blob: afeeb7c9753b69ac1bffdb918364458f5d57779d [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11#include <linux/bitmap.h>
12#include <linux/delay.h>
13#include <linux/dma-iommu.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/export.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/io-pgtable.h>
20#include <linux/iommu.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/of_iommu.h>
25#include <linux/of_platform.h>
26#include <linux/platform_device.h>
27#include <linux/sizes.h>
28#include <linux/slab.h>
29#include <linux/sys_soc.h>
30
31#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
32#include <asm/dma-iommu.h>
33#include <asm/pgalloc.h>
34#else
35#define arm_iommu_create_mapping(...) NULL
36#define arm_iommu_attach_device(...) -ENODEV
37#define arm_iommu_release_mapping(...) do {} while (0)
38#define arm_iommu_detach_device(...) do {} while (0)
39#endif
40
41#define IPMMU_CTX_MAX 8
42
43struct ipmmu_features {
44 bool use_ns_alias_offset;
45 bool has_cache_leaf_nodes;
46 unsigned int number_of_contexts;
47 bool setup_imbuscr;
48 bool twobit_imttbcr_sl0;
49 bool reserved_context;
50};
51
52struct ipmmu_vmsa_device {
53 struct device *dev;
54 void __iomem *base;
55 struct iommu_device iommu;
56 struct ipmmu_vmsa_device *root;
57 const struct ipmmu_features *features;
58 unsigned int num_utlbs;
59 unsigned int num_ctx;
60 spinlock_t lock; /* Protects ctx and domains[] */
61 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
62 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
63
64 struct iommu_group *group;
65 struct dma_iommu_mapping *mapping;
66};
67
68struct ipmmu_vmsa_domain {
69 struct ipmmu_vmsa_device *mmu;
70 struct iommu_domain io_domain;
71
72 struct io_pgtable_cfg cfg;
73 struct io_pgtable_ops *iop;
74
75 unsigned int context_id;
76 struct mutex mutex; /* Protects mappings */
77};
78
79static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
80{
81 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
82}
83
84static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
85{
86 return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
87}
88
89#define TLB_LOOP_TIMEOUT 100 /* 100us */
90
91/* -----------------------------------------------------------------------------
92 * Registers Definition
93 */
94
95#define IM_NS_ALIAS_OFFSET 0x800
96
97#define IM_CTX_SIZE 0x40
98
99#define IMCTR 0x0000
100#define IMCTR_TRE (1 << 17)
101#define IMCTR_AFE (1 << 16)
102#define IMCTR_RTSEL_MASK (3 << 4)
103#define IMCTR_RTSEL_SHIFT 4
104#define IMCTR_TREN (1 << 3)
105#define IMCTR_INTEN (1 << 2)
106#define IMCTR_FLUSH (1 << 1)
107#define IMCTR_MMUEN (1 << 0)
108
109#define IMCAAR 0x0004
110
111#define IMTTBCR 0x0008
112#define IMTTBCR_EAE (1 << 31)
113#define IMTTBCR_PMB (1 << 30)
114#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
115#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
116#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
117#define IMTTBCR_SH1_MASK (3 << 28)
118#define IMTTBCR_ORGN1_NC (0 << 26)
119#define IMTTBCR_ORGN1_WB_WA (1 << 26)
120#define IMTTBCR_ORGN1_WT (2 << 26)
121#define IMTTBCR_ORGN1_WB (3 << 26)
122#define IMTTBCR_ORGN1_MASK (3 << 26)
123#define IMTTBCR_IRGN1_NC (0 << 24)
124#define IMTTBCR_IRGN1_WB_WA (1 << 24)
125#define IMTTBCR_IRGN1_WT (2 << 24)
126#define IMTTBCR_IRGN1_WB (3 << 24)
127#define IMTTBCR_IRGN1_MASK (3 << 24)
128#define IMTTBCR_TSZ1_MASK (7 << 16)
129#define IMTTBCR_TSZ1_SHIFT 16
130#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
131#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
132#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
133#define IMTTBCR_SH0_MASK (3 << 12)
134#define IMTTBCR_ORGN0_NC (0 << 10)
135#define IMTTBCR_ORGN0_WB_WA (1 << 10)
136#define IMTTBCR_ORGN0_WT (2 << 10)
137#define IMTTBCR_ORGN0_WB (3 << 10)
138#define IMTTBCR_ORGN0_MASK (3 << 10)
139#define IMTTBCR_IRGN0_NC (0 << 8)
140#define IMTTBCR_IRGN0_WB_WA (1 << 8)
141#define IMTTBCR_IRGN0_WT (2 << 8)
142#define IMTTBCR_IRGN0_WB (3 << 8)
143#define IMTTBCR_IRGN0_MASK (3 << 8)
144#define IMTTBCR_SL0_LVL_2 (0 << 4)
145#define IMTTBCR_SL0_LVL_1 (1 << 4)
146#define IMTTBCR_TSZ0_MASK (7 << 0)
147#define IMTTBCR_TSZ0_SHIFT O
148
149#define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
150#define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
151#define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
152
153#define IMBUSCR 0x000c
154#define IMBUSCR_DVM (1 << 2)
155#define IMBUSCR_BUSSEL_SYS (0 << 0)
156#define IMBUSCR_BUSSEL_CCI (1 << 0)
157#define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
158#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
159#define IMBUSCR_BUSSEL_MASK (3 << 0)
160
161#define IMTTLBR0 0x0010
162#define IMTTUBR0 0x0014
163#define IMTTLBR1 0x0018
164#define IMTTUBR1 0x001c
165
166#define IMSTR 0x0020
167#define IMSTR_ERRLVL_MASK (3 << 12)
168#define IMSTR_ERRLVL_SHIFT 12
169#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
170#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
171#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
172#define IMSTR_ERRCODE_MASK (7 << 8)
173#define IMSTR_MHIT (1 << 4)
174#define IMSTR_ABORT (1 << 2)
175#define IMSTR_PF (1 << 1)
176#define IMSTR_TF (1 << 0)
177
178#define IMMAIR0 0x0028
179#define IMMAIR1 0x002c
180#define IMMAIR_ATTR_MASK 0xff
181#define IMMAIR_ATTR_DEVICE 0x04
182#define IMMAIR_ATTR_NC 0x44
183#define IMMAIR_ATTR_WBRWA 0xff
184#define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
185#define IMMAIR_ATTR_IDX_NC 0
186#define IMMAIR_ATTR_IDX_WBRWA 1
187#define IMMAIR_ATTR_IDX_DEV 2
188
189#define IMEAR 0x0030
190
191#define IMPCTR 0x0200
192#define IMPSTR 0x0208
193#define IMPEAR 0x020c
194#define IMPMBA(n) (0x0280 + ((n) * 4))
195#define IMPMBD(n) (0x02c0 + ((n) * 4))
196
197#define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
198#define IMUCTR0(n) (0x0300 + ((n) * 16))
199#define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
200#define IMUCTR_FIXADDEN (1 << 31)
201#define IMUCTR_FIXADD_MASK (0xff << 16)
202#define IMUCTR_FIXADD_SHIFT 16
203#define IMUCTR_TTSEL_MMU(n) ((n) << 4)
204#define IMUCTR_TTSEL_PMB (8 << 4)
205#define IMUCTR_TTSEL_MASK (15 << 4)
206#define IMUCTR_FLUSH (1 << 1)
207#define IMUCTR_MMUEN (1 << 0)
208
209#define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
210#define IMUASID0(n) (0x0308 + ((n) * 16))
211#define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
212#define IMUASID_ASID8_MASK (0xff << 8)
213#define IMUASID_ASID8_SHIFT 8
214#define IMUASID_ASID0_MASK (0xff << 0)
215#define IMUASID_ASID0_SHIFT 0
216
217/* -----------------------------------------------------------------------------
218 * Root device handling
219 */
220
221static struct platform_driver ipmmu_driver;
222
223static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
224{
225 return mmu->root == mmu;
226}
227
228static int __ipmmu_check_device(struct device *dev, void *data)
229{
230 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
231 struct ipmmu_vmsa_device **rootp = data;
232
233 if (ipmmu_is_root(mmu))
234 *rootp = mmu;
235
236 return 0;
237}
238
239static struct ipmmu_vmsa_device *ipmmu_find_root(void)
240{
241 struct ipmmu_vmsa_device *root = NULL;
242
243 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
244 __ipmmu_check_device) == 0 ? root : NULL;
245}
246
247/* -----------------------------------------------------------------------------
248 * Read/Write Access
249 */
250
251static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
252{
253 return ioread32(mmu->base + offset);
254}
255
256static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
257 u32 data)
258{
259 iowrite32(data, mmu->base + offset);
260}
261
262static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
263 unsigned int reg)
264{
265 return ipmmu_read(domain->mmu->root,
266 domain->context_id * IM_CTX_SIZE + reg);
267}
268
269static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
270 unsigned int reg, u32 data)
271{
272 ipmmu_write(domain->mmu->root,
273 domain->context_id * IM_CTX_SIZE + reg, data);
274}
275
276static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
277 unsigned int reg, u32 data)
278{
279 if (domain->mmu != domain->mmu->root)
280 ipmmu_write(domain->mmu,
281 domain->context_id * IM_CTX_SIZE + reg, data);
282
283 ipmmu_write(domain->mmu->root,
284 domain->context_id * IM_CTX_SIZE + reg, data);
285}
286
287/* -----------------------------------------------------------------------------
288 * TLB and microTLB Management
289 */
290
291/* Wait for any pending TLB invalidations to complete */
292static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
293{
294 unsigned int count = 0;
295
296 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
297 cpu_relax();
298 if (++count == TLB_LOOP_TIMEOUT) {
299 dev_err_ratelimited(domain->mmu->dev,
300 "TLB sync timed out -- MMU may be deadlocked\n");
301 return;
302 }
303 udelay(1);
304 }
305}
306
307static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
308{
309 u32 reg;
310
311 reg = ipmmu_ctx_read_root(domain, IMCTR);
312 reg |= IMCTR_FLUSH;
313 ipmmu_ctx_write_all(domain, IMCTR, reg);
314
315 ipmmu_tlb_sync(domain);
316}
317
318/*
319 * Enable MMU translation for the microTLB.
320 */
321static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
322 unsigned int utlb)
323{
324 struct ipmmu_vmsa_device *mmu = domain->mmu;
325
326 /*
327 * TODO: Reference-count the microTLB as several bus masters can be
328 * connected to the same microTLB.
329 */
330
331 /* TODO: What should we set the ASID to ? */
332 ipmmu_write(mmu, IMUASID(utlb), 0);
333 /* TODO: Do we need to flush the microTLB ? */
334 ipmmu_write(mmu, IMUCTR(utlb),
335 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
336 IMUCTR_MMUEN);
337}
338
339/*
340 * Disable MMU translation for the microTLB.
341 */
342static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
343 unsigned int utlb)
344{
345 struct ipmmu_vmsa_device *mmu = domain->mmu;
346
347 ipmmu_write(mmu, IMUCTR(utlb), 0);
348}
349
350static void ipmmu_tlb_flush_all(void *cookie)
351{
352 struct ipmmu_vmsa_domain *domain = cookie;
353
354 ipmmu_tlb_invalidate(domain);
355}
356
357static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
358 size_t granule, bool leaf, void *cookie)
359{
360 /* The hardware doesn't support selective TLB flush. */
361}
362
363static const struct iommu_gather_ops ipmmu_gather_ops = {
364 .tlb_flush_all = ipmmu_tlb_flush_all,
365 .tlb_add_flush = ipmmu_tlb_add_flush,
366 .tlb_sync = ipmmu_tlb_flush_all,
367};
368
369/* -----------------------------------------------------------------------------
370 * Domain/Context Management
371 */
372
373static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
374 struct ipmmu_vmsa_domain *domain)
375{
376 unsigned long flags;
377 int ret;
378
379 spin_lock_irqsave(&mmu->lock, flags);
380
381 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
382 if (ret != mmu->num_ctx) {
383 mmu->domains[ret] = domain;
384 set_bit(ret, mmu->ctx);
385 } else
386 ret = -EBUSY;
387
388 spin_unlock_irqrestore(&mmu->lock, flags);
389
390 return ret;
391}
392
393static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
394 unsigned int context_id)
395{
396 unsigned long flags;
397
398 spin_lock_irqsave(&mmu->lock, flags);
399
400 clear_bit(context_id, mmu->ctx);
401 mmu->domains[context_id] = NULL;
402
403 spin_unlock_irqrestore(&mmu->lock, flags);
404}
405
406static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
407{
408 u64 ttbr;
409 u32 tmp;
410 int ret;
411
412 /*
413 * Allocate the page table operations.
414 *
415 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
416 * access, Long-descriptor format" that the NStable bit being set in a
417 * table descriptor will result in the NStable and NS bits of all child
418 * entries being ignored and considered as being set. The IPMMU seems
419 * not to comply with this, as it generates a secure access page fault
420 * if any of the NStable and NS bits isn't set when running in
421 * non-secure mode.
422 */
423 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
424 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
425 domain->cfg.ias = 32;
426 domain->cfg.oas = 40;
427 domain->cfg.tlb = &ipmmu_gather_ops;
428 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
429 domain->io_domain.geometry.force_aperture = true;
430 /*
431 * TODO: Add support for coherent walk through CCI with DVM and remove
432 * cache handling. For now, delegate it to the io-pgtable code.
433 */
434 domain->cfg.iommu_dev = domain->mmu->root->dev;
435
436 /*
437 * Find an unused context.
438 */
439 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
440 if (ret < 0)
441 return ret;
442
443 domain->context_id = ret;
444
445 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
446 domain);
447 if (!domain->iop) {
448 ipmmu_domain_free_context(domain->mmu->root,
449 domain->context_id);
450 return -EINVAL;
451 }
452
453 /* TTBR0 */
454 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
455 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
456 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
457
458 /*
459 * TTBCR
460 * We use long descriptors with inner-shareable WBWA tables and allocate
461 * the whole 32-bit VA space to TTBR0.
462 */
463 if (domain->mmu->features->twobit_imttbcr_sl0)
464 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
465 else
466 tmp = IMTTBCR_SL0_LVL_1;
467
468 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
469 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
470 IMTTBCR_IRGN0_WB_WA | tmp);
471
472 /* MAIR0 */
473 ipmmu_ctx_write_root(domain, IMMAIR0,
474 domain->cfg.arm_lpae_s1_cfg.mair[0]);
475
476 /* IMBUSCR */
477 if (domain->mmu->features->setup_imbuscr)
478 ipmmu_ctx_write_root(domain, IMBUSCR,
479 ipmmu_ctx_read_root(domain, IMBUSCR) &
480 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
481
482 /*
483 * IMSTR
484 * Clear all interrupt flags.
485 */
486 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
487
488 /*
489 * IMCTR
490 * Enable the MMU and interrupt generation. The long-descriptor
491 * translation table format doesn't use TEX remapping. Don't enable AF
492 * software management as we have no use for it. Flush the TLB as
493 * required when modifying the context registers.
494 */
495 ipmmu_ctx_write_all(domain, IMCTR,
496 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
497
498 return 0;
499}
500
501static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
502{
503 if (!domain->mmu)
504 return;
505
506 /*
507 * Disable the context. Flush the TLB as required when modifying the
508 * context registers.
509 *
510 * TODO: Is TLB flush really needed ?
511 */
512 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
513 ipmmu_tlb_sync(domain);
514 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
515}
516
517/* -----------------------------------------------------------------------------
518 * Fault Handling
519 */
520
521static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
522{
523 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
524 struct ipmmu_vmsa_device *mmu = domain->mmu;
525 u32 status;
526 u32 iova;
527
528 status = ipmmu_ctx_read_root(domain, IMSTR);
529 if (!(status & err_mask))
530 return IRQ_NONE;
531
532 iova = ipmmu_ctx_read_root(domain, IMEAR);
533
534 /*
535 * Clear the error status flags. Unlike traditional interrupt flag
536 * registers that must be cleared by writing 1, this status register
537 * seems to require 0. The error address register must be read before,
538 * otherwise its value will be 0.
539 */
540 ipmmu_ctx_write_root(domain, IMSTR, 0);
541
542 /* Log fatal errors. */
543 if (status & IMSTR_MHIT)
544 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
545 iova);
546 if (status & IMSTR_ABORT)
547 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
548 iova);
549
550 if (!(status & (IMSTR_PF | IMSTR_TF)))
551 return IRQ_NONE;
552
553 /*
554 * Try to handle page faults and translation faults.
555 *
556 * TODO: We need to look up the faulty device based on the I/O VA. Use
557 * the IOMMU device for now.
558 */
559 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
560 return IRQ_HANDLED;
561
562 dev_err_ratelimited(mmu->dev,
563 "Unhandled fault: status 0x%08x iova 0x%08x\n",
564 status, iova);
565
566 return IRQ_HANDLED;
567}
568
569static irqreturn_t ipmmu_irq(int irq, void *dev)
570{
571 struct ipmmu_vmsa_device *mmu = dev;
572 irqreturn_t status = IRQ_NONE;
573 unsigned int i;
574 unsigned long flags;
575
576 spin_lock_irqsave(&mmu->lock, flags);
577
578 /*
579 * Check interrupts for all active contexts.
580 */
581 for (i = 0; i < mmu->num_ctx; i++) {
582 if (!mmu->domains[i])
583 continue;
584 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
585 status = IRQ_HANDLED;
586 }
587
588 spin_unlock_irqrestore(&mmu->lock, flags);
589
590 return status;
591}
592
593/* -----------------------------------------------------------------------------
594 * IOMMU Operations
595 */
596
597static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
598{
599 struct ipmmu_vmsa_domain *domain;
600
601 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
602 if (!domain)
603 return NULL;
604
605 mutex_init(&domain->mutex);
606
607 return &domain->io_domain;
608}
609
610static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
611{
612 struct iommu_domain *io_domain = NULL;
613
614 switch (type) {
615 case IOMMU_DOMAIN_UNMANAGED:
616 io_domain = __ipmmu_domain_alloc(type);
617 break;
618
619 case IOMMU_DOMAIN_DMA:
620 io_domain = __ipmmu_domain_alloc(type);
621 if (io_domain && iommu_get_dma_cookie(io_domain)) {
622 kfree(io_domain);
623 io_domain = NULL;
624 }
625 break;
626 }
627
628 return io_domain;
629}
630
631static void ipmmu_domain_free(struct iommu_domain *io_domain)
632{
633 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
634
635 /*
636 * Free the domain resources. We assume that all devices have already
637 * been detached.
638 */
639 iommu_put_dma_cookie(io_domain);
640 ipmmu_domain_destroy_context(domain);
641 free_io_pgtable_ops(domain->iop);
642 kfree(domain);
643}
644
645static int ipmmu_attach_device(struct iommu_domain *io_domain,
646 struct device *dev)
647{
648 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
649 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
650 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651 unsigned int i;
652 int ret = 0;
653
654 if (!mmu) {
655 dev_err(dev, "Cannot attach to IPMMU\n");
656 return -ENXIO;
657 }
658
659 mutex_lock(&domain->mutex);
660
661 if (!domain->mmu) {
662 /* The domain hasn't been used yet, initialize it. */
663 domain->mmu = mmu;
664 ret = ipmmu_domain_init_context(domain);
665 if (ret < 0) {
666 dev_err(dev, "Unable to initialize IPMMU context\n");
667 domain->mmu = NULL;
668 } else {
669 dev_info(dev, "Using IPMMU context %u\n",
670 domain->context_id);
671 }
672 } else if (domain->mmu != mmu) {
673 /*
674 * Something is wrong, we can't attach two devices using
675 * different IOMMUs to the same domain.
676 */
677 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
678 dev_name(mmu->dev), dev_name(domain->mmu->dev));
679 ret = -EINVAL;
680 } else
681 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
682
683 mutex_unlock(&domain->mutex);
684
685 if (ret < 0)
686 return ret;
687
688 for (i = 0; i < fwspec->num_ids; ++i)
689 ipmmu_utlb_enable(domain, fwspec->ids[i]);
690
691 return 0;
692}
693
694static void ipmmu_detach_device(struct iommu_domain *io_domain,
695 struct device *dev)
696{
697 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
698 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
699 unsigned int i;
700
701 for (i = 0; i < fwspec->num_ids; ++i)
702 ipmmu_utlb_disable(domain, fwspec->ids[i]);
703
704 /*
705 * TODO: Optimize by disabling the context when no device is attached.
706 */
707}
708
709static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
710 phys_addr_t paddr, size_t size, int prot)
711{
712 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
713
714 if (!domain)
715 return -ENODEV;
716
717 return domain->iop->map(domain->iop, iova, paddr, size, prot);
718}
719
720static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
721 size_t size)
722{
723 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
724
725 return domain->iop->unmap(domain->iop, iova, size);
726}
727
728static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
729{
730 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
731
732 if (domain->mmu)
733 ipmmu_tlb_flush_all(domain);
734}
735
736static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
737 dma_addr_t iova)
738{
739 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
740
741 /* TODO: Is locking needed ? */
742
743 return domain->iop->iova_to_phys(domain->iop, iova);
744}
745
746static int ipmmu_init_platform_device(struct device *dev,
747 struct of_phandle_args *args)
748{
749 struct platform_device *ipmmu_pdev;
750
751 ipmmu_pdev = of_find_device_by_node(args->np);
752 if (!ipmmu_pdev)
753 return -ENODEV;
754
755 dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
756 return 0;
757}
758
759static bool ipmmu_slave_whitelist(struct device *dev)
760{
761 /* By default, do not allow use of IPMMU */
762 return false;
763}
764
765static const struct soc_device_attribute soc_rcar_gen3[] = {
766 { .soc_id = "r8a7795", },
767 { .soc_id = "r8a7796", },
768 { .soc_id = "r8a77965", },
769 { .soc_id = "r8a77970", },
770 { .soc_id = "r8a77995", },
771 { /* sentinel */ }
772};
773
774static int ipmmu_of_xlate(struct device *dev,
775 struct of_phandle_args *spec)
776{
777 /* For R-Car Gen3 use a white list to opt-in slave devices */
778 if (soc_device_match(soc_rcar_gen3) && !ipmmu_slave_whitelist(dev))
779 return -ENODEV;
780
781 iommu_fwspec_add_ids(dev, spec->args, 1);
782
783 /* Initialize once - xlate() will call multiple times */
784 if (to_ipmmu(dev))
785 return 0;
786
787 return ipmmu_init_platform_device(dev, spec);
788}
789
790static int ipmmu_init_arm_mapping(struct device *dev)
791{
792 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
793 struct iommu_group *group;
794 int ret;
795
796 /* Create a device group and add the device to it. */
797 group = iommu_group_alloc();
798 if (IS_ERR(group)) {
799 dev_err(dev, "Failed to allocate IOMMU group\n");
800 return PTR_ERR(group);
801 }
802
803 ret = iommu_group_add_device(group, dev);
804 iommu_group_put(group);
805
806 if (ret < 0) {
807 dev_err(dev, "Failed to add device to IPMMU group\n");
808 return ret;
809 }
810
811 /*
812 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
813 * VAs. This will allocate a corresponding IOMMU domain.
814 *
815 * TODO:
816 * - Create one mapping per context (TLB).
817 * - Make the mapping size configurable ? We currently use a 2GB mapping
818 * at a 1GB offset to ensure that NULL VAs will fault.
819 */
820 if (!mmu->mapping) {
821 struct dma_iommu_mapping *mapping;
822
823 mapping = arm_iommu_create_mapping(&platform_bus_type,
824 SZ_1G, SZ_2G);
825 if (IS_ERR(mapping)) {
826 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
827 ret = PTR_ERR(mapping);
828 goto error;
829 }
830
831 mmu->mapping = mapping;
832 }
833
834 /* Attach the ARM VA mapping to the device. */
835 ret = arm_iommu_attach_device(dev, mmu->mapping);
836 if (ret < 0) {
837 dev_err(dev, "Failed to attach device to VA mapping\n");
838 goto error;
839 }
840
841 return 0;
842
843error:
844 iommu_group_remove_device(dev);
845 if (mmu->mapping)
846 arm_iommu_release_mapping(mmu->mapping);
847
848 return ret;
849}
850
851static int ipmmu_add_device(struct device *dev)
852{
853 struct iommu_group *group;
854
855 /*
856 * Only let through devices that have been verified in xlate()
857 */
858 if (!to_ipmmu(dev))
859 return -ENODEV;
860
861 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
862 return ipmmu_init_arm_mapping(dev);
863
864 group = iommu_group_get_for_dev(dev);
865 if (IS_ERR(group))
866 return PTR_ERR(group);
867
868 iommu_group_put(group);
869 return 0;
870}
871
872static void ipmmu_remove_device(struct device *dev)
873{
874 arm_iommu_detach_device(dev);
875 iommu_group_remove_device(dev);
876}
877
878static struct iommu_group *ipmmu_find_group(struct device *dev)
879{
880 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
881 struct iommu_group *group;
882
883 if (mmu->group)
884 return iommu_group_ref_get(mmu->group);
885
886 group = iommu_group_alloc();
887 if (!IS_ERR(group))
888 mmu->group = group;
889
890 return group;
891}
892
893static const struct iommu_ops ipmmu_ops = {
894 .domain_alloc = ipmmu_domain_alloc,
895 .domain_free = ipmmu_domain_free,
896 .attach_dev = ipmmu_attach_device,
897 .detach_dev = ipmmu_detach_device,
898 .map = ipmmu_map,
899 .unmap = ipmmu_unmap,
900 .flush_iotlb_all = ipmmu_iotlb_sync,
901 .iotlb_sync = ipmmu_iotlb_sync,
902 .iova_to_phys = ipmmu_iova_to_phys,
903 .add_device = ipmmu_add_device,
904 .remove_device = ipmmu_remove_device,
905 .device_group = ipmmu_find_group,
906 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
907 .of_xlate = ipmmu_of_xlate,
908};
909
910/* -----------------------------------------------------------------------------
911 * Probe/remove and init
912 */
913
914static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
915{
916 unsigned int i;
917
918 /* Disable all contexts. */
919 for (i = 0; i < mmu->num_ctx; ++i)
920 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
921}
922
923static const struct ipmmu_features ipmmu_features_default = {
924 .use_ns_alias_offset = true,
925 .has_cache_leaf_nodes = false,
926 .number_of_contexts = 1, /* software only tested with one context */
927 .setup_imbuscr = true,
928 .twobit_imttbcr_sl0 = false,
929 .reserved_context = false,
930};
931
932static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
933 .use_ns_alias_offset = false,
934 .has_cache_leaf_nodes = true,
935 .number_of_contexts = 8,
936 .setup_imbuscr = false,
937 .twobit_imttbcr_sl0 = true,
938 .reserved_context = true,
939};
940
941static const struct of_device_id ipmmu_of_ids[] = {
942 {
943 .compatible = "renesas,ipmmu-vmsa",
944 .data = &ipmmu_features_default,
945 }, {
946 .compatible = "renesas,ipmmu-r8a7795",
947 .data = &ipmmu_features_rcar_gen3,
948 }, {
949 .compatible = "renesas,ipmmu-r8a7796",
950 .data = &ipmmu_features_rcar_gen3,
951 }, {
952 .compatible = "renesas,ipmmu-r8a77965",
953 .data = &ipmmu_features_rcar_gen3,
954 }, {
955 .compatible = "renesas,ipmmu-r8a77970",
956 .data = &ipmmu_features_rcar_gen3,
957 }, {
958 .compatible = "renesas,ipmmu-r8a77995",
959 .data = &ipmmu_features_rcar_gen3,
960 }, {
961 /* Terminator */
962 },
963};
964
965MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
966
967static int ipmmu_probe(struct platform_device *pdev)
968{
969 struct ipmmu_vmsa_device *mmu;
970 struct resource *res;
971 int irq;
972 int ret;
973
974 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
975 if (!mmu) {
976 dev_err(&pdev->dev, "cannot allocate device data\n");
977 return -ENOMEM;
978 }
979
980 mmu->dev = &pdev->dev;
981 mmu->num_utlbs = 48;
982 spin_lock_init(&mmu->lock);
983 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
984 mmu->features = of_device_get_match_data(&pdev->dev);
985 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
986
987 /* Map I/O memory and request IRQ. */
988 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
989 mmu->base = devm_ioremap_resource(&pdev->dev, res);
990 if (IS_ERR(mmu->base))
991 return PTR_ERR(mmu->base);
992
993 /*
994 * The IPMMU has two register banks, for secure and non-secure modes.
995 * The bank mapped at the beginning of the IPMMU address space
996 * corresponds to the running mode of the CPU. When running in secure
997 * mode the non-secure register bank is also available at an offset.
998 *
999 * Secure mode operation isn't clearly documented and is thus currently
1000 * not implemented in the driver. Furthermore, preliminary tests of
1001 * non-secure operation with the main register bank were not successful.
1002 * Offset the registers base unconditionally to point to the non-secure
1003 * alias space for now.
1004 */
1005 if (mmu->features->use_ns_alias_offset)
1006 mmu->base += IM_NS_ALIAS_OFFSET;
1007
1008 mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1009 mmu->features->number_of_contexts);
1010
1011 irq = platform_get_irq(pdev, 0);
1012
1013 /*
1014 * Determine if this IPMMU instance is a root device by checking for
1015 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1016 */
1017 if (!mmu->features->has_cache_leaf_nodes ||
1018 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1019 mmu->root = mmu;
1020 else
1021 mmu->root = ipmmu_find_root();
1022
1023 /*
1024 * Wait until the root device has been registered for sure.
1025 */
1026 if (!mmu->root)
1027 return -EPROBE_DEFER;
1028
1029 /* Root devices have mandatory IRQs */
1030 if (ipmmu_is_root(mmu)) {
1031 if (irq < 0) {
1032 dev_err(&pdev->dev, "no IRQ found\n");
1033 return irq;
1034 }
1035
1036 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1037 dev_name(&pdev->dev), mmu);
1038 if (ret < 0) {
1039 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1040 return ret;
1041 }
1042
1043 ipmmu_device_reset(mmu);
1044
1045 if (mmu->features->reserved_context) {
1046 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1047 set_bit(0, mmu->ctx);
1048 }
1049 }
1050
1051 /*
1052 * Register the IPMMU to the IOMMU subsystem in the following cases:
1053 * - R-Car Gen2 IPMMU (all devices registered)
1054 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1055 */
1056 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1057 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1058 dev_name(&pdev->dev));
1059 if (ret)
1060 return ret;
1061
1062 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1063 iommu_device_set_fwnode(&mmu->iommu,
1064 &pdev->dev.of_node->fwnode);
1065
1066 ret = iommu_device_register(&mmu->iommu);
1067 if (ret)
1068 return ret;
1069
1070#if defined(CONFIG_IOMMU_DMA)
1071 if (!iommu_present(&platform_bus_type))
1072 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1073#endif
1074 }
1075
1076 /*
1077 * We can't create the ARM mapping here as it requires the bus to have
1078 * an IOMMU, which only happens when bus_set_iommu() is called in
1079 * ipmmu_init() after the probe function returns.
1080 */
1081
1082 platform_set_drvdata(pdev, mmu);
1083
1084 return 0;
1085}
1086
1087static int ipmmu_remove(struct platform_device *pdev)
1088{
1089 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1090
1091 iommu_device_sysfs_remove(&mmu->iommu);
1092 iommu_device_unregister(&mmu->iommu);
1093
1094 arm_iommu_release_mapping(mmu->mapping);
1095
1096 ipmmu_device_reset(mmu);
1097
1098 return 0;
1099}
1100
1101static struct platform_driver ipmmu_driver = {
1102 .driver = {
1103 .name = "ipmmu-vmsa",
1104 .of_match_table = of_match_ptr(ipmmu_of_ids),
1105 },
1106 .probe = ipmmu_probe,
1107 .remove = ipmmu_remove,
1108};
1109
1110static int __init ipmmu_init(void)
1111{
1112 struct device_node *np;
1113 static bool setup_done;
1114 int ret;
1115
1116 if (setup_done)
1117 return 0;
1118
1119 np = of_find_matching_node(NULL, ipmmu_of_ids);
1120 if (!np)
1121 return 0;
1122
1123 of_node_put(np);
1124
1125 ret = platform_driver_register(&ipmmu_driver);
1126 if (ret < 0)
1127 return ret;
1128
1129#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1130 if (!iommu_present(&platform_bus_type))
1131 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1132#endif
1133
1134 setup_done = true;
1135 return 0;
1136}
1137
1138static void __exit ipmmu_exit(void)
1139{
1140 return platform_driver_unregister(&ipmmu_driver);
1141}
1142
1143subsys_initcall(ipmmu_init);
1144module_exit(ipmmu_exit);
1145
1146MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1147MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1148MODULE_LICENSE("GPL v2");