| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | *	linux/mm/mlock.c | 
|  | 4 | * | 
|  | 5 | *  (C) Copyright 1995 Linus Torvalds | 
|  | 6 | *  (C) Copyright 2002 Christoph Hellwig | 
|  | 7 | */ | 
|  | 8 |  | 
|  | 9 | #include <linux/capability.h> | 
|  | 10 | #include <linux/mman.h> | 
|  | 11 | #include <linux/mm.h> | 
|  | 12 | #include <linux/sched/user.h> | 
|  | 13 | #include <linux/swap.h> | 
|  | 14 | #include <linux/swapops.h> | 
|  | 15 | #include <linux/pagemap.h> | 
|  | 16 | #include <linux/pagevec.h> | 
|  | 17 | #include <linux/mempolicy.h> | 
|  | 18 | #include <linux/syscalls.h> | 
|  | 19 | #include <linux/sched.h> | 
|  | 20 | #include <linux/export.h> | 
|  | 21 | #include <linux/rmap.h> | 
|  | 22 | #include <linux/mmzone.h> | 
|  | 23 | #include <linux/hugetlb.h> | 
|  | 24 | #include <linux/memcontrol.h> | 
|  | 25 | #include <linux/mm_inline.h> | 
|  | 26 |  | 
|  | 27 | #include "internal.h" | 
|  | 28 |  | 
|  | 29 | bool can_do_mlock(void) | 
|  | 30 | { | 
|  | 31 | if (rlimit(RLIMIT_MEMLOCK) != 0) | 
|  | 32 | return true; | 
|  | 33 | if (capable(CAP_IPC_LOCK)) | 
|  | 34 | return true; | 
|  | 35 | return false; | 
|  | 36 | } | 
|  | 37 | EXPORT_SYMBOL(can_do_mlock); | 
|  | 38 |  | 
|  | 39 | /* | 
|  | 40 | * Mlocked pages are marked with PageMlocked() flag for efficient testing | 
|  | 41 | * in vmscan and, possibly, the fault path; and to support semi-accurate | 
|  | 42 | * statistics. | 
|  | 43 | * | 
|  | 44 | * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will | 
|  | 45 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | 
|  | 46 | * The unevictable list is an LRU sibling list to the [in]active lists. | 
|  | 47 | * PageUnevictable is set to indicate the unevictable state. | 
|  | 48 | * | 
|  | 49 | * When lazy mlocking via vmscan, it is important to ensure that the | 
|  | 50 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | 
|  | 51 | * may have mlocked a page that is being munlocked. So lazy mlock must take | 
|  | 52 | * the mmap_sem for read, and verify that the vma really is locked | 
|  | 53 | * (see mm/rmap.c). | 
|  | 54 | */ | 
|  | 55 |  | 
|  | 56 | /* | 
|  | 57 | *  LRU accounting for clear_page_mlock() | 
|  | 58 | */ | 
|  | 59 | void clear_page_mlock(struct page *page) | 
|  | 60 | { | 
|  | 61 | if (!TestClearPageMlocked(page)) | 
|  | 62 | return; | 
|  | 63 |  | 
|  | 64 | mod_zone_page_state(page_zone(page), NR_MLOCK, | 
|  | 65 | -hpage_nr_pages(page)); | 
|  | 66 | count_vm_event(UNEVICTABLE_PGCLEARED); | 
|  | 67 | /* | 
|  | 68 | * The previous TestClearPageMlocked() corresponds to the smp_mb() | 
|  | 69 | * in __pagevec_lru_add_fn(). | 
|  | 70 | * | 
|  | 71 | * See __pagevec_lru_add_fn for more explanation. | 
|  | 72 | */ | 
|  | 73 | if (!isolate_lru_page(page)) { | 
|  | 74 | putback_lru_page(page); | 
|  | 75 | } else { | 
|  | 76 | /* | 
|  | 77 | * We lost the race. the page already moved to evictable list. | 
|  | 78 | */ | 
|  | 79 | if (PageUnevictable(page)) | 
|  | 80 | count_vm_event(UNEVICTABLE_PGSTRANDED); | 
|  | 81 | } | 
|  | 82 | } | 
|  | 83 |  | 
|  | 84 | /* | 
|  | 85 | * Mark page as mlocked if not already. | 
|  | 86 | * If page on LRU, isolate and putback to move to unevictable list. | 
|  | 87 | */ | 
|  | 88 | void mlock_vma_page(struct page *page) | 
|  | 89 | { | 
|  | 90 | /* Serialize with page migration */ | 
|  | 91 | BUG_ON(!PageLocked(page)); | 
|  | 92 |  | 
|  | 93 | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | 94 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | 
|  | 95 |  | 
|  | 96 | if (!TestSetPageMlocked(page)) { | 
|  | 97 | mod_zone_page_state(page_zone(page), NR_MLOCK, | 
|  | 98 | hpage_nr_pages(page)); | 
|  | 99 | count_vm_event(UNEVICTABLE_PGMLOCKED); | 
|  | 100 | if (!isolate_lru_page(page)) | 
|  | 101 | putback_lru_page(page); | 
|  | 102 | } | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * Isolate a page from LRU with optional get_page() pin. | 
|  | 107 | * Assumes lru_lock already held and page already pinned. | 
|  | 108 | */ | 
|  | 109 | static bool __munlock_isolate_lru_page(struct page *page, bool getpage) | 
|  | 110 | { | 
|  | 111 | if (PageLRU(page)) { | 
|  | 112 | struct lruvec *lruvec; | 
|  | 113 |  | 
|  | 114 | lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); | 
|  | 115 | if (getpage) | 
|  | 116 | get_page(page); | 
|  | 117 | ClearPageLRU(page); | 
|  | 118 | del_page_from_lru_list(page, lruvec, page_lru(page)); | 
|  | 119 | return true; | 
|  | 120 | } | 
|  | 121 |  | 
|  | 122 | return false; | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | /* | 
|  | 126 | * Finish munlock after successful page isolation | 
|  | 127 | * | 
|  | 128 | * Page must be locked. This is a wrapper for try_to_munlock() | 
|  | 129 | * and putback_lru_page() with munlock accounting. | 
|  | 130 | */ | 
|  | 131 | static void __munlock_isolated_page(struct page *page) | 
|  | 132 | { | 
|  | 133 | /* | 
|  | 134 | * Optimization: if the page was mapped just once, that's our mapping | 
|  | 135 | * and we don't need to check all the other vmas. | 
|  | 136 | */ | 
|  | 137 | if (page_mapcount(page) > 1) | 
|  | 138 | try_to_munlock(page); | 
|  | 139 |  | 
|  | 140 | /* Did try_to_unlock() succeed or punt? */ | 
|  | 141 | if (!PageMlocked(page)) | 
|  | 142 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | 
|  | 143 |  | 
|  | 144 | putback_lru_page(page); | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | /* | 
|  | 148 | * Accounting for page isolation fail during munlock | 
|  | 149 | * | 
|  | 150 | * Performs accounting when page isolation fails in munlock. There is nothing | 
|  | 151 | * else to do because it means some other task has already removed the page | 
|  | 152 | * from the LRU. putback_lru_page() will take care of removing the page from | 
|  | 153 | * the unevictable list, if necessary. vmscan [page_referenced()] will move | 
|  | 154 | * the page back to the unevictable list if some other vma has it mlocked. | 
|  | 155 | */ | 
|  | 156 | static void __munlock_isolation_failed(struct page *page) | 
|  | 157 | { | 
|  | 158 | if (PageUnevictable(page)) | 
|  | 159 | __count_vm_event(UNEVICTABLE_PGSTRANDED); | 
|  | 160 | else | 
|  | 161 | __count_vm_event(UNEVICTABLE_PGMUNLOCKED); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | /** | 
|  | 165 | * munlock_vma_page - munlock a vma page | 
|  | 166 | * @page: page to be unlocked, either a normal page or THP page head | 
|  | 167 | * | 
|  | 168 | * returns the size of the page as a page mask (0 for normal page, | 
|  | 169 | *         HPAGE_PMD_NR - 1 for THP head page) | 
|  | 170 | * | 
|  | 171 | * called from munlock()/munmap() path with page supposedly on the LRU. | 
|  | 172 | * When we munlock a page, because the vma where we found the page is being | 
|  | 173 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the | 
|  | 174 | * page locked so that we can leave it on the unevictable lru list and not | 
|  | 175 | * bother vmscan with it.  However, to walk the page's rmap list in | 
|  | 176 | * try_to_munlock() we must isolate the page from the LRU.  If some other | 
|  | 177 | * task has removed the page from the LRU, we won't be able to do that. | 
|  | 178 | * So we clear the PageMlocked as we might not get another chance.  If we | 
|  | 179 | * can't isolate the page, we leave it for putback_lru_page() and vmscan | 
|  | 180 | * [page_referenced()/try_to_unmap()] to deal with. | 
|  | 181 | */ | 
|  | 182 | unsigned int munlock_vma_page(struct page *page) | 
|  | 183 | { | 
|  | 184 | int nr_pages; | 
|  | 185 | struct zone *zone = page_zone(page); | 
|  | 186 |  | 
|  | 187 | /* For try_to_munlock() and to serialize with page migration */ | 
|  | 188 | BUG_ON(!PageLocked(page)); | 
|  | 189 |  | 
|  | 190 | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | 191 |  | 
|  | 192 | /* | 
|  | 193 | * Serialize with any parallel __split_huge_page_refcount() which | 
|  | 194 | * might otherwise copy PageMlocked to part of the tail pages before | 
|  | 195 | * we clear it in the head page. It also stabilizes hpage_nr_pages(). | 
|  | 196 | */ | 
|  | 197 | spin_lock_irq(zone_lru_lock(zone)); | 
|  | 198 |  | 
|  | 199 | if (!TestClearPageMlocked(page)) { | 
|  | 200 | /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ | 
|  | 201 | nr_pages = 1; | 
|  | 202 | goto unlock_out; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | nr_pages = hpage_nr_pages(page); | 
|  | 206 | __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); | 
|  | 207 |  | 
|  | 208 | if (__munlock_isolate_lru_page(page, true)) { | 
|  | 209 | spin_unlock_irq(zone_lru_lock(zone)); | 
|  | 210 | __munlock_isolated_page(page); | 
|  | 211 | goto out; | 
|  | 212 | } | 
|  | 213 | __munlock_isolation_failed(page); | 
|  | 214 |  | 
|  | 215 | unlock_out: | 
|  | 216 | spin_unlock_irq(zone_lru_lock(zone)); | 
|  | 217 |  | 
|  | 218 | out: | 
|  | 219 | return nr_pages - 1; | 
|  | 220 | } | 
|  | 221 |  | 
|  | 222 | /* | 
|  | 223 | * convert get_user_pages() return value to posix mlock() error | 
|  | 224 | */ | 
|  | 225 | static int __mlock_posix_error_return(long retval) | 
|  | 226 | { | 
|  | 227 | if (retval == -EFAULT) | 
|  | 228 | retval = -ENOMEM; | 
|  | 229 | else if (retval == -ENOMEM) | 
|  | 230 | retval = -EAGAIN; | 
|  | 231 | return retval; | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | /* | 
|  | 235 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() | 
|  | 236 | * | 
|  | 237 | * The fast path is available only for evictable pages with single mapping. | 
|  | 238 | * Then we can bypass the per-cpu pvec and get better performance. | 
|  | 239 | * when mapcount > 1 we need try_to_munlock() which can fail. | 
|  | 240 | * when !page_evictable(), we need the full redo logic of putback_lru_page to | 
|  | 241 | * avoid leaving evictable page in unevictable list. | 
|  | 242 | * | 
|  | 243 | * In case of success, @page is added to @pvec and @pgrescued is incremented | 
|  | 244 | * in case that the page was previously unevictable. @page is also unlocked. | 
|  | 245 | */ | 
|  | 246 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, | 
|  | 247 | int *pgrescued) | 
|  | 248 | { | 
|  | 249 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 250 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 251 |  | 
|  | 252 | if (page_mapcount(page) <= 1 && page_evictable(page)) { | 
|  | 253 | pagevec_add(pvec, page); | 
|  | 254 | if (TestClearPageUnevictable(page)) | 
|  | 255 | (*pgrescued)++; | 
|  | 256 | unlock_page(page); | 
|  | 257 | return true; | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | return false; | 
|  | 261 | } | 
|  | 262 |  | 
|  | 263 | /* | 
|  | 264 | * Putback multiple evictable pages to the LRU | 
|  | 265 | * | 
|  | 266 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of | 
|  | 267 | * the pages might have meanwhile become unevictable but that is OK. | 
|  | 268 | */ | 
|  | 269 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) | 
|  | 270 | { | 
|  | 271 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); | 
|  | 272 | /* | 
|  | 273 | *__pagevec_lru_add() calls release_pages() so we don't call | 
|  | 274 | * put_page() explicitly | 
|  | 275 | */ | 
|  | 276 | __pagevec_lru_add(pvec); | 
|  | 277 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | /* | 
|  | 281 | * Munlock a batch of pages from the same zone | 
|  | 282 | * | 
|  | 283 | * The work is split to two main phases. First phase clears the Mlocked flag | 
|  | 284 | * and attempts to isolate the pages, all under a single zone lru lock. | 
|  | 285 | * The second phase finishes the munlock only for pages where isolation | 
|  | 286 | * succeeded. | 
|  | 287 | * | 
|  | 288 | * Note that the pagevec may be modified during the process. | 
|  | 289 | */ | 
|  | 290 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) | 
|  | 291 | { | 
|  | 292 | int i; | 
|  | 293 | int nr = pagevec_count(pvec); | 
|  | 294 | int delta_munlocked = -nr; | 
|  | 295 | struct pagevec pvec_putback; | 
|  | 296 | int pgrescued = 0; | 
|  | 297 |  | 
|  | 298 | pagevec_init(&pvec_putback); | 
|  | 299 |  | 
|  | 300 | /* Phase 1: page isolation */ | 
|  | 301 | spin_lock_irq(zone_lru_lock(zone)); | 
|  | 302 | for (i = 0; i < nr; i++) { | 
|  | 303 | struct page *page = pvec->pages[i]; | 
|  | 304 |  | 
|  | 305 | if (TestClearPageMlocked(page)) { | 
|  | 306 | /* | 
|  | 307 | * We already have pin from follow_page_mask() | 
|  | 308 | * so we can spare the get_page() here. | 
|  | 309 | */ | 
|  | 310 | if (__munlock_isolate_lru_page(page, false)) | 
|  | 311 | continue; | 
|  | 312 | else | 
|  | 313 | __munlock_isolation_failed(page); | 
|  | 314 | } else { | 
|  | 315 | delta_munlocked++; | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | /* | 
|  | 319 | * We won't be munlocking this page in the next phase | 
|  | 320 | * but we still need to release the follow_page_mask() | 
|  | 321 | * pin. We cannot do it under lru_lock however. If it's | 
|  | 322 | * the last pin, __page_cache_release() would deadlock. | 
|  | 323 | */ | 
|  | 324 | pagevec_add(&pvec_putback, pvec->pages[i]); | 
|  | 325 | pvec->pages[i] = NULL; | 
|  | 326 | } | 
|  | 327 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); | 
|  | 328 | spin_unlock_irq(zone_lru_lock(zone)); | 
|  | 329 |  | 
|  | 330 | /* Now we can release pins of pages that we are not munlocking */ | 
|  | 331 | pagevec_release(&pvec_putback); | 
|  | 332 |  | 
|  | 333 | /* Phase 2: page munlock */ | 
|  | 334 | for (i = 0; i < nr; i++) { | 
|  | 335 | struct page *page = pvec->pages[i]; | 
|  | 336 |  | 
|  | 337 | if (page) { | 
|  | 338 | lock_page(page); | 
|  | 339 | if (!__putback_lru_fast_prepare(page, &pvec_putback, | 
|  | 340 | &pgrescued)) { | 
|  | 341 | /* | 
|  | 342 | * Slow path. We don't want to lose the last | 
|  | 343 | * pin before unlock_page() | 
|  | 344 | */ | 
|  | 345 | get_page(page); /* for putback_lru_page() */ | 
|  | 346 | __munlock_isolated_page(page); | 
|  | 347 | unlock_page(page); | 
|  | 348 | put_page(page); /* from follow_page_mask() */ | 
|  | 349 | } | 
|  | 350 | } | 
|  | 351 | } | 
|  | 352 |  | 
|  | 353 | /* | 
|  | 354 | * Phase 3: page putback for pages that qualified for the fast path | 
|  | 355 | * This will also call put_page() to return pin from follow_page_mask() | 
|  | 356 | */ | 
|  | 357 | if (pagevec_count(&pvec_putback)) | 
|  | 358 | __putback_lru_fast(&pvec_putback, pgrescued); | 
|  | 359 | } | 
|  | 360 |  | 
|  | 361 | /* | 
|  | 362 | * Fill up pagevec for __munlock_pagevec using pte walk | 
|  | 363 | * | 
|  | 364 | * The function expects that the struct page corresponding to @start address is | 
|  | 365 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. | 
|  | 366 | * | 
|  | 367 | * The rest of @pvec is filled by subsequent pages within the same pmd and same | 
|  | 368 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These | 
|  | 369 | * pages also get pinned. | 
|  | 370 | * | 
|  | 371 | * Returns the address of the next page that should be scanned. This equals | 
|  | 372 | * @start + PAGE_SIZE when no page could be added by the pte walk. | 
|  | 373 | */ | 
|  | 374 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, | 
|  | 375 | struct vm_area_struct *vma, struct zone *zone, | 
|  | 376 | unsigned long start, unsigned long end) | 
|  | 377 | { | 
|  | 378 | pte_t *pte; | 
|  | 379 | spinlock_t *ptl; | 
|  | 380 |  | 
|  | 381 | /* | 
|  | 382 | * Initialize pte walk starting at the already pinned page where we | 
|  | 383 | * are sure that there is a pte, as it was pinned under the same | 
|  | 384 | * mmap_sem write op. | 
|  | 385 | */ | 
|  | 386 | pte = get_locked_pte(vma->vm_mm, start,	&ptl); | 
|  | 387 | /* Make sure we do not cross the page table boundary */ | 
|  | 388 | end = pgd_addr_end(start, end); | 
|  | 389 | end = p4d_addr_end(start, end); | 
|  | 390 | end = pud_addr_end(start, end); | 
|  | 391 | end = pmd_addr_end(start, end); | 
|  | 392 |  | 
|  | 393 | /* The page next to the pinned page is the first we will try to get */ | 
|  | 394 | start += PAGE_SIZE; | 
|  | 395 | while (start < end) { | 
|  | 396 | struct page *page = NULL; | 
|  | 397 | pte++; | 
|  | 398 | if (pte_present(*pte)) | 
|  | 399 | page = vm_normal_page(vma, start, *pte); | 
|  | 400 | /* | 
|  | 401 | * Break if page could not be obtained or the page's node+zone does not | 
|  | 402 | * match | 
|  | 403 | */ | 
|  | 404 | if (!page || page_zone(page) != zone) | 
|  | 405 | break; | 
|  | 406 |  | 
|  | 407 | /* | 
|  | 408 | * Do not use pagevec for PTE-mapped THP, | 
|  | 409 | * munlock_vma_pages_range() will handle them. | 
|  | 410 | */ | 
|  | 411 | if (PageTransCompound(page)) | 
|  | 412 | break; | 
|  | 413 |  | 
|  | 414 | get_page(page); | 
|  | 415 | /* | 
|  | 416 | * Increase the address that will be returned *before* the | 
|  | 417 | * eventual break due to pvec becoming full by adding the page | 
|  | 418 | */ | 
|  | 419 | start += PAGE_SIZE; | 
|  | 420 | if (pagevec_add(pvec, page) == 0) | 
|  | 421 | break; | 
|  | 422 | } | 
|  | 423 | pte_unmap_unlock(pte, ptl); | 
|  | 424 | return start; | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | /* | 
|  | 428 | * munlock_vma_pages_range() - munlock all pages in the vma range.' | 
|  | 429 | * @vma - vma containing range to be munlock()ed. | 
|  | 430 | * @start - start address in @vma of the range | 
|  | 431 | * @end - end of range in @vma. | 
|  | 432 | * | 
|  | 433 | *  For mremap(), munmap() and exit(). | 
|  | 434 | * | 
|  | 435 | * Called with @vma VM_LOCKED. | 
|  | 436 | * | 
|  | 437 | * Returns with VM_LOCKED cleared.  Callers must be prepared to | 
|  | 438 | * deal with this. | 
|  | 439 | * | 
|  | 440 | * We don't save and restore VM_LOCKED here because pages are | 
|  | 441 | * still on lru.  In unmap path, pages might be scanned by reclaim | 
|  | 442 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and | 
|  | 443 | * free them.  This will result in freeing mlocked pages. | 
|  | 444 | */ | 
|  | 445 | void munlock_vma_pages_range(struct vm_area_struct *vma, | 
|  | 446 | unsigned long start, unsigned long end) | 
|  | 447 | { | 
|  | 448 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; | 
|  | 449 |  | 
|  | 450 | while (start < end) { | 
|  | 451 | struct page *page; | 
|  | 452 | unsigned int page_mask = 0; | 
|  | 453 | unsigned long page_increm; | 
|  | 454 | struct pagevec pvec; | 
|  | 455 | struct zone *zone; | 
|  | 456 |  | 
|  | 457 | pagevec_init(&pvec); | 
|  | 458 | /* | 
|  | 459 | * Although FOLL_DUMP is intended for get_dump_page(), | 
|  | 460 | * it just so happens that its special treatment of the | 
|  | 461 | * ZERO_PAGE (returning an error instead of doing get_page) | 
|  | 462 | * suits munlock very well (and if somehow an abnormal page | 
|  | 463 | * has sneaked into the range, we won't oops here: great). | 
|  | 464 | */ | 
|  | 465 | page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); | 
|  | 466 |  | 
|  | 467 | if (page && !IS_ERR(page)) { | 
|  | 468 | if (PageTransTail(page)) { | 
|  | 469 | VM_BUG_ON_PAGE(PageMlocked(page), page); | 
|  | 470 | put_page(page); /* follow_page_mask() */ | 
|  | 471 | } else if (PageTransHuge(page)) { | 
|  | 472 | lock_page(page); | 
|  | 473 | /* | 
|  | 474 | * Any THP page found by follow_page_mask() may | 
|  | 475 | * have gotten split before reaching | 
|  | 476 | * munlock_vma_page(), so we need to compute | 
|  | 477 | * the page_mask here instead. | 
|  | 478 | */ | 
|  | 479 | page_mask = munlock_vma_page(page); | 
|  | 480 | unlock_page(page); | 
|  | 481 | put_page(page); /* follow_page_mask() */ | 
|  | 482 | } else { | 
|  | 483 | /* | 
|  | 484 | * Non-huge pages are handled in batches via | 
|  | 485 | * pagevec. The pin from follow_page_mask() | 
|  | 486 | * prevents them from collapsing by THP. | 
|  | 487 | */ | 
|  | 488 | pagevec_add(&pvec, page); | 
|  | 489 | zone = page_zone(page); | 
|  | 490 |  | 
|  | 491 | /* | 
|  | 492 | * Try to fill the rest of pagevec using fast | 
|  | 493 | * pte walk. This will also update start to | 
|  | 494 | * the next page to process. Then munlock the | 
|  | 495 | * pagevec. | 
|  | 496 | */ | 
|  | 497 | start = __munlock_pagevec_fill(&pvec, vma, | 
|  | 498 | zone, start, end); | 
|  | 499 | __munlock_pagevec(&pvec, zone); | 
|  | 500 | goto next; | 
|  | 501 | } | 
|  | 502 | } | 
|  | 503 | page_increm = 1 + page_mask; | 
|  | 504 | start += page_increm * PAGE_SIZE; | 
|  | 505 | next: | 
|  | 506 | cond_resched(); | 
|  | 507 | } | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | /* | 
|  | 511 | * mlock_fixup  - handle mlock[all]/munlock[all] requests. | 
|  | 512 | * | 
|  | 513 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | 
|  | 514 | * munlock is a no-op.  However, for some special vmas, we go ahead and | 
|  | 515 | * populate the ptes. | 
|  | 516 | * | 
|  | 517 | * For vmas that pass the filters, merge/split as appropriate. | 
|  | 518 | */ | 
|  | 519 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, | 
|  | 520 | unsigned long start, unsigned long end, vm_flags_t newflags) | 
|  | 521 | { | 
|  | 522 | struct mm_struct *mm = vma->vm_mm; | 
|  | 523 | pgoff_t pgoff; | 
|  | 524 | int nr_pages; | 
|  | 525 | int ret = 0; | 
|  | 526 | int lock = !!(newflags & VM_LOCKED); | 
|  | 527 | vm_flags_t old_flags = vma->vm_flags; | 
|  | 528 |  | 
|  | 529 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || | 
|  | 530 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || | 
|  | 531 | vma_is_dax(vma)) | 
|  | 532 | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ | 
|  | 533 | goto out; | 
|  | 534 |  | 
|  | 535 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); | 
|  | 536 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, | 
|  | 537 | vma->vm_file, pgoff, vma_policy(vma), | 
|  | 538 | vma->vm_userfaultfd_ctx, vma_get_anon_name(vma)); | 
|  | 539 | if (*prev) { | 
|  | 540 | vma = *prev; | 
|  | 541 | goto success; | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | if (start != vma->vm_start) { | 
|  | 545 | ret = split_vma(mm, vma, start, 1); | 
|  | 546 | if (ret) | 
|  | 547 | goto out; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | if (end != vma->vm_end) { | 
|  | 551 | ret = split_vma(mm, vma, end, 0); | 
|  | 552 | if (ret) | 
|  | 553 | goto out; | 
|  | 554 | } | 
|  | 555 |  | 
|  | 556 | success: | 
|  | 557 | /* | 
|  | 558 | * Keep track of amount of locked VM. | 
|  | 559 | */ | 
|  | 560 | nr_pages = (end - start) >> PAGE_SHIFT; | 
|  | 561 | if (!lock) | 
|  | 562 | nr_pages = -nr_pages; | 
|  | 563 | else if (old_flags & VM_LOCKED) | 
|  | 564 | nr_pages = 0; | 
|  | 565 | mm->locked_vm += nr_pages; | 
|  | 566 |  | 
|  | 567 | /* | 
|  | 568 | * vm_flags is protected by the mmap_sem held in write mode. | 
|  | 569 | * It's okay if try_to_unmap_one unmaps a page just after we | 
|  | 570 | * set VM_LOCKED, populate_vma_page_range will bring it back. | 
|  | 571 | */ | 
|  | 572 |  | 
|  | 573 | if (lock) | 
|  | 574 | vma->vm_flags = newflags; | 
|  | 575 | else | 
|  | 576 | munlock_vma_pages_range(vma, start, end); | 
|  | 577 |  | 
|  | 578 | out: | 
|  | 579 | *prev = vma; | 
|  | 580 | return ret; | 
|  | 581 | } | 
|  | 582 |  | 
|  | 583 | static int apply_vma_lock_flags(unsigned long start, size_t len, | 
|  | 584 | vm_flags_t flags) | 
|  | 585 | { | 
|  | 586 | unsigned long nstart, end, tmp; | 
|  | 587 | struct vm_area_struct * vma, * prev; | 
|  | 588 | int error; | 
|  | 589 |  | 
|  | 590 | VM_BUG_ON(offset_in_page(start)); | 
|  | 591 | VM_BUG_ON(len != PAGE_ALIGN(len)); | 
|  | 592 | end = start + len; | 
|  | 593 | if (end < start) | 
|  | 594 | return -EINVAL; | 
|  | 595 | if (end == start) | 
|  | 596 | return 0; | 
|  | 597 | vma = find_vma(current->mm, start); | 
|  | 598 | if (!vma || vma->vm_start > start) | 
|  | 599 | return -ENOMEM; | 
|  | 600 |  | 
|  | 601 | prev = vma->vm_prev; | 
|  | 602 | if (start > vma->vm_start) | 
|  | 603 | prev = vma; | 
|  | 604 |  | 
|  | 605 | for (nstart = start ; ; ) { | 
|  | 606 | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  | 607 |  | 
|  | 608 | newflags |= flags; | 
|  | 609 |  | 
|  | 610 | /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */ | 
|  | 611 | tmp = vma->vm_end; | 
|  | 612 | if (tmp > end) | 
|  | 613 | tmp = end; | 
|  | 614 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); | 
|  | 615 | if (error) | 
|  | 616 | break; | 
|  | 617 | nstart = tmp; | 
|  | 618 | if (nstart < prev->vm_end) | 
|  | 619 | nstart = prev->vm_end; | 
|  | 620 | if (nstart >= end) | 
|  | 621 | break; | 
|  | 622 |  | 
|  | 623 | vma = prev->vm_next; | 
|  | 624 | if (!vma || vma->vm_start != nstart) { | 
|  | 625 | error = -ENOMEM; | 
|  | 626 | break; | 
|  | 627 | } | 
|  | 628 | } | 
|  | 629 | return error; | 
|  | 630 | } | 
|  | 631 |  | 
|  | 632 | /* | 
|  | 633 | * Go through vma areas and sum size of mlocked | 
|  | 634 | * vma pages, as return value. | 
|  | 635 | * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) | 
|  | 636 | * is also counted. | 
|  | 637 | * Return value: previously mlocked page counts | 
|  | 638 | */ | 
|  | 639 | static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, | 
|  | 640 | unsigned long start, size_t len) | 
|  | 641 | { | 
|  | 642 | struct vm_area_struct *vma; | 
|  | 643 | unsigned long count = 0; | 
|  | 644 |  | 
|  | 645 | if (mm == NULL) | 
|  | 646 | mm = current->mm; | 
|  | 647 |  | 
|  | 648 | vma = find_vma(mm, start); | 
|  | 649 | if (vma == NULL) | 
|  | 650 | vma = mm->mmap; | 
|  | 651 |  | 
|  | 652 | for (; vma ; vma = vma->vm_next) { | 
|  | 653 | if (start >= vma->vm_end) | 
|  | 654 | continue; | 
|  | 655 | if (start + len <=  vma->vm_start) | 
|  | 656 | break; | 
|  | 657 | if (vma->vm_flags & VM_LOCKED) { | 
|  | 658 | if (start > vma->vm_start) | 
|  | 659 | count -= (start - vma->vm_start); | 
|  | 660 | if (start + len < vma->vm_end) { | 
|  | 661 | count += start + len - vma->vm_start; | 
|  | 662 | break; | 
|  | 663 | } | 
|  | 664 | count += vma->vm_end - vma->vm_start; | 
|  | 665 | } | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | return count >> PAGE_SHIFT; | 
|  | 669 | } | 
|  | 670 |  | 
|  | 671 | static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) | 
|  | 672 | { | 
|  | 673 | unsigned long locked; | 
|  | 674 | unsigned long lock_limit; | 
|  | 675 | int error = -ENOMEM; | 
|  | 676 |  | 
|  | 677 | start = untagged_addr(start); | 
|  | 678 |  | 
|  | 679 | if (!can_do_mlock()) | 
|  | 680 | return -EPERM; | 
|  | 681 |  | 
|  | 682 | len = PAGE_ALIGN(len + (offset_in_page(start))); | 
|  | 683 | start &= PAGE_MASK; | 
|  | 684 |  | 
|  | 685 | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | 686 | lock_limit >>= PAGE_SHIFT; | 
|  | 687 | locked = len >> PAGE_SHIFT; | 
|  | 688 |  | 
|  | 689 | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | 690 | return -EINTR; | 
|  | 691 |  | 
|  | 692 | locked += current->mm->locked_vm; | 
|  | 693 | if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { | 
|  | 694 | /* | 
|  | 695 | * It is possible that the regions requested intersect with | 
|  | 696 | * previously mlocked areas, that part area in "mm->locked_vm" | 
|  | 697 | * should not be counted to new mlock increment count. So check | 
|  | 698 | * and adjust locked count if necessary. | 
|  | 699 | */ | 
|  | 700 | locked -= count_mm_mlocked_page_nr(current->mm, | 
|  | 701 | start, len); | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | /* check against resource limits */ | 
|  | 705 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) | 
|  | 706 | error = apply_vma_lock_flags(start, len, flags); | 
|  | 707 |  | 
|  | 708 | up_write(¤t->mm->mmap_sem); | 
|  | 709 | if (error) | 
|  | 710 | return error; | 
|  | 711 |  | 
|  | 712 | error = __mm_populate(start, len, 0); | 
|  | 713 | if (error) | 
|  | 714 | return __mlock_posix_error_return(error); | 
|  | 715 | return 0; | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) | 
|  | 719 | { | 
|  | 720 | return do_mlock(start, len, VM_LOCKED); | 
|  | 721 | } | 
|  | 722 |  | 
|  | 723 | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) | 
|  | 724 | { | 
|  | 725 | vm_flags_t vm_flags = VM_LOCKED; | 
|  | 726 |  | 
|  | 727 | if (flags & ~MLOCK_ONFAULT) | 
|  | 728 | return -EINVAL; | 
|  | 729 |  | 
|  | 730 | if (flags & MLOCK_ONFAULT) | 
|  | 731 | vm_flags |= VM_LOCKONFAULT; | 
|  | 732 |  | 
|  | 733 | return do_mlock(start, len, vm_flags); | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) | 
|  | 737 | { | 
|  | 738 | int ret; | 
|  | 739 |  | 
|  | 740 | start = untagged_addr(start); | 
|  | 741 |  | 
|  | 742 | len = PAGE_ALIGN(len + (offset_in_page(start))); | 
|  | 743 | start &= PAGE_MASK; | 
|  | 744 |  | 
|  | 745 | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | 746 | return -EINTR; | 
|  | 747 | ret = apply_vma_lock_flags(start, len, 0); | 
|  | 748 | up_write(¤t->mm->mmap_sem); | 
|  | 749 |  | 
|  | 750 | return ret; | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | /* | 
|  | 754 | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) | 
|  | 755 | * and translate into the appropriate modifications to mm->def_flags and/or the | 
|  | 756 | * flags for all current VMAs. | 
|  | 757 | * | 
|  | 758 | * There are a couple of subtleties with this.  If mlockall() is called multiple | 
|  | 759 | * times with different flags, the values do not necessarily stack.  If mlockall | 
|  | 760 | * is called once including the MCL_FUTURE flag and then a second time without | 
|  | 761 | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. | 
|  | 762 | */ | 
|  | 763 | static int apply_mlockall_flags(int flags) | 
|  | 764 | { | 
|  | 765 | struct vm_area_struct * vma, * prev = NULL; | 
|  | 766 | vm_flags_t to_add = 0; | 
|  | 767 |  | 
|  | 768 | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; | 
|  | 769 | if (flags & MCL_FUTURE) { | 
|  | 770 | current->mm->def_flags |= VM_LOCKED; | 
|  | 771 |  | 
|  | 772 | if (flags & MCL_ONFAULT) | 
|  | 773 | current->mm->def_flags |= VM_LOCKONFAULT; | 
|  | 774 |  | 
|  | 775 | if (!(flags & MCL_CURRENT)) | 
|  | 776 | goto out; | 
|  | 777 | } | 
|  | 778 |  | 
|  | 779 | if (flags & MCL_CURRENT) { | 
|  | 780 | to_add |= VM_LOCKED; | 
|  | 781 | if (flags & MCL_ONFAULT) | 
|  | 782 | to_add |= VM_LOCKONFAULT; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { | 
|  | 786 | vm_flags_t newflags; | 
|  | 787 |  | 
|  | 788 | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  | 789 | newflags |= to_add; | 
|  | 790 |  | 
|  | 791 | /* Ignore errors */ | 
|  | 792 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); | 
|  | 793 | cond_resched(); | 
|  | 794 | } | 
|  | 795 | out: | 
|  | 796 | return 0; | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | SYSCALL_DEFINE1(mlockall, int, flags) | 
|  | 800 | { | 
|  | 801 | unsigned long lock_limit; | 
|  | 802 | int ret; | 
|  | 803 |  | 
|  | 804 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) | 
|  | 805 | return -EINVAL; | 
|  | 806 |  | 
|  | 807 | if (!can_do_mlock()) | 
|  | 808 | return -EPERM; | 
|  | 809 |  | 
|  | 810 | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | 811 | lock_limit >>= PAGE_SHIFT; | 
|  | 812 |  | 
|  | 813 | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | 814 | return -EINTR; | 
|  | 815 |  | 
|  | 816 | ret = -ENOMEM; | 
|  | 817 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || | 
|  | 818 | capable(CAP_IPC_LOCK)) | 
|  | 819 | ret = apply_mlockall_flags(flags); | 
|  | 820 | up_write(¤t->mm->mmap_sem); | 
|  | 821 | if (!ret && (flags & MCL_CURRENT)) | 
|  | 822 | mm_populate(0, TASK_SIZE); | 
|  | 823 |  | 
|  | 824 | return ret; | 
|  | 825 | } | 
|  | 826 |  | 
|  | 827 | SYSCALL_DEFINE0(munlockall) | 
|  | 828 | { | 
|  | 829 | int ret; | 
|  | 830 |  | 
|  | 831 | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | 832 | return -EINTR; | 
|  | 833 | ret = apply_mlockall_flags(0); | 
|  | 834 | up_write(¤t->mm->mmap_sem); | 
|  | 835 | return ret; | 
|  | 836 | } | 
|  | 837 |  | 
|  | 838 | /* | 
|  | 839 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB | 
|  | 840 | * shm segments) get accounted against the user_struct instead. | 
|  | 841 | */ | 
|  | 842 | static DEFINE_SPINLOCK(shmlock_user_lock); | 
|  | 843 |  | 
|  | 844 | int user_shm_lock(size_t size, struct user_struct *user) | 
|  | 845 | { | 
|  | 846 | unsigned long lock_limit, locked; | 
|  | 847 | int allowed = 0; | 
|  | 848 |  | 
|  | 849 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | 850 | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | 851 | if (lock_limit == RLIM_INFINITY) | 
|  | 852 | allowed = 1; | 
|  | 853 | lock_limit >>= PAGE_SHIFT; | 
|  | 854 | spin_lock(&shmlock_user_lock); | 
|  | 855 | if (!allowed && | 
|  | 856 | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) | 
|  | 857 | goto out; | 
|  | 858 | get_uid(user); | 
|  | 859 | user->locked_shm += locked; | 
|  | 860 | allowed = 1; | 
|  | 861 | out: | 
|  | 862 | spin_unlock(&shmlock_user_lock); | 
|  | 863 | return allowed; | 
|  | 864 | } | 
|  | 865 |  | 
|  | 866 | void user_shm_unlock(size_t size, struct user_struct *user) | 
|  | 867 | { | 
|  | 868 | spin_lock(&shmlock_user_lock); | 
|  | 869 | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | 870 | spin_unlock(&shmlock_user_lock); | 
|  | 871 | free_uid(user); | 
|  | 872 | } |