blob: cd8a92e7a39eb25b8a7862a9bb60a778de7b8c20 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <crypto/hash.h>
251#include <linux/kernel.h>
252#include <linux/module.h>
253#include <linux/types.h>
254#include <linux/fcntl.h>
255#include <linux/poll.h>
256#include <linux/inet_diag.h>
257#include <linux/init.h>
258#include <linux/fs.h>
259#include <linux/skbuff.h>
260#include <linux/scatterlist.h>
261#include <linux/splice.h>
262#include <linux/net.h>
263#include <linux/socket.h>
264#include <linux/random.h>
265#include <linux/bootmem.h>
266#include <linux/highmem.h>
267#include <linux/swap.h>
268#include <linux/cache.h>
269#include <linux/err.h>
270#include <linux/time.h>
271#include <linux/slab.h>
272#include <linux/errqueue.h>
273#include <linux/static_key.h>
274
275#include <net/icmp.h>
276#include <net/inet_common.h>
277#include <net/tcp.h>
278#include <net/xfrm.h>
279#include <net/ip.h>
280#include <net/sock.h>
281
282#include <linux/uaccess.h>
283#include <asm/ioctls.h>
284#include <net/busy_poll.h>
285
286struct percpu_counter tcp_orphan_count;
287EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289long sysctl_tcp_mem[3] __read_mostly;
290EXPORT_SYMBOL(sysctl_tcp_mem);
291
292atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293EXPORT_SYMBOL(tcp_memory_allocated);
294
295#if IS_ENABLED(CONFIG_SMC)
296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297EXPORT_SYMBOL(tcp_have_smc);
298#endif
299
300/*
301 * Current number of TCP sockets.
302 */
303struct percpu_counter tcp_sockets_allocated;
304EXPORT_SYMBOL(tcp_sockets_allocated);
305
306/*
307 * TCP splice context
308 */
309struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313};
314
315/*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321unsigned long tcp_memory_pressure __read_mostly;
322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324void tcp_enter_memory_pressure(struct sock *sk)
325{
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336}
337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339void tcp_leave_memory_pressure(struct sock *sk)
340{
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349}
350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352/* Convert seconds to retransmits based on initial and max timeout */
353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354{
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370}
371
372/* Convert retransmits to seconds based on initial and max timeout */
373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374{
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387}
388
389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390{
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400}
401
402/* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407void tcp_init_sock(struct sock *sk)
408{
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457}
458EXPORT_SYMBOL(tcp_init_sock);
459
460void tcp_init_transfer(struct sock *sk, int bpf_op)
461{
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470}
471
472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473{
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486}
487
488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490{
491 return (READ_ONCE(tp->rcv_nxt) - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494}
495
496/*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504{
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602}
603EXPORT_SYMBOL(tcp_poll);
604
605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606{
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
643 }
644
645 return put_user(answ, (int __user *)arg);
646}
647EXPORT_SYMBOL(tcp_ioctl);
648
649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650{
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
653}
654
655static inline bool forced_push(const struct tcp_sock *tp)
656{
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658}
659
660static void skb_entail(struct sock *sk, struct sk_buff *skb)
661{
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677}
678
679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680{
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683}
684
685/* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697{
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702}
703
704static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
706{
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
709
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
715
716 tcp_mark_urg(tp, flags);
717
718 if (tcp_should_autocork(sk, skb, size_goal)) {
719
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 }
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
727 */
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
730 }
731
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
734
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
736}
737
738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
740{
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
743
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
749}
750
751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752{
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
757 };
758
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760}
761
762/**
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
769 *
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
772 *
773 **/
774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777{
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
783 };
784 long timeo;
785 ssize_t spliced;
786 int ret;
787
788 sock_rps_record_flow(sk);
789 /*
790 * We can't seek on a socket input
791 */
792 if (unlikely(*ppos))
793 return -ESPIPE;
794
795 ret = spliced = 0;
796
797 lock_sock(sk);
798
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
812 }
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
816 /*
817 * This occurs when user tries to read
818 * from never connected socket.
819 */
820 ret = -ENOTCONN;
821 break;
822 }
823 if (!timeo) {
824 ret = -EAGAIN;
825 break;
826 }
827 /* if __tcp_splice_read() got nothing while we have
828 * an skb in receive queue, we do not want to loop.
829 * This might happen with URG data.
830 */
831 if (!skb_queue_empty(&sk->sk_receive_queue))
832 break;
833 sk_wait_data(sk, &timeo, NULL);
834 if (signal_pending(current)) {
835 ret = sock_intr_errno(timeo);
836 break;
837 }
838 continue;
839 }
840 tss.len -= ret;
841 spliced += ret;
842
843 if (!timeo)
844 break;
845 release_sock(sk);
846 lock_sock(sk);
847
848 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 signal_pending(current))
851 break;
852 }
853
854 release_sock(sk);
855
856 if (spliced)
857 return spliced;
858
859 return ret;
860}
861EXPORT_SYMBOL(tcp_splice_read);
862
863struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 bool force_schedule)
865{
866 struct sk_buff *skb;
867
868 /* The TCP header must be at least 32-bit aligned. */
869 size = ALIGN(size, 4);
870
871 if (unlikely(tcp_under_memory_pressure(sk)))
872 sk_mem_reclaim_partial(sk);
873
874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
875 if (likely(skb)) {
876 bool mem_scheduled;
877
878 if (force_schedule) {
879 mem_scheduled = true;
880 sk_forced_mem_schedule(sk, skb->truesize);
881 } else {
882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 }
884 if (likely(mem_scheduled)) {
885 skb_reserve(skb, sk->sk_prot->max_header);
886 /*
887 * Make sure that we have exactly size bytes
888 * available to the caller, no more, no less.
889 */
890 skb->reserved_tailroom = skb->end - skb->tail - size;
891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 return skb;
893 }
894 __kfree_skb(skb);
895 } else {
896 sk->sk_prot->enter_memory_pressure(sk);
897 sk_stream_moderate_sndbuf(sk);
898 }
899 return NULL;
900}
901
902static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 int large_allowed)
904{
905 struct tcp_sock *tp = tcp_sk(sk);
906 u32 new_size_goal, size_goal;
907
908 if (!large_allowed)
909 return mss_now;
910
911 /* Note : tcp_tso_autosize() will eventually split this later */
912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
914
915 /* We try hard to avoid divides here */
916 size_goal = tp->gso_segs * mss_now;
917 if (unlikely(new_size_goal < size_goal ||
918 new_size_goal >= size_goal + mss_now)) {
919 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
920 sk->sk_gso_max_segs);
921 size_goal = tp->gso_segs * mss_now;
922 }
923
924 return max(size_goal, mss_now);
925}
926
927static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
928{
929 int mss_now;
930
931 mss_now = tcp_current_mss(sk);
932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
933
934 return mss_now;
935}
936
937/* In some cases, both sendpage() and sendmsg() could have added
938 * an skb to the write queue, but failed adding payload on it.
939 * We need to remove it to consume less memory, but more
940 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
941 * users.
942 */
943static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
944{
945 if (skb && !skb->len) {
946 tcp_unlink_write_queue(skb, sk);
947 if (tcp_write_queue_empty(sk))
948 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
949 sk_wmem_free_skb(sk, skb);
950 }
951}
952
953ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
954 size_t size, int flags)
955{
956 struct tcp_sock *tp = tcp_sk(sk);
957 int mss_now, size_goal;
958 int err;
959 ssize_t copied;
960 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
961
962 /* Wait for a connection to finish. One exception is TCP Fast Open
963 * (passive side) where data is allowed to be sent before a connection
964 * is fully established.
965 */
966 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
967 !tcp_passive_fastopen(sk)) {
968 err = sk_stream_wait_connect(sk, &timeo);
969 if (err != 0)
970 goto out_err;
971 }
972
973 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
974
975 mss_now = tcp_send_mss(sk, &size_goal, flags);
976 copied = 0;
977
978 err = -EPIPE;
979 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
980 goto out_err;
981
982 while (size > 0) {
983 struct sk_buff *skb = tcp_write_queue_tail(sk);
984 int copy, i;
985 bool can_coalesce;
986
987 if (!skb || (copy = size_goal - skb->len) <= 0 ||
988 !tcp_skb_can_collapse_to(skb)) {
989new_segment:
990 if (!sk_stream_memory_free(sk))
991 goto wait_for_sndbuf;
992
993 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
994 tcp_rtx_and_write_queues_empty(sk));
995 if (!skb)
996 goto wait_for_memory;
997
998 skb_entail(sk, skb);
999 copy = size_goal;
1000 }
1001
1002 if (copy > size)
1003 copy = size;
1004
1005 i = skb_shinfo(skb)->nr_frags;
1006 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1007 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1008 tcp_mark_push(tp, skb);
1009 goto new_segment;
1010 }
1011 if (!sk_wmem_schedule(sk, copy))
1012 goto wait_for_memory;
1013
1014 if (can_coalesce) {
1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 } else {
1017 get_page(page);
1018 skb_fill_page_desc(skb, i, page, offset, copy);
1019 }
1020
1021 if (!(flags & MSG_NO_SHARED_FRAGS))
1022 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1023
1024 skb->len += copy;
1025 skb->data_len += copy;
1026 skb->truesize += copy;
1027 sk->sk_wmem_queued += copy;
1028 sk_mem_charge(sk, copy);
1029 skb->ip_summed = CHECKSUM_PARTIAL;
1030 tp->write_seq += copy;
1031 TCP_SKB_CB(skb)->end_seq += copy;
1032 tcp_skb_pcount_set(skb, 0);
1033
1034 if (!copied)
1035 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1036
1037 copied += copy;
1038 offset += copy;
1039 size -= copy;
1040 if (!size)
1041 goto out;
1042
1043 if (skb->len < size_goal || (flags & MSG_OOB))
1044 continue;
1045
1046 if (forced_push(tp)) {
1047 tcp_mark_push(tp, skb);
1048 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1049 } else if (skb == tcp_send_head(sk))
1050 tcp_push_one(sk, mss_now);
1051 continue;
1052
1053wait_for_sndbuf:
1054 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1055wait_for_memory:
1056 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1057 TCP_NAGLE_PUSH, size_goal);
1058
1059 err = sk_stream_wait_memory(sk, &timeo);
1060 if (err != 0)
1061 goto do_error;
1062
1063 mss_now = tcp_send_mss(sk, &size_goal, flags);
1064 }
1065
1066out:
1067 if (copied) {
1068 tcp_tx_timestamp(sk, sk->sk_tsflags);
1069 if (!(flags & MSG_SENDPAGE_NOTLAST))
1070 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1071 }
1072 return copied;
1073
1074do_error:
1075 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1076 if (copied)
1077 goto out;
1078out_err:
1079 /* make sure we wake any epoll edge trigger waiter */
1080 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1081 sk->sk_write_space(sk);
1082 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1083 }
1084 return sk_stream_error(sk, flags, err);
1085}
1086EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1087
1088int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1089 size_t size, int flags)
1090{
1091 if (!(sk->sk_route_caps & NETIF_F_SG))
1092 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1093
1094 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1095
1096 return do_tcp_sendpages(sk, page, offset, size, flags);
1097}
1098EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1099
1100int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1101 size_t size, int flags)
1102{
1103 int ret;
1104
1105 lock_sock(sk);
1106 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1107 release_sock(sk);
1108
1109 return ret;
1110}
1111EXPORT_SYMBOL(tcp_sendpage);
1112
1113/* Do not bother using a page frag for very small frames.
1114 * But use this heuristic only for the first skb in write queue.
1115 *
1116 * Having no payload in skb->head allows better SACK shifting
1117 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1118 * write queue has less skbs.
1119 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1120 * This also speeds up tso_fragment(), since it wont fallback
1121 * to tcp_fragment().
1122 */
1123static int linear_payload_sz(bool first_skb)
1124{
1125 if (first_skb)
1126 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1127 return 0;
1128}
1129
1130static int select_size(bool first_skb, bool zc)
1131{
1132 if (zc)
1133 return 0;
1134 return linear_payload_sz(first_skb);
1135}
1136
1137void tcp_free_fastopen_req(struct tcp_sock *tp)
1138{
1139 if (tp->fastopen_req) {
1140 kfree(tp->fastopen_req);
1141 tp->fastopen_req = NULL;
1142 }
1143}
1144
1145static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1146 int *copied, size_t size)
1147{
1148 struct tcp_sock *tp = tcp_sk(sk);
1149 struct inet_sock *inet = inet_sk(sk);
1150 struct sockaddr *uaddr = msg->msg_name;
1151 int err, flags;
1152
1153 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1154 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1155 uaddr->sa_family == AF_UNSPEC))
1156 return -EOPNOTSUPP;
1157 if (tp->fastopen_req)
1158 return -EALREADY; /* Another Fast Open is in progress */
1159
1160 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1161 sk->sk_allocation);
1162 if (unlikely(!tp->fastopen_req))
1163 return -ENOBUFS;
1164 tp->fastopen_req->data = msg;
1165 tp->fastopen_req->size = size;
1166
1167 if (inet->defer_connect) {
1168 err = tcp_connect(sk);
1169 /* Same failure procedure as in tcp_v4/6_connect */
1170 if (err) {
1171 tcp_set_state(sk, TCP_CLOSE);
1172 inet->inet_dport = 0;
1173 sk->sk_route_caps = 0;
1174 }
1175 }
1176 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1177 err = __inet_stream_connect(sk->sk_socket, uaddr,
1178 msg->msg_namelen, flags, 1);
1179 /* fastopen_req could already be freed in __inet_stream_connect
1180 * if the connection times out or gets rst
1181 */
1182 if (tp->fastopen_req) {
1183 *copied = tp->fastopen_req->copied;
1184 tcp_free_fastopen_req(tp);
1185 inet->defer_connect = 0;
1186 }
1187 return err;
1188}
1189
1190int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1191{
1192 struct tcp_sock *tp = tcp_sk(sk);
1193 struct ubuf_info *uarg = NULL;
1194 struct sk_buff *skb;
1195 struct sockcm_cookie sockc;
1196 int flags, err, copied = 0;
1197 int mss_now = 0, size_goal, copied_syn = 0;
1198 bool process_backlog = false;
1199 bool zc = false;
1200 long timeo;
1201
1202 flags = msg->msg_flags;
1203
1204 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1205 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1206 err = -EINVAL;
1207 goto out_err;
1208 }
1209
1210 skb = tcp_write_queue_tail(sk);
1211 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1212 if (!uarg) {
1213 err = -ENOBUFS;
1214 goto out_err;
1215 }
1216
1217 zc = sk->sk_route_caps & NETIF_F_SG;
1218 if (!zc)
1219 uarg->zerocopy = 0;
1220 }
1221
1222 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1223 !tp->repair) {
1224 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1225 if (err == -EINPROGRESS && copied_syn > 0)
1226 goto out;
1227 else if (err)
1228 goto out_err;
1229 }
1230
1231 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1232
1233 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1234
1235 /* Wait for a connection to finish. One exception is TCP Fast Open
1236 * (passive side) where data is allowed to be sent before a connection
1237 * is fully established.
1238 */
1239 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1240 !tcp_passive_fastopen(sk)) {
1241 err = sk_stream_wait_connect(sk, &timeo);
1242 if (err != 0)
1243 goto do_error;
1244 }
1245
1246 if (unlikely(tp->repair)) {
1247 if (tp->repair_queue == TCP_RECV_QUEUE) {
1248 copied = tcp_send_rcvq(sk, msg, size);
1249 goto out_nopush;
1250 }
1251
1252 err = -EINVAL;
1253 if (tp->repair_queue == TCP_NO_QUEUE)
1254 goto out_err;
1255
1256 /* 'common' sending to sendq */
1257 }
1258
1259 sockcm_init(&sockc, sk);
1260 if (msg->msg_controllen) {
1261 err = sock_cmsg_send(sk, msg, &sockc);
1262 if (unlikely(err)) {
1263 err = -EINVAL;
1264 goto out_err;
1265 }
1266 }
1267
1268 /* This should be in poll */
1269 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1270
1271 /* Ok commence sending. */
1272 copied = 0;
1273
1274restart:
1275 mss_now = tcp_send_mss(sk, &size_goal, flags);
1276
1277 err = -EPIPE;
1278 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1279 goto do_error;
1280
1281 while (msg_data_left(msg)) {
1282 int copy = 0;
1283
1284 skb = tcp_write_queue_tail(sk);
1285 if (skb)
1286 copy = size_goal - skb->len;
1287
1288 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1289 bool first_skb;
1290 int linear;
1291
1292new_segment:
1293 if (!sk_stream_memory_free(sk))
1294 goto wait_for_sndbuf;
1295
1296 if (process_backlog && sk_flush_backlog(sk)) {
1297 process_backlog = false;
1298 goto restart;
1299 }
1300 first_skb = tcp_rtx_and_write_queues_empty(sk);
1301 linear = select_size(first_skb, zc);
1302 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1303 first_skb);
1304 if (!skb)
1305 goto wait_for_memory;
1306
1307 process_backlog = true;
1308 skb->ip_summed = CHECKSUM_PARTIAL;
1309
1310 skb_entail(sk, skb);
1311 copy = size_goal;
1312
1313 /* All packets are restored as if they have
1314 * already been sent. skb_mstamp isn't set to
1315 * avoid wrong rtt estimation.
1316 */
1317 if (tp->repair)
1318 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1319 }
1320
1321 /* Try to append data to the end of skb. */
1322 if (copy > msg_data_left(msg))
1323 copy = msg_data_left(msg);
1324
1325 /* Where to copy to? */
1326 if (skb_availroom(skb) > 0 && !zc) {
1327 /* We have some space in skb head. Superb! */
1328 copy = min_t(int, copy, skb_availroom(skb));
1329 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1330 if (err)
1331 goto do_fault;
1332 } else if (!zc) {
1333 bool merge = true;
1334 int i = skb_shinfo(skb)->nr_frags;
1335 struct page_frag *pfrag = sk_page_frag(sk);
1336
1337 if (!sk_page_frag_refill(sk, pfrag))
1338 goto wait_for_memory;
1339
1340 if (!skb_can_coalesce(skb, i, pfrag->page,
1341 pfrag->offset)) {
1342 if (i >= sysctl_max_skb_frags) {
1343 tcp_mark_push(tp, skb);
1344 goto new_segment;
1345 }
1346 merge = false;
1347 }
1348
1349 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1350
1351 if (!sk_wmem_schedule(sk, copy))
1352 goto wait_for_memory;
1353
1354 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1355 pfrag->page,
1356 pfrag->offset,
1357 copy);
1358 if (err)
1359 goto do_error;
1360
1361 /* Update the skb. */
1362 if (merge) {
1363 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1364 } else {
1365 skb_fill_page_desc(skb, i, pfrag->page,
1366 pfrag->offset, copy);
1367 page_ref_inc(pfrag->page);
1368 }
1369 pfrag->offset += copy;
1370 } else {
1371 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1372 if (err == -EMSGSIZE || err == -EEXIST) {
1373 tcp_mark_push(tp, skb);
1374 goto new_segment;
1375 }
1376 if (err < 0)
1377 goto do_error;
1378 copy = err;
1379 }
1380
1381 if (!copied)
1382 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383
1384 tp->write_seq += copy;
1385 TCP_SKB_CB(skb)->end_seq += copy;
1386 tcp_skb_pcount_set(skb, 0);
1387
1388 copied += copy;
1389 if (!msg_data_left(msg)) {
1390 if (unlikely(flags & MSG_EOR))
1391 TCP_SKB_CB(skb)->eor = 1;
1392 goto out;
1393 }
1394
1395 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1396 continue;
1397
1398 if (forced_push(tp)) {
1399 tcp_mark_push(tp, skb);
1400 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1401 } else if (skb == tcp_send_head(sk))
1402 tcp_push_one(sk, mss_now);
1403 continue;
1404
1405wait_for_sndbuf:
1406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1407wait_for_memory:
1408 if (copied)
1409 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1410 TCP_NAGLE_PUSH, size_goal);
1411
1412 err = sk_stream_wait_memory(sk, &timeo);
1413 if (err != 0)
1414 goto do_error;
1415
1416 mss_now = tcp_send_mss(sk, &size_goal, flags);
1417 }
1418
1419out:
1420 if (copied) {
1421 tcp_tx_timestamp(sk, sockc.tsflags);
1422 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1423 }
1424out_nopush:
1425 sock_zerocopy_put(uarg);
1426 return copied + copied_syn;
1427
1428do_error:
1429 skb = tcp_write_queue_tail(sk);
1430do_fault:
1431 tcp_remove_empty_skb(sk, skb);
1432
1433 if (copied + copied_syn)
1434 goto out;
1435out_err:
1436 sock_zerocopy_put_abort(uarg);
1437 err = sk_stream_error(sk, flags, err);
1438 /* make sure we wake any epoll edge trigger waiter */
1439 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1440 sk->sk_write_space(sk);
1441 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1442 }
1443 return err;
1444}
1445EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1446
1447int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1448{
1449 int ret;
1450
1451 lock_sock(sk);
1452 ret = tcp_sendmsg_locked(sk, msg, size);
1453 release_sock(sk);
1454
1455 return ret;
1456}
1457EXPORT_SYMBOL(tcp_sendmsg);
1458
1459/*
1460 * Handle reading urgent data. BSD has very simple semantics for
1461 * this, no blocking and very strange errors 8)
1462 */
1463
1464static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1465{
1466 struct tcp_sock *tp = tcp_sk(sk);
1467
1468 /* No URG data to read. */
1469 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1470 tp->urg_data == TCP_URG_READ)
1471 return -EINVAL; /* Yes this is right ! */
1472
1473 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1474 return -ENOTCONN;
1475
1476 if (tp->urg_data & TCP_URG_VALID) {
1477 int err = 0;
1478 char c = tp->urg_data;
1479
1480 if (!(flags & MSG_PEEK))
1481 tp->urg_data = TCP_URG_READ;
1482
1483 /* Read urgent data. */
1484 msg->msg_flags |= MSG_OOB;
1485
1486 if (len > 0) {
1487 if (!(flags & MSG_TRUNC))
1488 err = memcpy_to_msg(msg, &c, 1);
1489 len = 1;
1490 } else
1491 msg->msg_flags |= MSG_TRUNC;
1492
1493 return err ? -EFAULT : len;
1494 }
1495
1496 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1497 return 0;
1498
1499 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1500 * the available implementations agree in this case:
1501 * this call should never block, independent of the
1502 * blocking state of the socket.
1503 * Mike <pall@rz.uni-karlsruhe.de>
1504 */
1505 return -EAGAIN;
1506}
1507
1508static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1509{
1510 struct sk_buff *skb;
1511 int copied = 0, err = 0;
1512
1513 /* XXX -- need to support SO_PEEK_OFF */
1514
1515 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1516 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1517 if (err)
1518 return err;
1519 copied += skb->len;
1520 }
1521
1522 skb_queue_walk(&sk->sk_write_queue, skb) {
1523 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1524 if (err)
1525 break;
1526
1527 copied += skb->len;
1528 }
1529
1530 return err ?: copied;
1531}
1532
1533/* Clean up the receive buffer for full frames taken by the user,
1534 * then send an ACK if necessary. COPIED is the number of bytes
1535 * tcp_recvmsg has given to the user so far, it speeds up the
1536 * calculation of whether or not we must ACK for the sake of
1537 * a window update.
1538 */
1539static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1540{
1541 struct tcp_sock *tp = tcp_sk(sk);
1542 bool time_to_ack = false;
1543
1544 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1545
1546 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1547 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1548 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1549
1550 if (inet_csk_ack_scheduled(sk)) {
1551 const struct inet_connection_sock *icsk = inet_csk(sk);
1552 /* Delayed ACKs frequently hit locked sockets during bulk
1553 * receive. */
1554 if (icsk->icsk_ack.blocked ||
1555 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1556 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1557 /*
1558 * If this read emptied read buffer, we send ACK, if
1559 * connection is not bidirectional, user drained
1560 * receive buffer and there was a small segment
1561 * in queue.
1562 */
1563 (copied > 0 &&
1564 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1565 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1566 !icsk->icsk_ack.pingpong)) &&
1567 !atomic_read(&sk->sk_rmem_alloc)))
1568 time_to_ack = true;
1569 }
1570
1571 /* We send an ACK if we can now advertise a non-zero window
1572 * which has been raised "significantly".
1573 *
1574 * Even if window raised up to infinity, do not send window open ACK
1575 * in states, where we will not receive more. It is useless.
1576 */
1577 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1578 __u32 rcv_window_now = tcp_receive_window(tp);
1579
1580 /* Optimize, __tcp_select_window() is not cheap. */
1581 if (2*rcv_window_now <= tp->window_clamp) {
1582 __u32 new_window = __tcp_select_window(sk);
1583
1584 /* Send ACK now, if this read freed lots of space
1585 * in our buffer. Certainly, new_window is new window.
1586 * We can advertise it now, if it is not less than current one.
1587 * "Lots" means "at least twice" here.
1588 */
1589 if (new_window && new_window >= 2 * rcv_window_now)
1590 time_to_ack = true;
1591 }
1592 }
1593 if (time_to_ack)
1594 tcp_send_ack(sk);
1595}
1596
1597static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1598{
1599 struct sk_buff *skb;
1600 u32 offset;
1601
1602 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1603 offset = seq - TCP_SKB_CB(skb)->seq;
1604 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1605 pr_err_once("%s: found a SYN, please report !\n", __func__);
1606 offset--;
1607 }
1608 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1609 *off = offset;
1610 return skb;
1611 }
1612 /* This looks weird, but this can happen if TCP collapsing
1613 * splitted a fat GRO packet, while we released socket lock
1614 * in skb_splice_bits()
1615 */
1616 sk_eat_skb(sk, skb);
1617 }
1618 return NULL;
1619}
1620
1621/*
1622 * This routine provides an alternative to tcp_recvmsg() for routines
1623 * that would like to handle copying from skbuffs directly in 'sendfile'
1624 * fashion.
1625 * Note:
1626 * - It is assumed that the socket was locked by the caller.
1627 * - The routine does not block.
1628 * - At present, there is no support for reading OOB data
1629 * or for 'peeking' the socket using this routine
1630 * (although both would be easy to implement).
1631 */
1632int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1633 sk_read_actor_t recv_actor)
1634{
1635 struct sk_buff *skb;
1636 struct tcp_sock *tp = tcp_sk(sk);
1637 u32 seq = tp->copied_seq;
1638 u32 offset;
1639 int copied = 0;
1640
1641 if (sk->sk_state == TCP_LISTEN)
1642 return -ENOTCONN;
1643 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1644 if (offset < skb->len) {
1645 int used;
1646 size_t len;
1647
1648 len = skb->len - offset;
1649 /* Stop reading if we hit a patch of urgent data */
1650 if (tp->urg_data) {
1651 u32 urg_offset = tp->urg_seq - seq;
1652 if (urg_offset < len)
1653 len = urg_offset;
1654 if (!len)
1655 break;
1656 }
1657 used = recv_actor(desc, skb, offset, len);
1658 if (used <= 0) {
1659 if (!copied)
1660 copied = used;
1661 break;
1662 } else if (used <= len) {
1663 seq += used;
1664 copied += used;
1665 offset += used;
1666 }
1667 /* If recv_actor drops the lock (e.g. TCP splice
1668 * receive) the skb pointer might be invalid when
1669 * getting here: tcp_collapse might have deleted it
1670 * while aggregating skbs from the socket queue.
1671 */
1672 skb = tcp_recv_skb(sk, seq - 1, &offset);
1673 if (!skb)
1674 break;
1675 /* TCP coalescing might have appended data to the skb.
1676 * Try to splice more frags
1677 */
1678 if (offset + 1 != skb->len)
1679 continue;
1680 }
1681 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1682 sk_eat_skb(sk, skb);
1683 ++seq;
1684 break;
1685 }
1686 sk_eat_skb(sk, skb);
1687 if (!desc->count)
1688 break;
1689 tp->copied_seq = seq;
1690 }
1691 tp->copied_seq = seq;
1692
1693 tcp_rcv_space_adjust(sk);
1694
1695 /* Clean up data we have read: This will do ACK frames. */
1696 if (copied > 0) {
1697 tcp_recv_skb(sk, seq, &offset);
1698 tcp_cleanup_rbuf(sk, copied);
1699 }
1700 return copied;
1701}
1702EXPORT_SYMBOL(tcp_read_sock);
1703
1704int tcp_peek_len(struct socket *sock)
1705{
1706 return tcp_inq(sock->sk);
1707}
1708EXPORT_SYMBOL(tcp_peek_len);
1709
1710/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1711int tcp_set_rcvlowat(struct sock *sk, int val)
1712{
1713 int cap;
1714
1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 cap = sk->sk_rcvbuf >> 1;
1717 else
1718 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1719 val = min(val, cap);
1720 sk->sk_rcvlowat = val ? : 1;
1721
1722 /* Check if we need to signal EPOLLIN right now */
1723 tcp_data_ready(sk);
1724
1725 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1726 return 0;
1727
1728 val <<= 1;
1729 if (val > sk->sk_rcvbuf) {
1730 sk->sk_rcvbuf = val;
1731 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1732 }
1733 return 0;
1734}
1735EXPORT_SYMBOL(tcp_set_rcvlowat);
1736
1737#ifdef CONFIG_MMU
1738static const struct vm_operations_struct tcp_vm_ops = {
1739};
1740
1741int tcp_mmap(struct file *file, struct socket *sock,
1742 struct vm_area_struct *vma)
1743{
1744 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1745 return -EPERM;
1746 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1747
1748 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1749 vma->vm_flags |= VM_MIXEDMAP;
1750
1751 vma->vm_ops = &tcp_vm_ops;
1752 return 0;
1753}
1754EXPORT_SYMBOL(tcp_mmap);
1755
1756static int tcp_zerocopy_receive(struct sock *sk,
1757 struct tcp_zerocopy_receive *zc)
1758{
1759 unsigned long address = (unsigned long)zc->address;
1760 const skb_frag_t *frags = NULL;
1761 u32 length = 0, seq, offset;
1762 struct vm_area_struct *vma;
1763 struct sk_buff *skb = NULL;
1764 struct tcp_sock *tp;
1765 int ret;
1766
1767 if (address & (PAGE_SIZE - 1) || address != zc->address)
1768 return -EINVAL;
1769
1770 if (sk->sk_state == TCP_LISTEN)
1771 return -ENOTCONN;
1772
1773 sock_rps_record_flow(sk);
1774
1775 down_read(&current->mm->mmap_sem);
1776
1777 ret = -EINVAL;
1778 vma = find_vma(current->mm, address);
1779 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1780 goto out;
1781 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1782
1783 tp = tcp_sk(sk);
1784 seq = tp->copied_seq;
1785 zc->length = min_t(u32, zc->length, tcp_inq(sk));
1786 zc->length &= ~(PAGE_SIZE - 1);
1787
1788 zap_page_range(vma, address, zc->length);
1789
1790 zc->recv_skip_hint = 0;
1791 ret = 0;
1792 while (length + PAGE_SIZE <= zc->length) {
1793 if (zc->recv_skip_hint < PAGE_SIZE) {
1794 if (skb) {
1795 skb = skb->next;
1796 offset = seq - TCP_SKB_CB(skb)->seq;
1797 } else {
1798 skb = tcp_recv_skb(sk, seq, &offset);
1799 }
1800
1801 zc->recv_skip_hint = skb->len - offset;
1802 offset -= skb_headlen(skb);
1803 if ((int)offset < 0 || skb_has_frag_list(skb))
1804 break;
1805 frags = skb_shinfo(skb)->frags;
1806 while (offset) {
1807 if (frags->size > offset)
1808 goto out;
1809 offset -= frags->size;
1810 frags++;
1811 }
1812 }
1813 if (frags->size != PAGE_SIZE || frags->page_offset)
1814 break;
1815 ret = vm_insert_page(vma, address + length,
1816 skb_frag_page(frags));
1817 if (ret)
1818 break;
1819 length += PAGE_SIZE;
1820 seq += PAGE_SIZE;
1821 zc->recv_skip_hint -= PAGE_SIZE;
1822 frags++;
1823 }
1824out:
1825 up_read(&current->mm->mmap_sem);
1826 if (length) {
1827 tp->copied_seq = seq;
1828 tcp_rcv_space_adjust(sk);
1829
1830 /* Clean up data we have read: This will do ACK frames. */
1831 tcp_recv_skb(sk, seq, &offset);
1832 tcp_cleanup_rbuf(sk, length);
1833 ret = 0;
1834 if (length == zc->length)
1835 zc->recv_skip_hint = 0;
1836 } else {
1837 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1838 ret = -EIO;
1839 }
1840 zc->length = length;
1841 return ret;
1842}
1843#endif
1844
1845static void tcp_update_recv_tstamps(struct sk_buff *skb,
1846 struct scm_timestamping *tss)
1847{
1848 if (skb->tstamp)
1849 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1850 else
1851 tss->ts[0] = (struct timespec) {0};
1852
1853 if (skb_hwtstamps(skb)->hwtstamp)
1854 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1855 else
1856 tss->ts[2] = (struct timespec) {0};
1857}
1858
1859/* Similar to __sock_recv_timestamp, but does not require an skb */
1860static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1861 struct scm_timestamping *tss)
1862{
1863 struct timeval tv;
1864 bool has_timestamping = false;
1865
1866 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1867 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1868 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1870 sizeof(tss->ts[0]), &tss->ts[0]);
1871 } else {
1872 tv.tv_sec = tss->ts[0].tv_sec;
1873 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1874
1875 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1876 sizeof(tv), &tv);
1877 }
1878 }
1879
1880 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1881 has_timestamping = true;
1882 else
1883 tss->ts[0] = (struct timespec) {0};
1884 }
1885
1886 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1887 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1888 has_timestamping = true;
1889 else
1890 tss->ts[2] = (struct timespec) {0};
1891 }
1892
1893 if (has_timestamping) {
1894 tss->ts[1] = (struct timespec) {0};
1895 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1896 sizeof(*tss), tss);
1897 }
1898}
1899
1900static int tcp_inq_hint(struct sock *sk)
1901{
1902 const struct tcp_sock *tp = tcp_sk(sk);
1903 u32 copied_seq = READ_ONCE(tp->copied_seq);
1904 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1905 int inq;
1906
1907 inq = rcv_nxt - copied_seq;
1908 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1909 lock_sock(sk);
1910 inq = tp->rcv_nxt - tp->copied_seq;
1911 release_sock(sk);
1912 }
1913 /* After receiving a FIN, tell the user-space to continue reading
1914 * by returning a non-zero inq.
1915 */
1916 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1917 inq = 1;
1918 return inq;
1919}
1920
1921/*
1922 * This routine copies from a sock struct into the user buffer.
1923 *
1924 * Technical note: in 2.3 we work on _locked_ socket, so that
1925 * tricks with *seq access order and skb->users are not required.
1926 * Probably, code can be easily improved even more.
1927 */
1928
1929int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1930 int flags, int *addr_len)
1931{
1932 struct tcp_sock *tp = tcp_sk(sk);
1933 int copied = 0;
1934 u32 peek_seq;
1935 u32 *seq;
1936 unsigned long used;
1937 int err, inq;
1938 int target; /* Read at least this many bytes */
1939 long timeo;
1940 struct sk_buff *skb, *last;
1941 u32 urg_hole = 0;
1942 struct scm_timestamping tss;
1943 bool has_tss = false;
1944 bool has_cmsg;
1945
1946 if (unlikely(flags & MSG_ERRQUEUE))
1947 return inet_recv_error(sk, msg, len, addr_len);
1948
1949 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1950 (sk->sk_state == TCP_ESTABLISHED))
1951 sk_busy_loop(sk, nonblock);
1952
1953 lock_sock(sk);
1954
1955 err = -ENOTCONN;
1956 if (sk->sk_state == TCP_LISTEN)
1957 goto out;
1958
1959 has_cmsg = tp->recvmsg_inq;
1960 timeo = sock_rcvtimeo(sk, nonblock);
1961
1962 /* Urgent data needs to be handled specially. */
1963 if (flags & MSG_OOB)
1964 goto recv_urg;
1965
1966 if (unlikely(tp->repair)) {
1967 err = -EPERM;
1968 if (!(flags & MSG_PEEK))
1969 goto out;
1970
1971 if (tp->repair_queue == TCP_SEND_QUEUE)
1972 goto recv_sndq;
1973
1974 err = -EINVAL;
1975 if (tp->repair_queue == TCP_NO_QUEUE)
1976 goto out;
1977
1978 /* 'common' recv queue MSG_PEEK-ing */
1979 }
1980
1981 seq = &tp->copied_seq;
1982 if (flags & MSG_PEEK) {
1983 peek_seq = tp->copied_seq;
1984 seq = &peek_seq;
1985 }
1986
1987 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1988
1989 do {
1990 u32 offset;
1991
1992 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1993 if (tp->urg_data && tp->urg_seq == *seq) {
1994 if (copied)
1995 break;
1996 if (signal_pending(current)) {
1997 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1998 break;
1999 }
2000 }
2001
2002 /* Next get a buffer. */
2003
2004 last = skb_peek_tail(&sk->sk_receive_queue);
2005 skb_queue_walk(&sk->sk_receive_queue, skb) {
2006 last = skb;
2007 /* Now that we have two receive queues this
2008 * shouldn't happen.
2009 */
2010 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2011 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2012 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2013 flags))
2014 break;
2015
2016 offset = *seq - TCP_SKB_CB(skb)->seq;
2017 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2018 pr_err_once("%s: found a SYN, please report !\n", __func__);
2019 offset--;
2020 }
2021 if (offset < skb->len)
2022 goto found_ok_skb;
2023 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2024 goto found_fin_ok;
2025 WARN(!(flags & MSG_PEEK),
2026 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2027 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2028 }
2029
2030 /* Well, if we have backlog, try to process it now yet. */
2031
2032 if (copied >= target && !sk->sk_backlog.tail)
2033 break;
2034
2035 if (copied) {
2036 if (sk->sk_err ||
2037 sk->sk_state == TCP_CLOSE ||
2038 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2039 !timeo ||
2040 signal_pending(current))
2041 break;
2042 } else {
2043 if (sock_flag(sk, SOCK_DONE))
2044 break;
2045
2046 if (sk->sk_err) {
2047 copied = sock_error(sk);
2048 break;
2049 }
2050
2051 if (sk->sk_shutdown & RCV_SHUTDOWN)
2052 break;
2053
2054 if (sk->sk_state == TCP_CLOSE) {
2055 /* This occurs when user tries to read
2056 * from never connected socket.
2057 */
2058 copied = -ENOTCONN;
2059 break;
2060 }
2061
2062 if (!timeo) {
2063 copied = -EAGAIN;
2064 break;
2065 }
2066
2067 if (signal_pending(current)) {
2068 copied = sock_intr_errno(timeo);
2069 break;
2070 }
2071 }
2072
2073 tcp_cleanup_rbuf(sk, copied);
2074
2075 if (copied >= target) {
2076 /* Do not sleep, just process backlog. */
2077 release_sock(sk);
2078 lock_sock(sk);
2079 } else {
2080 sk_wait_data(sk, &timeo, last);
2081 }
2082
2083 if ((flags & MSG_PEEK) &&
2084 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2085 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2086 current->comm,
2087 task_pid_nr(current));
2088 peek_seq = tp->copied_seq;
2089 }
2090 continue;
2091
2092 found_ok_skb:
2093 /* Ok so how much can we use? */
2094 used = skb->len - offset;
2095 if (len < used)
2096 used = len;
2097
2098 /* Do we have urgent data here? */
2099 if (tp->urg_data) {
2100 u32 urg_offset = tp->urg_seq - *seq;
2101 if (urg_offset < used) {
2102 if (!urg_offset) {
2103 if (!sock_flag(sk, SOCK_URGINLINE)) {
2104 ++*seq;
2105 urg_hole++;
2106 offset++;
2107 used--;
2108 if (!used)
2109 goto skip_copy;
2110 }
2111 } else
2112 used = urg_offset;
2113 }
2114 }
2115
2116 if (!(flags & MSG_TRUNC)) {
2117 err = skb_copy_datagram_msg(skb, offset, msg, used);
2118 if (err) {
2119 /* Exception. Bailout! */
2120 if (!copied)
2121 copied = -EFAULT;
2122 break;
2123 }
2124 }
2125
2126 *seq += used;
2127 copied += used;
2128 len -= used;
2129
2130 tcp_rcv_space_adjust(sk);
2131
2132skip_copy:
2133 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2134 tp->urg_data = 0;
2135 tcp_fast_path_check(sk);
2136 }
2137 if (used + offset < skb->len)
2138 continue;
2139
2140 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2141 tcp_update_recv_tstamps(skb, &tss);
2142 has_tss = true;
2143 has_cmsg = true;
2144 }
2145 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2146 goto found_fin_ok;
2147 if (!(flags & MSG_PEEK))
2148 sk_eat_skb(sk, skb);
2149 continue;
2150
2151 found_fin_ok:
2152 /* Process the FIN. */
2153 ++*seq;
2154 if (!(flags & MSG_PEEK))
2155 sk_eat_skb(sk, skb);
2156 break;
2157 } while (len > 0);
2158
2159 /* According to UNIX98, msg_name/msg_namelen are ignored
2160 * on connected socket. I was just happy when found this 8) --ANK
2161 */
2162
2163 /* Clean up data we have read: This will do ACK frames. */
2164 tcp_cleanup_rbuf(sk, copied);
2165
2166 release_sock(sk);
2167
2168 if (has_cmsg) {
2169 if (has_tss)
2170 tcp_recv_timestamp(msg, sk, &tss);
2171 if (tp->recvmsg_inq) {
2172 inq = tcp_inq_hint(sk);
2173 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2174 }
2175 }
2176
2177 return copied;
2178
2179out:
2180 release_sock(sk);
2181 return err;
2182
2183recv_urg:
2184 err = tcp_recv_urg(sk, msg, len, flags);
2185 goto out;
2186
2187recv_sndq:
2188 err = tcp_peek_sndq(sk, msg, len);
2189 goto out;
2190}
2191EXPORT_SYMBOL(tcp_recvmsg);
2192
2193void tcp_set_state(struct sock *sk, int state)
2194{
2195 int oldstate = sk->sk_state;
2196
2197 /* We defined a new enum for TCP states that are exported in BPF
2198 * so as not force the internal TCP states to be frozen. The
2199 * following checks will detect if an internal state value ever
2200 * differs from the BPF value. If this ever happens, then we will
2201 * need to remap the internal value to the BPF value before calling
2202 * tcp_call_bpf_2arg.
2203 */
2204 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2205 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2206 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2207 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2208 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2209 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2210 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2211 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2212 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2213 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2214 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2215 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2216 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2217
2218 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2219 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2220
2221 switch (state) {
2222 case TCP_ESTABLISHED:
2223 if (oldstate != TCP_ESTABLISHED)
2224 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2225 break;
2226
2227 case TCP_CLOSE:
2228 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2229 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2230
2231 sk->sk_prot->unhash(sk);
2232 if (inet_csk(sk)->icsk_bind_hash &&
2233 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2234 inet_put_port(sk);
2235 /* fall through */
2236 default:
2237 if (oldstate == TCP_ESTABLISHED)
2238 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2239 }
2240
2241 /* Change state AFTER socket is unhashed to avoid closed
2242 * socket sitting in hash tables.
2243 */
2244 inet_sk_state_store(sk, state);
2245
2246#ifdef STATE_TRACE
2247 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2248#endif
2249}
2250EXPORT_SYMBOL_GPL(tcp_set_state);
2251
2252/*
2253 * State processing on a close. This implements the state shift for
2254 * sending our FIN frame. Note that we only send a FIN for some
2255 * states. A shutdown() may have already sent the FIN, or we may be
2256 * closed.
2257 */
2258
2259static const unsigned char new_state[16] = {
2260 /* current state: new state: action: */
2261 [0 /* (Invalid) */] = TCP_CLOSE,
2262 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2263 [TCP_SYN_SENT] = TCP_CLOSE,
2264 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2265 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2266 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2267 [TCP_TIME_WAIT] = TCP_CLOSE,
2268 [TCP_CLOSE] = TCP_CLOSE,
2269 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2270 [TCP_LAST_ACK] = TCP_LAST_ACK,
2271 [TCP_LISTEN] = TCP_CLOSE,
2272 [TCP_CLOSING] = TCP_CLOSING,
2273 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2274};
2275
2276static int tcp_close_state(struct sock *sk)
2277{
2278 int next = (int)new_state[sk->sk_state];
2279 int ns = next & TCP_STATE_MASK;
2280
2281 tcp_set_state(sk, ns);
2282
2283 return next & TCP_ACTION_FIN;
2284}
2285
2286/*
2287 * Shutdown the sending side of a connection. Much like close except
2288 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2289 */
2290
2291void tcp_shutdown(struct sock *sk, int how)
2292{
2293 /* We need to grab some memory, and put together a FIN,
2294 * and then put it into the queue to be sent.
2295 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2296 */
2297 if (!(how & SEND_SHUTDOWN))
2298 return;
2299
2300 /* If we've already sent a FIN, or it's a closed state, skip this. */
2301 if ((1 << sk->sk_state) &
2302 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2303 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2304 /* Clear out any half completed packets. FIN if needed. */
2305 if (tcp_close_state(sk))
2306 tcp_send_fin(sk);
2307 }
2308}
2309EXPORT_SYMBOL(tcp_shutdown);
2310
2311bool tcp_check_oom(struct sock *sk, int shift)
2312{
2313 bool too_many_orphans, out_of_socket_memory;
2314
2315 too_many_orphans = tcp_too_many_orphans(sk, shift);
2316 out_of_socket_memory = tcp_out_of_memory(sk);
2317
2318 if (too_many_orphans)
2319 net_info_ratelimited("too many orphaned sockets\n");
2320 if (out_of_socket_memory)
2321 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2322 return too_many_orphans || out_of_socket_memory;
2323}
2324
2325void tcp_close(struct sock *sk, long timeout)
2326{
2327 struct sk_buff *skb;
2328 int data_was_unread = 0;
2329 int state;
2330
2331 lock_sock(sk);
2332 sk->sk_shutdown = SHUTDOWN_MASK;
2333
2334 if (sk->sk_state == TCP_LISTEN) {
2335 tcp_set_state(sk, TCP_CLOSE);
2336
2337 /* Special case. */
2338 inet_csk_listen_stop(sk);
2339
2340 goto adjudge_to_death;
2341 }
2342
2343 /* We need to flush the recv. buffs. We do this only on the
2344 * descriptor close, not protocol-sourced closes, because the
2345 * reader process may not have drained the data yet!
2346 */
2347 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2348 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2349
2350 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2351 len--;
2352 data_was_unread += len;
2353 __kfree_skb(skb);
2354 }
2355
2356 sk_mem_reclaim(sk);
2357
2358 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2359 if (sk->sk_state == TCP_CLOSE)
2360 goto adjudge_to_death;
2361
2362 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2363 * data was lost. To witness the awful effects of the old behavior of
2364 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2365 * GET in an FTP client, suspend the process, wait for the client to
2366 * advertise a zero window, then kill -9 the FTP client, wheee...
2367 * Note: timeout is always zero in such a case.
2368 */
2369 if (unlikely(tcp_sk(sk)->repair)) {
2370 sk->sk_prot->disconnect(sk, 0);
2371 } else if (data_was_unread) {
2372 /* Unread data was tossed, zap the connection. */
2373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2374 tcp_set_state(sk, TCP_CLOSE);
2375 tcp_send_active_reset(sk, sk->sk_allocation);
2376 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2377 /* Check zero linger _after_ checking for unread data. */
2378 sk->sk_prot->disconnect(sk, 0);
2379 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2380 } else if (tcp_close_state(sk)) {
2381 /* We FIN if the application ate all the data before
2382 * zapping the connection.
2383 */
2384
2385 /* RED-PEN. Formally speaking, we have broken TCP state
2386 * machine. State transitions:
2387 *
2388 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2389 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2390 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2391 *
2392 * are legal only when FIN has been sent (i.e. in window),
2393 * rather than queued out of window. Purists blame.
2394 *
2395 * F.e. "RFC state" is ESTABLISHED,
2396 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2397 *
2398 * The visible declinations are that sometimes
2399 * we enter time-wait state, when it is not required really
2400 * (harmless), do not send active resets, when they are
2401 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2402 * they look as CLOSING or LAST_ACK for Linux)
2403 * Probably, I missed some more holelets.
2404 * --ANK
2405 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2406 * in a single packet! (May consider it later but will
2407 * probably need API support or TCP_CORK SYN-ACK until
2408 * data is written and socket is closed.)
2409 */
2410 tcp_send_fin(sk);
2411 }
2412
2413 sk_stream_wait_close(sk, timeout);
2414
2415adjudge_to_death:
2416 state = sk->sk_state;
2417 sock_hold(sk);
2418 sock_orphan(sk);
2419
2420 local_bh_disable();
2421 bh_lock_sock(sk);
2422 /* remove backlog if any, without releasing ownership. */
2423 __release_sock(sk);
2424
2425 percpu_counter_inc(sk->sk_prot->orphan_count);
2426
2427 /* Have we already been destroyed by a softirq or backlog? */
2428 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2429 goto out;
2430
2431 /* This is a (useful) BSD violating of the RFC. There is a
2432 * problem with TCP as specified in that the other end could
2433 * keep a socket open forever with no application left this end.
2434 * We use a 1 minute timeout (about the same as BSD) then kill
2435 * our end. If they send after that then tough - BUT: long enough
2436 * that we won't make the old 4*rto = almost no time - whoops
2437 * reset mistake.
2438 *
2439 * Nope, it was not mistake. It is really desired behaviour
2440 * f.e. on http servers, when such sockets are useless, but
2441 * consume significant resources. Let's do it with special
2442 * linger2 option. --ANK
2443 */
2444
2445 if (sk->sk_state == TCP_FIN_WAIT2) {
2446 struct tcp_sock *tp = tcp_sk(sk);
2447 if (tp->linger2 < 0) {
2448 tcp_set_state(sk, TCP_CLOSE);
2449 tcp_send_active_reset(sk, GFP_ATOMIC);
2450 __NET_INC_STATS(sock_net(sk),
2451 LINUX_MIB_TCPABORTONLINGER);
2452 } else {
2453 const int tmo = tcp_fin_time(sk);
2454
2455 if (tmo > TCP_TIMEWAIT_LEN) {
2456 inet_csk_reset_keepalive_timer(sk,
2457 tmo - TCP_TIMEWAIT_LEN);
2458 } else {
2459 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2460 goto out;
2461 }
2462 }
2463 }
2464 if (sk->sk_state != TCP_CLOSE) {
2465 sk_mem_reclaim(sk);
2466 if (tcp_check_oom(sk, 0)) {
2467 tcp_set_state(sk, TCP_CLOSE);
2468 tcp_send_active_reset(sk, GFP_ATOMIC);
2469 __NET_INC_STATS(sock_net(sk),
2470 LINUX_MIB_TCPABORTONMEMORY);
2471 } else if (!check_net(sock_net(sk))) {
2472 /* Not possible to send reset; just close */
2473 tcp_set_state(sk, TCP_CLOSE);
2474 }
2475 }
2476
2477 if (sk->sk_state == TCP_CLOSE) {
2478 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2479 /* We could get here with a non-NULL req if the socket is
2480 * aborted (e.g., closed with unread data) before 3WHS
2481 * finishes.
2482 */
2483 if (req)
2484 reqsk_fastopen_remove(sk, req, false);
2485 inet_csk_destroy_sock(sk);
2486 }
2487 /* Otherwise, socket is reprieved until protocol close. */
2488
2489out:
2490 bh_unlock_sock(sk);
2491 local_bh_enable();
2492 release_sock(sk);
2493 sock_put(sk);
2494}
2495EXPORT_SYMBOL(tcp_close);
2496
2497/* These states need RST on ABORT according to RFC793 */
2498
2499static inline bool tcp_need_reset(int state)
2500{
2501 return (1 << state) &
2502 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2503 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2504}
2505
2506static void tcp_rtx_queue_purge(struct sock *sk)
2507{
2508 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2509
2510 while (p) {
2511 struct sk_buff *skb = rb_to_skb(p);
2512
2513 p = rb_next(p);
2514 /* Since we are deleting whole queue, no need to
2515 * list_del(&skb->tcp_tsorted_anchor)
2516 */
2517 tcp_rtx_queue_unlink(skb, sk);
2518 sk_wmem_free_skb(sk, skb);
2519 }
2520}
2521
2522void tcp_write_queue_purge(struct sock *sk)
2523{
2524 struct sk_buff *skb;
2525
2526 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2527 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2528 tcp_skb_tsorted_anchor_cleanup(skb);
2529 sk_wmem_free_skb(sk, skb);
2530 }
2531 tcp_rtx_queue_purge(sk);
2532 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2533 sk_mem_reclaim(sk);
2534 tcp_clear_all_retrans_hints(tcp_sk(sk));
2535 tcp_sk(sk)->packets_out = 0;
2536 inet_csk(sk)->icsk_backoff = 0;
2537}
2538
2539int tcp_disconnect(struct sock *sk, int flags)
2540{
2541 struct inet_sock *inet = inet_sk(sk);
2542 struct inet_connection_sock *icsk = inet_csk(sk);
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 int old_state = sk->sk_state;
2545
2546 if (old_state != TCP_CLOSE)
2547 tcp_set_state(sk, TCP_CLOSE);
2548
2549 /* ABORT function of RFC793 */
2550 if (old_state == TCP_LISTEN) {
2551 inet_csk_listen_stop(sk);
2552 } else if (unlikely(tp->repair)) {
2553 sk->sk_err = ECONNABORTED;
2554 } else if (tcp_need_reset(old_state) ||
2555 (tp->snd_nxt != tp->write_seq &&
2556 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2557 /* The last check adjusts for discrepancy of Linux wrt. RFC
2558 * states
2559 */
2560 tcp_send_active_reset(sk, gfp_any());
2561 sk->sk_err = ECONNRESET;
2562 } else if (old_state == TCP_SYN_SENT)
2563 sk->sk_err = ECONNRESET;
2564
2565 tcp_clear_xmit_timers(sk);
2566 __skb_queue_purge(&sk->sk_receive_queue);
2567 tp->copied_seq = tp->rcv_nxt;
2568 tp->urg_data = 0;
2569 tcp_write_queue_purge(sk);
2570 tcp_fastopen_active_disable_ofo_check(sk);
2571 skb_rbtree_purge(&tp->out_of_order_queue);
2572
2573 inet->inet_dport = 0;
2574
2575 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2576 inet_reset_saddr(sk);
2577
2578 sk->sk_shutdown = 0;
2579 sock_reset_flag(sk, SOCK_DONE);
2580 tp->srtt_us = 0;
2581 tp->rcv_rtt_last_tsecr = 0;
2582 tp->write_seq += tp->max_window + 2;
2583 if (tp->write_seq == 0)
2584 tp->write_seq = 1;
2585 tp->snd_cwnd = 2;
2586 icsk->icsk_probes_out = 0;
2587 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2588 tp->snd_cwnd_cnt = 0;
2589 tp->window_clamp = 0;
2590 tp->delivered_ce = 0;
2591 tcp_set_ca_state(sk, TCP_CA_Open);
2592 tp->is_sack_reneg = 0;
2593 tcp_clear_retrans(tp);
2594 inet_csk_delack_init(sk);
2595 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2596 * issue in __tcp_select_window()
2597 */
2598 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2599 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2600 __sk_dst_reset(sk);
2601 dst_release(sk->sk_rx_dst);
2602 sk->sk_rx_dst = NULL;
2603 tcp_saved_syn_free(tp);
2604 tp->compressed_ack = 0;
2605 tp->bytes_sent = 0;
2606 tp->bytes_acked = 0;
2607 tp->bytes_received = 0;
2608 tp->bytes_retrans = 0;
2609 tp->dsack_dups = 0;
2610 tp->reord_seen = 0;
2611
2612 /* Clean up fastopen related fields */
2613 tcp_free_fastopen_req(tp);
2614 inet->defer_connect = 0;
2615
2616 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2617
2618 if (sk->sk_frag.page) {
2619 put_page(sk->sk_frag.page);
2620 sk->sk_frag.page = NULL;
2621 sk->sk_frag.offset = 0;
2622 }
2623
2624 sk->sk_error_report(sk);
2625 return 0;
2626}
2627EXPORT_SYMBOL(tcp_disconnect);
2628
2629static inline bool tcp_can_repair_sock(const struct sock *sk)
2630{
2631 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2632 (sk->sk_state != TCP_LISTEN);
2633}
2634
2635static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2636{
2637 struct tcp_repair_window opt;
2638
2639 if (!tp->repair)
2640 return -EPERM;
2641
2642 if (len != sizeof(opt))
2643 return -EINVAL;
2644
2645 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2646 return -EFAULT;
2647
2648 if (opt.max_window < opt.snd_wnd)
2649 return -EINVAL;
2650
2651 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2652 return -EINVAL;
2653
2654 if (after(opt.rcv_wup, tp->rcv_nxt))
2655 return -EINVAL;
2656
2657 tp->snd_wl1 = opt.snd_wl1;
2658 tp->snd_wnd = opt.snd_wnd;
2659 tp->max_window = opt.max_window;
2660
2661 tp->rcv_wnd = opt.rcv_wnd;
2662 tp->rcv_wup = opt.rcv_wup;
2663
2664 return 0;
2665}
2666
2667static int tcp_repair_options_est(struct sock *sk,
2668 struct tcp_repair_opt __user *optbuf, unsigned int len)
2669{
2670 struct tcp_sock *tp = tcp_sk(sk);
2671 struct tcp_repair_opt opt;
2672
2673 while (len >= sizeof(opt)) {
2674 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2675 return -EFAULT;
2676
2677 optbuf++;
2678 len -= sizeof(opt);
2679
2680 switch (opt.opt_code) {
2681 case TCPOPT_MSS:
2682 tp->rx_opt.mss_clamp = opt.opt_val;
2683 tcp_mtup_init(sk);
2684 break;
2685 case TCPOPT_WINDOW:
2686 {
2687 u16 snd_wscale = opt.opt_val & 0xFFFF;
2688 u16 rcv_wscale = opt.opt_val >> 16;
2689
2690 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2691 return -EFBIG;
2692
2693 tp->rx_opt.snd_wscale = snd_wscale;
2694 tp->rx_opt.rcv_wscale = rcv_wscale;
2695 tp->rx_opt.wscale_ok = 1;
2696 }
2697 break;
2698 case TCPOPT_SACK_PERM:
2699 if (opt.opt_val != 0)
2700 return -EINVAL;
2701
2702 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2703 break;
2704 case TCPOPT_TIMESTAMP:
2705 if (opt.opt_val != 0)
2706 return -EINVAL;
2707
2708 tp->rx_opt.tstamp_ok = 1;
2709 break;
2710 }
2711 }
2712
2713 return 0;
2714}
2715
2716/*
2717 * Socket option code for TCP.
2718 */
2719static int do_tcp_setsockopt(struct sock *sk, int level,
2720 int optname, char __user *optval, unsigned int optlen)
2721{
2722 struct tcp_sock *tp = tcp_sk(sk);
2723 struct inet_connection_sock *icsk = inet_csk(sk);
2724 struct net *net = sock_net(sk);
2725 int val;
2726 int err = 0;
2727
2728 /* These are data/string values, all the others are ints */
2729 switch (optname) {
2730 case TCP_CONGESTION: {
2731 char name[TCP_CA_NAME_MAX];
2732
2733 if (optlen < 1)
2734 return -EINVAL;
2735
2736 val = strncpy_from_user(name, optval,
2737 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2738 if (val < 0)
2739 return -EFAULT;
2740 name[val] = 0;
2741
2742 lock_sock(sk);
2743 err = tcp_set_congestion_control(sk, name, true, true,
2744 ns_capable(sock_net(sk)->user_ns,
2745 CAP_NET_ADMIN));
2746 release_sock(sk);
2747 return err;
2748 }
2749 case TCP_ULP: {
2750 char name[TCP_ULP_NAME_MAX];
2751
2752 if (optlen < 1)
2753 return -EINVAL;
2754
2755 val = strncpy_from_user(name, optval,
2756 min_t(long, TCP_ULP_NAME_MAX - 1,
2757 optlen));
2758 if (val < 0)
2759 return -EFAULT;
2760 name[val] = 0;
2761
2762 lock_sock(sk);
2763 err = tcp_set_ulp(sk, name);
2764 release_sock(sk);
2765 return err;
2766 }
2767 case TCP_FASTOPEN_KEY: {
2768 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2769
2770 if (optlen != sizeof(key))
2771 return -EINVAL;
2772
2773 if (copy_from_user(key, optval, optlen))
2774 return -EFAULT;
2775
2776 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2777 }
2778 default:
2779 /* fallthru */
2780 break;
2781 }
2782
2783 if (optlen < sizeof(int))
2784 return -EINVAL;
2785
2786 if (get_user(val, (int __user *)optval))
2787 return -EFAULT;
2788
2789 lock_sock(sk);
2790
2791 switch (optname) {
2792 case TCP_MAXSEG:
2793 /* Values greater than interface MTU won't take effect. However
2794 * at the point when this call is done we typically don't yet
2795 * know which interface is going to be used
2796 */
2797 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2798 err = -EINVAL;
2799 break;
2800 }
2801 tp->rx_opt.user_mss = val;
2802 break;
2803
2804 case TCP_NODELAY:
2805 if (val) {
2806 /* TCP_NODELAY is weaker than TCP_CORK, so that
2807 * this option on corked socket is remembered, but
2808 * it is not activated until cork is cleared.
2809 *
2810 * However, when TCP_NODELAY is set we make
2811 * an explicit push, which overrides even TCP_CORK
2812 * for currently queued segments.
2813 */
2814 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2815 tcp_push_pending_frames(sk);
2816 } else {
2817 tp->nonagle &= ~TCP_NAGLE_OFF;
2818 }
2819 break;
2820
2821 case TCP_THIN_LINEAR_TIMEOUTS:
2822 if (val < 0 || val > 1)
2823 err = -EINVAL;
2824 else
2825 tp->thin_lto = val;
2826 break;
2827
2828 case TCP_THIN_DUPACK:
2829 if (val < 0 || val > 1)
2830 err = -EINVAL;
2831 break;
2832
2833 case TCP_REPAIR:
2834 if (!tcp_can_repair_sock(sk))
2835 err = -EPERM;
2836 else if (val == TCP_REPAIR_ON) {
2837 tp->repair = 1;
2838 sk->sk_reuse = SK_FORCE_REUSE;
2839 tp->repair_queue = TCP_NO_QUEUE;
2840 } else if (val == TCP_REPAIR_OFF) {
2841 tp->repair = 0;
2842 sk->sk_reuse = SK_NO_REUSE;
2843 tcp_send_window_probe(sk);
2844 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2845 tp->repair = 0;
2846 sk->sk_reuse = SK_NO_REUSE;
2847 } else
2848 err = -EINVAL;
2849
2850 break;
2851
2852 case TCP_REPAIR_QUEUE:
2853 if (!tp->repair)
2854 err = -EPERM;
2855 else if ((unsigned int)val < TCP_QUEUES_NR)
2856 tp->repair_queue = val;
2857 else
2858 err = -EINVAL;
2859 break;
2860
2861 case TCP_QUEUE_SEQ:
2862 if (sk->sk_state != TCP_CLOSE)
2863 err = -EPERM;
2864 else if (tp->repair_queue == TCP_SEND_QUEUE)
2865 tp->write_seq = val;
2866 else if (tp->repair_queue == TCP_RECV_QUEUE)
2867 WRITE_ONCE(tp->rcv_nxt, val);
2868 else
2869 err = -EINVAL;
2870 break;
2871
2872 case TCP_REPAIR_OPTIONS:
2873 if (!tp->repair)
2874 err = -EINVAL;
2875 else if (sk->sk_state == TCP_ESTABLISHED)
2876 err = tcp_repair_options_est(sk,
2877 (struct tcp_repair_opt __user *)optval,
2878 optlen);
2879 else
2880 err = -EPERM;
2881 break;
2882
2883 case TCP_CORK:
2884 /* When set indicates to always queue non-full frames.
2885 * Later the user clears this option and we transmit
2886 * any pending partial frames in the queue. This is
2887 * meant to be used alongside sendfile() to get properly
2888 * filled frames when the user (for example) must write
2889 * out headers with a write() call first and then use
2890 * sendfile to send out the data parts.
2891 *
2892 * TCP_CORK can be set together with TCP_NODELAY and it is
2893 * stronger than TCP_NODELAY.
2894 */
2895 if (val) {
2896 tp->nonagle |= TCP_NAGLE_CORK;
2897 } else {
2898 tp->nonagle &= ~TCP_NAGLE_CORK;
2899 if (tp->nonagle&TCP_NAGLE_OFF)
2900 tp->nonagle |= TCP_NAGLE_PUSH;
2901 tcp_push_pending_frames(sk);
2902 }
2903 break;
2904
2905 case TCP_KEEPIDLE:
2906 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2907 err = -EINVAL;
2908 else {
2909 tp->keepalive_time = val * HZ;
2910 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2911 !((1 << sk->sk_state) &
2912 (TCPF_CLOSE | TCPF_LISTEN))) {
2913 u32 elapsed = keepalive_time_elapsed(tp);
2914 if (tp->keepalive_time > elapsed)
2915 elapsed = tp->keepalive_time - elapsed;
2916 else
2917 elapsed = 0;
2918 inet_csk_reset_keepalive_timer(sk, elapsed);
2919 }
2920 }
2921 break;
2922 case TCP_KEEPINTVL:
2923 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2924 err = -EINVAL;
2925 else
2926 tp->keepalive_intvl = val * HZ;
2927 break;
2928 case TCP_KEEPCNT:
2929 if (val < 1 || val > MAX_TCP_KEEPCNT)
2930 err = -EINVAL;
2931 else
2932 tp->keepalive_probes = val;
2933 break;
2934 case TCP_SYNCNT:
2935 if (val < 1 || val > MAX_TCP_SYNCNT)
2936 err = -EINVAL;
2937 else
2938 icsk->icsk_syn_retries = val;
2939 break;
2940
2941 case TCP_SAVE_SYN:
2942 if (val < 0 || val > 1)
2943 err = -EINVAL;
2944 else
2945 tp->save_syn = val;
2946 break;
2947
2948 case TCP_LINGER2:
2949 if (val < 0)
2950 tp->linger2 = -1;
2951 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2952 tp->linger2 = 0;
2953 else
2954 tp->linger2 = val * HZ;
2955 break;
2956
2957 case TCP_DEFER_ACCEPT:
2958 /* Translate value in seconds to number of retransmits */
2959 icsk->icsk_accept_queue.rskq_defer_accept =
2960 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2961 TCP_RTO_MAX / HZ);
2962 break;
2963
2964 case TCP_WINDOW_CLAMP:
2965 if (!val) {
2966 if (sk->sk_state != TCP_CLOSE) {
2967 err = -EINVAL;
2968 break;
2969 }
2970 tp->window_clamp = 0;
2971 } else
2972 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2973 SOCK_MIN_RCVBUF / 2 : val;
2974 break;
2975
2976 case TCP_QUICKACK:
2977 if (!val) {
2978 icsk->icsk_ack.pingpong = 1;
2979 } else {
2980 icsk->icsk_ack.pingpong = 0;
2981 if ((1 << sk->sk_state) &
2982 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2983 inet_csk_ack_scheduled(sk)) {
2984 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2985 tcp_cleanup_rbuf(sk, 1);
2986 if (!(val & 1))
2987 icsk->icsk_ack.pingpong = 1;
2988 }
2989 }
2990 break;
2991
2992#ifdef CONFIG_TCP_MD5SIG
2993 case TCP_MD5SIG:
2994 case TCP_MD5SIG_EXT:
2995 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2996 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2997 else
2998 err = -EINVAL;
2999 break;
3000#endif
3001 case TCP_USER_TIMEOUT:
3002 /* Cap the max time in ms TCP will retry or probe the window
3003 * before giving up and aborting (ETIMEDOUT) a connection.
3004 */
3005 if (val < 0)
3006 err = -EINVAL;
3007 else
3008 icsk->icsk_user_timeout = val;
3009 break;
3010
3011 case TCP_FASTOPEN:
3012 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3013 TCPF_LISTEN))) {
3014 tcp_fastopen_init_key_once(net);
3015
3016 fastopen_queue_tune(sk, val);
3017 } else {
3018 err = -EINVAL;
3019 }
3020 break;
3021 case TCP_FASTOPEN_CONNECT:
3022 if (val > 1 || val < 0) {
3023 err = -EINVAL;
3024 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3025 if (sk->sk_state == TCP_CLOSE)
3026 tp->fastopen_connect = val;
3027 else
3028 err = -EINVAL;
3029 } else {
3030 err = -EOPNOTSUPP;
3031 }
3032 break;
3033 case TCP_FASTOPEN_NO_COOKIE:
3034 if (val > 1 || val < 0)
3035 err = -EINVAL;
3036 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3037 err = -EINVAL;
3038 else
3039 tp->fastopen_no_cookie = val;
3040 break;
3041 case TCP_TIMESTAMP:
3042 if (!tp->repair)
3043 err = -EPERM;
3044 else
3045 tp->tsoffset = val - tcp_time_stamp_raw();
3046 break;
3047 case TCP_REPAIR_WINDOW:
3048 err = tcp_repair_set_window(tp, optval, optlen);
3049 break;
3050 case TCP_NOTSENT_LOWAT:
3051 tp->notsent_lowat = val;
3052 sk->sk_write_space(sk);
3053 break;
3054 case TCP_INQ:
3055 if (val > 1 || val < 0)
3056 err = -EINVAL;
3057 else
3058 tp->recvmsg_inq = val;
3059 break;
3060 default:
3061 err = -ENOPROTOOPT;
3062 break;
3063 }
3064
3065 release_sock(sk);
3066 return err;
3067}
3068
3069int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3070 unsigned int optlen)
3071{
3072 const struct inet_connection_sock *icsk = inet_csk(sk);
3073
3074 if (level != SOL_TCP)
3075 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3076 optval, optlen);
3077 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3078}
3079EXPORT_SYMBOL(tcp_setsockopt);
3080
3081#ifdef CONFIG_COMPAT
3082int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3083 char __user *optval, unsigned int optlen)
3084{
3085 if (level != SOL_TCP)
3086 return inet_csk_compat_setsockopt(sk, level, optname,
3087 optval, optlen);
3088 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3089}
3090EXPORT_SYMBOL(compat_tcp_setsockopt);
3091#endif
3092
3093static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3094 struct tcp_info *info)
3095{
3096 u64 stats[__TCP_CHRONO_MAX], total = 0;
3097 enum tcp_chrono i;
3098
3099 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3100 stats[i] = tp->chrono_stat[i - 1];
3101 if (i == tp->chrono_type)
3102 stats[i] += tcp_jiffies32 - tp->chrono_start;
3103 stats[i] *= USEC_PER_SEC / HZ;
3104 total += stats[i];
3105 }
3106
3107 info->tcpi_busy_time = total;
3108 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3109 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3110}
3111
3112/* Return information about state of tcp endpoint in API format. */
3113void tcp_get_info(struct sock *sk, struct tcp_info *info)
3114{
3115 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3116 const struct inet_connection_sock *icsk = inet_csk(sk);
3117 u32 now;
3118 u64 rate64;
3119 bool slow;
3120 u32 rate;
3121
3122 memset(info, 0, sizeof(*info));
3123 if (sk->sk_type != SOCK_STREAM)
3124 return;
3125
3126 info->tcpi_state = inet_sk_state_load(sk);
3127
3128 /* Report meaningful fields for all TCP states, including listeners */
3129 rate = READ_ONCE(sk->sk_pacing_rate);
3130 rate64 = rate != ~0U ? rate : ~0ULL;
3131 info->tcpi_pacing_rate = rate64;
3132
3133 rate = READ_ONCE(sk->sk_max_pacing_rate);
3134 rate64 = rate != ~0U ? rate : ~0ULL;
3135 info->tcpi_max_pacing_rate = rate64;
3136
3137 info->tcpi_reordering = tp->reordering;
3138 info->tcpi_snd_cwnd = tp->snd_cwnd;
3139
3140 if (info->tcpi_state == TCP_LISTEN) {
3141 /* listeners aliased fields :
3142 * tcpi_unacked -> Number of children ready for accept()
3143 * tcpi_sacked -> max backlog
3144 */
3145 info->tcpi_unacked = sk->sk_ack_backlog;
3146 info->tcpi_sacked = sk->sk_max_ack_backlog;
3147 return;
3148 }
3149
3150 slow = lock_sock_fast(sk);
3151
3152 info->tcpi_ca_state = icsk->icsk_ca_state;
3153 info->tcpi_retransmits = icsk->icsk_retransmits;
3154 info->tcpi_probes = icsk->icsk_probes_out;
3155 info->tcpi_backoff = icsk->icsk_backoff;
3156
3157 if (tp->rx_opt.tstamp_ok)
3158 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3159 if (tcp_is_sack(tp))
3160 info->tcpi_options |= TCPI_OPT_SACK;
3161 if (tp->rx_opt.wscale_ok) {
3162 info->tcpi_options |= TCPI_OPT_WSCALE;
3163 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3164 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3165 }
3166
3167 if (tp->ecn_flags & TCP_ECN_OK)
3168 info->tcpi_options |= TCPI_OPT_ECN;
3169 if (tp->ecn_flags & TCP_ECN_SEEN)
3170 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3171 if (tp->syn_data_acked)
3172 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3173
3174 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3175 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3176 info->tcpi_snd_mss = tp->mss_cache;
3177 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3178
3179 info->tcpi_unacked = tp->packets_out;
3180 info->tcpi_sacked = tp->sacked_out;
3181
3182 info->tcpi_lost = tp->lost_out;
3183 info->tcpi_retrans = tp->retrans_out;
3184
3185 now = tcp_jiffies32;
3186 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3187 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3188 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3189
3190 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3191 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3192 info->tcpi_rtt = tp->srtt_us >> 3;
3193 info->tcpi_rttvar = tp->mdev_us >> 2;
3194 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3195 info->tcpi_advmss = tp->advmss;
3196
3197 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3198 info->tcpi_rcv_space = tp->rcvq_space.space;
3199
3200 info->tcpi_total_retrans = tp->total_retrans;
3201
3202 info->tcpi_bytes_acked = tp->bytes_acked;
3203 info->tcpi_bytes_received = tp->bytes_received;
3204 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3205 tcp_get_info_chrono_stats(tp, info);
3206
3207 info->tcpi_segs_out = tp->segs_out;
3208 info->tcpi_segs_in = tp->segs_in;
3209
3210 info->tcpi_min_rtt = tcp_min_rtt(tp);
3211 info->tcpi_data_segs_in = tp->data_segs_in;
3212 info->tcpi_data_segs_out = tp->data_segs_out;
3213
3214 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3215 rate64 = tcp_compute_delivery_rate(tp);
3216 if (rate64)
3217 info->tcpi_delivery_rate = rate64;
3218 info->tcpi_delivered = tp->delivered;
3219 info->tcpi_delivered_ce = tp->delivered_ce;
3220 info->tcpi_bytes_sent = tp->bytes_sent;
3221 info->tcpi_bytes_retrans = tp->bytes_retrans;
3222 info->tcpi_dsack_dups = tp->dsack_dups;
3223 info->tcpi_reord_seen = tp->reord_seen;
3224 unlock_sock_fast(sk, slow);
3225}
3226EXPORT_SYMBOL_GPL(tcp_get_info);
3227
3228static size_t tcp_opt_stats_get_size(void)
3229{
3230 return
3231 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3232 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3233 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3234 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3235 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3236 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3237 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3238 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3239 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3240 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3241 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3242 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3243 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3244 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3245 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3246 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3247 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3248 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3249 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3250 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3251 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3252 0;
3253}
3254
3255struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3256{
3257 const struct tcp_sock *tp = tcp_sk(sk);
3258 struct sk_buff *stats;
3259 struct tcp_info info;
3260 u64 rate64;
3261 u32 rate;
3262
3263 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3264 if (!stats)
3265 return NULL;
3266
3267 tcp_get_info_chrono_stats(tp, &info);
3268 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3269 info.tcpi_busy_time, TCP_NLA_PAD);
3270 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3271 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3272 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3273 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3274 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3275 tp->data_segs_out, TCP_NLA_PAD);
3276 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3277 tp->total_retrans, TCP_NLA_PAD);
3278
3279 rate = READ_ONCE(sk->sk_pacing_rate);
3280 rate64 = rate != ~0U ? rate : ~0ULL;
3281 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3282
3283 rate64 = tcp_compute_delivery_rate(tp);
3284 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3285
3286 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3287 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3288 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3289
3290 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3291 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3292 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3293 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3294 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3295
3296 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3297 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3298
3299 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3300 TCP_NLA_PAD);
3301 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3302 TCP_NLA_PAD);
3303 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3304 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3305
3306 return stats;
3307}
3308
3309static int do_tcp_getsockopt(struct sock *sk, int level,
3310 int optname, char __user *optval, int __user *optlen)
3311{
3312 struct inet_connection_sock *icsk = inet_csk(sk);
3313 struct tcp_sock *tp = tcp_sk(sk);
3314 struct net *net = sock_net(sk);
3315 int val, len;
3316
3317 if (get_user(len, optlen))
3318 return -EFAULT;
3319
3320 len = min_t(unsigned int, len, sizeof(int));
3321
3322 if (len < 0)
3323 return -EINVAL;
3324
3325 switch (optname) {
3326 case TCP_MAXSEG:
3327 val = tp->mss_cache;
3328 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3329 val = tp->rx_opt.user_mss;
3330 if (tp->repair)
3331 val = tp->rx_opt.mss_clamp;
3332 break;
3333 case TCP_NODELAY:
3334 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3335 break;
3336 case TCP_CORK:
3337 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3338 break;
3339 case TCP_KEEPIDLE:
3340 val = keepalive_time_when(tp) / HZ;
3341 break;
3342 case TCP_KEEPINTVL:
3343 val = keepalive_intvl_when(tp) / HZ;
3344 break;
3345 case TCP_KEEPCNT:
3346 val = keepalive_probes(tp);
3347 break;
3348 case TCP_SYNCNT:
3349 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3350 break;
3351 case TCP_LINGER2:
3352 val = tp->linger2;
3353 if (val >= 0)
3354 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3355 break;
3356 case TCP_DEFER_ACCEPT:
3357 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3358 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3359 break;
3360 case TCP_WINDOW_CLAMP:
3361 val = tp->window_clamp;
3362 break;
3363 case TCP_INFO: {
3364 struct tcp_info info;
3365
3366 if (get_user(len, optlen))
3367 return -EFAULT;
3368
3369 tcp_get_info(sk, &info);
3370
3371 len = min_t(unsigned int, len, sizeof(info));
3372 if (put_user(len, optlen))
3373 return -EFAULT;
3374 if (copy_to_user(optval, &info, len))
3375 return -EFAULT;
3376 return 0;
3377 }
3378 case TCP_CC_INFO: {
3379 const struct tcp_congestion_ops *ca_ops;
3380 union tcp_cc_info info;
3381 size_t sz = 0;
3382 int attr;
3383
3384 if (get_user(len, optlen))
3385 return -EFAULT;
3386
3387 ca_ops = icsk->icsk_ca_ops;
3388 if (ca_ops && ca_ops->get_info)
3389 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3390
3391 len = min_t(unsigned int, len, sz);
3392 if (put_user(len, optlen))
3393 return -EFAULT;
3394 if (copy_to_user(optval, &info, len))
3395 return -EFAULT;
3396 return 0;
3397 }
3398 case TCP_QUICKACK:
3399 val = !icsk->icsk_ack.pingpong;
3400 break;
3401
3402 case TCP_CONGESTION:
3403 if (get_user(len, optlen))
3404 return -EFAULT;
3405 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3406 if (put_user(len, optlen))
3407 return -EFAULT;
3408 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3409 return -EFAULT;
3410 return 0;
3411
3412 case TCP_ULP:
3413 if (get_user(len, optlen))
3414 return -EFAULT;
3415 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3416 if (!icsk->icsk_ulp_ops) {
3417 if (put_user(0, optlen))
3418 return -EFAULT;
3419 return 0;
3420 }
3421 if (put_user(len, optlen))
3422 return -EFAULT;
3423 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3424 return -EFAULT;
3425 return 0;
3426
3427 case TCP_FASTOPEN_KEY: {
3428 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3429 struct tcp_fastopen_context *ctx;
3430
3431 if (get_user(len, optlen))
3432 return -EFAULT;
3433
3434 rcu_read_lock();
3435 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3436 if (ctx)
3437 memcpy(key, ctx->key, sizeof(key));
3438 else
3439 len = 0;
3440 rcu_read_unlock();
3441
3442 len = min_t(unsigned int, len, sizeof(key));
3443 if (put_user(len, optlen))
3444 return -EFAULT;
3445 if (copy_to_user(optval, key, len))
3446 return -EFAULT;
3447 return 0;
3448 }
3449 case TCP_THIN_LINEAR_TIMEOUTS:
3450 val = tp->thin_lto;
3451 break;
3452
3453 case TCP_THIN_DUPACK:
3454 val = 0;
3455 break;
3456
3457 case TCP_REPAIR:
3458 val = tp->repair;
3459 break;
3460
3461 case TCP_REPAIR_QUEUE:
3462 if (tp->repair)
3463 val = tp->repair_queue;
3464 else
3465 return -EINVAL;
3466 break;
3467
3468 case TCP_REPAIR_WINDOW: {
3469 struct tcp_repair_window opt;
3470
3471 if (get_user(len, optlen))
3472 return -EFAULT;
3473
3474 if (len != sizeof(opt))
3475 return -EINVAL;
3476
3477 if (!tp->repair)
3478 return -EPERM;
3479
3480 opt.snd_wl1 = tp->snd_wl1;
3481 opt.snd_wnd = tp->snd_wnd;
3482 opt.max_window = tp->max_window;
3483 opt.rcv_wnd = tp->rcv_wnd;
3484 opt.rcv_wup = tp->rcv_wup;
3485
3486 if (copy_to_user(optval, &opt, len))
3487 return -EFAULT;
3488 return 0;
3489 }
3490 case TCP_QUEUE_SEQ:
3491 if (tp->repair_queue == TCP_SEND_QUEUE)
3492 val = tp->write_seq;
3493 else if (tp->repair_queue == TCP_RECV_QUEUE)
3494 val = tp->rcv_nxt;
3495 else
3496 return -EINVAL;
3497 break;
3498
3499 case TCP_USER_TIMEOUT:
3500 val = icsk->icsk_user_timeout;
3501 break;
3502
3503 case TCP_FASTOPEN:
3504 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3505 break;
3506
3507 case TCP_FASTOPEN_CONNECT:
3508 val = tp->fastopen_connect;
3509 break;
3510
3511 case TCP_FASTOPEN_NO_COOKIE:
3512 val = tp->fastopen_no_cookie;
3513 break;
3514
3515 case TCP_TIMESTAMP:
3516 val = tcp_time_stamp_raw() + tp->tsoffset;
3517 break;
3518 case TCP_NOTSENT_LOWAT:
3519 val = tp->notsent_lowat;
3520 break;
3521 case TCP_INQ:
3522 val = tp->recvmsg_inq;
3523 break;
3524 case TCP_SAVE_SYN:
3525 val = tp->save_syn;
3526 break;
3527 case TCP_SAVED_SYN: {
3528 if (get_user(len, optlen))
3529 return -EFAULT;
3530
3531 lock_sock(sk);
3532 if (tp->saved_syn) {
3533 if (len < tp->saved_syn[0]) {
3534 if (put_user(tp->saved_syn[0], optlen)) {
3535 release_sock(sk);
3536 return -EFAULT;
3537 }
3538 release_sock(sk);
3539 return -EINVAL;
3540 }
3541 len = tp->saved_syn[0];
3542 if (put_user(len, optlen)) {
3543 release_sock(sk);
3544 return -EFAULT;
3545 }
3546 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3547 release_sock(sk);
3548 return -EFAULT;
3549 }
3550 tcp_saved_syn_free(tp);
3551 release_sock(sk);
3552 } else {
3553 release_sock(sk);
3554 len = 0;
3555 if (put_user(len, optlen))
3556 return -EFAULT;
3557 }
3558 return 0;
3559 }
3560#ifdef CONFIG_MMU
3561 case TCP_ZEROCOPY_RECEIVE: {
3562 struct tcp_zerocopy_receive zc;
3563 int err;
3564
3565 if (get_user(len, optlen))
3566 return -EFAULT;
3567 if (len != sizeof(zc))
3568 return -EINVAL;
3569 if (copy_from_user(&zc, optval, len))
3570 return -EFAULT;
3571 lock_sock(sk);
3572 err = tcp_zerocopy_receive(sk, &zc);
3573 release_sock(sk);
3574 if (!err && copy_to_user(optval, &zc, len))
3575 err = -EFAULT;
3576 return err;
3577 }
3578#endif
3579 default:
3580 return -ENOPROTOOPT;
3581 }
3582
3583 if (put_user(len, optlen))
3584 return -EFAULT;
3585 if (copy_to_user(optval, &val, len))
3586 return -EFAULT;
3587 return 0;
3588}
3589
3590int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3591 int __user *optlen)
3592{
3593 struct inet_connection_sock *icsk = inet_csk(sk);
3594
3595 if (level != SOL_TCP)
3596 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3597 optval, optlen);
3598 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3599}
3600EXPORT_SYMBOL(tcp_getsockopt);
3601
3602#ifdef CONFIG_COMPAT
3603int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3604 char __user *optval, int __user *optlen)
3605{
3606 if (level != SOL_TCP)
3607 return inet_csk_compat_getsockopt(sk, level, optname,
3608 optval, optlen);
3609 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3610}
3611EXPORT_SYMBOL(compat_tcp_getsockopt);
3612#endif
3613
3614#ifdef CONFIG_TCP_MD5SIG
3615static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3616static DEFINE_MUTEX(tcp_md5sig_mutex);
3617static bool tcp_md5sig_pool_populated = false;
3618
3619static void __tcp_alloc_md5sig_pool(void)
3620{
3621 struct crypto_ahash *hash;
3622 int cpu;
3623
3624 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3625 if (IS_ERR(hash))
3626 return;
3627
3628 for_each_possible_cpu(cpu) {
3629 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3630 struct ahash_request *req;
3631
3632 if (!scratch) {
3633 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3634 sizeof(struct tcphdr),
3635 GFP_KERNEL,
3636 cpu_to_node(cpu));
3637 if (!scratch)
3638 return;
3639 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3640 }
3641 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3642 continue;
3643
3644 req = ahash_request_alloc(hash, GFP_KERNEL);
3645 if (!req)
3646 return;
3647
3648 ahash_request_set_callback(req, 0, NULL, NULL);
3649
3650 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3651 }
3652 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3653 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3654 */
3655 smp_wmb();
3656 tcp_md5sig_pool_populated = true;
3657}
3658
3659bool tcp_alloc_md5sig_pool(void)
3660{
3661 if (unlikely(!tcp_md5sig_pool_populated)) {
3662 mutex_lock(&tcp_md5sig_mutex);
3663
3664 if (!tcp_md5sig_pool_populated)
3665 __tcp_alloc_md5sig_pool();
3666
3667 mutex_unlock(&tcp_md5sig_mutex);
3668 }
3669 return tcp_md5sig_pool_populated;
3670}
3671EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3672
3673
3674/**
3675 * tcp_get_md5sig_pool - get md5sig_pool for this user
3676 *
3677 * We use percpu structure, so if we succeed, we exit with preemption
3678 * and BH disabled, to make sure another thread or softirq handling
3679 * wont try to get same context.
3680 */
3681struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3682{
3683 local_bh_disable();
3684
3685 if (tcp_md5sig_pool_populated) {
3686 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3687 smp_rmb();
3688 return this_cpu_ptr(&tcp_md5sig_pool);
3689 }
3690 local_bh_enable();
3691 return NULL;
3692}
3693EXPORT_SYMBOL(tcp_get_md5sig_pool);
3694
3695int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3696 const struct sk_buff *skb, unsigned int header_len)
3697{
3698 struct scatterlist sg;
3699 const struct tcphdr *tp = tcp_hdr(skb);
3700 struct ahash_request *req = hp->md5_req;
3701 unsigned int i;
3702 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3703 skb_headlen(skb) - header_len : 0;
3704 const struct skb_shared_info *shi = skb_shinfo(skb);
3705 struct sk_buff *frag_iter;
3706
3707 sg_init_table(&sg, 1);
3708
3709 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3710 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3711 if (crypto_ahash_update(req))
3712 return 1;
3713
3714 for (i = 0; i < shi->nr_frags; ++i) {
3715 const struct skb_frag_struct *f = &shi->frags[i];
3716 unsigned int offset = f->page_offset;
3717 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3718
3719 sg_set_page(&sg, page, skb_frag_size(f),
3720 offset_in_page(offset));
3721 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3722 if (crypto_ahash_update(req))
3723 return 1;
3724 }
3725
3726 skb_walk_frags(skb, frag_iter)
3727 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3728 return 1;
3729
3730 return 0;
3731}
3732EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3733
3734int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3735{
3736 struct scatterlist sg;
3737
3738 sg_init_one(&sg, key->key, key->keylen);
3739 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3740 return crypto_ahash_update(hp->md5_req);
3741}
3742EXPORT_SYMBOL(tcp_md5_hash_key);
3743
3744#endif
3745
3746void tcp_done(struct sock *sk)
3747{
3748 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3749
3750 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3751 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3752
3753 tcp_set_state(sk, TCP_CLOSE);
3754 tcp_clear_xmit_timers(sk);
3755 if (req)
3756 reqsk_fastopen_remove(sk, req, false);
3757
3758 sk->sk_shutdown = SHUTDOWN_MASK;
3759
3760 if (!sock_flag(sk, SOCK_DEAD))
3761 sk->sk_state_change(sk);
3762 else
3763 inet_csk_destroy_sock(sk);
3764}
3765EXPORT_SYMBOL_GPL(tcp_done);
3766
3767int tcp_abort(struct sock *sk, int err)
3768{
3769 if (!sk_fullsock(sk)) {
3770 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3771 struct request_sock *req = inet_reqsk(sk);
3772
3773 local_bh_disable();
3774 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3775 local_bh_enable();
3776 return 0;
3777 }
3778 return -EOPNOTSUPP;
3779 }
3780
3781 /* Don't race with userspace socket closes such as tcp_close. */
3782 lock_sock(sk);
3783
3784 if (sk->sk_state == TCP_LISTEN) {
3785 tcp_set_state(sk, TCP_CLOSE);
3786 inet_csk_listen_stop(sk);
3787 }
3788
3789 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3790 local_bh_disable();
3791 bh_lock_sock(sk);
3792
3793 if (!sock_flag(sk, SOCK_DEAD)) {
3794 sk->sk_err = err;
3795 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3796 smp_wmb();
3797 sk->sk_error_report(sk);
3798 if (tcp_need_reset(sk->sk_state))
3799 tcp_send_active_reset(sk, GFP_ATOMIC);
3800 tcp_done(sk);
3801 }
3802
3803 bh_unlock_sock(sk);
3804 local_bh_enable();
3805 tcp_write_queue_purge(sk);
3806 release_sock(sk);
3807 return 0;
3808}
3809EXPORT_SYMBOL_GPL(tcp_abort);
3810
3811extern struct tcp_congestion_ops tcp_reno;
3812
3813static __initdata unsigned long thash_entries;
3814static int __init set_thash_entries(char *str)
3815{
3816 ssize_t ret;
3817
3818 if (!str)
3819 return 0;
3820
3821 ret = kstrtoul(str, 0, &thash_entries);
3822 if (ret)
3823 return 0;
3824
3825 return 1;
3826}
3827__setup("thash_entries=", set_thash_entries);
3828
3829static void __init tcp_init_mem(void)
3830{
3831 unsigned long limit = nr_free_buffer_pages() / 16;
3832
3833 limit = max(limit, 128UL);
3834 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3835 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3836 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3837}
3838
3839void __init tcp_init(void)
3840{
3841 int max_rshare, max_wshare, cnt;
3842 unsigned long limit;
3843 unsigned int i;
3844
3845 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3846 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3847 FIELD_SIZEOF(struct sk_buff, cb));
3848
3849 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3850 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3851 inet_hashinfo_init(&tcp_hashinfo);
3852 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3853 thash_entries, 21, /* one slot per 2 MB*/
3854 0, 64 * 1024);
3855 tcp_hashinfo.bind_bucket_cachep =
3856 kmem_cache_create("tcp_bind_bucket",
3857 sizeof(struct inet_bind_bucket), 0,
3858 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3859
3860 /* Size and allocate the main established and bind bucket
3861 * hash tables.
3862 *
3863 * The methodology is similar to that of the buffer cache.
3864 */
3865 tcp_hashinfo.ehash =
3866 alloc_large_system_hash("TCP established",
3867 sizeof(struct inet_ehash_bucket),
3868 thash_entries,
3869 17, /* one slot per 128 KB of memory */
3870 0,
3871 NULL,
3872 &tcp_hashinfo.ehash_mask,
3873 0,
3874 thash_entries ? 0 : 512 * 1024);
3875 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3876 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3877
3878 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3879 panic("TCP: failed to alloc ehash_locks");
3880 tcp_hashinfo.bhash =
3881 alloc_large_system_hash("TCP bind",
3882 sizeof(struct inet_bind_hashbucket),
3883 tcp_hashinfo.ehash_mask + 1,
3884 17, /* one slot per 128 KB of memory */
3885 0,
3886 &tcp_hashinfo.bhash_size,
3887 NULL,
3888 0,
3889 64 * 1024);
3890 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3891 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3892 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3893 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3894 }
3895
3896
3897 cnt = tcp_hashinfo.ehash_mask + 1;
3898 sysctl_tcp_max_orphans = cnt / 2;
3899
3900 tcp_init_mem();
3901 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3902 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3903 max_wshare = min(4UL*1024*1024, limit);
3904 max_rshare = min(6UL*1024*1024, limit);
3905
3906 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3907 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3908 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3909
3910 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3911 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3912 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3913
3914 pr_info("Hash tables configured (established %u bind %u)\n",
3915 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3916
3917 tcp_v4_init();
3918 tcp_metrics_init();
3919 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3920 tcp_tasklet_init();
3921}