currently processed elements - e.g.
2471 * migrate_pages
2472 */
2473 lru_add_page_tail(head, page_tail, lruvec, list);
2474}
2475
2476static void __split_huge_page(struct page *page, struct list_head *list,
2477 pgoff_t end, unsigned long flags)
2478{
2479 struct page *head = compound_head(page);
2480 struct zone *zone = page_zone(head);
2481 struct lruvec *lruvec;
2482 int i;
2483
2484 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2485
2486 /* complete memcg works before add pages to LRU */
2487 mem_cgroup_split_huge_fixup(head);
2488
2489 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2490 __split_huge_page_tail(head, i, lruvec, list);
2491 /* Some pages can be beyond i_size: drop them from page cache */
2492 if (head[i].index >= end) {
2493 ClearPageDirty(head + i);
2494 __delete_from_page_cache(head + i, NULL);
2495 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2496 shmem_uncharge(head->mapping->host, 1);
2497 put_page(head + i);
2498 }
2499 }
2500
2501 ClearPageCompound(head);
2502
2503 split_page_owner(head, HPAGE_PMD_ORDER);
2504
2505 /* See comment in __split_huge_page_tail() */
2506 if (PageAnon(head)) {
2507 /* Additional pin to radix tree of swap cache */
2508 if (PageSwapCache(head))
2509 page_ref_add(head, 2);
2510 else
2511 page_ref_inc(head);
2512 } else {
2513 /* Additional pin to radix tree */
2514 page_ref_add(head, 2);
2515 xa_unlock(&head->mapping->i_pages);
2516 }
2517
2518 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2519
2520 remap_page(head);
2521
2522 for (i = 0; i < HPAGE_PMD_NR; i++) {
2523 struct page *subpage = head + i;
2524 if (subpage == page)
2525 continue;
2526 unlock_page(subpage);
2527
2528 /*
2529 * Subpages may be freed if there wasn't any mapping
2530 * like if add_to_swap() is running on a lru page that
2531 * had its mapping zapped. And freeing these pages
2532 * requires taking the lru_lock so we do the put_page
2533 * of the tail pages after the split is complete.
2534 */
2535 put_page(subpage);
2536 }
2537}
2538
2539int total_mapcount(struct page *page)
2540{
2541 int i, compound, ret;
2542
2543 VM_BUG_ON_PAGE(PageTail(page), page);
2544
2545 if (likely(!PageCompound(page)))
2546 return atomic_read(&page->_mapcount) + 1;
2547
2548 compound = compound_mapcount(page);
2549 if (PageHuge(page))
2550 return compound;
2551 ret = compound;
2552 for (i = 0; i < HPAGE_PMD_NR; i++)
2553 ret += atomic_read(&page[i]._mapcount) + 1;
2554 /* File pages has compound_mapcount included in _mapcount */
2555 if (!PageAnon(page))
2556 return ret - compound * HPAGE_PMD_NR;
2557 if (PageDoubleMap(page))
2558 ret -= HPAGE_PMD_NR;
2559 return ret;
2560}
2561
2562/*
2563 * This calculates accurately how many mappings a transparent hugepage
2564 * has (unlike page_mapcount() which isn't fully accurate). This full
2565 * accuracy is primarily needed to know if copy-on-write faults can
2566 * reuse the page and change the mapping to read-write instead of
2567 * copying them. At the same time this returns the total_mapcount too.
2568 *
2569 * The function returns the highest mapcount any one of the subpages
2570 * has. If the return value is one, even if different processes are
2571 * mapping different subpages of the transparent hugepage, they can
2572 * all reuse it, because each process is reusing a different subpage.
2573 *
2574 * The total_mapcount is instead counting all virtual mappings of the
2575 * subpages. If the total_mapcount is equal to "one", it tells the
2576 * caller all mappings belong to the same "mm" and in turn the
2577 * anon_vma of the transparent hugepage can become the vma->anon_vma
2578 * local one as no other process may be mapping any of the subpages.
2579 *
2580 * It would be more accurate to replace page_mapcount() with
2581 * page_trans_huge_mapcount(), however we only use
2582 * page_trans_huge_mapcount() in the copy-on-write faults where we
2583 * need full accuracy to avoid breaking page pinning, because
2584 * page_trans_huge_mapcount() is slower than page_mapcount().
2585 */
2586int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2587{
2588 int i, ret, _total_mapcount, mapcount;
2589
2590 /* hugetlbfs shouldn't call it */
2591 VM_BUG_ON_PAGE(PageHuge(page), page);
2592
2593 if (likely(!PageTransCompound(page))) {
2594 mapcount = atomic_read(&page->_mapcount) + 1;
2595 if (total_mapcount)
2596 *total_mapcount = mapcount;
2597 return mapcount;
2598 }
2599
2600 page = compound_head(page);
2601
2602 _total_mapcount = ret = 0;
2603 for (i = 0; i < HPAGE_PMD_NR; i++) {
2604 mapcount = atomic_read(&page[i]._mapcount) + 1;
2605 ret = max(ret, mapcount);
2606 _total_mapcount += mapcount;
2607 }
2608 if (PageDoubleMap(page)) {
2609 ret -= 1;
2610 _total_mapcount -= HPAGE_PMD_NR;
2611 }
2612 mapcount = compound_mapcount(page);
2613 ret += mapcount;
2614 _total_mapcount += mapcount;
2615 if (total_mapcount)
2616 *total_mapcount = _total_mapcount;
2617 return ret;
2618}
2619
2620/* Racy check whether the huge page can be split */
2621bool can_split_huge_page(struct page *page, int *pextra_pins)
2622{
2623 int extra_pins;
2624
2625 /* Additional pins from radix tree */
2626 if (PageAnon(page))
2627 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2628 else
2629 extra_pins = HPAGE_PMD_NR;
2630 if (pextra_pins)
2631 *pextra_pins = extra_pins;
2632 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2633}
2634
2635/*
2636 * This function splits huge page into normal pages. @page can point to any
2637 * subpage of huge page to split. Split doesn't change the position of @page.
2638 *
2639 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2640 * The huge page must be locked.
2641 *
2642 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2643 *
2644 * Both head page and tail pages will inherit mapping, flags, and so on from
2645 * the hugepage.
2646 *
2647 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2648 * they are not mapped.
2649 *
2650 * Returns 0 if the hugepage is split successfully.
2651 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2652 * us.
2653 */
2654int split_huge_page_to_list(struct page *page, struct list_head *list)
2655{
2656 struct page *head = compound_head(page);
2657 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2658 struct anon_vma *anon_vma = NULL;
2659 struct address_space *mapping = NULL;
2660 int count, mapcount, extra_pins, ret;
2661 bool mlocked;
2662 unsigned long flags;
2663 pgoff_t end;
2664
2665 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2666 VM_BUG_ON_PAGE(!PageLocked(page), page);
2667 VM_BUG_ON_PAGE(!PageCompound(page), page);
2668
2669 if (PageWriteback(page))
2670 return -EBUSY;
2671
2672 if (PageAnon(head)) {
2673 /*
2674 * The caller does not necessarily hold an mmap_sem that would
2675 * prevent the anon_vma disappearing so we first we take a
2676 * reference to it and then lock the anon_vma for write. This
2677 * is similar to page_lock_anon_vma_read except the write lock
2678 * is taken to serialise against parallel split or collapse
2679 * operations.
2680 */
2681 anon_vma = page_get_anon_vma(head);
2682 if (!anon_vma) {
2683 ret = -EBUSY;
2684 goto out;
2685 }
2686 end = -1;
2687 mapping = NULL;
2688 anon_vma_lock_write(anon_vma);
2689 } else {
2690 mapping = head->mapping;
2691
2692 /* Truncated ? */
2693 if (!mapping) {
2694 ret = -EBUSY;
2695 goto out;
2696 }
2697
2698 anon_vma = NULL;
2699 i_mmap_lock_read(mapping);
2700
2701 /*
2702 *__split_huge_page() may need to trim off pages beyond EOF:
2703 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2704 * which cannot be nested inside the page tree lock. So note
2705 * end now: i_size itself may be changed at any moment, but
2706 * head page lock is good enough to serialize the trimming.
2707 */
2708 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2709 }
2710
2711 /*
2712 * Racy check if we can split the page, before unmap_page() will
2713 * split PMDs
2714 */
2715 if (!can_split_huge_page(head, &extra_pins)) {
2716 ret = -EBUSY;
2717 goto out_unlock;
2718 }
2719
2720 mlocked = PageMlocked(page);
2721 unmap_page(head);
2722 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2723
2724 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2725 if (mlocked)
2726 lru_add_drain();
2727
2728 /* prevent PageLRU to go away from under us, and freeze lru stats */
2729 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2730
2731 if (mapping) {
2732 void **pslot;
2733
2734 xa_lock(&mapping->i_pages);
2735 pslot = radix_tree_lookup_slot(&mapping->i_pages,
2736 page_index(head));
2737 /*
2738 * Check if the head page is present in radix tree.
2739 * We assume all tail are present too, if head is there.
2740 */
2741 if (radix_tree_deref_slot_protected(pslot,
2742 &mapping->i_pages.xa_lock) != head)
2743 goto fail;
2744 }
2745
2746 /* Prevent deferred_split_scan() touching ->_refcount */
2747 spin_lock(&pgdata->split_queue_lock);
2748 count = page_count(head);
2749 mapcount = total_mapcount(head);
2750 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2751 if (!list_empty(page_deferred_list(head))) {
2752 pgdata->split_queue_len--;
2753 list_del(page_deferred_list(head));
2754 }
2755 if (mapping)
2756 __dec_node_page_state(page, NR_SHMEM_THPS);
2757 spin_unlock(&pgdata->split_queue_lock);
2758 __split_huge_page(page, list, end, flags);
2759 if (PageSwapCache(head)) {
2760 swp_entry_t entry = { .val = page_private(head) };
2761
2762 ret = split_swap_cluster(entry);
2763 } else
2764 ret = 0;
2765 } else {
2766 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2767 pr_alert("total_mapcount: %u, page_count(): %u\n",
2768 mapcount, count);
2769 if (PageTail(page))
2770 dump_page(head, NULL);
2771 dump_page(page, "total_mapcount(head) > 0");
2772 BUG();
2773 }
2774 spin_unlock(&pgdata->split_queue_lock);
2775fail: if (mapping)
2776 xa_unlock(&mapping->i_pages);
2777 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2778 remap_page(head);
2779 ret = -EBUSY;
2780 }
2781
2782out_unlock:
2783 if (anon_vma) {
2784 anon_vma_unlock_write(anon_vma);
2785 put_anon_vma(anon_vma);
2786 }
2787 if (mapping)
2788 i_mmap_unlock_read(mapping);
2789out:
2790 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2791 return ret;
2792}
2793
2794void free_transhuge_page(struct page *page)
2795{
2796 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2797 unsigned long flags;
2798
2799 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2800 if (!list_empty(page_deferred_list(page))) {
2801 pgdata->split_queue_len--;
2802 list_del(page_deferred_list(page));
2803 }
2804 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2805 free_compound_page(page);
2806}
2807
2808void deferred_split_huge_page(struct page *page)
2809{
2810 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2811 unsigned long flags;
2812
2813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814
2815 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2816 if (list_empty(page_deferred_list(page))) {
2817 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2818 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2819 pgdata->split_queue_len++;
2820 }
2821 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2822}
2823
2824static unsigned long deferred_split_count(struct shrinker *shrink,
2825 struct shrink_control *sc)
2826{
2827 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2828 return READ_ONCE(pgdata->split_queue_len);
2829}
2830
2831static unsigned long deferred_split_scan(struct shrinker *shrink,
2832 struct shrink_control *sc)
2833{
2834 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2835 unsigned long flags;
2836 LIST_HEAD(list), *pos, *next;
2837 struct page *page;
2838 int split = 0;
2839
2840 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2841 /* Take pin on all head pages to avoid freeing them under us */
2842 list_for_each_safe(pos, next, &pgdata->split_queue) {
2843 page = list_entry((void *)pos, struct page, mapping);
2844 page = compound_head(page);
2845 if (get_page_unless_zero(page)) {
2846 list_move(page_deferred_list(page), &list);
2847 } else {
2848 /* We lost race with put_compound_page() */
2849 list_del_init(page_deferred_list(page));
2850 pgdata->split_queue_len--;
2851 }
2852 if (!--sc->nr_to_scan)
2853 break;
2854 }
2855 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2856
2857 list_for_each_safe(pos, next, &list) {
2858 page = list_entry((void *)pos, struct page, mapping);
2859 if (!trylock_page(page))
2860 goto next;
2861 /* split_huge_page() removes page from list on success */
2862 if (!split_huge_page(page))
2863 split++;
2864 unlock_page(page);
2865next:
2866 put_page(page);
2867 }
2868
2869 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2870 list_splice_tail(&list, &pgdata->split_queue);
2871 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2872
2873 /*
2874 * Stop shrinker if we didn't split any page, but the queue is empty.
2875 * This can happen if pages were freed under us.
2876 */
2877 if (!split && list_empty(&pgdata->split_queue))
2878 return SHRINK_STOP;
2879 return split;
2880}
2881
2882static struct shrinker deferred_split_shrinker = {
2883 .count_objects = deferred_split_count,
2884 .scan_objects = deferred_split_scan,
2885 .seeks = DEFAULT_SEEKS,
2886 .flags = SHRINKER_NUMA_AWARE,
2887};
2888
2889#ifdef CONFIG_DEBUG_FS
2890static int split_huge_pages_set(void *data, u64 val)
2891{
2892 struct zone *zone;
2893 struct page *page;
2894 unsigned long pfn, max_zone_pfn;
2895 unsigned long total = 0, split = 0;
2896
2897 if (val != 1)
2898 return -EINVAL;
2899
2900 for_each_populated_zone(zone) {
2901 max_zone_pfn = zone_end_pfn(zone);
2902 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2903 if (!pfn_valid(pfn))
2904 continue;
2905
2906 page = pfn_to_page(pfn);
2907 if (!get_page_unless_zero(page))
2908 continue;
2909
2910 if (zone != page_zone(page))
2911 goto next;
2912
2913 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2914 goto next;
2915
2916 total++;
2917 lock_page(page);
2918 if (!split_huge_page(page))
2919 split++;
2920 unlock_page(page);
2921next:
2922 put_page(page);
2923 }
2924 }
2925
2926 pr_info("%lu of %lu THP split\n", split, total);
2927
2928 return 0;
2929}
2930DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2931 "%llu\n");
2932
2933static int __init split_huge_pages_debugfs(void)
2934{
2935 void *ret;
2936
2937 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2938 &split_huge_pages_fops);
2939 if (!ret)
2940 pr_warn("Failed to create split_huge_pages in debugfs");
2941 return 0;
2942}
2943late_initcall(split_huge_pages_debugfs);
2944#endif
2945
2946#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2947void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2948 struct page *page)
2949{
2950 struct vm_area_struct *vma = pvmw->vma;
2951 struct mm_struct *mm = vma->vm_mm;
2952 unsigned long address = pvmw->address;
2953 pmd_t pmdval;
2954 swp_entry_t entry;
2955 pmd_t pmdswp;
2956
2957 if (!(pvmw->pmd && !pvmw->pte))
2958 return;
2959
2960 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2961 pmdval = *pvmw->pmd;
2962 pmdp_invalidate(vma, address, pvmw->pmd);
2963 if (pmd_dirty(pmdval))
2964 set_page_dirty(page);
2965 entry = make_migration_entry(page, pmd_write(pmdval));
2966 pmdswp = swp_entry_to_pmd(entry);
2967 if (pmd_soft_dirty(pmdval))
2968 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2969 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2970 page_remove_rmap(page, true);
2971 put_page(page);
2972}
2973
2974void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2975{
2976 struct vm_area_struct *vma = pvmw->vma;
2977 struct mm_struct *mm = vma->vm_mm;
2978 unsigned long address = pvmw->address;
2979 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2980 pmd_t pmde;
2981 swp_entry_t entry;
2982
2983 if (!(pvmw->pmd && !pvmw->pte))
2984 return;
2985
2986 entry = pmd_to_swp_entry(*pvmw->pmd);
2987 get_page(new);
2988 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2989 if (pmd_swp_soft_dirty(*pvmw->pmd))
2990 pmde = pmd_mksoft_dirty(pmde);
2991 if (is_write_migration_entry(entry))
2992 pmde = maybe_pmd_mkwrite(pmde, vma);
2993
2994 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2995 if (PageAnon(new))
2996 page_add_anon_rmap(new, vma, mmun_start, true);
2997 else
2998 page_add_file_rmap(new, true);
2999 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3000 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3001 mlock_vma_page(new);
3002 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3003}
3004#endif