| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * NFTL mount code with extensive checks | 
|  | 3 | * | 
|  | 4 | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
|  | 5 | * Copyright © 2000 Netgem S.A. | 
|  | 6 | * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> | 
|  | 7 | * | 
|  | 8 | * This program is free software; you can redistribute it and/or modify | 
|  | 9 | * it under the terms of the GNU General Public License as published by | 
|  | 10 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 11 | * (at your option) any later version. | 
|  | 12 | * | 
|  | 13 | * This program is distributed in the hope that it will be useful, | 
|  | 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 16 | * GNU General Public License for more details. | 
|  | 17 | * | 
|  | 18 | * You should have received a copy of the GNU General Public License | 
|  | 19 | * along with this program; if not, write to the Free Software | 
|  | 20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/kernel.h> | 
|  | 24 | #include <asm/errno.h> | 
|  | 25 | #include <linux/delay.h> | 
|  | 26 | #include <linux/slab.h> | 
|  | 27 | #include <linux/mtd/mtd.h> | 
|  | 28 | #include <linux/mtd/rawnand.h> | 
|  | 29 | #include <linux/mtd/nftl.h> | 
|  | 30 |  | 
|  | 31 | #define SECTORSIZE 512 | 
|  | 32 |  | 
|  | 33 | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the | 
|  | 34 | *	various device information of the NFTL partition and Bad Unit Table. Update | 
|  | 35 | *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[] | 
|  | 36 | *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c | 
|  | 37 | */ | 
|  | 38 | static int find_boot_record(struct NFTLrecord *nftl) | 
|  | 39 | { | 
|  | 40 | struct nftl_uci1 h1; | 
|  | 41 | unsigned int block, boot_record_count = 0; | 
|  | 42 | size_t retlen; | 
|  | 43 | u8 buf[SECTORSIZE]; | 
|  | 44 | struct NFTLMediaHeader *mh = &nftl->MediaHdr; | 
|  | 45 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 46 | unsigned int i; | 
|  | 47 |  | 
|  | 48 | /* Assume logical EraseSize == physical erasesize for starting the scan. | 
|  | 49 | We'll sort it out later if we find a MediaHeader which says otherwise */ | 
|  | 50 | /* Actually, we won't.  The new DiskOnChip driver has already scanned | 
|  | 51 | the MediaHeader and adjusted the virtual erasesize it presents in | 
|  | 52 | the mtd device accordingly.  We could even get rid of | 
|  | 53 | nftl->EraseSize if there were any point in doing so. */ | 
|  | 54 | nftl->EraseSize = nftl->mbd.mtd->erasesize; | 
|  | 55 | nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; | 
|  | 56 |  | 
|  | 57 | nftl->MediaUnit = BLOCK_NIL; | 
|  | 58 | nftl->SpareMediaUnit = BLOCK_NIL; | 
|  | 59 |  | 
|  | 60 | /* search for a valid boot record */ | 
|  | 61 | for (block = 0; block < nftl->nb_blocks; block++) { | 
|  | 62 | int ret; | 
|  | 63 |  | 
|  | 64 | /* Check for ANAND header first. Then can whinge if it's found but later | 
|  | 65 | checks fail */ | 
|  | 66 | ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE, | 
|  | 67 | &retlen, buf); | 
|  | 68 | /* We ignore ret in case the ECC of the MediaHeader is invalid | 
|  | 69 | (which is apparently acceptable) */ | 
|  | 70 | if (retlen != SECTORSIZE) { | 
|  | 71 | static int warncount = 5; | 
|  | 72 |  | 
|  | 73 | if (warncount) { | 
|  | 74 | printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", | 
|  | 75 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | 76 | if (!--warncount) | 
|  | 77 | printk(KERN_WARNING "Further failures for this block will not be printed\n"); | 
|  | 78 | } | 
|  | 79 | continue; | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { | 
|  | 83 | /* ANAND\0 not found. Continue */ | 
|  | 84 | #if 0 | 
|  | 85 | printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", | 
|  | 86 | block * nftl->EraseSize, nftl->mbd.mtd->index); | 
|  | 87 | #endif | 
|  | 88 | continue; | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | /* To be safer with BIOS, also use erase mark as discriminant */ | 
|  | 92 | ret = nftl_read_oob(mtd, block * nftl->EraseSize + | 
|  | 93 | SECTORSIZE + 8, 8, &retlen, | 
|  | 94 | (char *)&h1); | 
|  | 95 | if (ret < 0) { | 
|  | 96 | printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", | 
|  | 97 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | 98 | continue; | 
|  | 99 | } | 
|  | 100 |  | 
|  | 101 | #if 0 /* Some people seem to have devices without ECC or erase marks | 
|  | 102 | on the Media Header blocks. There are enough other sanity | 
|  | 103 | checks in here that we can probably do without it. | 
|  | 104 | */ | 
|  | 105 | if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { | 
|  | 106 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", | 
|  | 107 | block * nftl->EraseSize, nftl->mbd.mtd->index, | 
|  | 108 | le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); | 
|  | 109 | continue; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | /* Finally reread to check ECC */ | 
|  | 113 | ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, | 
|  | 114 | &retlen, buf); | 
|  | 115 | if (ret < 0) { | 
|  | 116 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", | 
|  | 117 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | 118 | continue; | 
|  | 119 | } | 
|  | 120 |  | 
|  | 121 | /* Paranoia. Check the ANAND header is still there after the ECC read */ | 
|  | 122 | if (memcmp(buf, "ANAND", 6)) { | 
|  | 123 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", | 
|  | 124 | block * nftl->EraseSize, nftl->mbd.mtd->index); | 
|  | 125 | printk(KERN_NOTICE "New data are: %6ph\n", buf); | 
|  | 126 | continue; | 
|  | 127 | } | 
|  | 128 | #endif | 
|  | 129 | /* OK, we like it. */ | 
|  | 130 |  | 
|  | 131 | if (boot_record_count) { | 
|  | 132 | /* We've already processed one. So we just check if | 
|  | 133 | this one is the same as the first one we found */ | 
|  | 134 | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { | 
|  | 135 | printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", | 
|  | 136 | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); | 
|  | 137 | /* if (debug) Print both side by side */ | 
|  | 138 | if (boot_record_count < 2) { | 
|  | 139 | /* We haven't yet seen two real ones */ | 
|  | 140 | return -1; | 
|  | 141 | } | 
|  | 142 | continue; | 
|  | 143 | } | 
|  | 144 | if (boot_record_count == 1) | 
|  | 145 | nftl->SpareMediaUnit = block; | 
|  | 146 |  | 
|  | 147 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | 
|  | 148 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | 149 |  | 
|  | 150 |  | 
|  | 151 | boot_record_count++; | 
|  | 152 | continue; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | /* This is the first we've seen. Copy the media header structure into place */ | 
|  | 156 | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); | 
|  | 157 |  | 
|  | 158 | /* Do some sanity checks on it */ | 
|  | 159 | #if 0 | 
|  | 160 | The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual | 
|  | 161 | erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd | 
|  | 162 | device is already correct. | 
|  | 163 | if (mh->UnitSizeFactor == 0) { | 
|  | 164 | printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); | 
|  | 165 | } else if (mh->UnitSizeFactor < 0xfc) { | 
|  | 166 | printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", | 
|  | 167 | mh->UnitSizeFactor); | 
|  | 168 | return -1; | 
|  | 169 | } else if (mh->UnitSizeFactor != 0xff) { | 
|  | 170 | printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", | 
|  | 171 | mh->UnitSizeFactor); | 
|  | 172 | nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); | 
|  | 173 | nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; | 
|  | 174 | } | 
|  | 175 | #endif | 
|  | 176 | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); | 
|  | 177 | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { | 
|  | 178 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | 
|  | 179 | printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", | 
|  | 180 | nftl->nb_boot_blocks, nftl->nb_blocks); | 
|  | 181 | return -1; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; | 
|  | 185 | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { | 
|  | 186 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | 
|  | 187 | printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", | 
|  | 188 | nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); | 
|  | 189 | return -1; | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); | 
|  | 193 |  | 
|  | 194 | /* If we're not using the last sectors in the device for some reason, | 
|  | 195 | reduce nb_blocks accordingly so we forget they're there */ | 
|  | 196 | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); | 
|  | 197 |  | 
|  | 198 | /* XXX: will be suppressed */ | 
|  | 199 | nftl->lastEUN = nftl->nb_blocks - 1; | 
|  | 200 |  | 
|  | 201 | /* memory alloc */ | 
|  | 202 | nftl->EUNtable = kmalloc_array(nftl->nb_blocks, sizeof(u16), | 
|  | 203 | GFP_KERNEL); | 
|  | 204 | if (!nftl->EUNtable) { | 
|  | 205 | printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); | 
|  | 206 | return -ENOMEM; | 
|  | 207 | } | 
|  | 208 |  | 
|  | 209 | nftl->ReplUnitTable = kmalloc_array(nftl->nb_blocks, | 
|  | 210 | sizeof(u16), | 
|  | 211 | GFP_KERNEL); | 
|  | 212 | if (!nftl->ReplUnitTable) { | 
|  | 213 | kfree(nftl->EUNtable); | 
|  | 214 | printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); | 
|  | 215 | return -ENOMEM; | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ | 
|  | 219 | for (i = 0; i < nftl->nb_boot_blocks; i++) | 
|  | 220 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | 221 | /* mark all remaining blocks as potentially containing data */ | 
|  | 222 | for (; i < nftl->nb_blocks; i++) { | 
|  | 223 | nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | 
|  | 227 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | 228 |  | 
|  | 229 | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ | 
|  | 230 | for (i = 0; i < nftl->nb_blocks; i++) { | 
|  | 231 | #if 0 | 
|  | 232 | The new DiskOnChip driver already scanned the bad block table.  Just query it. | 
|  | 233 | if ((i & (SECTORSIZE - 1)) == 0) { | 
|  | 234 | /* read one sector for every SECTORSIZE of blocks */ | 
|  | 235 | ret = mtd->read(nftl->mbd.mtd, | 
|  | 236 | block * nftl->EraseSize + i + | 
|  | 237 | SECTORSIZE, SECTORSIZE, | 
|  | 238 | &retlen, buf); | 
|  | 239 | if (ret < 0) { | 
|  | 240 | printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", | 
|  | 241 | ret); | 
|  | 242 | kfree(nftl->ReplUnitTable); | 
|  | 243 | kfree(nftl->EUNtable); | 
|  | 244 | return -1; | 
|  | 245 | } | 
|  | 246 | } | 
|  | 247 | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ | 
|  | 248 | if (buf[i & (SECTORSIZE - 1)] != 0xff) | 
|  | 249 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | 250 | #endif | 
|  | 251 | if (mtd_block_isbad(nftl->mbd.mtd, | 
|  | 252 | i * nftl->EraseSize)) | 
|  | 253 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | nftl->MediaUnit = block; | 
|  | 257 | boot_record_count++; | 
|  | 258 |  | 
|  | 259 | } /* foreach (block) */ | 
|  | 260 |  | 
|  | 261 | return boot_record_count?0:-1; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | static int memcmpb(void *a, int c, int n) | 
|  | 265 | { | 
|  | 266 | int i; | 
|  | 267 | for (i = 0; i < n; i++) { | 
|  | 268 | if (c != ((unsigned char *)a)[i]) | 
|  | 269 | return 1; | 
|  | 270 | } | 
|  | 271 | return 0; | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ | 
|  | 275 | static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, | 
|  | 276 | int check_oob) | 
|  | 277 | { | 
|  | 278 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 279 | size_t retlen; | 
|  | 280 | int i, ret; | 
|  | 281 | u8 *buf; | 
|  | 282 |  | 
|  | 283 | buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL); | 
|  | 284 | if (!buf) | 
|  | 285 | return -1; | 
|  | 286 |  | 
|  | 287 | ret = -1; | 
|  | 288 | for (i = 0; i < len; i += SECTORSIZE) { | 
|  | 289 | if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) | 
|  | 290 | goto out; | 
|  | 291 | if (memcmpb(buf, 0xff, SECTORSIZE) != 0) | 
|  | 292 | goto out; | 
|  | 293 |  | 
|  | 294 | if (check_oob) { | 
|  | 295 | if(nftl_read_oob(mtd, address, mtd->oobsize, | 
|  | 296 | &retlen, &buf[SECTORSIZE]) < 0) | 
|  | 297 | goto out; | 
|  | 298 | if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) | 
|  | 299 | goto out; | 
|  | 300 | } | 
|  | 301 | address += SECTORSIZE; | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | ret = 0; | 
|  | 305 |  | 
|  | 306 | out: | 
|  | 307 | kfree(buf); | 
|  | 308 | return ret; | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and | 
|  | 312 | *              Update NFTL metadata. Each erase operation is checked with check_free_sectors | 
|  | 313 | * | 
|  | 314 | * Return: 0 when succeed, -1 on error. | 
|  | 315 | * | 
|  | 316 | *  ToDo: 1. Is it necessary to check_free_sector after erasing ?? | 
|  | 317 | */ | 
|  | 318 | int NFTL_formatblock(struct NFTLrecord *nftl, int block) | 
|  | 319 | { | 
|  | 320 | size_t retlen; | 
|  | 321 | unsigned int nb_erases, erase_mark; | 
|  | 322 | struct nftl_uci1 uci; | 
|  | 323 | struct erase_info *instr = &nftl->instr; | 
|  | 324 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 325 |  | 
|  | 326 | /* Read the Unit Control Information #1 for Wear-Leveling */ | 
|  | 327 | if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, | 
|  | 328 | 8, &retlen, (char *)&uci) < 0) | 
|  | 329 | goto default_uci1; | 
|  | 330 |  | 
|  | 331 | erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); | 
|  | 332 | if (erase_mark != ERASE_MARK) { | 
|  | 333 | default_uci1: | 
|  | 334 | uci.EraseMark = cpu_to_le16(ERASE_MARK); | 
|  | 335 | uci.EraseMark1 = cpu_to_le16(ERASE_MARK); | 
|  | 336 | uci.WearInfo = cpu_to_le32(0); | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | memset(instr, 0, sizeof(struct erase_info)); | 
|  | 340 |  | 
|  | 341 | /* XXX: use async erase interface, XXX: test return code */ | 
|  | 342 | instr->addr = block * nftl->EraseSize; | 
|  | 343 | instr->len = nftl->EraseSize; | 
|  | 344 | if (mtd_erase(mtd, instr)) { | 
|  | 345 | printk("Error while formatting block %d\n", block); | 
|  | 346 | goto fail; | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | /* increase and write Wear-Leveling info */ | 
|  | 350 | nb_erases = le32_to_cpu(uci.WearInfo); | 
|  | 351 | nb_erases++; | 
|  | 352 |  | 
|  | 353 | /* wrap (almost impossible with current flash) or free block */ | 
|  | 354 | if (nb_erases == 0) | 
|  | 355 | nb_erases = 1; | 
|  | 356 |  | 
|  | 357 | /* check the "freeness" of Erase Unit before updating metadata | 
|  | 358 | * FixMe:  is this check really necessary ? since we have check the | 
|  | 359 | *         return code after the erase operation. */ | 
|  | 360 | if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) | 
|  | 361 | goto fail; | 
|  | 362 |  | 
|  | 363 | uci.WearInfo = le32_to_cpu(nb_erases); | 
|  | 364 | if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE + | 
|  | 365 | 8, 8, &retlen, (char *)&uci) < 0) | 
|  | 366 | goto fail; | 
|  | 367 | return 0; | 
|  | 368 | fail: | 
|  | 369 | /* could not format, update the bad block table (caller is responsible | 
|  | 370 | for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ | 
|  | 371 | mtd_block_markbad(nftl->mbd.mtd, instr->addr); | 
|  | 372 | return -1; | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. | 
|  | 376 | *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain | 
|  | 377 | *	was being folded when NFTL was interrupted. | 
|  | 378 | * | 
|  | 379 | *	The check_free_sectors in this function is necessary. There is a possible | 
|  | 380 | *	situation that after writing the Data area, the Block Control Information is | 
|  | 381 | *	not updated according (due to power failure or something) which leaves the block | 
|  | 382 | *	in an inconsistent state. So we have to check if a block is really FREE in this | 
|  | 383 | *	case. */ | 
|  | 384 | static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | 385 | { | 
|  | 386 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 387 | unsigned int block, i, status; | 
|  | 388 | struct nftl_bci bci; | 
|  | 389 | int sectors_per_block; | 
|  | 390 | size_t retlen; | 
|  | 391 |  | 
|  | 392 | sectors_per_block = nftl->EraseSize / SECTORSIZE; | 
|  | 393 | block = first_block; | 
|  | 394 | for (;;) { | 
|  | 395 | for (i = 0; i < sectors_per_block; i++) { | 
|  | 396 | if (nftl_read_oob(mtd, | 
|  | 397 | block * nftl->EraseSize + i * SECTORSIZE, | 
|  | 398 | 8, &retlen, (char *)&bci) < 0) | 
|  | 399 | status = SECTOR_IGNORE; | 
|  | 400 | else | 
|  | 401 | status = bci.Status | bci.Status1; | 
|  | 402 |  | 
|  | 403 | switch(status) { | 
|  | 404 | case SECTOR_FREE: | 
|  | 405 | /* verify that the sector is really free. If not, mark | 
|  | 406 | as ignore */ | 
|  | 407 | if (memcmpb(&bci, 0xff, 8) != 0 || | 
|  | 408 | check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, | 
|  | 409 | SECTORSIZE, 0) != 0) { | 
|  | 410 | printk("Incorrect free sector %d in block %d: " | 
|  | 411 | "marking it as ignored\n", | 
|  | 412 | i, block); | 
|  | 413 |  | 
|  | 414 | /* sector not free actually : mark it as SECTOR_IGNORE  */ | 
|  | 415 | bci.Status = SECTOR_IGNORE; | 
|  | 416 | bci.Status1 = SECTOR_IGNORE; | 
|  | 417 | nftl_write_oob(mtd, block * | 
|  | 418 | nftl->EraseSize + | 
|  | 419 | i * SECTORSIZE, 8, | 
|  | 420 | &retlen, (char *)&bci); | 
|  | 421 | } | 
|  | 422 | break; | 
|  | 423 | default: | 
|  | 424 | break; | 
|  | 425 | } | 
|  | 426 | } | 
|  | 427 |  | 
|  | 428 | /* proceed to next Erase Unit on the chain */ | 
|  | 429 | block = nftl->ReplUnitTable[block]; | 
|  | 430 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | 431 | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | 432 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | 433 | break; | 
|  | 434 | } | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */ | 
|  | 438 | static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | 439 | { | 
|  | 440 | unsigned int length = 0, block = first_block; | 
|  | 441 |  | 
|  | 442 | for (;;) { | 
|  | 443 | length++; | 
|  | 444 | /* avoid infinite loops, although this is guaranteed not to | 
|  | 445 | happen because of the previous checks */ | 
|  | 446 | if (length >= nftl->nb_blocks) { | 
|  | 447 | printk("nftl: length too long %d !\n", length); | 
|  | 448 | break; | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | block = nftl->ReplUnitTable[block]; | 
|  | 452 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | 453 | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | 454 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | 455 | break; | 
|  | 456 | } | 
|  | 457 | return length; | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a | 
|  | 461 | *	Virtual Unit Chain, i.e. all the units are disconnected. | 
|  | 462 | * | 
|  | 463 | *	It is not strictly correct to begin from the first block of the chain because | 
|  | 464 | *	if we stop the code, we may see again a valid chain if there was a first_block | 
|  | 465 | *	flag in a block inside it. But is it really a problem ? | 
|  | 466 | * | 
|  | 467 | * FixMe: Figure out what the last statement means. What if power failure when we are | 
|  | 468 | *	in the for (;;) loop formatting blocks ?? | 
|  | 469 | */ | 
|  | 470 | static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | 471 | { | 
|  | 472 | unsigned int block = first_block, block1; | 
|  | 473 |  | 
|  | 474 | printk("Formatting chain at block %d\n", first_block); | 
|  | 475 |  | 
|  | 476 | for (;;) { | 
|  | 477 | block1 = nftl->ReplUnitTable[block]; | 
|  | 478 |  | 
|  | 479 | printk("Formatting block %d\n", block); | 
|  | 480 | if (NFTL_formatblock(nftl, block) < 0) { | 
|  | 481 | /* cannot format !!!! Mark it as Bad Unit */ | 
|  | 482 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | 483 | } else { | 
|  | 484 | nftl->ReplUnitTable[block] = BLOCK_FREE; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | /* goto next block on the chain */ | 
|  | 488 | block = block1; | 
|  | 489 |  | 
|  | 490 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | 491 | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | 492 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | 493 | break; | 
|  | 494 | } | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or | 
|  | 498 | *	totally free (only 0xff). | 
|  | 499 | * | 
|  | 500 | * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the | 
|  | 501 | *	following criteria: | 
|  | 502 | *	1. */ | 
|  | 503 | static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) | 
|  | 504 | { | 
|  | 505 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 506 | struct nftl_uci1 h1; | 
|  | 507 | unsigned int erase_mark; | 
|  | 508 | size_t retlen; | 
|  | 509 |  | 
|  | 510 | /* check erase mark. */ | 
|  | 511 | if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, | 
|  | 512 | &retlen, (char *)&h1) < 0) | 
|  | 513 | return -1; | 
|  | 514 |  | 
|  | 515 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | 
|  | 516 | if (erase_mark != ERASE_MARK) { | 
|  | 517 | /* if no erase mark, the block must be totally free. This is | 
|  | 518 | possible in two cases : empty filesystem or interrupted erase (very unlikely) */ | 
|  | 519 | if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) | 
|  | 520 | return -1; | 
|  | 521 |  | 
|  | 522 | /* free block : write erase mark */ | 
|  | 523 | h1.EraseMark = cpu_to_le16(ERASE_MARK); | 
|  | 524 | h1.EraseMark1 = cpu_to_le16(ERASE_MARK); | 
|  | 525 | h1.WearInfo = cpu_to_le32(0); | 
|  | 526 | if (nftl_write_oob(mtd, | 
|  | 527 | block * nftl->EraseSize + SECTORSIZE + 8, 8, | 
|  | 528 | &retlen, (char *)&h1) < 0) | 
|  | 529 | return -1; | 
|  | 530 | } else { | 
|  | 531 | #if 0 | 
|  | 532 | /* if erase mark present, need to skip it when doing check */ | 
|  | 533 | for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { | 
|  | 534 | /* check free sector */ | 
|  | 535 | if (check_free_sectors (nftl, block * nftl->EraseSize + i, | 
|  | 536 | SECTORSIZE, 0) != 0) | 
|  | 537 | return -1; | 
|  | 538 |  | 
|  | 539 | if (nftl_read_oob(mtd, block * nftl->EraseSize + i, | 
|  | 540 | 16, &retlen, buf) < 0) | 
|  | 541 | return -1; | 
|  | 542 | if (i == SECTORSIZE) { | 
|  | 543 | /* skip erase mark */ | 
|  | 544 | if (memcmpb(buf, 0xff, 8)) | 
|  | 545 | return -1; | 
|  | 546 | } else { | 
|  | 547 | if (memcmpb(buf, 0xff, 16)) | 
|  | 548 | return -1; | 
|  | 549 | } | 
|  | 550 | } | 
|  | 551 | #endif | 
|  | 552 | } | 
|  | 553 |  | 
|  | 554 | return 0; | 
|  | 555 | } | 
|  | 556 |  | 
|  | 557 | /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS | 
|  | 558 | *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 | 
|  | 559 | *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted | 
|  | 560 | *	for some reason. A clean up/check of the VUC is necessary in this case. | 
|  | 561 | * | 
|  | 562 | * WARNING: return 0 if read error | 
|  | 563 | */ | 
|  | 564 | static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) | 
|  | 565 | { | 
|  | 566 | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | 567 | struct nftl_uci2 uci; | 
|  | 568 | size_t retlen; | 
|  | 569 |  | 
|  | 570 | if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, | 
|  | 571 | 8, &retlen, (char *)&uci) < 0) | 
|  | 572 | return 0; | 
|  | 573 |  | 
|  | 574 | return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); | 
|  | 575 | } | 
|  | 576 |  | 
|  | 577 | int NFTL_mount(struct NFTLrecord *s) | 
|  | 578 | { | 
|  | 579 | int i; | 
|  | 580 | unsigned int first_logical_block, logical_block, rep_block, erase_mark; | 
|  | 581 | unsigned int block, first_block, is_first_block; | 
|  | 582 | int chain_length, do_format_chain; | 
|  | 583 | struct nftl_uci0 h0; | 
|  | 584 | struct nftl_uci1 h1; | 
|  | 585 | struct mtd_info *mtd = s->mbd.mtd; | 
|  | 586 | size_t retlen; | 
|  | 587 |  | 
|  | 588 | /* search for NFTL MediaHeader and Spare NFTL Media Header */ | 
|  | 589 | if (find_boot_record(s) < 0) { | 
|  | 590 | printk("Could not find valid boot record\n"); | 
|  | 591 | return -1; | 
|  | 592 | } | 
|  | 593 |  | 
|  | 594 | /* init the logical to physical table */ | 
|  | 595 | for (i = 0; i < s->nb_blocks; i++) { | 
|  | 596 | s->EUNtable[i] = BLOCK_NIL; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | /* first pass : explore each block chain */ | 
|  | 600 | first_logical_block = 0; | 
|  | 601 | for (first_block = 0; first_block < s->nb_blocks; first_block++) { | 
|  | 602 | /* if the block was not already explored, we can look at it */ | 
|  | 603 | if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { | 
|  | 604 | block = first_block; | 
|  | 605 | chain_length = 0; | 
|  | 606 | do_format_chain = 0; | 
|  | 607 |  | 
|  | 608 | for (;;) { | 
|  | 609 | /* read the block header. If error, we format the chain */ | 
|  | 610 | if (nftl_read_oob(mtd, | 
|  | 611 | block * s->EraseSize + 8, 8, | 
|  | 612 | &retlen, (char *)&h0) < 0 || | 
|  | 613 | nftl_read_oob(mtd, | 
|  | 614 | block * s->EraseSize + | 
|  | 615 | SECTORSIZE + 8, 8, | 
|  | 616 | &retlen, (char *)&h1) < 0) { | 
|  | 617 | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | 618 | do_format_chain = 1; | 
|  | 619 | break; | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); | 
|  | 623 | rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); | 
|  | 624 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | 
|  | 625 |  | 
|  | 626 | is_first_block = !(logical_block >> 15); | 
|  | 627 | logical_block = logical_block & 0x7fff; | 
|  | 628 |  | 
|  | 629 | /* invalid/free block test */ | 
|  | 630 | if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { | 
|  | 631 | if (chain_length == 0) { | 
|  | 632 | /* if not currently in a chain, we can handle it safely */ | 
|  | 633 | if (check_and_mark_free_block(s, block) < 0) { | 
|  | 634 | /* not really free: format it */ | 
|  | 635 | printk("Formatting block %d\n", block); | 
|  | 636 | if (NFTL_formatblock(s, block) < 0) { | 
|  | 637 | /* could not format: reserve the block */ | 
|  | 638 | s->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | 639 | } else { | 
|  | 640 | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | 641 | } | 
|  | 642 | } else { | 
|  | 643 | /* free block: mark it */ | 
|  | 644 | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | 645 | } | 
|  | 646 | /* directly examine the next block. */ | 
|  | 647 | goto examine_ReplUnitTable; | 
|  | 648 | } else { | 
|  | 649 | /* the block was in a chain : this is bad. We | 
|  | 650 | must format all the chain */ | 
|  | 651 | printk("Block %d: free but referenced in chain %d\n", | 
|  | 652 | block, first_block); | 
|  | 653 | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | 654 | do_format_chain = 1; | 
|  | 655 | break; | 
|  | 656 | } | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | /* we accept only first blocks here */ | 
|  | 660 | if (chain_length == 0) { | 
|  | 661 | /* this block is not the first block in chain : | 
|  | 662 | ignore it, it will be included in a chain | 
|  | 663 | later, or marked as not explored */ | 
|  | 664 | if (!is_first_block) | 
|  | 665 | goto examine_ReplUnitTable; | 
|  | 666 | first_logical_block = logical_block; | 
|  | 667 | } else { | 
|  | 668 | if (logical_block != first_logical_block) { | 
|  | 669 | printk("Block %d: incorrect logical block: %d expected: %d\n", | 
|  | 670 | block, logical_block, first_logical_block); | 
|  | 671 | /* the chain is incorrect : we must format it, | 
|  | 672 | but we need to read it completely */ | 
|  | 673 | do_format_chain = 1; | 
|  | 674 | } | 
|  | 675 | if (is_first_block) { | 
|  | 676 | /* we accept that a block is marked as first | 
|  | 677 | block while being last block in a chain | 
|  | 678 | only if the chain is being folded */ | 
|  | 679 | if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || | 
|  | 680 | rep_block != 0xffff) { | 
|  | 681 | printk("Block %d: incorrectly marked as first block in chain\n", | 
|  | 682 | block); | 
|  | 683 | /* the chain is incorrect : we must format it, | 
|  | 684 | but we need to read it completely */ | 
|  | 685 | do_format_chain = 1; | 
|  | 686 | } else { | 
|  | 687 | printk("Block %d: folding in progress - ignoring first block flag\n", | 
|  | 688 | block); | 
|  | 689 | } | 
|  | 690 | } | 
|  | 691 | } | 
|  | 692 | chain_length++; | 
|  | 693 | if (rep_block == 0xffff) { | 
|  | 694 | /* no more blocks after */ | 
|  | 695 | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | 696 | break; | 
|  | 697 | } else if (rep_block >= s->nb_blocks) { | 
|  | 698 | printk("Block %d: referencing invalid block %d\n", | 
|  | 699 | block, rep_block); | 
|  | 700 | do_format_chain = 1; | 
|  | 701 | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | 702 | break; | 
|  | 703 | } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { | 
|  | 704 | /* same problem as previous 'is_first_block' test: | 
|  | 705 | we accept that the last block of a chain has | 
|  | 706 | the first_block flag set if folding is in | 
|  | 707 | progress. We handle here the case where the | 
|  | 708 | last block appeared first */ | 
|  | 709 | if (s->ReplUnitTable[rep_block] == BLOCK_NIL && | 
|  | 710 | s->EUNtable[first_logical_block] == rep_block && | 
|  | 711 | get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { | 
|  | 712 | /* EUNtable[] will be set after */ | 
|  | 713 | printk("Block %d: folding in progress - ignoring first block flag\n", | 
|  | 714 | rep_block); | 
|  | 715 | s->ReplUnitTable[block] = rep_block; | 
|  | 716 | s->EUNtable[first_logical_block] = BLOCK_NIL; | 
|  | 717 | } else { | 
|  | 718 | printk("Block %d: referencing block %d already in another chain\n", | 
|  | 719 | block, rep_block); | 
|  | 720 | /* XXX: should handle correctly fold in progress chains */ | 
|  | 721 | do_format_chain = 1; | 
|  | 722 | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | 723 | } | 
|  | 724 | break; | 
|  | 725 | } else { | 
|  | 726 | /* this is OK */ | 
|  | 727 | s->ReplUnitTable[block] = rep_block; | 
|  | 728 | block = rep_block; | 
|  | 729 | } | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | /* the chain was completely explored. Now we can decide | 
|  | 733 | what to do with it */ | 
|  | 734 | if (do_format_chain) { | 
|  | 735 | /* invalid chain : format it */ | 
|  | 736 | format_chain(s, first_block); | 
|  | 737 | } else { | 
|  | 738 | unsigned int first_block1, chain_to_format, chain_length1; | 
|  | 739 | int fold_mark; | 
|  | 740 |  | 
|  | 741 | /* valid chain : get foldmark */ | 
|  | 742 | fold_mark = get_fold_mark(s, first_block); | 
|  | 743 | if (fold_mark == 0) { | 
|  | 744 | /* cannot get foldmark : format the chain */ | 
|  | 745 | printk("Could read foldmark at block %d\n", first_block); | 
|  | 746 | format_chain(s, first_block); | 
|  | 747 | } else { | 
|  | 748 | if (fold_mark == FOLD_MARK_IN_PROGRESS) | 
|  | 749 | check_sectors_in_chain(s, first_block); | 
|  | 750 |  | 
|  | 751 | /* now handle the case where we find two chains at the | 
|  | 752 | same virtual address : we select the longer one, | 
|  | 753 | because the shorter one is the one which was being | 
|  | 754 | folded if the folding was not done in place */ | 
|  | 755 | first_block1 = s->EUNtable[first_logical_block]; | 
|  | 756 | if (first_block1 != BLOCK_NIL) { | 
|  | 757 | /* XXX: what to do if same length ? */ | 
|  | 758 | chain_length1 = calc_chain_length(s, first_block1); | 
|  | 759 | printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", | 
|  | 760 | first_block1, chain_length1, first_block, chain_length); | 
|  | 761 |  | 
|  | 762 | if (chain_length >= chain_length1) { | 
|  | 763 | chain_to_format = first_block1; | 
|  | 764 | s->EUNtable[first_logical_block] = first_block; | 
|  | 765 | } else { | 
|  | 766 | chain_to_format = first_block; | 
|  | 767 | } | 
|  | 768 | format_chain(s, chain_to_format); | 
|  | 769 | } else { | 
|  | 770 | s->EUNtable[first_logical_block] = first_block; | 
|  | 771 | } | 
|  | 772 | } | 
|  | 773 | } | 
|  | 774 | } | 
|  | 775 | examine_ReplUnitTable:; | 
|  | 776 | } | 
|  | 777 |  | 
|  | 778 | /* second pass to format unreferenced blocks  and init free block count */ | 
|  | 779 | s->numfreeEUNs = 0; | 
|  | 780 | s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); | 
|  | 781 |  | 
|  | 782 | for (block = 0; block < s->nb_blocks; block++) { | 
|  | 783 | if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { | 
|  | 784 | printk("Unreferenced block %d, formatting it\n", block); | 
|  | 785 | if (NFTL_formatblock(s, block) < 0) | 
|  | 786 | s->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | 787 | else | 
|  | 788 | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | 789 | } | 
|  | 790 | if (s->ReplUnitTable[block] == BLOCK_FREE) { | 
|  | 791 | s->numfreeEUNs++; | 
|  | 792 | s->LastFreeEUN = block; | 
|  | 793 | } | 
|  | 794 | } | 
|  | 795 |  | 
|  | 796 | return 0; | 
|  | 797 | } |