| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Driver for I2C adapter in Rockchip RK3xxx SoC | 
|  | 3 | * | 
|  | 4 | * Max Schwarz <max.schwarz@online.de> | 
|  | 5 | * based on the patches by Rockchip Inc. | 
|  | 6 | * | 
|  | 7 | * This program is free software; you can redistribute it and/or modify | 
|  | 8 | * it under the terms of the GNU General Public License version 2 as | 
|  | 9 | * published by the Free Software Foundation. | 
|  | 10 | */ | 
|  | 11 |  | 
|  | 12 | #include <linux/kernel.h> | 
|  | 13 | #include <linux/module.h> | 
|  | 14 | #include <linux/i2c.h> | 
|  | 15 | #include <linux/interrupt.h> | 
|  | 16 | #include <linux/errno.h> | 
|  | 17 | #include <linux/err.h> | 
|  | 18 | #include <linux/platform_device.h> | 
|  | 19 | #include <linux/io.h> | 
|  | 20 | #include <linux/of_address.h> | 
|  | 21 | #include <linux/of_irq.h> | 
|  | 22 | #include <linux/spinlock.h> | 
|  | 23 | #include <linux/clk.h> | 
|  | 24 | #include <linux/wait.h> | 
|  | 25 | #include <linux/mfd/syscon.h> | 
|  | 26 | #include <linux/regmap.h> | 
|  | 27 | #include <linux/math64.h> | 
|  | 28 |  | 
|  | 29 |  | 
|  | 30 | /* Register Map */ | 
|  | 31 | #define REG_CON        0x00 /* control register */ | 
|  | 32 | #define REG_CLKDIV     0x04 /* clock divisor register */ | 
|  | 33 | #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */ | 
|  | 34 | #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */ | 
|  | 35 | #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */ | 
|  | 36 | #define REG_MRXCNT     0x14 /* number of bytes to be received */ | 
|  | 37 | #define REG_IEN        0x18 /* interrupt enable */ | 
|  | 38 | #define REG_IPD        0x1c /* interrupt pending */ | 
|  | 39 | #define REG_FCNT       0x20 /* finished count */ | 
|  | 40 |  | 
|  | 41 | /* Data buffer offsets */ | 
|  | 42 | #define TXBUFFER_BASE 0x100 | 
|  | 43 | #define RXBUFFER_BASE 0x200 | 
|  | 44 |  | 
|  | 45 | /* REG_CON bits */ | 
|  | 46 | #define REG_CON_EN        BIT(0) | 
|  | 47 | enum { | 
|  | 48 | REG_CON_MOD_TX = 0,      /* transmit data */ | 
|  | 49 | REG_CON_MOD_REGISTER_TX, /* select register and restart */ | 
|  | 50 | REG_CON_MOD_RX,          /* receive data */ | 
|  | 51 | REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes | 
|  | 52 | * register addr */ | 
|  | 53 | }; | 
|  | 54 | #define REG_CON_MOD(mod)  ((mod) << 1) | 
|  | 55 | #define REG_CON_MOD_MASK  (BIT(1) | BIT(2)) | 
|  | 56 | #define REG_CON_START     BIT(3) | 
|  | 57 | #define REG_CON_STOP      BIT(4) | 
|  | 58 | #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */ | 
|  | 59 | #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */ | 
|  | 60 |  | 
|  | 61 | #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8) | 
|  | 62 |  | 
|  | 63 | #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) | 
|  | 64 | #define REG_CON_STA_CFG(cfg) ((cfg) << 12) | 
|  | 65 | #define REG_CON_STO_CFG(cfg) ((cfg) << 14) | 
|  | 66 |  | 
|  | 67 | /* REG_MRXADDR bits */ | 
|  | 68 | #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ | 
|  | 69 |  | 
|  | 70 | /* REG_IEN/REG_IPD bits */ | 
|  | 71 | #define REG_INT_BTF       BIT(0) /* a byte was transmitted */ | 
|  | 72 | #define REG_INT_BRF       BIT(1) /* a byte was received */ | 
|  | 73 | #define REG_INT_MBTF      BIT(2) /* master data transmit finished */ | 
|  | 74 | #define REG_INT_MBRF      BIT(3) /* master data receive finished */ | 
|  | 75 | #define REG_INT_START     BIT(4) /* START condition generated */ | 
|  | 76 | #define REG_INT_STOP      BIT(5) /* STOP condition generated */ | 
|  | 77 | #define REG_INT_NAKRCV    BIT(6) /* NACK received */ | 
|  | 78 | #define REG_INT_ALL       0x7f | 
|  | 79 |  | 
|  | 80 | /* Constants */ | 
|  | 81 | #define WAIT_TIMEOUT      1000 /* ms */ | 
|  | 82 | #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */ | 
|  | 83 |  | 
|  | 84 | /** | 
|  | 85 | * struct i2c_spec_values: | 
|  | 86 | * @min_hold_start_ns: min hold time (repeated) START condition | 
|  | 87 | * @min_low_ns: min LOW period of the SCL clock | 
|  | 88 | * @min_high_ns: min HIGH period of the SCL cloc | 
|  | 89 | * @min_setup_start_ns: min set-up time for a repeated START conditio | 
|  | 90 | * @max_data_hold_ns: max data hold time | 
|  | 91 | * @min_data_setup_ns: min data set-up time | 
|  | 92 | * @min_setup_stop_ns: min set-up time for STOP condition | 
|  | 93 | * @min_hold_buffer_ns: min bus free time between a STOP and | 
|  | 94 | * START condition | 
|  | 95 | */ | 
|  | 96 | struct i2c_spec_values { | 
|  | 97 | unsigned long min_hold_start_ns; | 
|  | 98 | unsigned long min_low_ns; | 
|  | 99 | unsigned long min_high_ns; | 
|  | 100 | unsigned long min_setup_start_ns; | 
|  | 101 | unsigned long max_data_hold_ns; | 
|  | 102 | unsigned long min_data_setup_ns; | 
|  | 103 | unsigned long min_setup_stop_ns; | 
|  | 104 | unsigned long min_hold_buffer_ns; | 
|  | 105 | }; | 
|  | 106 |  | 
|  | 107 | static const struct i2c_spec_values standard_mode_spec = { | 
|  | 108 | .min_hold_start_ns = 4000, | 
|  | 109 | .min_low_ns = 4700, | 
|  | 110 | .min_high_ns = 4000, | 
|  | 111 | .min_setup_start_ns = 4700, | 
|  | 112 | .max_data_hold_ns = 3450, | 
|  | 113 | .min_data_setup_ns = 250, | 
|  | 114 | .min_setup_stop_ns = 4000, | 
|  | 115 | .min_hold_buffer_ns = 4700, | 
|  | 116 | }; | 
|  | 117 |  | 
|  | 118 | static const struct i2c_spec_values fast_mode_spec = { | 
|  | 119 | .min_hold_start_ns = 600, | 
|  | 120 | .min_low_ns = 1300, | 
|  | 121 | .min_high_ns = 600, | 
|  | 122 | .min_setup_start_ns = 600, | 
|  | 123 | .max_data_hold_ns = 900, | 
|  | 124 | .min_data_setup_ns = 100, | 
|  | 125 | .min_setup_stop_ns = 600, | 
|  | 126 | .min_hold_buffer_ns = 1300, | 
|  | 127 | }; | 
|  | 128 |  | 
|  | 129 | static const struct i2c_spec_values fast_mode_plus_spec = { | 
|  | 130 | .min_hold_start_ns = 260, | 
|  | 131 | .min_low_ns = 500, | 
|  | 132 | .min_high_ns = 260, | 
|  | 133 | .min_setup_start_ns = 260, | 
|  | 134 | .max_data_hold_ns = 400, | 
|  | 135 | .min_data_setup_ns = 50, | 
|  | 136 | .min_setup_stop_ns = 260, | 
|  | 137 | .min_hold_buffer_ns = 500, | 
|  | 138 | }; | 
|  | 139 |  | 
|  | 140 | /** | 
|  | 141 | * struct rk3x_i2c_calced_timings: | 
|  | 142 | * @div_low: Divider output for low | 
|  | 143 | * @div_high: Divider output for high | 
|  | 144 | * @tuning: Used to adjust setup/hold data time, | 
|  | 145 | * setup/hold start time and setup stop time for | 
|  | 146 | * v1's calc_timings, the tuning should all be 0 | 
|  | 147 | * for old hardware anyone using v0's calc_timings. | 
|  | 148 | */ | 
|  | 149 | struct rk3x_i2c_calced_timings { | 
|  | 150 | unsigned long div_low; | 
|  | 151 | unsigned long div_high; | 
|  | 152 | unsigned int tuning; | 
|  | 153 | }; | 
|  | 154 |  | 
|  | 155 | enum rk3x_i2c_state { | 
|  | 156 | STATE_IDLE, | 
|  | 157 | STATE_START, | 
|  | 158 | STATE_READ, | 
|  | 159 | STATE_WRITE, | 
|  | 160 | STATE_STOP | 
|  | 161 | }; | 
|  | 162 |  | 
|  | 163 | /** | 
|  | 164 | * struct rk3x_i2c_soc_data: | 
|  | 165 | * @grf_offset: offset inside the grf regmap for setting the i2c type | 
|  | 166 | * @calc_timings: Callback function for i2c timing information calculated | 
|  | 167 | */ | 
|  | 168 | struct rk3x_i2c_soc_data { | 
|  | 169 | int grf_offset; | 
|  | 170 | int (*calc_timings)(unsigned long, struct i2c_timings *, | 
|  | 171 | struct rk3x_i2c_calced_timings *); | 
|  | 172 | }; | 
|  | 173 |  | 
|  | 174 | /** | 
|  | 175 | * struct rk3x_i2c - private data of the controller | 
|  | 176 | * @adap: corresponding I2C adapter | 
|  | 177 | * @dev: device for this controller | 
|  | 178 | * @soc_data: related soc data struct | 
|  | 179 | * @regs: virtual memory area | 
|  | 180 | * @clk: function clk for rk3399 or function & Bus clks for others | 
|  | 181 | * @pclk: Bus clk for rk3399 | 
|  | 182 | * @clk_rate_nb: i2c clk rate change notify | 
|  | 183 | * @t: I2C known timing information | 
|  | 184 | * @lock: spinlock for the i2c bus | 
|  | 185 | * @wait: the waitqueue to wait for i2c transfer | 
|  | 186 | * @busy: the condition for the event to wait for | 
|  | 187 | * @msg: current i2c message | 
|  | 188 | * @addr: addr of i2c slave device | 
|  | 189 | * @mode: mode of i2c transfer | 
|  | 190 | * @is_last_msg: flag determines whether it is the last msg in this transfer | 
|  | 191 | * @state: state of i2c transfer | 
|  | 192 | * @processed: byte length which has been send or received | 
|  | 193 | * @error: error code for i2c transfer | 
|  | 194 | */ | 
|  | 195 | struct rk3x_i2c { | 
|  | 196 | struct i2c_adapter adap; | 
|  | 197 | struct device *dev; | 
|  | 198 | const struct rk3x_i2c_soc_data *soc_data; | 
|  | 199 |  | 
|  | 200 | /* Hardware resources */ | 
|  | 201 | void __iomem *regs; | 
|  | 202 | struct clk *clk; | 
|  | 203 | struct clk *pclk; | 
|  | 204 | struct notifier_block clk_rate_nb; | 
|  | 205 |  | 
|  | 206 | /* Settings */ | 
|  | 207 | struct i2c_timings t; | 
|  | 208 |  | 
|  | 209 | /* Synchronization & notification */ | 
|  | 210 | spinlock_t lock; | 
|  | 211 | wait_queue_head_t wait; | 
|  | 212 | bool busy; | 
|  | 213 |  | 
|  | 214 | /* Current message */ | 
|  | 215 | struct i2c_msg *msg; | 
|  | 216 | u8 addr; | 
|  | 217 | unsigned int mode; | 
|  | 218 | bool is_last_msg; | 
|  | 219 |  | 
|  | 220 | /* I2C state machine */ | 
|  | 221 | enum rk3x_i2c_state state; | 
|  | 222 | unsigned int processed; | 
|  | 223 | int error; | 
|  | 224 | }; | 
|  | 225 |  | 
|  | 226 | static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, | 
|  | 227 | unsigned int offset) | 
|  | 228 | { | 
|  | 229 | writel(value, i2c->regs + offset); | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) | 
|  | 233 | { | 
|  | 234 | return readl(i2c->regs + offset); | 
|  | 235 | } | 
|  | 236 |  | 
|  | 237 | /* Reset all interrupt pending bits */ | 
|  | 238 | static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) | 
|  | 239 | { | 
|  | 240 | i2c_writel(i2c, REG_INT_ALL, REG_IPD); | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /** | 
|  | 244 | * Generate a START condition, which triggers a REG_INT_START interrupt. | 
|  | 245 | */ | 
|  | 246 | static void rk3x_i2c_start(struct rk3x_i2c *i2c) | 
|  | 247 | { | 
|  | 248 | u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
|  | 249 |  | 
|  | 250 | i2c_writel(i2c, REG_INT_START, REG_IEN); | 
|  | 251 |  | 
|  | 252 | /* enable adapter with correct mode, send START condition */ | 
|  | 253 | val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; | 
|  | 254 |  | 
|  | 255 | /* if we want to react to NACK, set ACTACK bit */ | 
|  | 256 | if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) | 
|  | 257 | val |= REG_CON_ACTACK; | 
|  | 258 |  | 
|  | 259 | i2c_writel(i2c, val, REG_CON); | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | /** | 
|  | 263 | * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. | 
|  | 264 | * | 
|  | 265 | * @error: Error code to return in rk3x_i2c_xfer | 
|  | 266 | */ | 
|  | 267 | static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) | 
|  | 268 | { | 
|  | 269 | unsigned int ctrl; | 
|  | 270 |  | 
|  | 271 | i2c->processed = 0; | 
|  | 272 | i2c->msg = NULL; | 
|  | 273 | i2c->error = error; | 
|  | 274 |  | 
|  | 275 | if (i2c->is_last_msg) { | 
|  | 276 | /* Enable stop interrupt */ | 
|  | 277 | i2c_writel(i2c, REG_INT_STOP, REG_IEN); | 
|  | 278 |  | 
|  | 279 | i2c->state = STATE_STOP; | 
|  | 280 |  | 
|  | 281 | ctrl = i2c_readl(i2c, REG_CON); | 
|  | 282 | ctrl |= REG_CON_STOP; | 
|  | 283 | i2c_writel(i2c, ctrl, REG_CON); | 
|  | 284 | } else { | 
|  | 285 | /* Signal rk3x_i2c_xfer to start the next message. */ | 
|  | 286 | i2c->busy = false; | 
|  | 287 | i2c->state = STATE_IDLE; | 
|  | 288 |  | 
|  | 289 | /* | 
|  | 290 | * The HW is actually not capable of REPEATED START. But we can | 
|  | 291 | * get the intended effect by resetting its internal state | 
|  | 292 | * and issuing an ordinary START. | 
|  | 293 | */ | 
|  | 294 | ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
|  | 295 | i2c_writel(i2c, ctrl, REG_CON); | 
|  | 296 |  | 
|  | 297 | /* signal that we are finished with the current msg */ | 
|  | 298 | wake_up(&i2c->wait); | 
|  | 299 | } | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | /** | 
|  | 303 | * Setup a read according to i2c->msg | 
|  | 304 | */ | 
|  | 305 | static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) | 
|  | 306 | { | 
|  | 307 | unsigned int len = i2c->msg->len - i2c->processed; | 
|  | 308 | u32 con; | 
|  | 309 |  | 
|  | 310 | con = i2c_readl(i2c, REG_CON); | 
|  | 311 |  | 
|  | 312 | /* | 
|  | 313 | * The hw can read up to 32 bytes at a time. If we need more than one | 
|  | 314 | * chunk, send an ACK after the last byte of the current chunk. | 
|  | 315 | */ | 
|  | 316 | if (len > 32) { | 
|  | 317 | len = 32; | 
|  | 318 | con &= ~REG_CON_LASTACK; | 
|  | 319 | } else { | 
|  | 320 | con |= REG_CON_LASTACK; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /* make sure we are in plain RX mode if we read a second chunk */ | 
|  | 324 | if (i2c->processed != 0) { | 
|  | 325 | con &= ~REG_CON_MOD_MASK; | 
|  | 326 | con |= REG_CON_MOD(REG_CON_MOD_RX); | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | i2c_writel(i2c, con, REG_CON); | 
|  | 330 | i2c_writel(i2c, len, REG_MRXCNT); | 
|  | 331 | } | 
|  | 332 |  | 
|  | 333 | /** | 
|  | 334 | * Fill the transmit buffer with data from i2c->msg | 
|  | 335 | */ | 
|  | 336 | static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) | 
|  | 337 | { | 
|  | 338 | unsigned int i, j; | 
|  | 339 | u32 cnt = 0; | 
|  | 340 | u32 val; | 
|  | 341 | u8 byte; | 
|  | 342 |  | 
|  | 343 | for (i = 0; i < 8; ++i) { | 
|  | 344 | val = 0; | 
|  | 345 | for (j = 0; j < 4; ++j) { | 
|  | 346 | if ((i2c->processed == i2c->msg->len) && (cnt != 0)) | 
|  | 347 | break; | 
|  | 348 |  | 
|  | 349 | if (i2c->processed == 0 && cnt == 0) | 
|  | 350 | byte = (i2c->addr & 0x7f) << 1; | 
|  | 351 | else | 
|  | 352 | byte = i2c->msg->buf[i2c->processed++]; | 
|  | 353 |  | 
|  | 354 | val |= byte << (j * 8); | 
|  | 355 | cnt++; | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); | 
|  | 359 |  | 
|  | 360 | if (i2c->processed == i2c->msg->len) | 
|  | 361 | break; | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | i2c_writel(i2c, cnt, REG_MTXCNT); | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 |  | 
|  | 368 | /* IRQ handlers for individual states */ | 
|  | 369 |  | 
|  | 370 | static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) | 
|  | 371 | { | 
|  | 372 | if (!(ipd & REG_INT_START)) { | 
|  | 373 | rk3x_i2c_stop(i2c, -EIO); | 
|  | 374 | dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); | 
|  | 375 | rk3x_i2c_clean_ipd(i2c); | 
|  | 376 | return; | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | /* ack interrupt */ | 
|  | 380 | i2c_writel(i2c, REG_INT_START, REG_IPD); | 
|  | 381 |  | 
|  | 382 | /* disable start bit */ | 
|  | 383 | i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); | 
|  | 384 |  | 
|  | 385 | /* enable appropriate interrupts and transition */ | 
|  | 386 | if (i2c->mode == REG_CON_MOD_TX) { | 
|  | 387 | i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); | 
|  | 388 | i2c->state = STATE_WRITE; | 
|  | 389 | rk3x_i2c_fill_transmit_buf(i2c); | 
|  | 390 | } else { | 
|  | 391 | /* in any other case, we are going to be reading. */ | 
|  | 392 | i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); | 
|  | 393 | i2c->state = STATE_READ; | 
|  | 394 | rk3x_i2c_prepare_read(i2c); | 
|  | 395 | } | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) | 
|  | 399 | { | 
|  | 400 | if (!(ipd & REG_INT_MBTF)) { | 
|  | 401 | rk3x_i2c_stop(i2c, -EIO); | 
|  | 402 | dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); | 
|  | 403 | rk3x_i2c_clean_ipd(i2c); | 
|  | 404 | return; | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | /* ack interrupt */ | 
|  | 408 | i2c_writel(i2c, REG_INT_MBTF, REG_IPD); | 
|  | 409 |  | 
|  | 410 | /* are we finished? */ | 
|  | 411 | if (i2c->processed == i2c->msg->len) | 
|  | 412 | rk3x_i2c_stop(i2c, i2c->error); | 
|  | 413 | else | 
|  | 414 | rk3x_i2c_fill_transmit_buf(i2c); | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) | 
|  | 418 | { | 
|  | 419 | unsigned int i; | 
|  | 420 | unsigned int len = i2c->msg->len - i2c->processed; | 
|  | 421 | u32 uninitialized_var(val); | 
|  | 422 | u8 byte; | 
|  | 423 |  | 
|  | 424 | /* we only care for MBRF here. */ | 
|  | 425 | if (!(ipd & REG_INT_MBRF)) | 
|  | 426 | return; | 
|  | 427 |  | 
|  | 428 | /* ack interrupt */ | 
|  | 429 | i2c_writel(i2c, REG_INT_MBRF, REG_IPD); | 
|  | 430 |  | 
|  | 431 | /* Can only handle a maximum of 32 bytes at a time */ | 
|  | 432 | if (len > 32) | 
|  | 433 | len = 32; | 
|  | 434 |  | 
|  | 435 | /* read the data from receive buffer */ | 
|  | 436 | for (i = 0; i < len; ++i) { | 
|  | 437 | if (i % 4 == 0) | 
|  | 438 | val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); | 
|  | 439 |  | 
|  | 440 | byte = (val >> ((i % 4) * 8)) & 0xff; | 
|  | 441 | i2c->msg->buf[i2c->processed++] = byte; | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | /* are we finished? */ | 
|  | 445 | if (i2c->processed == i2c->msg->len) | 
|  | 446 | rk3x_i2c_stop(i2c, i2c->error); | 
|  | 447 | else | 
|  | 448 | rk3x_i2c_prepare_read(i2c); | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) | 
|  | 452 | { | 
|  | 453 | unsigned int con; | 
|  | 454 |  | 
|  | 455 | if (!(ipd & REG_INT_STOP)) { | 
|  | 456 | rk3x_i2c_stop(i2c, -EIO); | 
|  | 457 | dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); | 
|  | 458 | rk3x_i2c_clean_ipd(i2c); | 
|  | 459 | return; | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | /* ack interrupt */ | 
|  | 463 | i2c_writel(i2c, REG_INT_STOP, REG_IPD); | 
|  | 464 |  | 
|  | 465 | /* disable STOP bit */ | 
|  | 466 | con = i2c_readl(i2c, REG_CON); | 
|  | 467 | con &= ~REG_CON_STOP; | 
|  | 468 | i2c_writel(i2c, con, REG_CON); | 
|  | 469 |  | 
|  | 470 | i2c->busy = false; | 
|  | 471 | i2c->state = STATE_IDLE; | 
|  | 472 |  | 
|  | 473 | /* signal rk3x_i2c_xfer that we are finished */ | 
|  | 474 | wake_up(&i2c->wait); | 
|  | 475 | } | 
|  | 476 |  | 
|  | 477 | static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) | 
|  | 478 | { | 
|  | 479 | struct rk3x_i2c *i2c = dev_id; | 
|  | 480 | unsigned int ipd; | 
|  | 481 |  | 
|  | 482 | spin_lock(&i2c->lock); | 
|  | 483 |  | 
|  | 484 | ipd = i2c_readl(i2c, REG_IPD); | 
|  | 485 | if (i2c->state == STATE_IDLE) { | 
|  | 486 | dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); | 
|  | 487 | rk3x_i2c_clean_ipd(i2c); | 
|  | 488 | goto out; | 
|  | 489 | } | 
|  | 490 |  | 
|  | 491 | dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); | 
|  | 492 |  | 
|  | 493 | /* Clean interrupt bits we don't care about */ | 
|  | 494 | ipd &= ~(REG_INT_BRF | REG_INT_BTF); | 
|  | 495 |  | 
|  | 496 | if (ipd & REG_INT_NAKRCV) { | 
|  | 497 | /* | 
|  | 498 | * We got a NACK in the last operation. Depending on whether | 
|  | 499 | * IGNORE_NAK is set, we have to stop the operation and report | 
|  | 500 | * an error. | 
|  | 501 | */ | 
|  | 502 | i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); | 
|  | 503 |  | 
|  | 504 | ipd &= ~REG_INT_NAKRCV; | 
|  | 505 |  | 
|  | 506 | if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) | 
|  | 507 | rk3x_i2c_stop(i2c, -ENXIO); | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | /* is there anything left to handle? */ | 
|  | 511 | if ((ipd & REG_INT_ALL) == 0) | 
|  | 512 | goto out; | 
|  | 513 |  | 
|  | 514 | switch (i2c->state) { | 
|  | 515 | case STATE_START: | 
|  | 516 | rk3x_i2c_handle_start(i2c, ipd); | 
|  | 517 | break; | 
|  | 518 | case STATE_WRITE: | 
|  | 519 | rk3x_i2c_handle_write(i2c, ipd); | 
|  | 520 | break; | 
|  | 521 | case STATE_READ: | 
|  | 522 | rk3x_i2c_handle_read(i2c, ipd); | 
|  | 523 | break; | 
|  | 524 | case STATE_STOP: | 
|  | 525 | rk3x_i2c_handle_stop(i2c, ipd); | 
|  | 526 | break; | 
|  | 527 | case STATE_IDLE: | 
|  | 528 | break; | 
|  | 529 | } | 
|  | 530 |  | 
|  | 531 | out: | 
|  | 532 | spin_unlock(&i2c->lock); | 
|  | 533 | return IRQ_HANDLED; | 
|  | 534 | } | 
|  | 535 |  | 
|  | 536 | /** | 
|  | 537 | * Get timing values of I2C specification | 
|  | 538 | * | 
|  | 539 | * @speed: Desired SCL frequency | 
|  | 540 | * | 
|  | 541 | * Returns: Matched i2c spec values. | 
|  | 542 | */ | 
|  | 543 | static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) | 
|  | 544 | { | 
|  | 545 | if (speed <= 100000) | 
|  | 546 | return &standard_mode_spec; | 
|  | 547 | else if (speed <= 400000) | 
|  | 548 | return &fast_mode_spec; | 
|  | 549 | else | 
|  | 550 | return &fast_mode_plus_spec; | 
|  | 551 | } | 
|  | 552 |  | 
|  | 553 | /** | 
|  | 554 | * Calculate divider values for desired SCL frequency | 
|  | 555 | * | 
|  | 556 | * @clk_rate: I2C input clock rate | 
|  | 557 | * @t: Known I2C timing information | 
|  | 558 | * @t_calc: Caculated rk3x private timings that would be written into regs | 
|  | 559 | * | 
|  | 560 | * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case | 
|  | 561 | * a best-effort divider value is returned in divs. If the target rate is | 
|  | 562 | * too high, we silently use the highest possible rate. | 
|  | 563 | */ | 
|  | 564 | static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, | 
|  | 565 | struct i2c_timings *t, | 
|  | 566 | struct rk3x_i2c_calced_timings *t_calc) | 
|  | 567 | { | 
|  | 568 | unsigned long min_low_ns, min_high_ns; | 
|  | 569 | unsigned long max_low_ns, min_total_ns; | 
|  | 570 |  | 
|  | 571 | unsigned long clk_rate_khz, scl_rate_khz; | 
|  | 572 |  | 
|  | 573 | unsigned long min_low_div, min_high_div; | 
|  | 574 | unsigned long max_low_div; | 
|  | 575 |  | 
|  | 576 | unsigned long min_div_for_hold, min_total_div; | 
|  | 577 | unsigned long extra_div, extra_low_div, ideal_low_div; | 
|  | 578 |  | 
|  | 579 | unsigned long data_hold_buffer_ns = 50; | 
|  | 580 | const struct i2c_spec_values *spec; | 
|  | 581 | int ret = 0; | 
|  | 582 |  | 
|  | 583 | /* Only support standard-mode and fast-mode */ | 
|  | 584 | if (WARN_ON(t->bus_freq_hz > 400000)) | 
|  | 585 | t->bus_freq_hz = 400000; | 
|  | 586 |  | 
|  | 587 | /* prevent scl_rate_khz from becoming 0 */ | 
|  | 588 | if (WARN_ON(t->bus_freq_hz < 1000)) | 
|  | 589 | t->bus_freq_hz = 1000; | 
|  | 590 |  | 
|  | 591 | /* | 
|  | 592 | * min_low_ns:  The minimum number of ns we need to hold low to | 
|  | 593 | *		meet I2C specification, should include fall time. | 
|  | 594 | * min_high_ns: The minimum number of ns we need to hold high to | 
|  | 595 | *		meet I2C specification, should include rise time. | 
|  | 596 | * max_low_ns:  The maximum number of ns we can hold low to meet | 
|  | 597 | *		I2C specification. | 
|  | 598 | * | 
|  | 599 | * Note: max_low_ns should be (maximum data hold time * 2 - buffer) | 
|  | 600 | *	 This is because the i2c host on Rockchip holds the data line | 
|  | 601 | *	 for half the low time. | 
|  | 602 | */ | 
|  | 603 | spec = rk3x_i2c_get_spec(t->bus_freq_hz); | 
|  | 604 | min_high_ns = t->scl_rise_ns + spec->min_high_ns; | 
|  | 605 |  | 
|  | 606 | /* | 
|  | 607 | * Timings for repeated start: | 
|  | 608 | * - controller appears to drop SDA at .875x (7/8) programmed clk high. | 
|  | 609 | * - controller appears to keep SCL high for 2x programmed clk high. | 
|  | 610 | * | 
|  | 611 | * We need to account for those rules in picking our "high" time so | 
|  | 612 | * we meet tSU;STA and tHD;STA times. | 
|  | 613 | */ | 
|  | 614 | min_high_ns = max(min_high_ns, DIV_ROUND_UP( | 
|  | 615 | (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); | 
|  | 616 | min_high_ns = max(min_high_ns, DIV_ROUND_UP( | 
|  | 617 | (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + | 
|  | 618 | spec->min_high_ns), 2)); | 
|  | 619 |  | 
|  | 620 | min_low_ns = t->scl_fall_ns + spec->min_low_ns; | 
|  | 621 | max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns; | 
|  | 622 | min_total_ns = min_low_ns + min_high_ns; | 
|  | 623 |  | 
|  | 624 | /* Adjust to avoid overflow */ | 
|  | 625 | clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); | 
|  | 626 | scl_rate_khz = t->bus_freq_hz / 1000; | 
|  | 627 |  | 
|  | 628 | /* | 
|  | 629 | * We need the total div to be >= this number | 
|  | 630 | * so we don't clock too fast. | 
|  | 631 | */ | 
|  | 632 | min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); | 
|  | 633 |  | 
|  | 634 | /* These are the min dividers needed for min hold times. */ | 
|  | 635 | min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); | 
|  | 636 | min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); | 
|  | 637 | min_div_for_hold = (min_low_div + min_high_div); | 
|  | 638 |  | 
|  | 639 | /* | 
|  | 640 | * This is the maximum divider so we don't go over the maximum. | 
|  | 641 | * We don't round up here (we round down) since this is a maximum. | 
|  | 642 | */ | 
|  | 643 | max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); | 
|  | 644 |  | 
|  | 645 | if (min_low_div > max_low_div) { | 
|  | 646 | WARN_ONCE(true, | 
|  | 647 | "Conflicting, min_low_div %lu, max_low_div %lu\n", | 
|  | 648 | min_low_div, max_low_div); | 
|  | 649 | max_low_div = min_low_div; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | if (min_div_for_hold > min_total_div) { | 
|  | 653 | /* | 
|  | 654 | * Time needed to meet hold requirements is important. | 
|  | 655 | * Just use that. | 
|  | 656 | */ | 
|  | 657 | t_calc->div_low = min_low_div; | 
|  | 658 | t_calc->div_high = min_high_div; | 
|  | 659 | } else { | 
|  | 660 | /* | 
|  | 661 | * We've got to distribute some time among the low and high | 
|  | 662 | * so we don't run too fast. | 
|  | 663 | */ | 
|  | 664 | extra_div = min_total_div - min_div_for_hold; | 
|  | 665 |  | 
|  | 666 | /* | 
|  | 667 | * We'll try to split things up perfectly evenly, | 
|  | 668 | * biasing slightly towards having a higher div | 
|  | 669 | * for low (spend more time low). | 
|  | 670 | */ | 
|  | 671 | ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, | 
|  | 672 | scl_rate_khz * 8 * min_total_ns); | 
|  | 673 |  | 
|  | 674 | /* Don't allow it to go over the maximum */ | 
|  | 675 | if (ideal_low_div > max_low_div) | 
|  | 676 | ideal_low_div = max_low_div; | 
|  | 677 |  | 
|  | 678 | /* | 
|  | 679 | * Handle when the ideal low div is going to take up | 
|  | 680 | * more than we have. | 
|  | 681 | */ | 
|  | 682 | if (ideal_low_div > min_low_div + extra_div) | 
|  | 683 | ideal_low_div = min_low_div + extra_div; | 
|  | 684 |  | 
|  | 685 | /* Give low the "ideal" and give high whatever extra is left */ | 
|  | 686 | extra_low_div = ideal_low_div - min_low_div; | 
|  | 687 | t_calc->div_low = ideal_low_div; | 
|  | 688 | t_calc->div_high = min_high_div + (extra_div - extra_low_div); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | /* | 
|  | 692 | * Adjust to the fact that the hardware has an implicit "+1". | 
|  | 693 | * NOTE: Above calculations always produce div_low > 0 and div_high > 0. | 
|  | 694 | */ | 
|  | 695 | t_calc->div_low--; | 
|  | 696 | t_calc->div_high--; | 
|  | 697 |  | 
|  | 698 | /* Give the tuning value 0, that would not update con register */ | 
|  | 699 | t_calc->tuning = 0; | 
|  | 700 | /* Maximum divider supported by hw is 0xffff */ | 
|  | 701 | if (t_calc->div_low > 0xffff) { | 
|  | 702 | t_calc->div_low = 0xffff; | 
|  | 703 | ret = -EINVAL; | 
|  | 704 | } | 
|  | 705 |  | 
|  | 706 | if (t_calc->div_high > 0xffff) { | 
|  | 707 | t_calc->div_high = 0xffff; | 
|  | 708 | ret = -EINVAL; | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | return ret; | 
|  | 712 | } | 
|  | 713 |  | 
|  | 714 | /** | 
|  | 715 | * Calculate timing values for desired SCL frequency | 
|  | 716 | * | 
|  | 717 | * @clk_rate: I2C input clock rate | 
|  | 718 | * @t: Known I2C timing information | 
|  | 719 | * @t_calc: Caculated rk3x private timings that would be written into regs | 
|  | 720 | * | 
|  | 721 | * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case | 
|  | 722 | * a best-effort divider value is returned in divs. If the target rate is | 
|  | 723 | * too high, we silently use the highest possible rate. | 
|  | 724 | * The following formulas are v1's method to calculate timings. | 
|  | 725 | * | 
|  | 726 | * l = divl + 1; | 
|  | 727 | * h = divh + 1; | 
|  | 728 | * s = sda_update_config + 1; | 
|  | 729 | * u = start_setup_config + 1; | 
|  | 730 | * p = stop_setup_config + 1; | 
|  | 731 | * T = Tclk_i2c; | 
|  | 732 | * | 
|  | 733 | * tHigh = 8 * h * T; | 
|  | 734 | * tLow = 8 * l * T; | 
|  | 735 | * | 
|  | 736 | * tHD;sda = (l * s + 1) * T; | 
|  | 737 | * tSU;sda = [(8 - s) * l + 1] * T; | 
|  | 738 | * tI2C = 8 * (l + h) * T; | 
|  | 739 | * | 
|  | 740 | * tSU;sta = (8h * u + 1) * T; | 
|  | 741 | * tHD;sta = [8h * (u + 1) - 1] * T; | 
|  | 742 | * tSU;sto = (8h * p + 1) * T; | 
|  | 743 | */ | 
|  | 744 | static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, | 
|  | 745 | struct i2c_timings *t, | 
|  | 746 | struct rk3x_i2c_calced_timings *t_calc) | 
|  | 747 | { | 
|  | 748 | unsigned long min_low_ns, min_high_ns; | 
|  | 749 | unsigned long min_setup_start_ns, min_setup_data_ns; | 
|  | 750 | unsigned long min_setup_stop_ns, max_hold_data_ns; | 
|  | 751 |  | 
|  | 752 | unsigned long clk_rate_khz, scl_rate_khz; | 
|  | 753 |  | 
|  | 754 | unsigned long min_low_div, min_high_div; | 
|  | 755 |  | 
|  | 756 | unsigned long min_div_for_hold, min_total_div; | 
|  | 757 | unsigned long extra_div, extra_low_div; | 
|  | 758 | unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; | 
|  | 759 |  | 
|  | 760 | const struct i2c_spec_values *spec; | 
|  | 761 | int ret = 0; | 
|  | 762 |  | 
|  | 763 | /* Support standard-mode, fast-mode and fast-mode plus */ | 
|  | 764 | if (WARN_ON(t->bus_freq_hz > 1000000)) | 
|  | 765 | t->bus_freq_hz = 1000000; | 
|  | 766 |  | 
|  | 767 | /* prevent scl_rate_khz from becoming 0 */ | 
|  | 768 | if (WARN_ON(t->bus_freq_hz < 1000)) | 
|  | 769 | t->bus_freq_hz = 1000; | 
|  | 770 |  | 
|  | 771 | /* | 
|  | 772 | * min_low_ns: The minimum number of ns we need to hold low to | 
|  | 773 | *	       meet I2C specification, should include fall time. | 
|  | 774 | * min_high_ns: The minimum number of ns we need to hold high to | 
|  | 775 | *	        meet I2C specification, should include rise time. | 
|  | 776 | */ | 
|  | 777 | spec = rk3x_i2c_get_spec(t->bus_freq_hz); | 
|  | 778 |  | 
|  | 779 | /* calculate min-divh and min-divl */ | 
|  | 780 | clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); | 
|  | 781 | scl_rate_khz = t->bus_freq_hz / 1000; | 
|  | 782 | min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); | 
|  | 783 |  | 
|  | 784 | min_high_ns = t->scl_rise_ns + spec->min_high_ns; | 
|  | 785 | min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); | 
|  | 786 |  | 
|  | 787 | min_low_ns = t->scl_fall_ns + spec->min_low_ns; | 
|  | 788 | min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); | 
|  | 789 |  | 
|  | 790 | /* | 
|  | 791 | * Final divh and divl must be greater than 0, otherwise the | 
|  | 792 | * hardware would not output the i2c clk. | 
|  | 793 | */ | 
|  | 794 | min_high_div = (min_high_div < 1) ? 2 : min_high_div; | 
|  | 795 | min_low_div = (min_low_div < 1) ? 2 : min_low_div; | 
|  | 796 |  | 
|  | 797 | /* These are the min dividers needed for min hold times. */ | 
|  | 798 | min_div_for_hold = (min_low_div + min_high_div); | 
|  | 799 |  | 
|  | 800 | /* | 
|  | 801 | * This is the maximum divider so we don't go over the maximum. | 
|  | 802 | * We don't round up here (we round down) since this is a maximum. | 
|  | 803 | */ | 
|  | 804 | if (min_div_for_hold >= min_total_div) { | 
|  | 805 | /* | 
|  | 806 | * Time needed to meet hold requirements is important. | 
|  | 807 | * Just use that. | 
|  | 808 | */ | 
|  | 809 | t_calc->div_low = min_low_div; | 
|  | 810 | t_calc->div_high = min_high_div; | 
|  | 811 | } else { | 
|  | 812 | /* | 
|  | 813 | * We've got to distribute some time among the low and high | 
|  | 814 | * so we don't run too fast. | 
|  | 815 | * We'll try to split things up by the scale of min_low_div and | 
|  | 816 | * min_high_div, biasing slightly towards having a higher div | 
|  | 817 | * for low (spend more time low). | 
|  | 818 | */ | 
|  | 819 | extra_div = min_total_div - min_div_for_hold; | 
|  | 820 | extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, | 
|  | 821 | min_div_for_hold); | 
|  | 822 |  | 
|  | 823 | t_calc->div_low = min_low_div + extra_low_div; | 
|  | 824 | t_calc->div_high = min_high_div + (extra_div - extra_low_div); | 
|  | 825 | } | 
|  | 826 |  | 
|  | 827 | /* | 
|  | 828 | * calculate sda data hold count by the rules, data_upd_st:3 | 
|  | 829 | * is a appropriate value to reduce calculated times. | 
|  | 830 | */ | 
|  | 831 | for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { | 
|  | 832 | max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg | 
|  | 833 | * (t_calc->div_low) + 1) | 
|  | 834 | * 1000000, clk_rate_khz); | 
|  | 835 | min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg) | 
|  | 836 | * (t_calc->div_low) + 1) | 
|  | 837 | * 1000000, clk_rate_khz); | 
|  | 838 | if ((max_hold_data_ns < spec->max_data_hold_ns) && | 
|  | 839 | (min_setup_data_ns > spec->min_data_setup_ns)) | 
|  | 840 | break; | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | /* calculate setup start config */ | 
|  | 844 | min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; | 
|  | 845 | stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns | 
|  | 846 | - 1000000, 8 * 1000000 * (t_calc->div_high)); | 
|  | 847 |  | 
|  | 848 | /* calculate setup stop config */ | 
|  | 849 | min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; | 
|  | 850 | stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns | 
|  | 851 | - 1000000, 8 * 1000000 * (t_calc->div_high)); | 
|  | 852 |  | 
|  | 853 | t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | | 
|  | 854 | REG_CON_STA_CFG(--stp_sta_cfg) | | 
|  | 855 | REG_CON_STO_CFG(--stp_sto_cfg); | 
|  | 856 |  | 
|  | 857 | t_calc->div_low--; | 
|  | 858 | t_calc->div_high--; | 
|  | 859 |  | 
|  | 860 | /* Maximum divider supported by hw is 0xffff */ | 
|  | 861 | if (t_calc->div_low > 0xffff) { | 
|  | 862 | t_calc->div_low = 0xffff; | 
|  | 863 | ret = -EINVAL; | 
|  | 864 | } | 
|  | 865 |  | 
|  | 866 | if (t_calc->div_high > 0xffff) { | 
|  | 867 | t_calc->div_high = 0xffff; | 
|  | 868 | ret = -EINVAL; | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | return ret; | 
|  | 872 | } | 
|  | 873 |  | 
|  | 874 | static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) | 
|  | 875 | { | 
|  | 876 | struct i2c_timings *t = &i2c->t; | 
|  | 877 | struct rk3x_i2c_calced_timings calc; | 
|  | 878 | u64 t_low_ns, t_high_ns; | 
|  | 879 | unsigned long flags; | 
|  | 880 | u32 val; | 
|  | 881 | int ret; | 
|  | 882 |  | 
|  | 883 | ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); | 
|  | 884 | WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); | 
|  | 885 |  | 
|  | 886 | clk_enable(i2c->pclk); | 
|  | 887 |  | 
|  | 888 | spin_lock_irqsave(&i2c->lock, flags); | 
|  | 889 | val = i2c_readl(i2c, REG_CON); | 
|  | 890 | val &= ~REG_CON_TUNING_MASK; | 
|  | 891 | val |= calc.tuning; | 
|  | 892 | i2c_writel(i2c, val, REG_CON); | 
|  | 893 | i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), | 
|  | 894 | REG_CLKDIV); | 
|  | 895 | spin_unlock_irqrestore(&i2c->lock, flags); | 
|  | 896 |  | 
|  | 897 | clk_disable(i2c->pclk); | 
|  | 898 |  | 
|  | 899 | t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); | 
|  | 900 | t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, | 
|  | 901 | clk_rate); | 
|  | 902 | dev_dbg(i2c->dev, | 
|  | 903 | "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", | 
|  | 904 | clk_rate / 1000, | 
|  | 905 | 1000000000 / t->bus_freq_hz, | 
|  | 906 | t_low_ns, t_high_ns); | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | /** | 
|  | 910 | * rk3x_i2c_clk_notifier_cb - Clock rate change callback | 
|  | 911 | * @nb:		Pointer to notifier block | 
|  | 912 | * @event:	Notification reason | 
|  | 913 | * @data:	Pointer to notification data object | 
|  | 914 | * | 
|  | 915 | * The callback checks whether a valid bus frequency can be generated after the | 
|  | 916 | * change. If so, the change is acknowledged, otherwise the change is aborted. | 
|  | 917 | * New dividers are written to the HW in the pre- or post change notification | 
|  | 918 | * depending on the scaling direction. | 
|  | 919 | * | 
|  | 920 | * Code adapted from i2c-cadence.c. | 
|  | 921 | * | 
|  | 922 | * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK | 
|  | 923 | *		to acknowledge the change, NOTIFY_DONE if the notification is | 
|  | 924 | *		considered irrelevant. | 
|  | 925 | */ | 
|  | 926 | static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long | 
|  | 927 | event, void *data) | 
|  | 928 | { | 
|  | 929 | struct clk_notifier_data *ndata = data; | 
|  | 930 | struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); | 
|  | 931 | struct rk3x_i2c_calced_timings calc; | 
|  | 932 |  | 
|  | 933 | switch (event) { | 
|  | 934 | case PRE_RATE_CHANGE: | 
|  | 935 | /* | 
|  | 936 | * Try the calculation (but don't store the result) ahead of | 
|  | 937 | * time to see if we need to block the clock change.  Timings | 
|  | 938 | * shouldn't actually take effect until rk3x_i2c_adapt_div(). | 
|  | 939 | */ | 
|  | 940 | if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, | 
|  | 941 | &calc) != 0) | 
|  | 942 | return NOTIFY_STOP; | 
|  | 943 |  | 
|  | 944 | /* scale up */ | 
|  | 945 | if (ndata->new_rate > ndata->old_rate) | 
|  | 946 | rk3x_i2c_adapt_div(i2c, ndata->new_rate); | 
|  | 947 |  | 
|  | 948 | return NOTIFY_OK; | 
|  | 949 | case POST_RATE_CHANGE: | 
|  | 950 | /* scale down */ | 
|  | 951 | if (ndata->new_rate < ndata->old_rate) | 
|  | 952 | rk3x_i2c_adapt_div(i2c, ndata->new_rate); | 
|  | 953 | return NOTIFY_OK; | 
|  | 954 | case ABORT_RATE_CHANGE: | 
|  | 955 | /* scale up */ | 
|  | 956 | if (ndata->new_rate > ndata->old_rate) | 
|  | 957 | rk3x_i2c_adapt_div(i2c, ndata->old_rate); | 
|  | 958 | return NOTIFY_OK; | 
|  | 959 | default: | 
|  | 960 | return NOTIFY_DONE; | 
|  | 961 | } | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | /** | 
|  | 965 | * Setup I2C registers for an I2C operation specified by msgs, num. | 
|  | 966 | * | 
|  | 967 | * Must be called with i2c->lock held. | 
|  | 968 | * | 
|  | 969 | * @msgs: I2C msgs to process | 
|  | 970 | * @num: Number of msgs | 
|  | 971 | * | 
|  | 972 | * returns: Number of I2C msgs processed or negative in case of error | 
|  | 973 | */ | 
|  | 974 | static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) | 
|  | 975 | { | 
|  | 976 | u32 addr = (msgs[0].addr & 0x7f) << 1; | 
|  | 977 | int ret = 0; | 
|  | 978 |  | 
|  | 979 | /* | 
|  | 980 | * The I2C adapter can issue a small (len < 4) write packet before | 
|  | 981 | * reading. This speeds up SMBus-style register reads. | 
|  | 982 | * The MRXADDR/MRXRADDR hold the slave address and the slave register | 
|  | 983 | * address in this case. | 
|  | 984 | */ | 
|  | 985 |  | 
|  | 986 | if (num >= 2 && msgs[0].len < 4 && | 
|  | 987 | !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { | 
|  | 988 | u32 reg_addr = 0; | 
|  | 989 | int i; | 
|  | 990 |  | 
|  | 991 | dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", | 
|  | 992 | addr >> 1); | 
|  | 993 |  | 
|  | 994 | /* Fill MRXRADDR with the register address(es) */ | 
|  | 995 | for (i = 0; i < msgs[0].len; ++i) { | 
|  | 996 | reg_addr |= msgs[0].buf[i] << (i * 8); | 
|  | 997 | reg_addr |= REG_MRXADDR_VALID(i); | 
|  | 998 | } | 
|  | 999 |  | 
|  | 1000 | /* msgs[0] is handled by hw. */ | 
|  | 1001 | i2c->msg = &msgs[1]; | 
|  | 1002 |  | 
|  | 1003 | i2c->mode = REG_CON_MOD_REGISTER_TX; | 
|  | 1004 |  | 
|  | 1005 | i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); | 
|  | 1006 | i2c_writel(i2c, reg_addr, REG_MRXRADDR); | 
|  | 1007 |  | 
|  | 1008 | ret = 2; | 
|  | 1009 | } else { | 
|  | 1010 | /* | 
|  | 1011 | * We'll have to do it the boring way and process the msgs | 
|  | 1012 | * one-by-one. | 
|  | 1013 | */ | 
|  | 1014 |  | 
|  | 1015 | if (msgs[0].flags & I2C_M_RD) { | 
|  | 1016 | addr |= 1; /* set read bit */ | 
|  | 1017 |  | 
|  | 1018 | /* | 
|  | 1019 | * We have to transmit the slave addr first. Use | 
|  | 1020 | * MOD_REGISTER_TX for that purpose. | 
|  | 1021 | */ | 
|  | 1022 | i2c->mode = REG_CON_MOD_REGISTER_TX; | 
|  | 1023 | i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), | 
|  | 1024 | REG_MRXADDR); | 
|  | 1025 | i2c_writel(i2c, 0, REG_MRXRADDR); | 
|  | 1026 | } else { | 
|  | 1027 | i2c->mode = REG_CON_MOD_TX; | 
|  | 1028 | } | 
|  | 1029 |  | 
|  | 1030 | i2c->msg = &msgs[0]; | 
|  | 1031 |  | 
|  | 1032 | ret = 1; | 
|  | 1033 | } | 
|  | 1034 |  | 
|  | 1035 | i2c->addr = msgs[0].addr; | 
|  | 1036 | i2c->busy = true; | 
|  | 1037 | i2c->state = STATE_START; | 
|  | 1038 | i2c->processed = 0; | 
|  | 1039 | i2c->error = 0; | 
|  | 1040 |  | 
|  | 1041 | rk3x_i2c_clean_ipd(i2c); | 
|  | 1042 |  | 
|  | 1043 | return ret; | 
|  | 1044 | } | 
|  | 1045 |  | 
|  | 1046 | static int rk3x_i2c_xfer(struct i2c_adapter *adap, | 
|  | 1047 | struct i2c_msg *msgs, int num) | 
|  | 1048 | { | 
|  | 1049 | struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; | 
|  | 1050 | unsigned long timeout, flags; | 
|  | 1051 | u32 val; | 
|  | 1052 | int ret = 0; | 
|  | 1053 | int i; | 
|  | 1054 |  | 
|  | 1055 | spin_lock_irqsave(&i2c->lock, flags); | 
|  | 1056 |  | 
|  | 1057 | clk_enable(i2c->clk); | 
|  | 1058 | clk_enable(i2c->pclk); | 
|  | 1059 |  | 
|  | 1060 | i2c->is_last_msg = false; | 
|  | 1061 |  | 
|  | 1062 | /* | 
|  | 1063 | * Process msgs. We can handle more than one message at once (see | 
|  | 1064 | * rk3x_i2c_setup()). | 
|  | 1065 | */ | 
|  | 1066 | for (i = 0; i < num; i += ret) { | 
|  | 1067 | ret = rk3x_i2c_setup(i2c, msgs + i, num - i); | 
|  | 1068 |  | 
|  | 1069 | if (ret < 0) { | 
|  | 1070 | dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); | 
|  | 1071 | break; | 
|  | 1072 | } | 
|  | 1073 |  | 
|  | 1074 | if (i + ret >= num) | 
|  | 1075 | i2c->is_last_msg = true; | 
|  | 1076 |  | 
|  | 1077 | spin_unlock_irqrestore(&i2c->lock, flags); | 
|  | 1078 |  | 
|  | 1079 | rk3x_i2c_start(i2c); | 
|  | 1080 |  | 
|  | 1081 | timeout = wait_event_timeout(i2c->wait, !i2c->busy, | 
|  | 1082 | msecs_to_jiffies(WAIT_TIMEOUT)); | 
|  | 1083 |  | 
|  | 1084 | spin_lock_irqsave(&i2c->lock, flags); | 
|  | 1085 |  | 
|  | 1086 | if (timeout == 0) { | 
|  | 1087 | dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", | 
|  | 1088 | i2c_readl(i2c, REG_IPD), i2c->state); | 
|  | 1089 |  | 
|  | 1090 | /* Force a STOP condition without interrupt */ | 
|  | 1091 | i2c_writel(i2c, 0, REG_IEN); | 
|  | 1092 | val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
|  | 1093 | val |= REG_CON_EN | REG_CON_STOP; | 
|  | 1094 | i2c_writel(i2c, val, REG_CON); | 
|  | 1095 |  | 
|  | 1096 | i2c->state = STATE_IDLE; | 
|  | 1097 |  | 
|  | 1098 | ret = -ETIMEDOUT; | 
|  | 1099 | break; | 
|  | 1100 | } | 
|  | 1101 |  | 
|  | 1102 | if (i2c->error) { | 
|  | 1103 | ret = i2c->error; | 
|  | 1104 | break; | 
|  | 1105 | } | 
|  | 1106 | } | 
|  | 1107 |  | 
|  | 1108 | clk_disable(i2c->pclk); | 
|  | 1109 | clk_disable(i2c->clk); | 
|  | 1110 |  | 
|  | 1111 | spin_unlock_irqrestore(&i2c->lock, flags); | 
|  | 1112 |  | 
|  | 1113 | return ret < 0 ? ret : num; | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | static __maybe_unused int rk3x_i2c_resume(struct device *dev) | 
|  | 1117 | { | 
|  | 1118 | struct rk3x_i2c *i2c = dev_get_drvdata(dev); | 
|  | 1119 |  | 
|  | 1120 | rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk)); | 
|  | 1121 |  | 
|  | 1122 | return 0; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | static u32 rk3x_i2c_func(struct i2c_adapter *adap) | 
|  | 1126 | { | 
|  | 1127 | return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; | 
|  | 1128 | } | 
|  | 1129 |  | 
|  | 1130 | static const struct i2c_algorithm rk3x_i2c_algorithm = { | 
|  | 1131 | .master_xfer		= rk3x_i2c_xfer, | 
|  | 1132 | .functionality		= rk3x_i2c_func, | 
|  | 1133 | }; | 
|  | 1134 |  | 
|  | 1135 | static const struct rk3x_i2c_soc_data rv1108_soc_data = { | 
|  | 1136 | .grf_offset = -1, | 
|  | 1137 | .calc_timings = rk3x_i2c_v1_calc_timings, | 
|  | 1138 | }; | 
|  | 1139 |  | 
|  | 1140 | static const struct rk3x_i2c_soc_data rk3066_soc_data = { | 
|  | 1141 | .grf_offset = 0x154, | 
|  | 1142 | .calc_timings = rk3x_i2c_v0_calc_timings, | 
|  | 1143 | }; | 
|  | 1144 |  | 
|  | 1145 | static const struct rk3x_i2c_soc_data rk3188_soc_data = { | 
|  | 1146 | .grf_offset = 0x0a4, | 
|  | 1147 | .calc_timings = rk3x_i2c_v0_calc_timings, | 
|  | 1148 | }; | 
|  | 1149 |  | 
|  | 1150 | static const struct rk3x_i2c_soc_data rk3228_soc_data = { | 
|  | 1151 | .grf_offset = -1, | 
|  | 1152 | .calc_timings = rk3x_i2c_v0_calc_timings, | 
|  | 1153 | }; | 
|  | 1154 |  | 
|  | 1155 | static const struct rk3x_i2c_soc_data rk3288_soc_data = { | 
|  | 1156 | .grf_offset = -1, | 
|  | 1157 | .calc_timings = rk3x_i2c_v0_calc_timings, | 
|  | 1158 | }; | 
|  | 1159 |  | 
|  | 1160 | static const struct rk3x_i2c_soc_data rk3399_soc_data = { | 
|  | 1161 | .grf_offset = -1, | 
|  | 1162 | .calc_timings = rk3x_i2c_v1_calc_timings, | 
|  | 1163 | }; | 
|  | 1164 |  | 
|  | 1165 | static const struct of_device_id rk3x_i2c_match[] = { | 
|  | 1166 | { | 
|  | 1167 | .compatible = "rockchip,rv1108-i2c", | 
|  | 1168 | .data = &rv1108_soc_data | 
|  | 1169 | }, | 
|  | 1170 | { | 
|  | 1171 | .compatible = "rockchip,rk3066-i2c", | 
|  | 1172 | .data = &rk3066_soc_data | 
|  | 1173 | }, | 
|  | 1174 | { | 
|  | 1175 | .compatible = "rockchip,rk3188-i2c", | 
|  | 1176 | .data = &rk3188_soc_data | 
|  | 1177 | }, | 
|  | 1178 | { | 
|  | 1179 | .compatible = "rockchip,rk3228-i2c", | 
|  | 1180 | .data = &rk3228_soc_data | 
|  | 1181 | }, | 
|  | 1182 | { | 
|  | 1183 | .compatible = "rockchip,rk3288-i2c", | 
|  | 1184 | .data = &rk3288_soc_data | 
|  | 1185 | }, | 
|  | 1186 | { | 
|  | 1187 | .compatible = "rockchip,rk3399-i2c", | 
|  | 1188 | .data = &rk3399_soc_data | 
|  | 1189 | }, | 
|  | 1190 | {}, | 
|  | 1191 | }; | 
|  | 1192 | MODULE_DEVICE_TABLE(of, rk3x_i2c_match); | 
|  | 1193 |  | 
|  | 1194 | static int rk3x_i2c_probe(struct platform_device *pdev) | 
|  | 1195 | { | 
|  | 1196 | struct device_node *np = pdev->dev.of_node; | 
|  | 1197 | const struct of_device_id *match; | 
|  | 1198 | struct rk3x_i2c *i2c; | 
|  | 1199 | struct resource *mem; | 
|  | 1200 | int ret = 0; | 
|  | 1201 | int bus_nr; | 
|  | 1202 | u32 value; | 
|  | 1203 | int irq; | 
|  | 1204 | unsigned long clk_rate; | 
|  | 1205 |  | 
|  | 1206 | i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); | 
|  | 1207 | if (!i2c) | 
|  | 1208 | return -ENOMEM; | 
|  | 1209 |  | 
|  | 1210 | match = of_match_node(rk3x_i2c_match, np); | 
|  | 1211 | i2c->soc_data = match->data; | 
|  | 1212 |  | 
|  | 1213 | /* use common interface to get I2C timing properties */ | 
|  | 1214 | i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); | 
|  | 1215 |  | 
|  | 1216 | strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); | 
|  | 1217 | i2c->adap.owner = THIS_MODULE; | 
|  | 1218 | i2c->adap.algo = &rk3x_i2c_algorithm; | 
|  | 1219 | i2c->adap.retries = 3; | 
|  | 1220 | i2c->adap.dev.of_node = np; | 
|  | 1221 | i2c->adap.algo_data = i2c; | 
|  | 1222 | i2c->adap.dev.parent = &pdev->dev; | 
|  | 1223 |  | 
|  | 1224 | i2c->dev = &pdev->dev; | 
|  | 1225 |  | 
|  | 1226 | spin_lock_init(&i2c->lock); | 
|  | 1227 | init_waitqueue_head(&i2c->wait); | 
|  | 1228 |  | 
|  | 1229 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | 1230 | i2c->regs = devm_ioremap_resource(&pdev->dev, mem); | 
|  | 1231 | if (IS_ERR(i2c->regs)) | 
|  | 1232 | return PTR_ERR(i2c->regs); | 
|  | 1233 |  | 
|  | 1234 | /* Try to set the I2C adapter number from dt */ | 
|  | 1235 | bus_nr = of_alias_get_id(np, "i2c"); | 
|  | 1236 |  | 
|  | 1237 | /* | 
|  | 1238 | * Switch to new interface if the SoC also offers the old one. | 
|  | 1239 | * The control bit is located in the GRF register space. | 
|  | 1240 | */ | 
|  | 1241 | if (i2c->soc_data->grf_offset >= 0) { | 
|  | 1242 | struct regmap *grf; | 
|  | 1243 |  | 
|  | 1244 | grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); | 
|  | 1245 | if (IS_ERR(grf)) { | 
|  | 1246 | dev_err(&pdev->dev, | 
|  | 1247 | "rk3x-i2c needs 'rockchip,grf' property\n"); | 
|  | 1248 | return PTR_ERR(grf); | 
|  | 1249 | } | 
|  | 1250 |  | 
|  | 1251 | if (bus_nr < 0) { | 
|  | 1252 | dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); | 
|  | 1253 | return -EINVAL; | 
|  | 1254 | } | 
|  | 1255 |  | 
|  | 1256 | /* 27+i: write mask, 11+i: value */ | 
|  | 1257 | value = BIT(27 + bus_nr) | BIT(11 + bus_nr); | 
|  | 1258 |  | 
|  | 1259 | ret = regmap_write(grf, i2c->soc_data->grf_offset, value); | 
|  | 1260 | if (ret != 0) { | 
|  | 1261 | dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); | 
|  | 1262 | return ret; | 
|  | 1263 | } | 
|  | 1264 | } | 
|  | 1265 |  | 
|  | 1266 | /* IRQ setup */ | 
|  | 1267 | irq = platform_get_irq(pdev, 0); | 
|  | 1268 | if (irq < 0) { | 
|  | 1269 | dev_err(&pdev->dev, "cannot find rk3x IRQ\n"); | 
|  | 1270 | return irq; | 
|  | 1271 | } | 
|  | 1272 |  | 
|  | 1273 | ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, | 
|  | 1274 | 0, dev_name(&pdev->dev), i2c); | 
|  | 1275 | if (ret < 0) { | 
|  | 1276 | dev_err(&pdev->dev, "cannot request IRQ\n"); | 
|  | 1277 | return ret; | 
|  | 1278 | } | 
|  | 1279 |  | 
|  | 1280 | platform_set_drvdata(pdev, i2c); | 
|  | 1281 |  | 
|  | 1282 | if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { | 
|  | 1283 | /* Only one clock to use for bus clock and peripheral clock */ | 
|  | 1284 | i2c->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | 1285 | i2c->pclk = i2c->clk; | 
|  | 1286 | } else { | 
|  | 1287 | i2c->clk = devm_clk_get(&pdev->dev, "i2c"); | 
|  | 1288 | i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); | 
|  | 1289 | } | 
|  | 1290 |  | 
|  | 1291 | if (IS_ERR(i2c->clk)) { | 
|  | 1292 | ret = PTR_ERR(i2c->clk); | 
|  | 1293 | if (ret != -EPROBE_DEFER) | 
|  | 1294 | dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret); | 
|  | 1295 | return ret; | 
|  | 1296 | } | 
|  | 1297 | if (IS_ERR(i2c->pclk)) { | 
|  | 1298 | ret = PTR_ERR(i2c->pclk); | 
|  | 1299 | if (ret != -EPROBE_DEFER) | 
|  | 1300 | dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret); | 
|  | 1301 | return ret; | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | ret = clk_prepare(i2c->clk); | 
|  | 1305 | if (ret < 0) { | 
|  | 1306 | dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); | 
|  | 1307 | return ret; | 
|  | 1308 | } | 
|  | 1309 | ret = clk_prepare(i2c->pclk); | 
|  | 1310 | if (ret < 0) { | 
|  | 1311 | dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); | 
|  | 1312 | goto err_clk; | 
|  | 1313 | } | 
|  | 1314 |  | 
|  | 1315 | i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; | 
|  | 1316 | ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); | 
|  | 1317 | if (ret != 0) { | 
|  | 1318 | dev_err(&pdev->dev, "Unable to register clock notifier\n"); | 
|  | 1319 | goto err_pclk; | 
|  | 1320 | } | 
|  | 1321 |  | 
|  | 1322 | clk_rate = clk_get_rate(i2c->clk); | 
|  | 1323 | rk3x_i2c_adapt_div(i2c, clk_rate); | 
|  | 1324 |  | 
|  | 1325 | ret = i2c_add_adapter(&i2c->adap); | 
|  | 1326 | if (ret < 0) | 
|  | 1327 | goto err_clk_notifier; | 
|  | 1328 |  | 
|  | 1329 | return 0; | 
|  | 1330 |  | 
|  | 1331 | err_clk_notifier: | 
|  | 1332 | clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); | 
|  | 1333 | err_pclk: | 
|  | 1334 | clk_unprepare(i2c->pclk); | 
|  | 1335 | err_clk: | 
|  | 1336 | clk_unprepare(i2c->clk); | 
|  | 1337 | return ret; | 
|  | 1338 | } | 
|  | 1339 |  | 
|  | 1340 | static int rk3x_i2c_remove(struct platform_device *pdev) | 
|  | 1341 | { | 
|  | 1342 | struct rk3x_i2c *i2c = platform_get_drvdata(pdev); | 
|  | 1343 |  | 
|  | 1344 | i2c_del_adapter(&i2c->adap); | 
|  | 1345 |  | 
|  | 1346 | clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); | 
|  | 1347 | clk_unprepare(i2c->pclk); | 
|  | 1348 | clk_unprepare(i2c->clk); | 
|  | 1349 |  | 
|  | 1350 | return 0; | 
|  | 1351 | } | 
|  | 1352 |  | 
|  | 1353 | static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume); | 
|  | 1354 |  | 
|  | 1355 | static struct platform_driver rk3x_i2c_driver = { | 
|  | 1356 | .probe   = rk3x_i2c_probe, | 
|  | 1357 | .remove  = rk3x_i2c_remove, | 
|  | 1358 | .driver  = { | 
|  | 1359 | .name  = "rk3x-i2c", | 
|  | 1360 | .of_match_table = rk3x_i2c_match, | 
|  | 1361 | .pm = &rk3x_i2c_pm_ops, | 
|  | 1362 | }, | 
|  | 1363 | }; | 
|  | 1364 |  | 
|  | 1365 | module_platform_driver(rk3x_i2c_driver); | 
|  | 1366 |  | 
|  | 1367 | MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); | 
|  | 1368 | MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); | 
|  | 1369 | MODULE_LICENSE("GPL v2"); |