| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | *  linux/mm/vmscan.c | 
|  | 4 | * | 
|  | 5 | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | 6 | * | 
|  | 7 | *  Swap reorganised 29.12.95, Stephen Tweedie. | 
|  | 8 | *  kswapd added: 7.1.96  sct | 
|  | 9 | *  Removed kswapd_ctl limits, and swap out as many pages as needed | 
|  | 10 | *  to bring the system back to freepages.high: 2.4.97, Rik van Riel. | 
|  | 11 | *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | 
|  | 12 | *  Multiqueue VM started 5.8.00, Rik van Riel. | 
|  | 13 | */ | 
|  | 14 |  | 
|  | 15 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 16 |  | 
|  | 17 | #include <linux/mm.h> | 
|  | 18 | #include <linux/sched/mm.h> | 
|  | 19 | #include <linux/module.h> | 
|  | 20 | #include <linux/gfp.h> | 
|  | 21 | #include <linux/kernel_stat.h> | 
|  | 22 | #include <linux/swap.h> | 
|  | 23 | #include <linux/pagemap.h> | 
|  | 24 | #include <linux/init.h> | 
|  | 25 | #include <linux/highmem.h> | 
|  | 26 | #include <linux/vmpressure.h> | 
|  | 27 | #include <linux/vmstat.h> | 
|  | 28 | #include <linux/file.h> | 
|  | 29 | #include <linux/writeback.h> | 
|  | 30 | #include <linux/blkdev.h> | 
|  | 31 | #include <linux/buffer_head.h>	/* for try_to_release_page(), | 
|  | 32 | buffer_heads_over_limit */ | 
|  | 33 | #include <linux/mm_inline.h> | 
|  | 34 | #include <linux/backing-dev.h> | 
|  | 35 | #include <linux/rmap.h> | 
|  | 36 | #include <linux/topology.h> | 
|  | 37 | #include <linux/cpu.h> | 
|  | 38 | #include <linux/cpuset.h> | 
|  | 39 | #include <linux/compaction.h> | 
|  | 40 | #include <linux/notifier.h> | 
|  | 41 | #include <linux/rwsem.h> | 
|  | 42 | #include <linux/delay.h> | 
|  | 43 | #include <linux/kthread.h> | 
|  | 44 | #include <linux/freezer.h> | 
|  | 45 | #include <linux/memcontrol.h> | 
|  | 46 | #include <linux/delayacct.h> | 
|  | 47 | #include <linux/sysctl.h> | 
|  | 48 | #include <linux/oom.h> | 
|  | 49 | #include <linux/prefetch.h> | 
|  | 50 | #include <linux/printk.h> | 
|  | 51 | #include <linux/dax.h> | 
|  | 52 | #include <linux/psi.h> | 
|  | 53 |  | 
|  | 54 | #include <asm/tlbflush.h> | 
|  | 55 | #include <asm/div64.h> | 
|  | 56 |  | 
|  | 57 | #include <linux/swapops.h> | 
|  | 58 | #include <linux/balloon_compaction.h> | 
|  | 59 |  | 
|  | 60 | #include "internal.h" | 
|  | 61 |  | 
|  | 62 | #define CREATE_TRACE_POINTS | 
|  | 63 | #include <trace/events/vmscan.h> | 
|  | 64 |  | 
|  | 65 | struct scan_control { | 
|  | 66 | /* How many pages shrink_list() should reclaim */ | 
|  | 67 | unsigned long nr_to_reclaim; | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | 
|  | 71 | * are scanned. | 
|  | 72 | */ | 
|  | 73 | nodemask_t	*nodemask; | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * The memory cgroup that hit its limit and as a result is the | 
|  | 77 | * primary target of this reclaim invocation. | 
|  | 78 | */ | 
|  | 79 | struct mem_cgroup *target_mem_cgroup; | 
|  | 80 |  | 
|  | 81 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ | 
|  | 82 | unsigned int may_writepage:1; | 
|  | 83 |  | 
|  | 84 | /* Can mapped pages be reclaimed? */ | 
|  | 85 | unsigned int may_unmap:1; | 
|  | 86 |  | 
|  | 87 | /* Can pages be swapped as part of reclaim? */ | 
|  | 88 | unsigned int may_swap:1; | 
|  | 89 |  | 
|  | 90 | /* | 
|  | 91 | * Cgroups are not reclaimed below their configured memory.low, | 
|  | 92 | * unless we threaten to OOM. If any cgroups are skipped due to | 
|  | 93 | * memory.low and nothing was reclaimed, go back for memory.low. | 
|  | 94 | */ | 
|  | 95 | unsigned int memcg_low_reclaim:1; | 
|  | 96 | unsigned int memcg_low_skipped:1; | 
|  | 97 |  | 
|  | 98 | unsigned int hibernation_mode:1; | 
|  | 99 |  | 
|  | 100 | /* One of the zones is ready for compaction */ | 
|  | 101 | unsigned int compaction_ready:1; | 
|  | 102 |  | 
|  | 103 | /* Allocation order */ | 
|  | 104 | s8 order; | 
|  | 105 |  | 
|  | 106 | /* Scan (total_size >> priority) pages at once */ | 
|  | 107 | s8 priority; | 
|  | 108 |  | 
|  | 109 | /* The highest zone to isolate pages for reclaim from */ | 
|  | 110 | s8 reclaim_idx; | 
|  | 111 |  | 
|  | 112 | /* This context's GFP mask */ | 
|  | 113 | gfp_t gfp_mask; | 
|  | 114 |  | 
|  | 115 | /* Incremented by the number of inactive pages that were scanned */ | 
|  | 116 | unsigned long nr_scanned; | 
|  | 117 |  | 
|  | 118 | /* Number of pages freed so far during a call to shrink_zones() */ | 
|  | 119 | unsigned long nr_reclaimed; | 
|  | 120 |  | 
|  | 121 | struct { | 
|  | 122 | unsigned int dirty; | 
|  | 123 | unsigned int unqueued_dirty; | 
|  | 124 | unsigned int congested; | 
|  | 125 | unsigned int writeback; | 
|  | 126 | unsigned int immediate; | 
|  | 127 | unsigned int file_taken; | 
|  | 128 | unsigned int taken; | 
|  | 129 | } nr; | 
|  | 130 | }; | 
|  | 131 |  | 
|  | 132 | #ifdef ARCH_HAS_PREFETCH | 
|  | 133 | #define prefetch_prev_lru_page(_page, _base, _field)			\ | 
|  | 134 | do {								\ | 
|  | 135 | if ((_page)->lru.prev != _base) {			\ | 
|  | 136 | struct page *prev;				\ | 
|  | 137 | \ | 
|  | 138 | prev = lru_to_page(&(_page->lru));		\ | 
|  | 139 | prefetch(&prev->_field);			\ | 
|  | 140 | }							\ | 
|  | 141 | } while (0) | 
|  | 142 | #else | 
|  | 143 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | 
|  | 144 | #endif | 
|  | 145 |  | 
|  | 146 | #ifdef ARCH_HAS_PREFETCHW | 
|  | 147 | #define prefetchw_prev_lru_page(_page, _base, _field)			\ | 
|  | 148 | do {								\ | 
|  | 149 | if ((_page)->lru.prev != _base) {			\ | 
|  | 150 | struct page *prev;				\ | 
|  | 151 | \ | 
|  | 152 | prev = lru_to_page(&(_page->lru));		\ | 
|  | 153 | prefetchw(&prev->_field);			\ | 
|  | 154 | }							\ | 
|  | 155 | } while (0) | 
|  | 156 | #else | 
|  | 157 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | 
|  | 158 | #endif | 
|  | 159 |  | 
|  | 160 | /* | 
|  | 161 | * From 0 .. 100.  Higher means more swappy. | 
|  | 162 | */ | 
|  | 163 | int vm_swappiness = 60; | 
|  | 164 | /* | 
|  | 165 | * The total number of pages which are beyond the high watermark within all | 
|  | 166 | * zones. | 
|  | 167 | */ | 
|  | 168 | unsigned long vm_total_pages; | 
|  | 169 |  | 
|  | 170 | static LIST_HEAD(shrinker_list); | 
|  | 171 | static DECLARE_RWSEM(shrinker_rwsem); | 
|  | 172 |  | 
|  | 173 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 174 |  | 
|  | 175 | /* | 
|  | 176 | * We allow subsystems to populate their shrinker-related | 
|  | 177 | * LRU lists before register_shrinker_prepared() is called | 
|  | 178 | * for the shrinker, since we don't want to impose | 
|  | 179 | * restrictions on their internal registration order. | 
|  | 180 | * In this case shrink_slab_memcg() may find corresponding | 
|  | 181 | * bit is set in the shrinkers map. | 
|  | 182 | * | 
|  | 183 | * This value is used by the function to detect registering | 
|  | 184 | * shrinkers and to skip do_shrink_slab() calls for them. | 
|  | 185 | */ | 
|  | 186 | #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) | 
|  | 187 |  | 
|  | 188 | static DEFINE_IDR(shrinker_idr); | 
|  | 189 | static int shrinker_nr_max; | 
|  | 190 |  | 
|  | 191 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | 
|  | 192 | { | 
|  | 193 | int id, ret = -ENOMEM; | 
|  | 194 |  | 
|  | 195 | down_write(&shrinker_rwsem); | 
|  | 196 | /* This may call shrinker, so it must use down_read_trylock() */ | 
|  | 197 | id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); | 
|  | 198 | if (id < 0) | 
|  | 199 | goto unlock; | 
|  | 200 |  | 
|  | 201 | if (id >= shrinker_nr_max) { | 
|  | 202 | if (memcg_expand_shrinker_maps(id)) { | 
|  | 203 | idr_remove(&shrinker_idr, id); | 
|  | 204 | goto unlock; | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | shrinker_nr_max = id + 1; | 
|  | 208 | } | 
|  | 209 | shrinker->id = id; | 
|  | 210 | ret = 0; | 
|  | 211 | unlock: | 
|  | 212 | up_write(&shrinker_rwsem); | 
|  | 213 | return ret; | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | 
|  | 217 | { | 
|  | 218 | int id = shrinker->id; | 
|  | 219 |  | 
|  | 220 | BUG_ON(id < 0); | 
|  | 221 |  | 
|  | 222 | down_write(&shrinker_rwsem); | 
|  | 223 | idr_remove(&shrinker_idr, id); | 
|  | 224 | up_write(&shrinker_rwsem); | 
|  | 225 | } | 
|  | 226 | #else /* CONFIG_MEMCG_KMEM */ | 
|  | 227 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | 
|  | 228 | { | 
|  | 229 | return 0; | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | 
|  | 233 | { | 
|  | 234 | } | 
|  | 235 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 236 |  | 
|  | 237 | #ifdef CONFIG_MEMCG | 
|  | 238 | static bool global_reclaim(struct scan_control *sc) | 
|  | 239 | { | 
|  | 240 | return !sc->target_mem_cgroup; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /** | 
|  | 244 | * sane_reclaim - is the usual dirty throttling mechanism operational? | 
|  | 245 | * @sc: scan_control in question | 
|  | 246 | * | 
|  | 247 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | 
|  | 248 | * completely broken with the legacy memcg and direct stalling in | 
|  | 249 | * shrink_page_list() is used for throttling instead, which lacks all the | 
|  | 250 | * niceties such as fairness, adaptive pausing, bandwidth proportional | 
|  | 251 | * allocation and configurability. | 
|  | 252 | * | 
|  | 253 | * This function tests whether the vmscan currently in progress can assume | 
|  | 254 | * that the normal dirty throttling mechanism is operational. | 
|  | 255 | */ | 
|  | 256 | static bool sane_reclaim(struct scan_control *sc) | 
|  | 257 | { | 
|  | 258 | struct mem_cgroup *memcg = sc->target_mem_cgroup; | 
|  | 259 |  | 
|  | 260 | if (!memcg) | 
|  | 261 | return true; | 
|  | 262 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 263 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 264 | return true; | 
|  | 265 | #endif | 
|  | 266 | return false; | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | static void set_memcg_congestion(pg_data_t *pgdat, | 
|  | 270 | struct mem_cgroup *memcg, | 
|  | 271 | bool congested) | 
|  | 272 | { | 
|  | 273 | struct mem_cgroup_per_node *mn; | 
|  | 274 |  | 
|  | 275 | if (!memcg) | 
|  | 276 | return; | 
|  | 277 |  | 
|  | 278 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | 
|  | 279 | WRITE_ONCE(mn->congested, congested); | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 | static bool memcg_congested(pg_data_t *pgdat, | 
|  | 283 | struct mem_cgroup *memcg) | 
|  | 284 | { | 
|  | 285 | struct mem_cgroup_per_node *mn; | 
|  | 286 |  | 
|  | 287 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | 
|  | 288 | return READ_ONCE(mn->congested); | 
|  | 289 |  | 
|  | 290 | } | 
|  | 291 | #else | 
|  | 292 | static bool global_reclaim(struct scan_control *sc) | 
|  | 293 | { | 
|  | 294 | return true; | 
|  | 295 | } | 
|  | 296 |  | 
|  | 297 | static bool sane_reclaim(struct scan_control *sc) | 
|  | 298 | { | 
|  | 299 | return true; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | static inline void set_memcg_congestion(struct pglist_data *pgdat, | 
|  | 303 | struct mem_cgroup *memcg, bool congested) | 
|  | 304 | { | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | static inline bool memcg_congested(struct pglist_data *pgdat, | 
|  | 308 | struct mem_cgroup *memcg) | 
|  | 309 | { | 
|  | 310 | return false; | 
|  | 311 |  | 
|  | 312 | } | 
|  | 313 | #endif | 
|  | 314 |  | 
|  | 315 | /* | 
|  | 316 | * This misses isolated pages which are not accounted for to save counters. | 
|  | 317 | * As the data only determines if reclaim or compaction continues, it is | 
|  | 318 | * not expected that isolated pages will be a dominating factor. | 
|  | 319 | */ | 
|  | 320 | unsigned long zone_reclaimable_pages(struct zone *zone) | 
|  | 321 | { | 
|  | 322 | unsigned long nr; | 
|  | 323 |  | 
|  | 324 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | 
|  | 325 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | 
|  | 326 | if (get_nr_swap_pages() > 0) | 
|  | 327 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | 
|  | 328 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | 
|  | 329 |  | 
|  | 330 | return nr; | 
|  | 331 | } | 
|  | 332 |  | 
|  | 333 | /** | 
|  | 334 | * lruvec_lru_size -  Returns the number of pages on the given LRU list. | 
|  | 335 | * @lruvec: lru vector | 
|  | 336 | * @lru: lru to use | 
|  | 337 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) | 
|  | 338 | */ | 
|  | 339 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) | 
|  | 340 | { | 
|  | 341 | unsigned long lru_size; | 
|  | 342 | int zid; | 
|  | 343 |  | 
|  | 344 | if (!mem_cgroup_disabled()) | 
|  | 345 | lru_size = mem_cgroup_get_lru_size(lruvec, lru); | 
|  | 346 | else | 
|  | 347 | lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); | 
|  | 348 |  | 
|  | 349 | for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { | 
|  | 350 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; | 
|  | 351 | unsigned long size; | 
|  | 352 |  | 
|  | 353 | if (!managed_zone(zone)) | 
|  | 354 | continue; | 
|  | 355 |  | 
|  | 356 | if (!mem_cgroup_disabled()) | 
|  | 357 | size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | 
|  | 358 | else | 
|  | 359 | size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], | 
|  | 360 | NR_ZONE_LRU_BASE + lru); | 
|  | 361 | lru_size -= min(size, lru_size); | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | return lru_size; | 
|  | 365 |  | 
|  | 366 | } | 
|  | 367 |  | 
|  | 368 | /* | 
|  | 369 | * Add a shrinker callback to be called from the vm. | 
|  | 370 | */ | 
|  | 371 | int prealloc_shrinker(struct shrinker *shrinker) | 
|  | 372 | { | 
|  | 373 | size_t size = sizeof(*shrinker->nr_deferred); | 
|  | 374 |  | 
|  | 375 | if (shrinker->flags & SHRINKER_NUMA_AWARE) | 
|  | 376 | size *= nr_node_ids; | 
|  | 377 |  | 
|  | 378 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | 
|  | 379 | if (!shrinker->nr_deferred) | 
|  | 380 | return -ENOMEM; | 
|  | 381 |  | 
|  | 382 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { | 
|  | 383 | if (prealloc_memcg_shrinker(shrinker)) | 
|  | 384 | goto free_deferred; | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | return 0; | 
|  | 388 |  | 
|  | 389 | free_deferred: | 
|  | 390 | kfree(shrinker->nr_deferred); | 
|  | 391 | shrinker->nr_deferred = NULL; | 
|  | 392 | return -ENOMEM; | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | void free_prealloced_shrinker(struct shrinker *shrinker) | 
|  | 396 | { | 
|  | 397 | if (!shrinker->nr_deferred) | 
|  | 398 | return; | 
|  | 399 |  | 
|  | 400 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | 
|  | 401 | unregister_memcg_shrinker(shrinker); | 
|  | 402 |  | 
|  | 403 | kfree(shrinker->nr_deferred); | 
|  | 404 | shrinker->nr_deferred = NULL; | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | void register_shrinker_prepared(struct shrinker *shrinker) | 
|  | 408 | { | 
|  | 409 | down_write(&shrinker_rwsem); | 
|  | 410 | list_add_tail(&shrinker->list, &shrinker_list); | 
|  | 411 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 412 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | 
|  | 413 | idr_replace(&shrinker_idr, shrinker, shrinker->id); | 
|  | 414 | #endif | 
|  | 415 | up_write(&shrinker_rwsem); | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | int register_shrinker(struct shrinker *shrinker) | 
|  | 419 | { | 
|  | 420 | int err = prealloc_shrinker(shrinker); | 
|  | 421 |  | 
|  | 422 | if (err) | 
|  | 423 | return err; | 
|  | 424 | register_shrinker_prepared(shrinker); | 
|  | 425 | return 0; | 
|  | 426 | } | 
|  | 427 | EXPORT_SYMBOL(register_shrinker); | 
|  | 428 |  | 
|  | 429 | /* | 
|  | 430 | * Remove one | 
|  | 431 | */ | 
|  | 432 | void unregister_shrinker(struct shrinker *shrinker) | 
|  | 433 | { | 
|  | 434 | if (!shrinker->nr_deferred) | 
|  | 435 | return; | 
|  | 436 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | 
|  | 437 | unregister_memcg_shrinker(shrinker); | 
|  | 438 | down_write(&shrinker_rwsem); | 
|  | 439 | list_del(&shrinker->list); | 
|  | 440 | up_write(&shrinker_rwsem); | 
|  | 441 | kfree(shrinker->nr_deferred); | 
|  | 442 | shrinker->nr_deferred = NULL; | 
|  | 443 | } | 
|  | 444 | EXPORT_SYMBOL(unregister_shrinker); | 
|  | 445 |  | 
|  | 446 | #define SHRINK_BATCH 128 | 
|  | 447 |  | 
|  | 448 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, | 
|  | 449 | struct shrinker *shrinker, int priority) | 
|  | 450 | { | 
|  | 451 | unsigned long freed = 0; | 
|  | 452 | unsigned long long delta; | 
|  | 453 | long total_scan; | 
|  | 454 | long freeable; | 
|  | 455 | long nr; | 
|  | 456 | long new_nr; | 
|  | 457 | int nid = shrinkctl->nid; | 
|  | 458 | long batch_size = shrinker->batch ? shrinker->batch | 
|  | 459 | : SHRINK_BATCH; | 
|  | 460 | long scanned = 0, next_deferred; | 
|  | 461 |  | 
|  | 462 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | 
|  | 463 | nid = 0; | 
|  | 464 |  | 
|  | 465 | freeable = shrinker->count_objects(shrinker, shrinkctl); | 
|  | 466 | if (freeable == 0 || freeable == SHRINK_EMPTY) | 
|  | 467 | return freeable; | 
|  | 468 |  | 
|  | 469 | /* | 
|  | 470 | * copy the current shrinker scan count into a local variable | 
|  | 471 | * and zero it so that other concurrent shrinker invocations | 
|  | 472 | * don't also do this scanning work. | 
|  | 473 | */ | 
|  | 474 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | 
|  | 475 |  | 
|  | 476 | total_scan = nr; | 
|  | 477 | delta = freeable >> priority; | 
|  | 478 | delta *= 4; | 
|  | 479 | do_div(delta, shrinker->seeks); | 
|  | 480 |  | 
|  | 481 | total_scan += delta; | 
|  | 482 | if (total_scan < 0) { | 
|  | 483 | pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", | 
|  | 484 | shrinker->scan_objects, total_scan); | 
|  | 485 | total_scan = freeable; | 
|  | 486 | next_deferred = nr; | 
|  | 487 | } else | 
|  | 488 | next_deferred = total_scan; | 
|  | 489 |  | 
|  | 490 | /* | 
|  | 491 | * We need to avoid excessive windup on filesystem shrinkers | 
|  | 492 | * due to large numbers of GFP_NOFS allocations causing the | 
|  | 493 | * shrinkers to return -1 all the time. This results in a large | 
|  | 494 | * nr being built up so when a shrink that can do some work | 
|  | 495 | * comes along it empties the entire cache due to nr >>> | 
|  | 496 | * freeable. This is bad for sustaining a working set in | 
|  | 497 | * memory. | 
|  | 498 | * | 
|  | 499 | * Hence only allow the shrinker to scan the entire cache when | 
|  | 500 | * a large delta change is calculated directly. | 
|  | 501 | */ | 
|  | 502 | if (delta < freeable / 4) | 
|  | 503 | total_scan = min(total_scan, freeable / 2); | 
|  | 504 |  | 
|  | 505 | /* | 
|  | 506 | * Avoid risking looping forever due to too large nr value: | 
|  | 507 | * never try to free more than twice the estimate number of | 
|  | 508 | * freeable entries. | 
|  | 509 | */ | 
|  | 510 | if (total_scan > freeable * 2) | 
|  | 511 | total_scan = freeable * 2; | 
|  | 512 |  | 
|  | 513 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | 
|  | 514 | freeable, delta, total_scan, priority); | 
|  | 515 |  | 
|  | 516 | /* | 
|  | 517 | * Normally, we should not scan less than batch_size objects in one | 
|  | 518 | * pass to avoid too frequent shrinker calls, but if the slab has less | 
|  | 519 | * than batch_size objects in total and we are really tight on memory, | 
|  | 520 | * we will try to reclaim all available objects, otherwise we can end | 
|  | 521 | * up failing allocations although there are plenty of reclaimable | 
|  | 522 | * objects spread over several slabs with usage less than the | 
|  | 523 | * batch_size. | 
|  | 524 | * | 
|  | 525 | * We detect the "tight on memory" situations by looking at the total | 
|  | 526 | * number of objects we want to scan (total_scan). If it is greater | 
|  | 527 | * than the total number of objects on slab (freeable), we must be | 
|  | 528 | * scanning at high prio and therefore should try to reclaim as much as | 
|  | 529 | * possible. | 
|  | 530 | */ | 
|  | 531 | while (total_scan >= batch_size || | 
|  | 532 | total_scan >= freeable) { | 
|  | 533 | unsigned long ret; | 
|  | 534 | unsigned long nr_to_scan = min(batch_size, total_scan); | 
|  | 535 |  | 
|  | 536 | shrinkctl->nr_to_scan = nr_to_scan; | 
|  | 537 | shrinkctl->nr_scanned = nr_to_scan; | 
|  | 538 | ret = shrinker->scan_objects(shrinker, shrinkctl); | 
|  | 539 | if (ret == SHRINK_STOP) | 
|  | 540 | break; | 
|  | 541 | freed += ret; | 
|  | 542 |  | 
|  | 543 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); | 
|  | 544 | total_scan -= shrinkctl->nr_scanned; | 
|  | 545 | scanned += shrinkctl->nr_scanned; | 
|  | 546 |  | 
|  | 547 | cond_resched(); | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | if (next_deferred >= scanned) | 
|  | 551 | next_deferred -= scanned; | 
|  | 552 | else | 
|  | 553 | next_deferred = 0; | 
|  | 554 | /* | 
|  | 555 | * move the unused scan count back into the shrinker in a | 
|  | 556 | * manner that handles concurrent updates. If we exhausted the | 
|  | 557 | * scan, there is no need to do an update. | 
|  | 558 | */ | 
|  | 559 | if (next_deferred > 0) | 
|  | 560 | new_nr = atomic_long_add_return(next_deferred, | 
|  | 561 | &shrinker->nr_deferred[nid]); | 
|  | 562 | else | 
|  | 563 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); | 
|  | 564 |  | 
|  | 565 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); | 
|  | 566 | return freed; | 
|  | 567 | } | 
|  | 568 |  | 
|  | 569 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 570 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | 
|  | 571 | struct mem_cgroup *memcg, int priority) | 
|  | 572 | { | 
|  | 573 | struct memcg_shrinker_map *map; | 
|  | 574 | unsigned long ret, freed = 0; | 
|  | 575 | int i; | 
|  | 576 |  | 
|  | 577 | if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) | 
|  | 578 | return 0; | 
|  | 579 |  | 
|  | 580 | if (!down_read_trylock(&shrinker_rwsem)) | 
|  | 581 | return 0; | 
|  | 582 |  | 
|  | 583 | map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, | 
|  | 584 | true); | 
|  | 585 | if (unlikely(!map)) | 
|  | 586 | goto unlock; | 
|  | 587 |  | 
|  | 588 | for_each_set_bit(i, map->map, shrinker_nr_max) { | 
|  | 589 | struct shrink_control sc = { | 
|  | 590 | .gfp_mask = gfp_mask, | 
|  | 591 | .nid = nid, | 
|  | 592 | .memcg = memcg, | 
|  | 593 | }; | 
|  | 594 | struct shrinker *shrinker; | 
|  | 595 |  | 
|  | 596 | shrinker = idr_find(&shrinker_idr, i); | 
|  | 597 | if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { | 
|  | 598 | if (!shrinker) | 
|  | 599 | clear_bit(i, map->map); | 
|  | 600 | continue; | 
|  | 601 | } | 
|  | 602 |  | 
|  | 603 | ret = do_shrink_slab(&sc, shrinker, priority); | 
|  | 604 | if (ret == SHRINK_EMPTY) { | 
|  | 605 | clear_bit(i, map->map); | 
|  | 606 | /* | 
|  | 607 | * After the shrinker reported that it had no objects to | 
|  | 608 | * free, but before we cleared the corresponding bit in | 
|  | 609 | * the memcg shrinker map, a new object might have been | 
|  | 610 | * added. To make sure, we have the bit set in this | 
|  | 611 | * case, we invoke the shrinker one more time and reset | 
|  | 612 | * the bit if it reports that it is not empty anymore. | 
|  | 613 | * The memory barrier here pairs with the barrier in | 
|  | 614 | * memcg_set_shrinker_bit(): | 
|  | 615 | * | 
|  | 616 | * list_lru_add()     shrink_slab_memcg() | 
|  | 617 | *   list_add_tail()    clear_bit() | 
|  | 618 | *   <MB>               <MB> | 
|  | 619 | *   set_bit()          do_shrink_slab() | 
|  | 620 | */ | 
|  | 621 | smp_mb__after_atomic(); | 
|  | 622 | ret = do_shrink_slab(&sc, shrinker, priority); | 
|  | 623 | if (ret == SHRINK_EMPTY) | 
|  | 624 | ret = 0; | 
|  | 625 | else | 
|  | 626 | memcg_set_shrinker_bit(memcg, nid, i); | 
|  | 627 | } | 
|  | 628 | freed += ret; | 
|  | 629 |  | 
|  | 630 | if (rwsem_is_contended(&shrinker_rwsem)) { | 
|  | 631 | freed = freed ? : 1; | 
|  | 632 | break; | 
|  | 633 | } | 
|  | 634 | } | 
|  | 635 | unlock: | 
|  | 636 | up_read(&shrinker_rwsem); | 
|  | 637 | return freed; | 
|  | 638 | } | 
|  | 639 | #else /* CONFIG_MEMCG_KMEM */ | 
|  | 640 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | 
|  | 641 | struct mem_cgroup *memcg, int priority) | 
|  | 642 | { | 
|  | 643 | return 0; | 
|  | 644 | } | 
|  | 645 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 646 |  | 
|  | 647 | /** | 
|  | 648 | * shrink_slab - shrink slab caches | 
|  | 649 | * @gfp_mask: allocation context | 
|  | 650 | * @nid: node whose slab caches to target | 
|  | 651 | * @memcg: memory cgroup whose slab caches to target | 
|  | 652 | * @priority: the reclaim priority | 
|  | 653 | * | 
|  | 654 | * Call the shrink functions to age shrinkable caches. | 
|  | 655 | * | 
|  | 656 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, | 
|  | 657 | * unaware shrinkers will receive a node id of 0 instead. | 
|  | 658 | * | 
|  | 659 | * @memcg specifies the memory cgroup to target. Unaware shrinkers | 
|  | 660 | * are called only if it is the root cgroup. | 
|  | 661 | * | 
|  | 662 | * @priority is sc->priority, we take the number of objects and >> by priority | 
|  | 663 | * in order to get the scan target. | 
|  | 664 | * | 
|  | 665 | * Returns the number of reclaimed slab objects. | 
|  | 666 | */ | 
|  | 667 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, | 
|  | 668 | struct mem_cgroup *memcg, | 
|  | 669 | int priority) | 
|  | 670 | { | 
|  | 671 | unsigned long ret, freed = 0; | 
|  | 672 | struct shrinker *shrinker; | 
|  | 673 |  | 
|  | 674 | /* | 
|  | 675 | * The root memcg might be allocated even though memcg is disabled | 
|  | 676 | * via "cgroup_disable=memory" boot parameter.  This could make | 
|  | 677 | * mem_cgroup_is_root() return false, then just run memcg slab | 
|  | 678 | * shrink, but skip global shrink.  This may result in premature | 
|  | 679 | * oom. | 
|  | 680 | */ | 
|  | 681 | if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) | 
|  | 682 | return shrink_slab_memcg(gfp_mask, nid, memcg, priority); | 
|  | 683 |  | 
|  | 684 | if (!down_read_trylock(&shrinker_rwsem)) | 
|  | 685 | goto out; | 
|  | 686 |  | 
|  | 687 | list_for_each_entry(shrinker, &shrinker_list, list) { | 
|  | 688 | struct shrink_control sc = { | 
|  | 689 | .gfp_mask = gfp_mask, | 
|  | 690 | .nid = nid, | 
|  | 691 | .memcg = memcg, | 
|  | 692 | }; | 
|  | 693 |  | 
|  | 694 | ret = do_shrink_slab(&sc, shrinker, priority); | 
|  | 695 | if (ret == SHRINK_EMPTY) | 
|  | 696 | ret = 0; | 
|  | 697 | freed += ret; | 
|  | 698 | /* | 
|  | 699 | * Bail out if someone want to register a new shrinker to | 
|  | 700 | * prevent the regsitration from being stalled for long periods | 
|  | 701 | * by parallel ongoing shrinking. | 
|  | 702 | */ | 
|  | 703 | if (rwsem_is_contended(&shrinker_rwsem)) { | 
|  | 704 | freed = freed ? : 1; | 
|  | 705 | break; | 
|  | 706 | } | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | up_read(&shrinker_rwsem); | 
|  | 710 | out: | 
|  | 711 | cond_resched(); | 
|  | 712 | return freed; | 
|  | 713 | } | 
|  | 714 |  | 
|  | 715 | void drop_slab_node(int nid) | 
|  | 716 | { | 
|  | 717 | unsigned long freed; | 
|  | 718 |  | 
|  | 719 | do { | 
|  | 720 | struct mem_cgroup *memcg = NULL; | 
|  | 721 |  | 
|  | 722 | freed = 0; | 
|  | 723 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
|  | 724 | do { | 
|  | 725 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); | 
|  | 726 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | 
|  | 727 | } while (freed > 10); | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | void drop_slab(void) | 
|  | 731 | { | 
|  | 732 | int nid; | 
|  | 733 |  | 
|  | 734 | for_each_online_node(nid) | 
|  | 735 | drop_slab_node(nid); | 
|  | 736 | } | 
|  | 737 |  | 
|  | 738 | static inline int is_page_cache_freeable(struct page *page) | 
|  | 739 | { | 
|  | 740 | /* | 
|  | 741 | * A freeable page cache page is referenced only by the caller | 
|  | 742 | * that isolated the page, the page cache radix tree and | 
|  | 743 | * optional buffer heads at page->private. | 
|  | 744 | */ | 
|  | 745 | int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? | 
|  | 746 | HPAGE_PMD_NR : 1; | 
|  | 747 | return page_count(page) - page_has_private(page) == 1 + radix_pins; | 
|  | 748 | } | 
|  | 749 |  | 
|  | 750 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) | 
|  | 751 | { | 
|  | 752 | if (current->flags & PF_SWAPWRITE) | 
|  | 753 | return 1; | 
|  | 754 | if (!inode_write_congested(inode)) | 
|  | 755 | return 1; | 
|  | 756 | if (inode_to_bdi(inode) == current->backing_dev_info) | 
|  | 757 | return 1; | 
|  | 758 | return 0; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | /* | 
|  | 762 | * We detected a synchronous write error writing a page out.  Probably | 
|  | 763 | * -ENOSPC.  We need to propagate that into the address_space for a subsequent | 
|  | 764 | * fsync(), msync() or close(). | 
|  | 765 | * | 
|  | 766 | * The tricky part is that after writepage we cannot touch the mapping: nothing | 
|  | 767 | * prevents it from being freed up.  But we have a ref on the page and once | 
|  | 768 | * that page is locked, the mapping is pinned. | 
|  | 769 | * | 
|  | 770 | * We're allowed to run sleeping lock_page() here because we know the caller has | 
|  | 771 | * __GFP_FS. | 
|  | 772 | */ | 
|  | 773 | static void handle_write_error(struct address_space *mapping, | 
|  | 774 | struct page *page, int error) | 
|  | 775 | { | 
|  | 776 | lock_page(page); | 
|  | 777 | if (page_mapping(page) == mapping) | 
|  | 778 | mapping_set_error(mapping, error); | 
|  | 779 | unlock_page(page); | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | /* possible outcome of pageout() */ | 
|  | 783 | typedef enum { | 
|  | 784 | /* failed to write page out, page is locked */ | 
|  | 785 | PAGE_KEEP, | 
|  | 786 | /* move page to the active list, page is locked */ | 
|  | 787 | PAGE_ACTIVATE, | 
|  | 788 | /* page has been sent to the disk successfully, page is unlocked */ | 
|  | 789 | PAGE_SUCCESS, | 
|  | 790 | /* page is clean and locked */ | 
|  | 791 | PAGE_CLEAN, | 
|  | 792 | } pageout_t; | 
|  | 793 |  | 
|  | 794 | /* | 
|  | 795 | * pageout is called by shrink_page_list() for each dirty page. | 
|  | 796 | * Calls ->writepage(). | 
|  | 797 | */ | 
|  | 798 | static pageout_t pageout(struct page *page, struct address_space *mapping, | 
|  | 799 | struct scan_control *sc) | 
|  | 800 | { | 
|  | 801 | /* | 
|  | 802 | * If the page is dirty, only perform writeback if that write | 
|  | 803 | * will be non-blocking.  To prevent this allocation from being | 
|  | 804 | * stalled by pagecache activity.  But note that there may be | 
|  | 805 | * stalls if we need to run get_block().  We could test | 
|  | 806 | * PagePrivate for that. | 
|  | 807 | * | 
|  | 808 | * If this process is currently in __generic_file_write_iter() against | 
|  | 809 | * this page's queue, we can perform writeback even if that | 
|  | 810 | * will block. | 
|  | 811 | * | 
|  | 812 | * If the page is swapcache, write it back even if that would | 
|  | 813 | * block, for some throttling. This happens by accident, because | 
|  | 814 | * swap_backing_dev_info is bust: it doesn't reflect the | 
|  | 815 | * congestion state of the swapdevs.  Easy to fix, if needed. | 
|  | 816 | */ | 
|  | 817 | if (!is_page_cache_freeable(page)) | 
|  | 818 | return PAGE_KEEP; | 
|  | 819 | if (!mapping) { | 
|  | 820 | /* | 
|  | 821 | * Some data journaling orphaned pages can have | 
|  | 822 | * page->mapping == NULL while being dirty with clean buffers. | 
|  | 823 | */ | 
|  | 824 | if (page_has_private(page)) { | 
|  | 825 | if (try_to_free_buffers(page)) { | 
|  | 826 | ClearPageDirty(page); | 
|  | 827 | pr_info("%s: orphaned page\n", __func__); | 
|  | 828 | return PAGE_CLEAN; | 
|  | 829 | } | 
|  | 830 | } | 
|  | 831 | return PAGE_KEEP; | 
|  | 832 | } | 
|  | 833 | if (mapping->a_ops->writepage == NULL) | 
|  | 834 | return PAGE_ACTIVATE; | 
|  | 835 | if (!may_write_to_inode(mapping->host, sc)) | 
|  | 836 | return PAGE_KEEP; | 
|  | 837 |  | 
|  | 838 | if (clear_page_dirty_for_io(page)) { | 
|  | 839 | int res; | 
|  | 840 | struct writeback_control wbc = { | 
|  | 841 | .sync_mode = WB_SYNC_NONE, | 
|  | 842 | .nr_to_write = SWAP_CLUSTER_MAX, | 
|  | 843 | .range_start = 0, | 
|  | 844 | .range_end = LLONG_MAX, | 
|  | 845 | .for_reclaim = 1, | 
|  | 846 | }; | 
|  | 847 |  | 
|  | 848 | SetPageReclaim(page); | 
|  | 849 | res = mapping->a_ops->writepage(page, &wbc); | 
|  | 850 | if (res < 0) | 
|  | 851 | handle_write_error(mapping, page, res); | 
|  | 852 | if (res == AOP_WRITEPAGE_ACTIVATE) { | 
|  | 853 | ClearPageReclaim(page); | 
|  | 854 | return PAGE_ACTIVATE; | 
|  | 855 | } | 
|  | 856 |  | 
|  | 857 | if (!PageWriteback(page)) { | 
|  | 858 | /* synchronous write or broken a_ops? */ | 
|  | 859 | ClearPageReclaim(page); | 
|  | 860 | } | 
|  | 861 | trace_mm_vmscan_writepage(page); | 
|  | 862 | inc_node_page_state(page, NR_VMSCAN_WRITE); | 
|  | 863 | return PAGE_SUCCESS; | 
|  | 864 | } | 
|  | 865 |  | 
|  | 866 | return PAGE_CLEAN; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | /* | 
|  | 870 | * Same as remove_mapping, but if the page is removed from the mapping, it | 
|  | 871 | * gets returned with a refcount of 0. | 
|  | 872 | */ | 
|  | 873 | static int __remove_mapping(struct address_space *mapping, struct page *page, | 
|  | 874 | bool reclaimed) | 
|  | 875 | { | 
|  | 876 | unsigned long flags; | 
|  | 877 | int refcount; | 
|  | 878 |  | 
|  | 879 | BUG_ON(!PageLocked(page)); | 
|  | 880 | BUG_ON(mapping != page_mapping(page)); | 
|  | 881 |  | 
|  | 882 | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | 883 | /* | 
|  | 884 | * The non racy check for a busy page. | 
|  | 885 | * | 
|  | 886 | * Must be careful with the order of the tests. When someone has | 
|  | 887 | * a ref to the page, it may be possible that they dirty it then | 
|  | 888 | * drop the reference. So if PageDirty is tested before page_count | 
|  | 889 | * here, then the following race may occur: | 
|  | 890 | * | 
|  | 891 | * get_user_pages(&page); | 
|  | 892 | * [user mapping goes away] | 
|  | 893 | * write_to(page); | 
|  | 894 | *				!PageDirty(page)    [good] | 
|  | 895 | * SetPageDirty(page); | 
|  | 896 | * put_page(page); | 
|  | 897 | *				!page_count(page)   [good, discard it] | 
|  | 898 | * | 
|  | 899 | * [oops, our write_to data is lost] | 
|  | 900 | * | 
|  | 901 | * Reversing the order of the tests ensures such a situation cannot | 
|  | 902 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | 
|  | 903 | * load is not satisfied before that of page->_refcount. | 
|  | 904 | * | 
|  | 905 | * Note that if SetPageDirty is always performed via set_page_dirty, | 
|  | 906 | * and thus under the i_pages lock, then this ordering is not required. | 
|  | 907 | */ | 
|  | 908 | if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) | 
|  | 909 | refcount = 1 + HPAGE_PMD_NR; | 
|  | 910 | else | 
|  | 911 | refcount = 2; | 
|  | 912 | if (!page_ref_freeze(page, refcount)) | 
|  | 913 | goto cannot_free; | 
|  | 914 | /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ | 
|  | 915 | if (unlikely(PageDirty(page))) { | 
|  | 916 | page_ref_unfreeze(page, refcount); | 
|  | 917 | goto cannot_free; | 
|  | 918 | } | 
|  | 919 |  | 
|  | 920 | if (PageSwapCache(page)) { | 
|  | 921 | swp_entry_t swap = { .val = page_private(page) }; | 
|  | 922 | mem_cgroup_swapout(page, swap); | 
|  | 923 | __delete_from_swap_cache(page); | 
|  | 924 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 925 | put_swap_page(page, swap); | 
|  | 926 | } else { | 
|  | 927 | void (*freepage)(struct page *); | 
|  | 928 | void *shadow = NULL; | 
|  | 929 |  | 
|  | 930 | freepage = mapping->a_ops->freepage; | 
|  | 931 | /* | 
|  | 932 | * Remember a shadow entry for reclaimed file cache in | 
|  | 933 | * order to detect refaults, thus thrashing, later on. | 
|  | 934 | * | 
|  | 935 | * But don't store shadows in an address space that is | 
|  | 936 | * already exiting.  This is not just an optizimation, | 
|  | 937 | * inode reclaim needs to empty out the radix tree or | 
|  | 938 | * the nodes are lost.  Don't plant shadows behind its | 
|  | 939 | * back. | 
|  | 940 | * | 
|  | 941 | * We also don't store shadows for DAX mappings because the | 
|  | 942 | * only page cache pages found in these are zero pages | 
|  | 943 | * covering holes, and because we don't want to mix DAX | 
|  | 944 | * exceptional entries and shadow exceptional entries in the | 
|  | 945 | * same address_space. | 
|  | 946 | */ | 
|  | 947 | if (reclaimed && page_is_file_cache(page) && | 
|  | 948 | !mapping_exiting(mapping) && !dax_mapping(mapping)) | 
|  | 949 | shadow = workingset_eviction(mapping, page); | 
|  | 950 | __delete_from_page_cache(page, shadow); | 
|  | 951 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 952 |  | 
|  | 953 | if (freepage != NULL) | 
|  | 954 | freepage(page); | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | return 1; | 
|  | 958 |  | 
|  | 959 | cannot_free: | 
|  | 960 | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | 961 | return 0; | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | /* | 
|  | 965 | * Attempt to detach a locked page from its ->mapping.  If it is dirty or if | 
|  | 966 | * someone else has a ref on the page, abort and return 0.  If it was | 
|  | 967 | * successfully detached, return 1.  Assumes the caller has a single ref on | 
|  | 968 | * this page. | 
|  | 969 | */ | 
|  | 970 | int remove_mapping(struct address_space *mapping, struct page *page) | 
|  | 971 | { | 
|  | 972 | if (__remove_mapping(mapping, page, false)) { | 
|  | 973 | /* | 
|  | 974 | * Unfreezing the refcount with 1 rather than 2 effectively | 
|  | 975 | * drops the pagecache ref for us without requiring another | 
|  | 976 | * atomic operation. | 
|  | 977 | */ | 
|  | 978 | page_ref_unfreeze(page, 1); | 
|  | 979 | return 1; | 
|  | 980 | } | 
|  | 981 | return 0; | 
|  | 982 | } | 
|  | 983 |  | 
|  | 984 | /** | 
|  | 985 | * putback_lru_page - put previously isolated page onto appropriate LRU list | 
|  | 986 | * @page: page to be put back to appropriate lru list | 
|  | 987 | * | 
|  | 988 | * Add previously isolated @page to appropriate LRU list. | 
|  | 989 | * Page may still be unevictable for other reasons. | 
|  | 990 | * | 
|  | 991 | * lru_lock must not be held, interrupts must be enabled. | 
|  | 992 | */ | 
|  | 993 | void putback_lru_page(struct page *page) | 
|  | 994 | { | 
|  | 995 | lru_cache_add(page); | 
|  | 996 | put_page(page);		/* drop ref from isolate */ | 
|  | 997 | } | 
|  | 998 |  | 
|  | 999 | enum page_references { | 
|  | 1000 | PAGEREF_RECLAIM, | 
|  | 1001 | PAGEREF_RECLAIM_CLEAN, | 
|  | 1002 | PAGEREF_KEEP, | 
|  | 1003 | PAGEREF_ACTIVATE, | 
|  | 1004 | }; | 
|  | 1005 |  | 
|  | 1006 | static enum page_references page_check_references(struct page *page, | 
|  | 1007 | struct scan_control *sc) | 
|  | 1008 | { | 
|  | 1009 | int referenced_ptes, referenced_page; | 
|  | 1010 | unsigned long vm_flags; | 
|  | 1011 |  | 
|  | 1012 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, | 
|  | 1013 | &vm_flags); | 
|  | 1014 | referenced_page = TestClearPageReferenced(page); | 
|  | 1015 |  | 
|  | 1016 | /* | 
|  | 1017 | * Mlock lost the isolation race with us.  Let try_to_unmap() | 
|  | 1018 | * move the page to the unevictable list. | 
|  | 1019 | */ | 
|  | 1020 | if (vm_flags & VM_LOCKED) | 
|  | 1021 | return PAGEREF_RECLAIM; | 
|  | 1022 |  | 
|  | 1023 | if (referenced_ptes) { | 
|  | 1024 | if (PageSwapBacked(page)) | 
|  | 1025 | return PAGEREF_ACTIVATE; | 
|  | 1026 | /* | 
|  | 1027 | * All mapped pages start out with page table | 
|  | 1028 | * references from the instantiating fault, so we need | 
|  | 1029 | * to look twice if a mapped file page is used more | 
|  | 1030 | * than once. | 
|  | 1031 | * | 
|  | 1032 | * Mark it and spare it for another trip around the | 
|  | 1033 | * inactive list.  Another page table reference will | 
|  | 1034 | * lead to its activation. | 
|  | 1035 | * | 
|  | 1036 | * Note: the mark is set for activated pages as well | 
|  | 1037 | * so that recently deactivated but used pages are | 
|  | 1038 | * quickly recovered. | 
|  | 1039 | */ | 
|  | 1040 | SetPageReferenced(page); | 
|  | 1041 |  | 
|  | 1042 | if (referenced_page || referenced_ptes > 1) | 
|  | 1043 | return PAGEREF_ACTIVATE; | 
|  | 1044 |  | 
|  | 1045 | /* | 
|  | 1046 | * Activate file-backed executable pages after first usage. | 
|  | 1047 | */ | 
|  | 1048 | if (vm_flags & VM_EXEC) | 
|  | 1049 | return PAGEREF_ACTIVATE; | 
|  | 1050 |  | 
|  | 1051 | return PAGEREF_KEEP; | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | /* Reclaim if clean, defer dirty pages to writeback */ | 
|  | 1055 | if (referenced_page && !PageSwapBacked(page)) | 
|  | 1056 | return PAGEREF_RECLAIM_CLEAN; | 
|  | 1057 |  | 
|  | 1058 | return PAGEREF_RECLAIM; | 
|  | 1059 | } | 
|  | 1060 |  | 
|  | 1061 | /* Check if a page is dirty or under writeback */ | 
|  | 1062 | static void page_check_dirty_writeback(struct page *page, | 
|  | 1063 | bool *dirty, bool *writeback) | 
|  | 1064 | { | 
|  | 1065 | struct address_space *mapping; | 
|  | 1066 |  | 
|  | 1067 | /* | 
|  | 1068 | * Anonymous pages are not handled by flushers and must be written | 
|  | 1069 | * from reclaim context. Do not stall reclaim based on them | 
|  | 1070 | */ | 
|  | 1071 | if (!page_is_file_cache(page) || | 
|  | 1072 | (PageAnon(page) && !PageSwapBacked(page))) { | 
|  | 1073 | *dirty = false; | 
|  | 1074 | *writeback = false; | 
|  | 1075 | return; | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | /* By default assume that the page flags are accurate */ | 
|  | 1079 | *dirty = PageDirty(page); | 
|  | 1080 | *writeback = PageWriteback(page); | 
|  | 1081 |  | 
|  | 1082 | /* Verify dirty/writeback state if the filesystem supports it */ | 
|  | 1083 | if (!page_has_private(page)) | 
|  | 1084 | return; | 
|  | 1085 |  | 
|  | 1086 | mapping = page_mapping(page); | 
|  | 1087 | if (mapping && mapping->a_ops->is_dirty_writeback) | 
|  | 1088 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | 
|  | 1089 | } | 
|  | 1090 |  | 
|  | 1091 | /* | 
|  | 1092 | * shrink_page_list() returns the number of reclaimed pages | 
|  | 1093 | */ | 
|  | 1094 | static unsigned long shrink_page_list(struct list_head *page_list, | 
|  | 1095 | struct pglist_data *pgdat, | 
|  | 1096 | struct scan_control *sc, | 
|  | 1097 | enum ttu_flags ttu_flags, | 
|  | 1098 | struct reclaim_stat *stat, | 
|  | 1099 | bool force_reclaim) | 
|  | 1100 | { | 
|  | 1101 | LIST_HEAD(ret_pages); | 
|  | 1102 | LIST_HEAD(free_pages); | 
|  | 1103 | int pgactivate = 0; | 
|  | 1104 | unsigned nr_unqueued_dirty = 0; | 
|  | 1105 | unsigned nr_dirty = 0; | 
|  | 1106 | unsigned nr_congested = 0; | 
|  | 1107 | unsigned nr_reclaimed = 0; | 
|  | 1108 | unsigned nr_writeback = 0; | 
|  | 1109 | unsigned nr_immediate = 0; | 
|  | 1110 | unsigned nr_ref_keep = 0; | 
|  | 1111 | unsigned nr_unmap_fail = 0; | 
|  | 1112 |  | 
|  | 1113 | cond_resched(); | 
|  | 1114 |  | 
|  | 1115 | while (!list_empty(page_list)) { | 
|  | 1116 | struct address_space *mapping; | 
|  | 1117 | struct page *page; | 
|  | 1118 | int may_enter_fs; | 
|  | 1119 | enum page_references references = PAGEREF_RECLAIM_CLEAN; | 
|  | 1120 | bool dirty, writeback; | 
|  | 1121 |  | 
|  | 1122 | cond_resched(); | 
|  | 1123 |  | 
|  | 1124 | page = lru_to_page(page_list); | 
|  | 1125 | list_del(&page->lru); | 
|  | 1126 |  | 
|  | 1127 | if (!trylock_page(page)) | 
|  | 1128 | goto keep; | 
|  | 1129 |  | 
|  | 1130 | VM_BUG_ON_PAGE(PageActive(page), page); | 
|  | 1131 |  | 
|  | 1132 | sc->nr_scanned++; | 
|  | 1133 |  | 
|  | 1134 | if (unlikely(!page_evictable(page))) | 
|  | 1135 | goto activate_locked; | 
|  | 1136 |  | 
|  | 1137 | if (!sc->may_unmap && page_mapped(page)) | 
|  | 1138 | goto keep_locked; | 
|  | 1139 |  | 
|  | 1140 | /* Double the slab pressure for mapped and swapcache pages */ | 
|  | 1141 | if ((page_mapped(page) || PageSwapCache(page)) && | 
|  | 1142 | !(PageAnon(page) && !PageSwapBacked(page))) | 
|  | 1143 | sc->nr_scanned++; | 
|  | 1144 |  | 
|  | 1145 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | 
|  | 1146 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | 
|  | 1147 |  | 
|  | 1148 | /* | 
|  | 1149 | * The number of dirty pages determines if a node is marked | 
|  | 1150 | * reclaim_congested which affects wait_iff_congested. kswapd | 
|  | 1151 | * will stall and start writing pages if the tail of the LRU | 
|  | 1152 | * is all dirty unqueued pages. | 
|  | 1153 | */ | 
|  | 1154 | page_check_dirty_writeback(page, &dirty, &writeback); | 
|  | 1155 | if (dirty || writeback) | 
|  | 1156 | nr_dirty++; | 
|  | 1157 |  | 
|  | 1158 | if (dirty && !writeback) | 
|  | 1159 | nr_unqueued_dirty++; | 
|  | 1160 |  | 
|  | 1161 | /* | 
|  | 1162 | * Treat this page as congested if the underlying BDI is or if | 
|  | 1163 | * pages are cycling through the LRU so quickly that the | 
|  | 1164 | * pages marked for immediate reclaim are making it to the | 
|  | 1165 | * end of the LRU a second time. | 
|  | 1166 | */ | 
|  | 1167 | mapping = page_mapping(page); | 
|  | 1168 | if (((dirty || writeback) && mapping && | 
|  | 1169 | inode_write_congested(mapping->host)) || | 
|  | 1170 | (writeback && PageReclaim(page))) | 
|  | 1171 | nr_congested++; | 
|  | 1172 |  | 
|  | 1173 | /* | 
|  | 1174 | * If a page at the tail of the LRU is under writeback, there | 
|  | 1175 | * are three cases to consider. | 
|  | 1176 | * | 
|  | 1177 | * 1) If reclaim is encountering an excessive number of pages | 
|  | 1178 | *    under writeback and this page is both under writeback and | 
|  | 1179 | *    PageReclaim then it indicates that pages are being queued | 
|  | 1180 | *    for IO but are being recycled through the LRU before the | 
|  | 1181 | *    IO can complete. Waiting on the page itself risks an | 
|  | 1182 | *    indefinite stall if it is impossible to writeback the | 
|  | 1183 | *    page due to IO error or disconnected storage so instead | 
|  | 1184 | *    note that the LRU is being scanned too quickly and the | 
|  | 1185 | *    caller can stall after page list has been processed. | 
|  | 1186 | * | 
|  | 1187 | * 2) Global or new memcg reclaim encounters a page that is | 
|  | 1188 | *    not marked for immediate reclaim, or the caller does not | 
|  | 1189 | *    have __GFP_FS (or __GFP_IO if it's simply going to swap, | 
|  | 1190 | *    not to fs). In this case mark the page for immediate | 
|  | 1191 | *    reclaim and continue scanning. | 
|  | 1192 | * | 
|  | 1193 | *    Require may_enter_fs because we would wait on fs, which | 
|  | 1194 | *    may not have submitted IO yet. And the loop driver might | 
|  | 1195 | *    enter reclaim, and deadlock if it waits on a page for | 
|  | 1196 | *    which it is needed to do the write (loop masks off | 
|  | 1197 | *    __GFP_IO|__GFP_FS for this reason); but more thought | 
|  | 1198 | *    would probably show more reasons. | 
|  | 1199 | * | 
|  | 1200 | * 3) Legacy memcg encounters a page that is already marked | 
|  | 1201 | *    PageReclaim. memcg does not have any dirty pages | 
|  | 1202 | *    throttling so we could easily OOM just because too many | 
|  | 1203 | *    pages are in writeback and there is nothing else to | 
|  | 1204 | *    reclaim. Wait for the writeback to complete. | 
|  | 1205 | * | 
|  | 1206 | * In cases 1) and 2) we activate the pages to get them out of | 
|  | 1207 | * the way while we continue scanning for clean pages on the | 
|  | 1208 | * inactive list and refilling from the active list. The | 
|  | 1209 | * observation here is that waiting for disk writes is more | 
|  | 1210 | * expensive than potentially causing reloads down the line. | 
|  | 1211 | * Since they're marked for immediate reclaim, they won't put | 
|  | 1212 | * memory pressure on the cache working set any longer than it | 
|  | 1213 | * takes to write them to disk. | 
|  | 1214 | */ | 
|  | 1215 | if (PageWriteback(page)) { | 
|  | 1216 | /* Case 1 above */ | 
|  | 1217 | if (current_is_kswapd() && | 
|  | 1218 | PageReclaim(page) && | 
|  | 1219 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { | 
|  | 1220 | nr_immediate++; | 
|  | 1221 | goto activate_locked; | 
|  | 1222 |  | 
|  | 1223 | /* Case 2 above */ | 
|  | 1224 | } else if (sane_reclaim(sc) || | 
|  | 1225 | !PageReclaim(page) || !may_enter_fs) { | 
|  | 1226 | /* | 
|  | 1227 | * This is slightly racy - end_page_writeback() | 
|  | 1228 | * might have just cleared PageReclaim, then | 
|  | 1229 | * setting PageReclaim here end up interpreted | 
|  | 1230 | * as PageReadahead - but that does not matter | 
|  | 1231 | * enough to care.  What we do want is for this | 
|  | 1232 | * page to have PageReclaim set next time memcg | 
|  | 1233 | * reclaim reaches the tests above, so it will | 
|  | 1234 | * then wait_on_page_writeback() to avoid OOM; | 
|  | 1235 | * and it's also appropriate in global reclaim. | 
|  | 1236 | */ | 
|  | 1237 | SetPageReclaim(page); | 
|  | 1238 | nr_writeback++; | 
|  | 1239 | goto activate_locked; | 
|  | 1240 |  | 
|  | 1241 | /* Case 3 above */ | 
|  | 1242 | } else { | 
|  | 1243 | unlock_page(page); | 
|  | 1244 | wait_on_page_writeback(page); | 
|  | 1245 | /* then go back and try same page again */ | 
|  | 1246 | list_add_tail(&page->lru, page_list); | 
|  | 1247 | continue; | 
|  | 1248 | } | 
|  | 1249 | } | 
|  | 1250 |  | 
|  | 1251 | if (!force_reclaim) | 
|  | 1252 | references = page_check_references(page, sc); | 
|  | 1253 |  | 
|  | 1254 | switch (references) { | 
|  | 1255 | case PAGEREF_ACTIVATE: | 
|  | 1256 | goto activate_locked; | 
|  | 1257 | case PAGEREF_KEEP: | 
|  | 1258 | nr_ref_keep++; | 
|  | 1259 | goto keep_locked; | 
|  | 1260 | case PAGEREF_RECLAIM: | 
|  | 1261 | case PAGEREF_RECLAIM_CLEAN: | 
|  | 1262 | ; /* try to reclaim the page below */ | 
|  | 1263 | } | 
|  | 1264 |  | 
|  | 1265 | /* | 
|  | 1266 | * Anonymous process memory has backing store? | 
|  | 1267 | * Try to allocate it some swap space here. | 
|  | 1268 | * Lazyfree page could be freed directly | 
|  | 1269 | */ | 
|  | 1270 | if (PageAnon(page) && PageSwapBacked(page)) { | 
|  | 1271 | if (!PageSwapCache(page)) { | 
|  | 1272 | if (!(sc->gfp_mask & __GFP_IO)) | 
|  | 1273 | goto keep_locked; | 
|  | 1274 | if (PageTransHuge(page)) { | 
|  | 1275 | /* cannot split THP, skip it */ | 
|  | 1276 | if (!can_split_huge_page(page, NULL)) | 
|  | 1277 | goto activate_locked; | 
|  | 1278 | /* | 
|  | 1279 | * Split pages without a PMD map right | 
|  | 1280 | * away. Chances are some or all of the | 
|  | 1281 | * tail pages can be freed without IO. | 
|  | 1282 | */ | 
|  | 1283 | if (!compound_mapcount(page) && | 
|  | 1284 | split_huge_page_to_list(page, | 
|  | 1285 | page_list)) | 
|  | 1286 | goto activate_locked; | 
|  | 1287 | } | 
|  | 1288 | if (!add_to_swap(page)) { | 
|  | 1289 | if (!PageTransHuge(page)) | 
|  | 1290 | goto activate_locked; | 
|  | 1291 | /* Fallback to swap normal pages */ | 
|  | 1292 | if (split_huge_page_to_list(page, | 
|  | 1293 | page_list)) | 
|  | 1294 | goto activate_locked; | 
|  | 1295 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 1296 | count_vm_event(THP_SWPOUT_FALLBACK); | 
|  | 1297 | #endif | 
|  | 1298 | if (!add_to_swap(page)) | 
|  | 1299 | goto activate_locked; | 
|  | 1300 | } | 
|  | 1301 |  | 
|  | 1302 | may_enter_fs = 1; | 
|  | 1303 |  | 
|  | 1304 | /* Adding to swap updated mapping */ | 
|  | 1305 | mapping = page_mapping(page); | 
|  | 1306 | } | 
|  | 1307 | } else if (unlikely(PageTransHuge(page))) { | 
|  | 1308 | /* Split file THP */ | 
|  | 1309 | if (split_huge_page_to_list(page, page_list)) | 
|  | 1310 | goto keep_locked; | 
|  | 1311 | } | 
|  | 1312 |  | 
|  | 1313 | /* | 
|  | 1314 | * The page is mapped into the page tables of one or more | 
|  | 1315 | * processes. Try to unmap it here. | 
|  | 1316 | */ | 
|  | 1317 | if (page_mapped(page)) { | 
|  | 1318 | enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; | 
|  | 1319 |  | 
|  | 1320 | if (unlikely(PageTransHuge(page))) | 
|  | 1321 | flags |= TTU_SPLIT_HUGE_PMD; | 
|  | 1322 | if (!try_to_unmap(page, flags)) { | 
|  | 1323 | nr_unmap_fail++; | 
|  | 1324 | goto activate_locked; | 
|  | 1325 | } | 
|  | 1326 | } | 
|  | 1327 |  | 
|  | 1328 | if (PageDirty(page)) { | 
|  | 1329 | /* | 
|  | 1330 | * Only kswapd can writeback filesystem pages | 
|  | 1331 | * to avoid risk of stack overflow. But avoid | 
|  | 1332 | * injecting inefficient single-page IO into | 
|  | 1333 | * flusher writeback as much as possible: only | 
|  | 1334 | * write pages when we've encountered many | 
|  | 1335 | * dirty pages, and when we've already scanned | 
|  | 1336 | * the rest of the LRU for clean pages and see | 
|  | 1337 | * the same dirty pages again (PageReclaim). | 
|  | 1338 | */ | 
|  | 1339 | if (page_is_file_cache(page) && | 
|  | 1340 | (!current_is_kswapd() || !PageReclaim(page) || | 
|  | 1341 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | 
|  | 1342 | /* | 
|  | 1343 | * Immediately reclaim when written back. | 
|  | 1344 | * Similar in principal to deactivate_page() | 
|  | 1345 | * except we already have the page isolated | 
|  | 1346 | * and know it's dirty | 
|  | 1347 | */ | 
|  | 1348 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); | 
|  | 1349 | SetPageReclaim(page); | 
|  | 1350 |  | 
|  | 1351 | goto activate_locked; | 
|  | 1352 | } | 
|  | 1353 |  | 
|  | 1354 | if (references == PAGEREF_RECLAIM_CLEAN) | 
|  | 1355 | goto keep_locked; | 
|  | 1356 | if (!may_enter_fs) | 
|  | 1357 | goto keep_locked; | 
|  | 1358 | if (!sc->may_writepage) | 
|  | 1359 | goto keep_locked; | 
|  | 1360 |  | 
|  | 1361 | /* | 
|  | 1362 | * Page is dirty. Flush the TLB if a writable entry | 
|  | 1363 | * potentially exists to avoid CPU writes after IO | 
|  | 1364 | * starts and then write it out here. | 
|  | 1365 | */ | 
|  | 1366 | try_to_unmap_flush_dirty(); | 
|  | 1367 | switch (pageout(page, mapping, sc)) { | 
|  | 1368 | case PAGE_KEEP: | 
|  | 1369 | goto keep_locked; | 
|  | 1370 | case PAGE_ACTIVATE: | 
|  | 1371 | goto activate_locked; | 
|  | 1372 | case PAGE_SUCCESS: | 
|  | 1373 | if (PageWriteback(page)) | 
|  | 1374 | goto keep; | 
|  | 1375 | if (PageDirty(page)) | 
|  | 1376 | goto keep; | 
|  | 1377 |  | 
|  | 1378 | /* | 
|  | 1379 | * A synchronous write - probably a ramdisk.  Go | 
|  | 1380 | * ahead and try to reclaim the page. | 
|  | 1381 | */ | 
|  | 1382 | if (!trylock_page(page)) | 
|  | 1383 | goto keep; | 
|  | 1384 | if (PageDirty(page) || PageWriteback(page)) | 
|  | 1385 | goto keep_locked; | 
|  | 1386 | mapping = page_mapping(page); | 
|  | 1387 | case PAGE_CLEAN: | 
|  | 1388 | ; /* try to free the page below */ | 
|  | 1389 | } | 
|  | 1390 | } | 
|  | 1391 |  | 
|  | 1392 | /* | 
|  | 1393 | * If the page has buffers, try to free the buffer mappings | 
|  | 1394 | * associated with this page. If we succeed we try to free | 
|  | 1395 | * the page as well. | 
|  | 1396 | * | 
|  | 1397 | * We do this even if the page is PageDirty(). | 
|  | 1398 | * try_to_release_page() does not perform I/O, but it is | 
|  | 1399 | * possible for a page to have PageDirty set, but it is actually | 
|  | 1400 | * clean (all its buffers are clean).  This happens if the | 
|  | 1401 | * buffers were written out directly, with submit_bh(). ext3 | 
|  | 1402 | * will do this, as well as the blockdev mapping. | 
|  | 1403 | * try_to_release_page() will discover that cleanness and will | 
|  | 1404 | * drop the buffers and mark the page clean - it can be freed. | 
|  | 1405 | * | 
|  | 1406 | * Rarely, pages can have buffers and no ->mapping.  These are | 
|  | 1407 | * the pages which were not successfully invalidated in | 
|  | 1408 | * truncate_complete_page().  We try to drop those buffers here | 
|  | 1409 | * and if that worked, and the page is no longer mapped into | 
|  | 1410 | * process address space (page_count == 1) it can be freed. | 
|  | 1411 | * Otherwise, leave the page on the LRU so it is swappable. | 
|  | 1412 | */ | 
|  | 1413 | if (page_has_private(page)) { | 
|  | 1414 | if (!try_to_release_page(page, sc->gfp_mask)) | 
|  | 1415 | goto activate_locked; | 
|  | 1416 | if (!mapping && page_count(page) == 1) { | 
|  | 1417 | unlock_page(page); | 
|  | 1418 | if (put_page_testzero(page)) | 
|  | 1419 | goto free_it; | 
|  | 1420 | else { | 
|  | 1421 | /* | 
|  | 1422 | * rare race with speculative reference. | 
|  | 1423 | * the speculative reference will free | 
|  | 1424 | * this page shortly, so we may | 
|  | 1425 | * increment nr_reclaimed here (and | 
|  | 1426 | * leave it off the LRU). | 
|  | 1427 | */ | 
|  | 1428 | nr_reclaimed++; | 
|  | 1429 | continue; | 
|  | 1430 | } | 
|  | 1431 | } | 
|  | 1432 | } | 
|  | 1433 |  | 
|  | 1434 | if (PageAnon(page) && !PageSwapBacked(page)) { | 
|  | 1435 | /* follow __remove_mapping for reference */ | 
|  | 1436 | if (!page_ref_freeze(page, 1)) | 
|  | 1437 | goto keep_locked; | 
|  | 1438 | if (PageDirty(page)) { | 
|  | 1439 | page_ref_unfreeze(page, 1); | 
|  | 1440 | goto keep_locked; | 
|  | 1441 | } | 
|  | 1442 |  | 
|  | 1443 | count_vm_event(PGLAZYFREED); | 
|  | 1444 | count_memcg_page_event(page, PGLAZYFREED); | 
|  | 1445 | } else if (!mapping || !__remove_mapping(mapping, page, true)) | 
|  | 1446 | goto keep_locked; | 
|  | 1447 | /* | 
|  | 1448 | * At this point, we have no other references and there is | 
|  | 1449 | * no way to pick any more up (removed from LRU, removed | 
|  | 1450 | * from pagecache). Can use non-atomic bitops now (and | 
|  | 1451 | * we obviously don't have to worry about waking up a process | 
|  | 1452 | * waiting on the page lock, because there are no references. | 
|  | 1453 | */ | 
|  | 1454 | __ClearPageLocked(page); | 
|  | 1455 | free_it: | 
|  | 1456 | nr_reclaimed++; | 
|  | 1457 |  | 
|  | 1458 | /* | 
|  | 1459 | * Is there need to periodically free_page_list? It would | 
|  | 1460 | * appear not as the counts should be low | 
|  | 1461 | */ | 
|  | 1462 | if (unlikely(PageTransHuge(page))) { | 
|  | 1463 | mem_cgroup_uncharge(page); | 
|  | 1464 | (*get_compound_page_dtor(page))(page); | 
|  | 1465 | } else | 
|  | 1466 | list_add(&page->lru, &free_pages); | 
|  | 1467 | continue; | 
|  | 1468 |  | 
|  | 1469 | activate_locked: | 
|  | 1470 | /* Not a candidate for swapping, so reclaim swap space. */ | 
|  | 1471 | if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || | 
|  | 1472 | PageMlocked(page))) | 
|  | 1473 | try_to_free_swap(page); | 
|  | 1474 | VM_BUG_ON_PAGE(PageActive(page), page); | 
|  | 1475 | if (!PageMlocked(page)) { | 
|  | 1476 | SetPageActive(page); | 
|  | 1477 | pgactivate++; | 
|  | 1478 | count_memcg_page_event(page, PGACTIVATE); | 
|  | 1479 | } | 
|  | 1480 | keep_locked: | 
|  | 1481 | unlock_page(page); | 
|  | 1482 | keep: | 
|  | 1483 | list_add(&page->lru, &ret_pages); | 
|  | 1484 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); | 
|  | 1485 | } | 
|  | 1486 |  | 
|  | 1487 | mem_cgroup_uncharge_list(&free_pages); | 
|  | 1488 | try_to_unmap_flush(); | 
|  | 1489 | free_unref_page_list(&free_pages); | 
|  | 1490 |  | 
|  | 1491 | list_splice(&ret_pages, page_list); | 
|  | 1492 | count_vm_events(PGACTIVATE, pgactivate); | 
|  | 1493 |  | 
|  | 1494 | if (stat) { | 
|  | 1495 | stat->nr_dirty = nr_dirty; | 
|  | 1496 | stat->nr_congested = nr_congested; | 
|  | 1497 | stat->nr_unqueued_dirty = nr_unqueued_dirty; | 
|  | 1498 | stat->nr_writeback = nr_writeback; | 
|  | 1499 | stat->nr_immediate = nr_immediate; | 
|  | 1500 | stat->nr_activate = pgactivate; | 
|  | 1501 | stat->nr_ref_keep = nr_ref_keep; | 
|  | 1502 | stat->nr_unmap_fail = nr_unmap_fail; | 
|  | 1503 | } | 
|  | 1504 | return nr_reclaimed; | 
|  | 1505 | } | 
|  | 1506 |  | 
|  | 1507 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, | 
|  | 1508 | struct list_head *page_list) | 
|  | 1509 | { | 
|  | 1510 | struct scan_control sc = { | 
|  | 1511 | .gfp_mask = GFP_KERNEL, | 
|  | 1512 | .priority = DEF_PRIORITY, | 
|  | 1513 | .may_unmap = 1, | 
|  | 1514 | }; | 
|  | 1515 | unsigned long ret; | 
|  | 1516 | struct page *page, *next; | 
|  | 1517 | LIST_HEAD(clean_pages); | 
|  | 1518 |  | 
|  | 1519 | list_for_each_entry_safe(page, next, page_list, lru) { | 
|  | 1520 | if (page_is_file_cache(page) && !PageDirty(page) && | 
|  | 1521 | !__PageMovable(page) && !PageUnevictable(page)) { | 
|  | 1522 | ClearPageActive(page); | 
|  | 1523 | list_move(&page->lru, &clean_pages); | 
|  | 1524 | } | 
|  | 1525 | } | 
|  | 1526 |  | 
|  | 1527 | ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, | 
|  | 1528 | TTU_IGNORE_ACCESS, NULL, true); | 
|  | 1529 | list_splice(&clean_pages, page_list); | 
|  | 1530 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); | 
|  | 1531 | return ret; | 
|  | 1532 | } | 
|  | 1533 |  | 
|  | 1534 | /* | 
|  | 1535 | * Attempt to remove the specified page from its LRU.  Only take this page | 
|  | 1536 | * if it is of the appropriate PageActive status.  Pages which are being | 
|  | 1537 | * freed elsewhere are also ignored. | 
|  | 1538 | * | 
|  | 1539 | * page:	page to consider | 
|  | 1540 | * mode:	one of the LRU isolation modes defined above | 
|  | 1541 | * | 
|  | 1542 | * returns 0 on success, -ve errno on failure. | 
|  | 1543 | */ | 
|  | 1544 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) | 
|  | 1545 | { | 
|  | 1546 | int ret = -EINVAL; | 
|  | 1547 |  | 
|  | 1548 | /* Only take pages on the LRU. */ | 
|  | 1549 | if (!PageLRU(page)) | 
|  | 1550 | return ret; | 
|  | 1551 |  | 
|  | 1552 | /* Compaction should not handle unevictable pages but CMA can do so */ | 
|  | 1553 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | 
|  | 1554 | return ret; | 
|  | 1555 |  | 
|  | 1556 | ret = -EBUSY; | 
|  | 1557 |  | 
|  | 1558 | /* | 
|  | 1559 | * To minimise LRU disruption, the caller can indicate that it only | 
|  | 1560 | * wants to isolate pages it will be able to operate on without | 
|  | 1561 | * blocking - clean pages for the most part. | 
|  | 1562 | * | 
|  | 1563 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | 
|  | 1564 | * that it is possible to migrate without blocking | 
|  | 1565 | */ | 
|  | 1566 | if (mode & ISOLATE_ASYNC_MIGRATE) { | 
|  | 1567 | /* All the caller can do on PageWriteback is block */ | 
|  | 1568 | if (PageWriteback(page)) | 
|  | 1569 | return ret; | 
|  | 1570 |  | 
|  | 1571 | if (PageDirty(page)) { | 
|  | 1572 | struct address_space *mapping; | 
|  | 1573 | bool migrate_dirty; | 
|  | 1574 |  | 
|  | 1575 | /* | 
|  | 1576 | * Only pages without mappings or that have a | 
|  | 1577 | * ->migratepage callback are possible to migrate | 
|  | 1578 | * without blocking. However, we can be racing with | 
|  | 1579 | * truncation so it's necessary to lock the page | 
|  | 1580 | * to stabilise the mapping as truncation holds | 
|  | 1581 | * the page lock until after the page is removed | 
|  | 1582 | * from the page cache. | 
|  | 1583 | */ | 
|  | 1584 | if (!trylock_page(page)) | 
|  | 1585 | return ret; | 
|  | 1586 |  | 
|  | 1587 | mapping = page_mapping(page); | 
|  | 1588 | migrate_dirty = !mapping || mapping->a_ops->migratepage; | 
|  | 1589 | unlock_page(page); | 
|  | 1590 | if (!migrate_dirty) | 
|  | 1591 | return ret; | 
|  | 1592 | } | 
|  | 1593 | } | 
|  | 1594 |  | 
|  | 1595 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) | 
|  | 1596 | return ret; | 
|  | 1597 |  | 
|  | 1598 | if (likely(get_page_unless_zero(page))) { | 
|  | 1599 | /* | 
|  | 1600 | * Be careful not to clear PageLRU until after we're | 
|  | 1601 | * sure the page is not being freed elsewhere -- the | 
|  | 1602 | * page release code relies on it. | 
|  | 1603 | */ | 
|  | 1604 | ClearPageLRU(page); | 
|  | 1605 | ret = 0; | 
|  | 1606 | } | 
|  | 1607 |  | 
|  | 1608 | return ret; | 
|  | 1609 | } | 
|  | 1610 |  | 
|  | 1611 |  | 
|  | 1612 | /* | 
|  | 1613 | * Update LRU sizes after isolating pages. The LRU size updates must | 
|  | 1614 | * be complete before mem_cgroup_update_lru_size due to a santity check. | 
|  | 1615 | */ | 
|  | 1616 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | 
|  | 1617 | enum lru_list lru, unsigned long *nr_zone_taken) | 
|  | 1618 | { | 
|  | 1619 | int zid; | 
|  | 1620 |  | 
|  | 1621 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | 1622 | if (!nr_zone_taken[zid]) | 
|  | 1623 | continue; | 
|  | 1624 |  | 
|  | 1625 | __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | 
|  | 1626 | #ifdef CONFIG_MEMCG | 
|  | 1627 | mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | 
|  | 1628 | #endif | 
|  | 1629 | } | 
|  | 1630 |  | 
|  | 1631 | } | 
|  | 1632 |  | 
|  | 1633 | /* | 
|  | 1634 | * zone_lru_lock is heavily contended.  Some of the functions that | 
|  | 1635 | * shrink the lists perform better by taking out a batch of pages | 
|  | 1636 | * and working on them outside the LRU lock. | 
|  | 1637 | * | 
|  | 1638 | * For pagecache intensive workloads, this function is the hottest | 
|  | 1639 | * spot in the kernel (apart from copy_*_user functions). | 
|  | 1640 | * | 
|  | 1641 | * Appropriate locks must be held before calling this function. | 
|  | 1642 | * | 
|  | 1643 | * @nr_to_scan:	The number of eligible pages to look through on the list. | 
|  | 1644 | * @lruvec:	The LRU vector to pull pages from. | 
|  | 1645 | * @dst:	The temp list to put pages on to. | 
|  | 1646 | * @nr_scanned:	The number of pages that were scanned. | 
|  | 1647 | * @sc:		The scan_control struct for this reclaim session | 
|  | 1648 | * @mode:	One of the LRU isolation modes | 
|  | 1649 | * @lru:	LRU list id for isolating | 
|  | 1650 | * | 
|  | 1651 | * returns how many pages were moved onto *@dst. | 
|  | 1652 | */ | 
|  | 1653 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | 
|  | 1654 | struct lruvec *lruvec, struct list_head *dst, | 
|  | 1655 | unsigned long *nr_scanned, struct scan_control *sc, | 
|  | 1656 | isolate_mode_t mode, enum lru_list lru) | 
|  | 1657 | { | 
|  | 1658 | struct list_head *src = &lruvec->lists[lru]; | 
|  | 1659 | unsigned long nr_taken = 0; | 
|  | 1660 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; | 
|  | 1661 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; | 
|  | 1662 | unsigned long skipped = 0; | 
|  | 1663 | unsigned long scan, total_scan, nr_pages; | 
|  | 1664 | LIST_HEAD(pages_skipped); | 
|  | 1665 |  | 
|  | 1666 | scan = 0; | 
|  | 1667 | for (total_scan = 0; | 
|  | 1668 | scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); | 
|  | 1669 | total_scan++) { | 
|  | 1670 | struct page *page; | 
|  | 1671 |  | 
|  | 1672 | page = lru_to_page(src); | 
|  | 1673 | prefetchw_prev_lru_page(page, src, flags); | 
|  | 1674 |  | 
|  | 1675 | VM_BUG_ON_PAGE(!PageLRU(page), page); | 
|  | 1676 |  | 
|  | 1677 | if (page_zonenum(page) > sc->reclaim_idx) { | 
|  | 1678 | list_move(&page->lru, &pages_skipped); | 
|  | 1679 | nr_skipped[page_zonenum(page)]++; | 
|  | 1680 | continue; | 
|  | 1681 | } | 
|  | 1682 |  | 
|  | 1683 | /* | 
|  | 1684 | * Do not count skipped pages because that makes the function | 
|  | 1685 | * return with no isolated pages if the LRU mostly contains | 
|  | 1686 | * ineligible pages.  This causes the VM to not reclaim any | 
|  | 1687 | * pages, triggering a premature OOM. | 
|  | 1688 | */ | 
|  | 1689 | scan++; | 
|  | 1690 | switch (__isolate_lru_page(page, mode)) { | 
|  | 1691 | case 0: | 
|  | 1692 | nr_pages = hpage_nr_pages(page); | 
|  | 1693 | nr_taken += nr_pages; | 
|  | 1694 | nr_zone_taken[page_zonenum(page)] += nr_pages; | 
|  | 1695 | list_move(&page->lru, dst); | 
|  | 1696 | break; | 
|  | 1697 |  | 
|  | 1698 | case -EBUSY: | 
|  | 1699 | /* else it is being freed elsewhere */ | 
|  | 1700 | list_move(&page->lru, src); | 
|  | 1701 | continue; | 
|  | 1702 |  | 
|  | 1703 | default: | 
|  | 1704 | BUG(); | 
|  | 1705 | } | 
|  | 1706 | } | 
|  | 1707 |  | 
|  | 1708 | /* | 
|  | 1709 | * Splice any skipped pages to the start of the LRU list. Note that | 
|  | 1710 | * this disrupts the LRU order when reclaiming for lower zones but | 
|  | 1711 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | 
|  | 1712 | * scanning would soon rescan the same pages to skip and put the | 
|  | 1713 | * system at risk of premature OOM. | 
|  | 1714 | */ | 
|  | 1715 | if (!list_empty(&pages_skipped)) { | 
|  | 1716 | int zid; | 
|  | 1717 |  | 
|  | 1718 | list_splice(&pages_skipped, src); | 
|  | 1719 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | 1720 | if (!nr_skipped[zid]) | 
|  | 1721 | continue; | 
|  | 1722 |  | 
|  | 1723 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | 
|  | 1724 | skipped += nr_skipped[zid]; | 
|  | 1725 | } | 
|  | 1726 | } | 
|  | 1727 | *nr_scanned = total_scan; | 
|  | 1728 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, | 
|  | 1729 | total_scan, skipped, nr_taken, mode, lru); | 
|  | 1730 | update_lru_sizes(lruvec, lru, nr_zone_taken); | 
|  | 1731 | return nr_taken; | 
|  | 1732 | } | 
|  | 1733 |  | 
|  | 1734 | /** | 
|  | 1735 | * isolate_lru_page - tries to isolate a page from its LRU list | 
|  | 1736 | * @page: page to isolate from its LRU list | 
|  | 1737 | * | 
|  | 1738 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | 
|  | 1739 | * vmstat statistic corresponding to whatever LRU list the page was on. | 
|  | 1740 | * | 
|  | 1741 | * Returns 0 if the page was removed from an LRU list. | 
|  | 1742 | * Returns -EBUSY if the page was not on an LRU list. | 
|  | 1743 | * | 
|  | 1744 | * The returned page will have PageLRU() cleared.  If it was found on | 
|  | 1745 | * the active list, it will have PageActive set.  If it was found on | 
|  | 1746 | * the unevictable list, it will have the PageUnevictable bit set. That flag | 
|  | 1747 | * may need to be cleared by the caller before letting the page go. | 
|  | 1748 | * | 
|  | 1749 | * The vmstat statistic corresponding to the list on which the page was | 
|  | 1750 | * found will be decremented. | 
|  | 1751 | * | 
|  | 1752 | * Restrictions: | 
|  | 1753 | * | 
|  | 1754 | * (1) Must be called with an elevated refcount on the page. This is a | 
|  | 1755 | *     fundamentnal difference from isolate_lru_pages (which is called | 
|  | 1756 | *     without a stable reference). | 
|  | 1757 | * (2) the lru_lock must not be held. | 
|  | 1758 | * (3) interrupts must be enabled. | 
|  | 1759 | */ | 
|  | 1760 | int isolate_lru_page(struct page *page) | 
|  | 1761 | { | 
|  | 1762 | int ret = -EBUSY; | 
|  | 1763 |  | 
|  | 1764 | VM_BUG_ON_PAGE(!page_count(page), page); | 
|  | 1765 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); | 
|  | 1766 |  | 
|  | 1767 | if (PageLRU(page)) { | 
|  | 1768 | struct zone *zone = page_zone(page); | 
|  | 1769 | struct lruvec *lruvec; | 
|  | 1770 |  | 
|  | 1771 | spin_lock_irq(zone_lru_lock(zone)); | 
|  | 1772 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); | 
|  | 1773 | if (PageLRU(page)) { | 
|  | 1774 | int lru = page_lru(page); | 
|  | 1775 | get_page(page); | 
|  | 1776 | ClearPageLRU(page); | 
|  | 1777 | del_page_from_lru_list(page, lruvec, lru); | 
|  | 1778 | ret = 0; | 
|  | 1779 | } | 
|  | 1780 | spin_unlock_irq(zone_lru_lock(zone)); | 
|  | 1781 | } | 
|  | 1782 | return ret; | 
|  | 1783 | } | 
|  | 1784 |  | 
|  | 1785 | /* | 
|  | 1786 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and | 
|  | 1787 | * then get resheduled. When there are massive number of tasks doing page | 
|  | 1788 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | 
|  | 1789 | * the LRU list will go small and be scanned faster than necessary, leading to | 
|  | 1790 | * unnecessary swapping, thrashing and OOM. | 
|  | 1791 | */ | 
|  | 1792 | static int too_many_isolated(struct pglist_data *pgdat, int file, | 
|  | 1793 | struct scan_control *sc) | 
|  | 1794 | { | 
|  | 1795 | unsigned long inactive, isolated; | 
|  | 1796 |  | 
|  | 1797 | if (current_is_kswapd()) | 
|  | 1798 | return 0; | 
|  | 1799 |  | 
|  | 1800 | if (!sane_reclaim(sc)) | 
|  | 1801 | return 0; | 
|  | 1802 |  | 
|  | 1803 | if (file) { | 
|  | 1804 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); | 
|  | 1805 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | 
|  | 1806 | } else { | 
|  | 1807 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); | 
|  | 1808 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | 
|  | 1809 | } | 
|  | 1810 |  | 
|  | 1811 | /* | 
|  | 1812 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | 
|  | 1813 | * won't get blocked by normal direct-reclaimers, forming a circular | 
|  | 1814 | * deadlock. | 
|  | 1815 | */ | 
|  | 1816 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | 
|  | 1817 | inactive >>= 3; | 
|  | 1818 |  | 
|  | 1819 | return isolated > inactive; | 
|  | 1820 | } | 
|  | 1821 |  | 
|  | 1822 | static noinline_for_stack void | 
|  | 1823 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) | 
|  | 1824 | { | 
|  | 1825 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
|  | 1826 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 1827 | LIST_HEAD(pages_to_free); | 
|  | 1828 |  | 
|  | 1829 | /* | 
|  | 1830 | * Put back any unfreeable pages. | 
|  | 1831 | */ | 
|  | 1832 | while (!list_empty(page_list)) { | 
|  | 1833 | struct page *page = lru_to_page(page_list); | 
|  | 1834 | int lru; | 
|  | 1835 |  | 
|  | 1836 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 1837 | list_del(&page->lru); | 
|  | 1838 | if (unlikely(!page_evictable(page))) { | 
|  | 1839 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 1840 | putback_lru_page(page); | 
|  | 1841 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 1842 | continue; | 
|  | 1843 | } | 
|  | 1844 |  | 
|  | 1845 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
|  | 1846 |  | 
|  | 1847 | SetPageLRU(page); | 
|  | 1848 | lru = page_lru(page); | 
|  | 1849 | add_page_to_lru_list(page, lruvec, lru); | 
|  | 1850 |  | 
|  | 1851 | if (is_active_lru(lru)) { | 
|  | 1852 | int file = is_file_lru(lru); | 
|  | 1853 | int numpages = hpage_nr_pages(page); | 
|  | 1854 | reclaim_stat->recent_rotated[file] += numpages; | 
|  | 1855 | } | 
|  | 1856 | if (put_page_testzero(page)) { | 
|  | 1857 | __ClearPageLRU(page); | 
|  | 1858 | __ClearPageActive(page); | 
|  | 1859 | del_page_from_lru_list(page, lruvec, lru); | 
|  | 1860 |  | 
|  | 1861 | if (unlikely(PageCompound(page))) { | 
|  | 1862 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 1863 | mem_cgroup_uncharge(page); | 
|  | 1864 | (*get_compound_page_dtor(page))(page); | 
|  | 1865 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 1866 | } else | 
|  | 1867 | list_add(&page->lru, &pages_to_free); | 
|  | 1868 | } | 
|  | 1869 | } | 
|  | 1870 |  | 
|  | 1871 | /* | 
|  | 1872 | * To save our caller's stack, now use input list for pages to free. | 
|  | 1873 | */ | 
|  | 1874 | list_splice(&pages_to_free, page_list); | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | /* | 
|  | 1878 | * If a kernel thread (such as nfsd for loop-back mounts) services | 
|  | 1879 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. | 
|  | 1880 | * In that case we should only throttle if the backing device it is | 
|  | 1881 | * writing to is congested.  In other cases it is safe to throttle. | 
|  | 1882 | */ | 
|  | 1883 | static int current_may_throttle(void) | 
|  | 1884 | { | 
|  | 1885 | return !(current->flags & PF_LESS_THROTTLE) || | 
|  | 1886 | current->backing_dev_info == NULL || | 
|  | 1887 | bdi_write_congested(current->backing_dev_info); | 
|  | 1888 | } | 
|  | 1889 |  | 
|  | 1890 | /* | 
|  | 1891 | * shrink_inactive_list() is a helper for shrink_node().  It returns the number | 
|  | 1892 | * of reclaimed pages | 
|  | 1893 | */ | 
|  | 1894 | static noinline_for_stack unsigned long | 
|  | 1895 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, | 
|  | 1896 | struct scan_control *sc, enum lru_list lru) | 
|  | 1897 | { | 
|  | 1898 | LIST_HEAD(page_list); | 
|  | 1899 | unsigned long nr_scanned; | 
|  | 1900 | unsigned long nr_reclaimed = 0; | 
|  | 1901 | unsigned long nr_taken; | 
|  | 1902 | struct reclaim_stat stat = {}; | 
|  | 1903 | isolate_mode_t isolate_mode = 0; | 
|  | 1904 | int file = is_file_lru(lru); | 
|  | 1905 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 1906 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
|  | 1907 | bool stalled = false; | 
|  | 1908 |  | 
|  | 1909 | while (unlikely(too_many_isolated(pgdat, file, sc))) { | 
|  | 1910 | if (stalled) | 
|  | 1911 | return 0; | 
|  | 1912 |  | 
|  | 1913 | /* wait a bit for the reclaimer. */ | 
|  | 1914 | msleep(100); | 
|  | 1915 | stalled = true; | 
|  | 1916 |  | 
|  | 1917 | /* We are about to die and free our memory. Return now. */ | 
|  | 1918 | if (fatal_signal_pending(current)) | 
|  | 1919 | return SWAP_CLUSTER_MAX; | 
|  | 1920 | } | 
|  | 1921 |  | 
|  | 1922 | lru_add_drain(); | 
|  | 1923 |  | 
|  | 1924 | if (!sc->may_unmap) | 
|  | 1925 | isolate_mode |= ISOLATE_UNMAPPED; | 
|  | 1926 |  | 
|  | 1927 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 1928 |  | 
|  | 1929 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, | 
|  | 1930 | &nr_scanned, sc, isolate_mode, lru); | 
|  | 1931 |  | 
|  | 1932 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | 
|  | 1933 | reclaim_stat->recent_scanned[file] += nr_taken; | 
|  | 1934 |  | 
|  | 1935 | if (current_is_kswapd()) { | 
|  | 1936 | if (global_reclaim(sc)) | 
|  | 1937 | __count_vm_events(PGSCAN_KSWAPD, nr_scanned); | 
|  | 1938 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, | 
|  | 1939 | nr_scanned); | 
|  | 1940 | } else { | 
|  | 1941 | if (global_reclaim(sc)) | 
|  | 1942 | __count_vm_events(PGSCAN_DIRECT, nr_scanned); | 
|  | 1943 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, | 
|  | 1944 | nr_scanned); | 
|  | 1945 | } | 
|  | 1946 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 1947 |  | 
|  | 1948 | if (nr_taken == 0) | 
|  | 1949 | return 0; | 
|  | 1950 |  | 
|  | 1951 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, | 
|  | 1952 | &stat, false); | 
|  | 1953 |  | 
|  | 1954 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 1955 |  | 
|  | 1956 | if (current_is_kswapd()) { | 
|  | 1957 | if (global_reclaim(sc)) | 
|  | 1958 | __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); | 
|  | 1959 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, | 
|  | 1960 | nr_reclaimed); | 
|  | 1961 | } else { | 
|  | 1962 | if (global_reclaim(sc)) | 
|  | 1963 | __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); | 
|  | 1964 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, | 
|  | 1965 | nr_reclaimed); | 
|  | 1966 | } | 
|  | 1967 |  | 
|  | 1968 | putback_inactive_pages(lruvec, &page_list); | 
|  | 1969 |  | 
|  | 1970 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | 
|  | 1971 |  | 
|  | 1972 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 1973 |  | 
|  | 1974 | mem_cgroup_uncharge_list(&page_list); | 
|  | 1975 | free_unref_page_list(&page_list); | 
|  | 1976 |  | 
|  | 1977 | /* | 
|  | 1978 | * If dirty pages are scanned that are not queued for IO, it | 
|  | 1979 | * implies that flushers are not doing their job. This can | 
|  | 1980 | * happen when memory pressure pushes dirty pages to the end of | 
|  | 1981 | * the LRU before the dirty limits are breached and the dirty | 
|  | 1982 | * data has expired. It can also happen when the proportion of | 
|  | 1983 | * dirty pages grows not through writes but through memory | 
|  | 1984 | * pressure reclaiming all the clean cache. And in some cases, | 
|  | 1985 | * the flushers simply cannot keep up with the allocation | 
|  | 1986 | * rate. Nudge the flusher threads in case they are asleep. | 
|  | 1987 | */ | 
|  | 1988 | if (stat.nr_unqueued_dirty == nr_taken) | 
|  | 1989 | wakeup_flusher_threads(WB_REASON_VMSCAN); | 
|  | 1990 |  | 
|  | 1991 | sc->nr.dirty += stat.nr_dirty; | 
|  | 1992 | sc->nr.congested += stat.nr_congested; | 
|  | 1993 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | 
|  | 1994 | sc->nr.writeback += stat.nr_writeback; | 
|  | 1995 | sc->nr.immediate += stat.nr_immediate; | 
|  | 1996 | sc->nr.taken += nr_taken; | 
|  | 1997 | if (file) | 
|  | 1998 | sc->nr.file_taken += nr_taken; | 
|  | 1999 |  | 
|  | 2000 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | 
|  | 2001 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); | 
|  | 2002 | return nr_reclaimed; | 
|  | 2003 | } | 
|  | 2004 |  | 
|  | 2005 | /* | 
|  | 2006 | * This moves pages from the active list to the inactive list. | 
|  | 2007 | * | 
|  | 2008 | * We move them the other way if the page is referenced by one or more | 
|  | 2009 | * processes, from rmap. | 
|  | 2010 | * | 
|  | 2011 | * If the pages are mostly unmapped, the processing is fast and it is | 
|  | 2012 | * appropriate to hold zone_lru_lock across the whole operation.  But if | 
|  | 2013 | * the pages are mapped, the processing is slow (page_referenced()) so we | 
|  | 2014 | * should drop zone_lru_lock around each page.  It's impossible to balance | 
|  | 2015 | * this, so instead we remove the pages from the LRU while processing them. | 
|  | 2016 | * It is safe to rely on PG_active against the non-LRU pages in here because | 
|  | 2017 | * nobody will play with that bit on a non-LRU page. | 
|  | 2018 | * | 
|  | 2019 | * The downside is that we have to touch page->_refcount against each page. | 
|  | 2020 | * But we had to alter page->flags anyway. | 
|  | 2021 | * | 
|  | 2022 | * Returns the number of pages moved to the given lru. | 
|  | 2023 | */ | 
|  | 2024 |  | 
|  | 2025 | static unsigned move_active_pages_to_lru(struct lruvec *lruvec, | 
|  | 2026 | struct list_head *list, | 
|  | 2027 | struct list_head *pages_to_free, | 
|  | 2028 | enum lru_list lru) | 
|  | 2029 | { | 
|  | 2030 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 2031 | struct page *page; | 
|  | 2032 | int nr_pages; | 
|  | 2033 | int nr_moved = 0; | 
|  | 2034 |  | 
|  | 2035 | while (!list_empty(list)) { | 
|  | 2036 | page = lru_to_page(list); | 
|  | 2037 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
|  | 2038 |  | 
|  | 2039 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 2040 | SetPageLRU(page); | 
|  | 2041 |  | 
|  | 2042 | nr_pages = hpage_nr_pages(page); | 
|  | 2043 | update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); | 
|  | 2044 | list_move(&page->lru, &lruvec->lists[lru]); | 
|  | 2045 |  | 
|  | 2046 | if (put_page_testzero(page)) { | 
|  | 2047 | __ClearPageLRU(page); | 
|  | 2048 | __ClearPageActive(page); | 
|  | 2049 | del_page_from_lru_list(page, lruvec, lru); | 
|  | 2050 |  | 
|  | 2051 | if (unlikely(PageCompound(page))) { | 
|  | 2052 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 2053 | mem_cgroup_uncharge(page); | 
|  | 2054 | (*get_compound_page_dtor(page))(page); | 
|  | 2055 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 2056 | } else | 
|  | 2057 | list_add(&page->lru, pages_to_free); | 
|  | 2058 | } else { | 
|  | 2059 | nr_moved += nr_pages; | 
|  | 2060 | } | 
|  | 2061 | } | 
|  | 2062 |  | 
|  | 2063 | if (!is_active_lru(lru)) { | 
|  | 2064 | __count_vm_events(PGDEACTIVATE, nr_moved); | 
|  | 2065 | count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, | 
|  | 2066 | nr_moved); | 
|  | 2067 | } | 
|  | 2068 |  | 
|  | 2069 | return nr_moved; | 
|  | 2070 | } | 
|  | 2071 |  | 
|  | 2072 | static void shrink_active_list(unsigned long nr_to_scan, | 
|  | 2073 | struct lruvec *lruvec, | 
|  | 2074 | struct scan_control *sc, | 
|  | 2075 | enum lru_list lru) | 
|  | 2076 | { | 
|  | 2077 | unsigned long nr_taken; | 
|  | 2078 | unsigned long nr_scanned; | 
|  | 2079 | unsigned long vm_flags; | 
|  | 2080 | LIST_HEAD(l_hold);	/* The pages which were snipped off */ | 
|  | 2081 | LIST_HEAD(l_active); | 
|  | 2082 | LIST_HEAD(l_inactive); | 
|  | 2083 | struct page *page; | 
|  | 2084 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
|  | 2085 | unsigned nr_deactivate, nr_activate; | 
|  | 2086 | unsigned nr_rotated = 0; | 
|  | 2087 | isolate_mode_t isolate_mode = 0; | 
|  | 2088 | int file = is_file_lru(lru); | 
|  | 2089 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 2090 |  | 
|  | 2091 | lru_add_drain(); | 
|  | 2092 |  | 
|  | 2093 | if (!sc->may_unmap) | 
|  | 2094 | isolate_mode |= ISOLATE_UNMAPPED; | 
|  | 2095 |  | 
|  | 2096 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 2097 |  | 
|  | 2098 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, | 
|  | 2099 | &nr_scanned, sc, isolate_mode, lru); | 
|  | 2100 |  | 
|  | 2101 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | 
|  | 2102 | reclaim_stat->recent_scanned[file] += nr_taken; | 
|  | 2103 |  | 
|  | 2104 | __count_vm_events(PGREFILL, nr_scanned); | 
|  | 2105 | count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); | 
|  | 2106 |  | 
|  | 2107 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 2108 |  | 
|  | 2109 | while (!list_empty(&l_hold)) { | 
|  | 2110 | cond_resched(); | 
|  | 2111 | page = lru_to_page(&l_hold); | 
|  | 2112 | list_del(&page->lru); | 
|  | 2113 |  | 
|  | 2114 | if (unlikely(!page_evictable(page))) { | 
|  | 2115 | putback_lru_page(page); | 
|  | 2116 | continue; | 
|  | 2117 | } | 
|  | 2118 |  | 
|  | 2119 | if (unlikely(buffer_heads_over_limit)) { | 
|  | 2120 | if (page_has_private(page) && trylock_page(page)) { | 
|  | 2121 | if (page_has_private(page)) | 
|  | 2122 | try_to_release_page(page, 0); | 
|  | 2123 | unlock_page(page); | 
|  | 2124 | } | 
|  | 2125 | } | 
|  | 2126 |  | 
|  | 2127 | if (page_referenced(page, 0, sc->target_mem_cgroup, | 
|  | 2128 | &vm_flags)) { | 
|  | 2129 | nr_rotated += hpage_nr_pages(page); | 
|  | 2130 | /* | 
|  | 2131 | * Identify referenced, file-backed active pages and | 
|  | 2132 | * give them one more trip around the active list. So | 
|  | 2133 | * that executable code get better chances to stay in | 
|  | 2134 | * memory under moderate memory pressure.  Anon pages | 
|  | 2135 | * are not likely to be evicted by use-once streaming | 
|  | 2136 | * IO, plus JVM can create lots of anon VM_EXEC pages, | 
|  | 2137 | * so we ignore them here. | 
|  | 2138 | */ | 
|  | 2139 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { | 
|  | 2140 | list_add(&page->lru, &l_active); | 
|  | 2141 | continue; | 
|  | 2142 | } | 
|  | 2143 | } | 
|  | 2144 |  | 
|  | 2145 | ClearPageActive(page);	/* we are de-activating */ | 
|  | 2146 | SetPageWorkingset(page); | 
|  | 2147 | list_add(&page->lru, &l_inactive); | 
|  | 2148 | } | 
|  | 2149 |  | 
|  | 2150 | /* | 
|  | 2151 | * Move pages back to the lru list. | 
|  | 2152 | */ | 
|  | 2153 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 2154 | /* | 
|  | 2155 | * Count referenced pages from currently used mappings as rotated, | 
|  | 2156 | * even though only some of them are actually re-activated.  This | 
|  | 2157 | * helps balance scan pressure between file and anonymous pages in | 
|  | 2158 | * get_scan_count. | 
|  | 2159 | */ | 
|  | 2160 | reclaim_stat->recent_rotated[file] += nr_rotated; | 
|  | 2161 |  | 
|  | 2162 | nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); | 
|  | 2163 | nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | 
|  | 2164 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | 
|  | 2165 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 2166 |  | 
|  | 2167 | mem_cgroup_uncharge_list(&l_hold); | 
|  | 2168 | free_unref_page_list(&l_hold); | 
|  | 2169 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, | 
|  | 2170 | nr_deactivate, nr_rotated, sc->priority, file); | 
|  | 2171 | } | 
|  | 2172 |  | 
|  | 2173 | /* | 
|  | 2174 | * The inactive anon list should be small enough that the VM never has | 
|  | 2175 | * to do too much work. | 
|  | 2176 | * | 
|  | 2177 | * The inactive file list should be small enough to leave most memory | 
|  | 2178 | * to the established workingset on the scan-resistant active list, | 
|  | 2179 | * but large enough to avoid thrashing the aggregate readahead window. | 
|  | 2180 | * | 
|  | 2181 | * Both inactive lists should also be large enough that each inactive | 
|  | 2182 | * page has a chance to be referenced again before it is reclaimed. | 
|  | 2183 | * | 
|  | 2184 | * If that fails and refaulting is observed, the inactive list grows. | 
|  | 2185 | * | 
|  | 2186 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages | 
|  | 2187 | * on this LRU, maintained by the pageout code. An inactive_ratio | 
|  | 2188 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. | 
|  | 2189 | * | 
|  | 2190 | * total     target    max | 
|  | 2191 | * memory    ratio     inactive | 
|  | 2192 | * ------------------------------------- | 
|  | 2193 | *   10MB       1         5MB | 
|  | 2194 | *  100MB       1        50MB | 
|  | 2195 | *    1GB       3       250MB | 
|  | 2196 | *   10GB      10       0.9GB | 
|  | 2197 | *  100GB      31         3GB | 
|  | 2198 | *    1TB     101        10GB | 
|  | 2199 | *   10TB     320        32GB | 
|  | 2200 | */ | 
|  | 2201 | static bool inactive_list_is_low(struct lruvec *lruvec, bool file, | 
|  | 2202 | struct scan_control *sc, bool trace) | 
|  | 2203 | { | 
|  | 2204 | enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; | 
|  | 2205 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 2206 | enum lru_list inactive_lru = file * LRU_FILE; | 
|  | 2207 | unsigned long inactive, active; | 
|  | 2208 | unsigned long inactive_ratio; | 
|  | 2209 | unsigned long refaults; | 
|  | 2210 | unsigned long gb; | 
|  | 2211 |  | 
|  | 2212 | /* | 
|  | 2213 | * If we don't have swap space, anonymous page deactivation | 
|  | 2214 | * is pointless. | 
|  | 2215 | */ | 
|  | 2216 | if (!file && !total_swap_pages) | 
|  | 2217 | return false; | 
|  | 2218 |  | 
|  | 2219 | inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); | 
|  | 2220 | active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); | 
|  | 2221 |  | 
|  | 2222 | /* | 
|  | 2223 | * When refaults are being observed, it means a new workingset | 
|  | 2224 | * is being established. Disable active list protection to get | 
|  | 2225 | * rid of the stale workingset quickly. | 
|  | 2226 | */ | 
|  | 2227 | refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); | 
|  | 2228 | if (file && lruvec->refaults != refaults) { | 
|  | 2229 | inactive_ratio = 0; | 
|  | 2230 | } else { | 
|  | 2231 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | 
|  | 2232 | if (gb) | 
|  | 2233 | inactive_ratio = int_sqrt(10 * gb); | 
|  | 2234 | else | 
|  | 2235 | inactive_ratio = 1; | 
|  | 2236 | } | 
|  | 2237 |  | 
|  | 2238 | if (trace) | 
|  | 2239 | trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, | 
|  | 2240 | lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, | 
|  | 2241 | lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, | 
|  | 2242 | inactive_ratio, file); | 
|  | 2243 |  | 
|  | 2244 | return inactive * inactive_ratio < active; | 
|  | 2245 | } | 
|  | 2246 |  | 
|  | 2247 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | 
|  | 2248 | struct lruvec *lruvec, struct scan_control *sc) | 
|  | 2249 | { | 
|  | 2250 | if (is_active_lru(lru)) { | 
|  | 2251 | if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) | 
|  | 2252 | shrink_active_list(nr_to_scan, lruvec, sc, lru); | 
|  | 2253 | return 0; | 
|  | 2254 | } | 
|  | 2255 |  | 
|  | 2256 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | 
|  | 2257 | } | 
|  | 2258 |  | 
|  | 2259 | enum scan_balance { | 
|  | 2260 | SCAN_EQUAL, | 
|  | 2261 | SCAN_FRACT, | 
|  | 2262 | SCAN_ANON, | 
|  | 2263 | SCAN_FILE, | 
|  | 2264 | }; | 
|  | 2265 |  | 
|  | 2266 | /* | 
|  | 2267 | * Determine how aggressively the anon and file LRU lists should be | 
|  | 2268 | * scanned.  The relative value of each set of LRU lists is determined | 
|  | 2269 | * by looking at the fraction of the pages scanned we did rotate back | 
|  | 2270 | * onto the active list instead of evict. | 
|  | 2271 | * | 
|  | 2272 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan | 
|  | 2273 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | 
|  | 2274 | */ | 
|  | 2275 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, | 
|  | 2276 | struct scan_control *sc, unsigned long *nr, | 
|  | 2277 | unsigned long *lru_pages) | 
|  | 2278 | { | 
|  | 2279 | int swappiness = mem_cgroup_swappiness(memcg); | 
|  | 2280 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
|  | 2281 | u64 fraction[2]; | 
|  | 2282 | u64 denominator = 0;	/* gcc */ | 
|  | 2283 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
|  | 2284 | unsigned long anon_prio, file_prio; | 
|  | 2285 | enum scan_balance scan_balance; | 
|  | 2286 | unsigned long anon, file; | 
|  | 2287 | unsigned long ap, fp; | 
|  | 2288 | enum lru_list lru; | 
|  | 2289 |  | 
|  | 2290 | /* If we have no swap space, do not bother scanning anon pages. */ | 
|  | 2291 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { | 
|  | 2292 | scan_balance = SCAN_FILE; | 
|  | 2293 | goto out; | 
|  | 2294 | } | 
|  | 2295 |  | 
|  | 2296 | /* | 
|  | 2297 | * Global reclaim will swap to prevent OOM even with no | 
|  | 2298 | * swappiness, but memcg users want to use this knob to | 
|  | 2299 | * disable swapping for individual groups completely when | 
|  | 2300 | * using the memory controller's swap limit feature would be | 
|  | 2301 | * too expensive. | 
|  | 2302 | */ | 
|  | 2303 | if (!global_reclaim(sc) && !swappiness) { | 
|  | 2304 | scan_balance = SCAN_FILE; | 
|  | 2305 | goto out; | 
|  | 2306 | } | 
|  | 2307 |  | 
|  | 2308 | /* | 
|  | 2309 | * Do not apply any pressure balancing cleverness when the | 
|  | 2310 | * system is close to OOM, scan both anon and file equally | 
|  | 2311 | * (unless the swappiness setting disagrees with swapping). | 
|  | 2312 | */ | 
|  | 2313 | if (!sc->priority && swappiness) { | 
|  | 2314 | scan_balance = SCAN_EQUAL; | 
|  | 2315 | goto out; | 
|  | 2316 | } | 
|  | 2317 |  | 
|  | 2318 | /* | 
|  | 2319 | * Prevent the reclaimer from falling into the cache trap: as | 
|  | 2320 | * cache pages start out inactive, every cache fault will tip | 
|  | 2321 | * the scan balance towards the file LRU.  And as the file LRU | 
|  | 2322 | * shrinks, so does the window for rotation from references. | 
|  | 2323 | * This means we have a runaway feedback loop where a tiny | 
|  | 2324 | * thrashing file LRU becomes infinitely more attractive than | 
|  | 2325 | * anon pages.  Try to detect this based on file LRU size. | 
|  | 2326 | */ | 
|  | 2327 | if (global_reclaim(sc)) { | 
|  | 2328 | unsigned long pgdatfile; | 
|  | 2329 | unsigned long pgdatfree; | 
|  | 2330 | int z; | 
|  | 2331 | unsigned long total_high_wmark = 0; | 
|  | 2332 |  | 
|  | 2333 | pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | 
|  | 2334 | pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + | 
|  | 2335 | node_page_state(pgdat, NR_INACTIVE_FILE); | 
|  | 2336 |  | 
|  | 2337 | for (z = 0; z < MAX_NR_ZONES; z++) { | 
|  | 2338 | struct zone *zone = &pgdat->node_zones[z]; | 
|  | 2339 | if (!managed_zone(zone)) | 
|  | 2340 | continue; | 
|  | 2341 |  | 
|  | 2342 | total_high_wmark += high_wmark_pages(zone); | 
|  | 2343 | } | 
|  | 2344 |  | 
|  | 2345 | if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { | 
|  | 2346 | /* | 
|  | 2347 | * Force SCAN_ANON if there are enough inactive | 
|  | 2348 | * anonymous pages on the LRU in eligible zones. | 
|  | 2349 | * Otherwise, the small LRU gets thrashed. | 
|  | 2350 | */ | 
|  | 2351 | if (!inactive_list_is_low(lruvec, false, sc, false) && | 
|  | 2352 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) | 
|  | 2353 | >> sc->priority) { | 
|  | 2354 | scan_balance = SCAN_ANON; | 
|  | 2355 | goto out; | 
|  | 2356 | } | 
|  | 2357 | } | 
|  | 2358 | } | 
|  | 2359 |  | 
|  | 2360 | /* | 
|  | 2361 | * If there is enough inactive page cache, i.e. if the size of the | 
|  | 2362 | * inactive list is greater than that of the active list *and* the | 
|  | 2363 | * inactive list actually has some pages to scan on this priority, we | 
|  | 2364 | * do not reclaim anything from the anonymous working set right now. | 
|  | 2365 | * Without the second condition we could end up never scanning an | 
|  | 2366 | * lruvec even if it has plenty of old anonymous pages unless the | 
|  | 2367 | * system is under heavy pressure. | 
|  | 2368 | */ | 
|  | 2369 | if (!inactive_list_is_low(lruvec, true, sc, false) && | 
|  | 2370 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { | 
|  | 2371 | scan_balance = SCAN_FILE; | 
|  | 2372 | goto out; | 
|  | 2373 | } | 
|  | 2374 |  | 
|  | 2375 | scan_balance = SCAN_FRACT; | 
|  | 2376 |  | 
|  | 2377 | /* | 
|  | 2378 | * With swappiness at 100, anonymous and file have the same priority. | 
|  | 2379 | * This scanning priority is essentially the inverse of IO cost. | 
|  | 2380 | */ | 
|  | 2381 | anon_prio = swappiness; | 
|  | 2382 | file_prio = 200 - anon_prio; | 
|  | 2383 |  | 
|  | 2384 | /* | 
|  | 2385 | * OK, so we have swap space and a fair amount of page cache | 
|  | 2386 | * pages.  We use the recently rotated / recently scanned | 
|  | 2387 | * ratios to determine how valuable each cache is. | 
|  | 2388 | * | 
|  | 2389 | * Because workloads change over time (and to avoid overflow) | 
|  | 2390 | * we keep these statistics as a floating average, which ends | 
|  | 2391 | * up weighing recent references more than old ones. | 
|  | 2392 | * | 
|  | 2393 | * anon in [0], file in [1] | 
|  | 2394 | */ | 
|  | 2395 |  | 
|  | 2396 | anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + | 
|  | 2397 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); | 
|  | 2398 | file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + | 
|  | 2399 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); | 
|  | 2400 |  | 
|  | 2401 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 2402 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { | 
|  | 2403 | reclaim_stat->recent_scanned[0] /= 2; | 
|  | 2404 | reclaim_stat->recent_rotated[0] /= 2; | 
|  | 2405 | } | 
|  | 2406 |  | 
|  | 2407 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { | 
|  | 2408 | reclaim_stat->recent_scanned[1] /= 2; | 
|  | 2409 | reclaim_stat->recent_rotated[1] /= 2; | 
|  | 2410 | } | 
|  | 2411 |  | 
|  | 2412 | /* | 
|  | 2413 | * The amount of pressure on anon vs file pages is inversely | 
|  | 2414 | * proportional to the fraction of recently scanned pages on | 
|  | 2415 | * each list that were recently referenced and in active use. | 
|  | 2416 | */ | 
|  | 2417 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); | 
|  | 2418 | ap /= reclaim_stat->recent_rotated[0] + 1; | 
|  | 2419 |  | 
|  | 2420 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); | 
|  | 2421 | fp /= reclaim_stat->recent_rotated[1] + 1; | 
|  | 2422 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 2423 |  | 
|  | 2424 | fraction[0] = ap; | 
|  | 2425 | fraction[1] = fp; | 
|  | 2426 | denominator = ap + fp + 1; | 
|  | 2427 | out: | 
|  | 2428 | *lru_pages = 0; | 
|  | 2429 | for_each_evictable_lru(lru) { | 
|  | 2430 | int file = is_file_lru(lru); | 
|  | 2431 | unsigned long size; | 
|  | 2432 | unsigned long scan; | 
|  | 2433 |  | 
|  | 2434 | size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | 
|  | 2435 | scan = size >> sc->priority; | 
|  | 2436 | /* | 
|  | 2437 | * If the cgroup's already been deleted, make sure to | 
|  | 2438 | * scrape out the remaining cache. | 
|  | 2439 | */ | 
|  | 2440 | if (!scan && !mem_cgroup_online(memcg)) | 
|  | 2441 | scan = min(size, SWAP_CLUSTER_MAX); | 
|  | 2442 |  | 
|  | 2443 | switch (scan_balance) { | 
|  | 2444 | case SCAN_EQUAL: | 
|  | 2445 | /* Scan lists relative to size */ | 
|  | 2446 | break; | 
|  | 2447 | case SCAN_FRACT: | 
|  | 2448 | /* | 
|  | 2449 | * Scan types proportional to swappiness and | 
|  | 2450 | * their relative recent reclaim efficiency. | 
|  | 2451 | * Make sure we don't miss the last page | 
|  | 2452 | * because of a round-off error. | 
|  | 2453 | */ | 
|  | 2454 | scan = DIV64_U64_ROUND_UP(scan * fraction[file], | 
|  | 2455 | denominator); | 
|  | 2456 | break; | 
|  | 2457 | case SCAN_FILE: | 
|  | 2458 | case SCAN_ANON: | 
|  | 2459 | /* Scan one type exclusively */ | 
|  | 2460 | if ((scan_balance == SCAN_FILE) != file) { | 
|  | 2461 | size = 0; | 
|  | 2462 | scan = 0; | 
|  | 2463 | } | 
|  | 2464 | break; | 
|  | 2465 | default: | 
|  | 2466 | /* Look ma, no brain */ | 
|  | 2467 | BUG(); | 
|  | 2468 | } | 
|  | 2469 |  | 
|  | 2470 | *lru_pages += size; | 
|  | 2471 | nr[lru] = scan; | 
|  | 2472 | } | 
|  | 2473 | } | 
|  | 2474 |  | 
|  | 2475 | /* | 
|  | 2476 | * This is a basic per-node page freer.  Used by both kswapd and direct reclaim. | 
|  | 2477 | */ | 
|  | 2478 | static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, | 
|  | 2479 | struct scan_control *sc, unsigned long *lru_pages) | 
|  | 2480 | { | 
|  | 2481 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); | 
|  | 2482 | unsigned long nr[NR_LRU_LISTS]; | 
|  | 2483 | unsigned long targets[NR_LRU_LISTS]; | 
|  | 2484 | unsigned long nr_to_scan; | 
|  | 2485 | enum lru_list lru; | 
|  | 2486 | unsigned long nr_reclaimed = 0; | 
|  | 2487 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | 
|  | 2488 | struct blk_plug plug; | 
|  | 2489 | bool scan_adjusted; | 
|  | 2490 |  | 
|  | 2491 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); | 
|  | 2492 |  | 
|  | 2493 | /* Record the original scan target for proportional adjustments later */ | 
|  | 2494 | memcpy(targets, nr, sizeof(nr)); | 
|  | 2495 |  | 
|  | 2496 | /* | 
|  | 2497 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | 
|  | 2498 | * event that can occur when there is little memory pressure e.g. | 
|  | 2499 | * multiple streaming readers/writers. Hence, we do not abort scanning | 
|  | 2500 | * when the requested number of pages are reclaimed when scanning at | 
|  | 2501 | * DEF_PRIORITY on the assumption that the fact we are direct | 
|  | 2502 | * reclaiming implies that kswapd is not keeping up and it is best to | 
|  | 2503 | * do a batch of work at once. For memcg reclaim one check is made to | 
|  | 2504 | * abort proportional reclaim if either the file or anon lru has already | 
|  | 2505 | * dropped to zero at the first pass. | 
|  | 2506 | */ | 
|  | 2507 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && | 
|  | 2508 | sc->priority == DEF_PRIORITY); | 
|  | 2509 |  | 
|  | 2510 | blk_start_plug(&plug); | 
|  | 2511 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | 
|  | 2512 | nr[LRU_INACTIVE_FILE]) { | 
|  | 2513 | unsigned long nr_anon, nr_file, percentage; | 
|  | 2514 | unsigned long nr_scanned; | 
|  | 2515 |  | 
|  | 2516 | for_each_evictable_lru(lru) { | 
|  | 2517 | if (nr[lru]) { | 
|  | 2518 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | 
|  | 2519 | nr[lru] -= nr_to_scan; | 
|  | 2520 |  | 
|  | 2521 | nr_reclaimed += shrink_list(lru, nr_to_scan, | 
|  | 2522 | lruvec, sc); | 
|  | 2523 | } | 
|  | 2524 | } | 
|  | 2525 |  | 
|  | 2526 | cond_resched(); | 
|  | 2527 |  | 
|  | 2528 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) | 
|  | 2529 | continue; | 
|  | 2530 |  | 
|  | 2531 | /* | 
|  | 2532 | * For kswapd and memcg, reclaim at least the number of pages | 
|  | 2533 | * requested. Ensure that the anon and file LRUs are scanned | 
|  | 2534 | * proportionally what was requested by get_scan_count(). We | 
|  | 2535 | * stop reclaiming one LRU and reduce the amount scanning | 
|  | 2536 | * proportional to the original scan target. | 
|  | 2537 | */ | 
|  | 2538 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | 
|  | 2539 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | 
|  | 2540 |  | 
|  | 2541 | /* | 
|  | 2542 | * It's just vindictive to attack the larger once the smaller | 
|  | 2543 | * has gone to zero.  And given the way we stop scanning the | 
|  | 2544 | * smaller below, this makes sure that we only make one nudge | 
|  | 2545 | * towards proportionality once we've got nr_to_reclaim. | 
|  | 2546 | */ | 
|  | 2547 | if (!nr_file || !nr_anon) | 
|  | 2548 | break; | 
|  | 2549 |  | 
|  | 2550 | if (nr_file > nr_anon) { | 
|  | 2551 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | 
|  | 2552 | targets[LRU_ACTIVE_ANON] + 1; | 
|  | 2553 | lru = LRU_BASE; | 
|  | 2554 | percentage = nr_anon * 100 / scan_target; | 
|  | 2555 | } else { | 
|  | 2556 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | 
|  | 2557 | targets[LRU_ACTIVE_FILE] + 1; | 
|  | 2558 | lru = LRU_FILE; | 
|  | 2559 | percentage = nr_file * 100 / scan_target; | 
|  | 2560 | } | 
|  | 2561 |  | 
|  | 2562 | /* Stop scanning the smaller of the LRU */ | 
|  | 2563 | nr[lru] = 0; | 
|  | 2564 | nr[lru + LRU_ACTIVE] = 0; | 
|  | 2565 |  | 
|  | 2566 | /* | 
|  | 2567 | * Recalculate the other LRU scan count based on its original | 
|  | 2568 | * scan target and the percentage scanning already complete | 
|  | 2569 | */ | 
|  | 2570 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | 
|  | 2571 | nr_scanned = targets[lru] - nr[lru]; | 
|  | 2572 | nr[lru] = targets[lru] * (100 - percentage) / 100; | 
|  | 2573 | nr[lru] -= min(nr[lru], nr_scanned); | 
|  | 2574 |  | 
|  | 2575 | lru += LRU_ACTIVE; | 
|  | 2576 | nr_scanned = targets[lru] - nr[lru]; | 
|  | 2577 | nr[lru] = targets[lru] * (100 - percentage) / 100; | 
|  | 2578 | nr[lru] -= min(nr[lru], nr_scanned); | 
|  | 2579 |  | 
|  | 2580 | scan_adjusted = true; | 
|  | 2581 | } | 
|  | 2582 | blk_finish_plug(&plug); | 
|  | 2583 | sc->nr_reclaimed += nr_reclaimed; | 
|  | 2584 |  | 
|  | 2585 | /* | 
|  | 2586 | * Even if we did not try to evict anon pages at all, we want to | 
|  | 2587 | * rebalance the anon lru active/inactive ratio. | 
|  | 2588 | */ | 
|  | 2589 | if (inactive_list_is_low(lruvec, false, sc, true)) | 
|  | 2590 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | 
|  | 2591 | sc, LRU_ACTIVE_ANON); | 
|  | 2592 | } | 
|  | 2593 |  | 
|  | 2594 | /* Use reclaim/compaction for costly allocs or under memory pressure */ | 
|  | 2595 | static bool in_reclaim_compaction(struct scan_control *sc) | 
|  | 2596 | { | 
|  | 2597 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && | 
|  | 2598 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || | 
|  | 2599 | sc->priority < DEF_PRIORITY - 2)) | 
|  | 2600 | return true; | 
|  | 2601 |  | 
|  | 2602 | return false; | 
|  | 2603 | } | 
|  | 2604 |  | 
|  | 2605 | /* | 
|  | 2606 | * Reclaim/compaction is used for high-order allocation requests. It reclaims | 
|  | 2607 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | 
|  | 2608 | * true if more pages should be reclaimed such that when the page allocator | 
|  | 2609 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | 
|  | 2610 | * It will give up earlier than that if there is difficulty reclaiming pages. | 
|  | 2611 | */ | 
|  | 2612 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, | 
|  | 2613 | unsigned long nr_reclaimed, | 
|  | 2614 | unsigned long nr_scanned, | 
|  | 2615 | struct scan_control *sc) | 
|  | 2616 | { | 
|  | 2617 | unsigned long pages_for_compaction; | 
|  | 2618 | unsigned long inactive_lru_pages; | 
|  | 2619 | int z; | 
|  | 2620 |  | 
|  | 2621 | /* If not in reclaim/compaction mode, stop */ | 
|  | 2622 | if (!in_reclaim_compaction(sc)) | 
|  | 2623 | return false; | 
|  | 2624 |  | 
|  | 2625 | /* Consider stopping depending on scan and reclaim activity */ | 
|  | 2626 | if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { | 
|  | 2627 | /* | 
|  | 2628 | * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the | 
|  | 2629 | * full LRU list has been scanned and we are still failing | 
|  | 2630 | * to reclaim pages. This full LRU scan is potentially | 
|  | 2631 | * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed | 
|  | 2632 | */ | 
|  | 2633 | if (!nr_reclaimed && !nr_scanned) | 
|  | 2634 | return false; | 
|  | 2635 | } else { | 
|  | 2636 | /* | 
|  | 2637 | * For non-__GFP_RETRY_MAYFAIL allocations which can presumably | 
|  | 2638 | * fail without consequence, stop if we failed to reclaim | 
|  | 2639 | * any pages from the last SWAP_CLUSTER_MAX number of | 
|  | 2640 | * pages that were scanned. This will return to the | 
|  | 2641 | * caller faster at the risk reclaim/compaction and | 
|  | 2642 | * the resulting allocation attempt fails | 
|  | 2643 | */ | 
|  | 2644 | if (!nr_reclaimed) | 
|  | 2645 | return false; | 
|  | 2646 | } | 
|  | 2647 |  | 
|  | 2648 | /* | 
|  | 2649 | * If we have not reclaimed enough pages for compaction and the | 
|  | 2650 | * inactive lists are large enough, continue reclaiming | 
|  | 2651 | */ | 
|  | 2652 | pages_for_compaction = compact_gap(sc->order); | 
|  | 2653 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | 
|  | 2654 | if (get_nr_swap_pages() > 0) | 
|  | 2655 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); | 
|  | 2656 | if (sc->nr_reclaimed < pages_for_compaction && | 
|  | 2657 | inactive_lru_pages > pages_for_compaction) | 
|  | 2658 | return true; | 
|  | 2659 |  | 
|  | 2660 | /* If compaction would go ahead or the allocation would succeed, stop */ | 
|  | 2661 | for (z = 0; z <= sc->reclaim_idx; z++) { | 
|  | 2662 | struct zone *zone = &pgdat->node_zones[z]; | 
|  | 2663 | if (!managed_zone(zone)) | 
|  | 2664 | continue; | 
|  | 2665 |  | 
|  | 2666 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | 
|  | 2667 | case COMPACT_SUCCESS: | 
|  | 2668 | case COMPACT_CONTINUE: | 
|  | 2669 | return false; | 
|  | 2670 | default: | 
|  | 2671 | /* check next zone */ | 
|  | 2672 | ; | 
|  | 2673 | } | 
|  | 2674 | } | 
|  | 2675 | return true; | 
|  | 2676 | } | 
|  | 2677 |  | 
|  | 2678 | static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) | 
|  | 2679 | { | 
|  | 2680 | return test_bit(PGDAT_CONGESTED, &pgdat->flags) || | 
|  | 2681 | (memcg && memcg_congested(pgdat, memcg)); | 
|  | 2682 | } | 
|  | 2683 |  | 
|  | 2684 | static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) | 
|  | 2685 | { | 
|  | 2686 | struct reclaim_state *reclaim_state = current->reclaim_state; | 
|  | 2687 | unsigned long nr_reclaimed, nr_scanned; | 
|  | 2688 | bool reclaimable = false; | 
|  | 2689 |  | 
|  | 2690 | do { | 
|  | 2691 | struct mem_cgroup *root = sc->target_mem_cgroup; | 
|  | 2692 | struct mem_cgroup_reclaim_cookie reclaim = { | 
|  | 2693 | .pgdat = pgdat, | 
|  | 2694 | .priority = sc->priority, | 
|  | 2695 | }; | 
|  | 2696 | unsigned long node_lru_pages = 0; | 
|  | 2697 | struct mem_cgroup *memcg; | 
|  | 2698 |  | 
|  | 2699 | memset(&sc->nr, 0, sizeof(sc->nr)); | 
|  | 2700 |  | 
|  | 2701 | nr_reclaimed = sc->nr_reclaimed; | 
|  | 2702 | nr_scanned = sc->nr_scanned; | 
|  | 2703 |  | 
|  | 2704 | memcg = mem_cgroup_iter(root, NULL, &reclaim); | 
|  | 2705 | do { | 
|  | 2706 | unsigned long lru_pages; | 
|  | 2707 | unsigned long reclaimed; | 
|  | 2708 | unsigned long scanned; | 
|  | 2709 |  | 
|  | 2710 | switch (mem_cgroup_protected(root, memcg)) { | 
|  | 2711 | case MEMCG_PROT_MIN: | 
|  | 2712 | /* | 
|  | 2713 | * Hard protection. | 
|  | 2714 | * If there is no reclaimable memory, OOM. | 
|  | 2715 | */ | 
|  | 2716 | continue; | 
|  | 2717 | case MEMCG_PROT_LOW: | 
|  | 2718 | /* | 
|  | 2719 | * Soft protection. | 
|  | 2720 | * Respect the protection only as long as | 
|  | 2721 | * there is an unprotected supply | 
|  | 2722 | * of reclaimable memory from other cgroups. | 
|  | 2723 | */ | 
|  | 2724 | if (!sc->memcg_low_reclaim) { | 
|  | 2725 | sc->memcg_low_skipped = 1; | 
|  | 2726 | continue; | 
|  | 2727 | } | 
|  | 2728 | memcg_memory_event(memcg, MEMCG_LOW); | 
|  | 2729 | break; | 
|  | 2730 | case MEMCG_PROT_NONE: | 
|  | 2731 | break; | 
|  | 2732 | } | 
|  | 2733 |  | 
|  | 2734 | reclaimed = sc->nr_reclaimed; | 
|  | 2735 | scanned = sc->nr_scanned; | 
|  | 2736 | shrink_node_memcg(pgdat, memcg, sc, &lru_pages); | 
|  | 2737 | node_lru_pages += lru_pages; | 
|  | 2738 |  | 
|  | 2739 | shrink_slab(sc->gfp_mask, pgdat->node_id, | 
|  | 2740 | memcg, sc->priority); | 
|  | 2741 |  | 
|  | 2742 | /* Record the group's reclaim efficiency */ | 
|  | 2743 | vmpressure(sc->gfp_mask, memcg, false, | 
|  | 2744 | sc->nr_scanned - scanned, | 
|  | 2745 | sc->nr_reclaimed - reclaimed); | 
|  | 2746 |  | 
|  | 2747 | /* | 
|  | 2748 | * Direct reclaim and kswapd have to scan all memory | 
|  | 2749 | * cgroups to fulfill the overall scan target for the | 
|  | 2750 | * node. | 
|  | 2751 | * | 
|  | 2752 | * Limit reclaim, on the other hand, only cares about | 
|  | 2753 | * nr_to_reclaim pages to be reclaimed and it will | 
|  | 2754 | * retry with decreasing priority if one round over the | 
|  | 2755 | * whole hierarchy is not sufficient. | 
|  | 2756 | */ | 
|  | 2757 | if (!global_reclaim(sc) && | 
|  | 2758 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | 
|  | 2759 | mem_cgroup_iter_break(root, memcg); | 
|  | 2760 | break; | 
|  | 2761 | } | 
|  | 2762 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); | 
|  | 2763 |  | 
|  | 2764 | if (reclaim_state) { | 
|  | 2765 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | 
|  | 2766 | reclaim_state->reclaimed_slab = 0; | 
|  | 2767 | } | 
|  | 2768 |  | 
|  | 2769 | /* Record the subtree's reclaim efficiency */ | 
|  | 2770 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | 
|  | 2771 | sc->nr_scanned - nr_scanned, | 
|  | 2772 | sc->nr_reclaimed - nr_reclaimed); | 
|  | 2773 |  | 
|  | 2774 | if (sc->nr_reclaimed - nr_reclaimed) | 
|  | 2775 | reclaimable = true; | 
|  | 2776 |  | 
|  | 2777 | if (current_is_kswapd()) { | 
|  | 2778 | /* | 
|  | 2779 | * If reclaim is isolating dirty pages under writeback, | 
|  | 2780 | * it implies that the long-lived page allocation rate | 
|  | 2781 | * is exceeding the page laundering rate. Either the | 
|  | 2782 | * global limits are not being effective at throttling | 
|  | 2783 | * processes due to the page distribution throughout | 
|  | 2784 | * zones or there is heavy usage of a slow backing | 
|  | 2785 | * device. The only option is to throttle from reclaim | 
|  | 2786 | * context which is not ideal as there is no guarantee | 
|  | 2787 | * the dirtying process is throttled in the same way | 
|  | 2788 | * balance_dirty_pages() manages. | 
|  | 2789 | * | 
|  | 2790 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | 
|  | 2791 | * count the number of pages under pages flagged for | 
|  | 2792 | * immediate reclaim and stall if any are encountered | 
|  | 2793 | * in the nr_immediate check below. | 
|  | 2794 | */ | 
|  | 2795 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | 
|  | 2796 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | 
|  | 2797 |  | 
|  | 2798 | /* | 
|  | 2799 | * Tag a node as congested if all the dirty pages | 
|  | 2800 | * scanned were backed by a congested BDI and | 
|  | 2801 | * wait_iff_congested will stall. | 
|  | 2802 | */ | 
|  | 2803 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | 
|  | 2804 | set_bit(PGDAT_CONGESTED, &pgdat->flags); | 
|  | 2805 |  | 
|  | 2806 | /* Allow kswapd to start writing pages during reclaim.*/ | 
|  | 2807 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) | 
|  | 2808 | set_bit(PGDAT_DIRTY, &pgdat->flags); | 
|  | 2809 |  | 
|  | 2810 | /* | 
|  | 2811 | * If kswapd scans pages marked marked for immediate | 
|  | 2812 | * reclaim and under writeback (nr_immediate), it | 
|  | 2813 | * implies that pages are cycling through the LRU | 
|  | 2814 | * faster than they are written so also forcibly stall. | 
|  | 2815 | */ | 
|  | 2816 | if (sc->nr.immediate) | 
|  | 2817 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | 2818 | } | 
|  | 2819 |  | 
|  | 2820 | /* | 
|  | 2821 | * Legacy memcg will stall in page writeback so avoid forcibly | 
|  | 2822 | * stalling in wait_iff_congested(). | 
|  | 2823 | */ | 
|  | 2824 | if (!global_reclaim(sc) && sane_reclaim(sc) && | 
|  | 2825 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | 
|  | 2826 | set_memcg_congestion(pgdat, root, true); | 
|  | 2827 |  | 
|  | 2828 | /* | 
|  | 2829 | * Stall direct reclaim for IO completions if underlying BDIs | 
|  | 2830 | * and node is congested. Allow kswapd to continue until it | 
|  | 2831 | * starts encountering unqueued dirty pages or cycling through | 
|  | 2832 | * the LRU too quickly. | 
|  | 2833 | */ | 
|  | 2834 | if (!sc->hibernation_mode && !current_is_kswapd() && | 
|  | 2835 | current_may_throttle() && pgdat_memcg_congested(pgdat, root)) | 
|  | 2836 | wait_iff_congested(BLK_RW_ASYNC, HZ/10); | 
|  | 2837 |  | 
|  | 2838 | } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, | 
|  | 2839 | sc->nr_scanned - nr_scanned, sc)); | 
|  | 2840 |  | 
|  | 2841 | /* | 
|  | 2842 | * Kswapd gives up on balancing particular nodes after too | 
|  | 2843 | * many failures to reclaim anything from them and goes to | 
|  | 2844 | * sleep. On reclaim progress, reset the failure counter. A | 
|  | 2845 | * successful direct reclaim run will revive a dormant kswapd. | 
|  | 2846 | */ | 
|  | 2847 | if (reclaimable) | 
|  | 2848 | pgdat->kswapd_failures = 0; | 
|  | 2849 |  | 
|  | 2850 | return reclaimable; | 
|  | 2851 | } | 
|  | 2852 |  | 
|  | 2853 | /* | 
|  | 2854 | * Returns true if compaction should go ahead for a costly-order request, or | 
|  | 2855 | * the allocation would already succeed without compaction. Return false if we | 
|  | 2856 | * should reclaim first. | 
|  | 2857 | */ | 
|  | 2858 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | 
|  | 2859 | { | 
|  | 2860 | unsigned long watermark; | 
|  | 2861 | enum compact_result suitable; | 
|  | 2862 |  | 
|  | 2863 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); | 
|  | 2864 | if (suitable == COMPACT_SUCCESS) | 
|  | 2865 | /* Allocation should succeed already. Don't reclaim. */ | 
|  | 2866 | return true; | 
|  | 2867 | if (suitable == COMPACT_SKIPPED) | 
|  | 2868 | /* Compaction cannot yet proceed. Do reclaim. */ | 
|  | 2869 | return false; | 
|  | 2870 |  | 
|  | 2871 | /* | 
|  | 2872 | * Compaction is already possible, but it takes time to run and there | 
|  | 2873 | * are potentially other callers using the pages just freed. So proceed | 
|  | 2874 | * with reclaim to make a buffer of free pages available to give | 
|  | 2875 | * compaction a reasonable chance of completing and allocating the page. | 
|  | 2876 | * Note that we won't actually reclaim the whole buffer in one attempt | 
|  | 2877 | * as the target watermark in should_continue_reclaim() is lower. But if | 
|  | 2878 | * we are already above the high+gap watermark, don't reclaim at all. | 
|  | 2879 | */ | 
|  | 2880 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); | 
|  | 2881 |  | 
|  | 2882 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); | 
|  | 2883 | } | 
|  | 2884 |  | 
|  | 2885 | /* | 
|  | 2886 | * This is the direct reclaim path, for page-allocating processes.  We only | 
|  | 2887 | * try to reclaim pages from zones which will satisfy the caller's allocation | 
|  | 2888 | * request. | 
|  | 2889 | * | 
|  | 2890 | * If a zone is deemed to be full of pinned pages then just give it a light | 
|  | 2891 | * scan then give up on it. | 
|  | 2892 | */ | 
|  | 2893 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) | 
|  | 2894 | { | 
|  | 2895 | struct zoneref *z; | 
|  | 2896 | struct zone *zone; | 
|  | 2897 | unsigned long nr_soft_reclaimed; | 
|  | 2898 | unsigned long nr_soft_scanned; | 
|  | 2899 | gfp_t orig_mask; | 
|  | 2900 | pg_data_t *last_pgdat = NULL; | 
|  | 2901 |  | 
|  | 2902 | /* | 
|  | 2903 | * If the number of buffer_heads in the machine exceeds the maximum | 
|  | 2904 | * allowed level, force direct reclaim to scan the highmem zone as | 
|  | 2905 | * highmem pages could be pinning lowmem pages storing buffer_heads | 
|  | 2906 | */ | 
|  | 2907 | orig_mask = sc->gfp_mask; | 
|  | 2908 | if (buffer_heads_over_limit) { | 
|  | 2909 | sc->gfp_mask |= __GFP_HIGHMEM; | 
|  | 2910 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); | 
|  | 2911 | } | 
|  | 2912 |  | 
|  | 2913 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | 2914 | sc->reclaim_idx, sc->nodemask) { | 
|  | 2915 | /* | 
|  | 2916 | * Take care memory controller reclaiming has small influence | 
|  | 2917 | * to global LRU. | 
|  | 2918 | */ | 
|  | 2919 | if (global_reclaim(sc)) { | 
|  | 2920 | if (!cpuset_zone_allowed(zone, | 
|  | 2921 | GFP_KERNEL | __GFP_HARDWALL)) | 
|  | 2922 | continue; | 
|  | 2923 |  | 
|  | 2924 | /* | 
|  | 2925 | * If we already have plenty of memory free for | 
|  | 2926 | * compaction in this zone, don't free any more. | 
|  | 2927 | * Even though compaction is invoked for any | 
|  | 2928 | * non-zero order, only frequent costly order | 
|  | 2929 | * reclamation is disruptive enough to become a | 
|  | 2930 | * noticeable problem, like transparent huge | 
|  | 2931 | * page allocations. | 
|  | 2932 | */ | 
|  | 2933 | if (IS_ENABLED(CONFIG_COMPACTION) && | 
|  | 2934 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | 
|  | 2935 | compaction_ready(zone, sc)) { | 
|  | 2936 | sc->compaction_ready = true; | 
|  | 2937 | continue; | 
|  | 2938 | } | 
|  | 2939 |  | 
|  | 2940 | /* | 
|  | 2941 | * Shrink each node in the zonelist once. If the | 
|  | 2942 | * zonelist is ordered by zone (not the default) then a | 
|  | 2943 | * node may be shrunk multiple times but in that case | 
|  | 2944 | * the user prefers lower zones being preserved. | 
|  | 2945 | */ | 
|  | 2946 | if (zone->zone_pgdat == last_pgdat) | 
|  | 2947 | continue; | 
|  | 2948 |  | 
|  | 2949 | /* | 
|  | 2950 | * This steals pages from memory cgroups over softlimit | 
|  | 2951 | * and returns the number of reclaimed pages and | 
|  | 2952 | * scanned pages. This works for global memory pressure | 
|  | 2953 | * and balancing, not for a memcg's limit. | 
|  | 2954 | */ | 
|  | 2955 | nr_soft_scanned = 0; | 
|  | 2956 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, | 
|  | 2957 | sc->order, sc->gfp_mask, | 
|  | 2958 | &nr_soft_scanned); | 
|  | 2959 | sc->nr_reclaimed += nr_soft_reclaimed; | 
|  | 2960 | sc->nr_scanned += nr_soft_scanned; | 
|  | 2961 | /* need some check for avoid more shrink_zone() */ | 
|  | 2962 | } | 
|  | 2963 |  | 
|  | 2964 | /* See comment about same check for global reclaim above */ | 
|  | 2965 | if (zone->zone_pgdat == last_pgdat) | 
|  | 2966 | continue; | 
|  | 2967 | last_pgdat = zone->zone_pgdat; | 
|  | 2968 | shrink_node(zone->zone_pgdat, sc); | 
|  | 2969 | } | 
|  | 2970 |  | 
|  | 2971 | /* | 
|  | 2972 | * Restore to original mask to avoid the impact on the caller if we | 
|  | 2973 | * promoted it to __GFP_HIGHMEM. | 
|  | 2974 | */ | 
|  | 2975 | sc->gfp_mask = orig_mask; | 
|  | 2976 | } | 
|  | 2977 |  | 
|  | 2978 | static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) | 
|  | 2979 | { | 
|  | 2980 | struct mem_cgroup *memcg; | 
|  | 2981 |  | 
|  | 2982 | memcg = mem_cgroup_iter(root_memcg, NULL, NULL); | 
|  | 2983 | do { | 
|  | 2984 | unsigned long refaults; | 
|  | 2985 | struct lruvec *lruvec; | 
|  | 2986 |  | 
|  | 2987 | lruvec = mem_cgroup_lruvec(pgdat, memcg); | 
|  | 2988 | refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); | 
|  | 2989 | lruvec->refaults = refaults; | 
|  | 2990 | } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); | 
|  | 2991 | } | 
|  | 2992 |  | 
|  | 2993 | /* | 
|  | 2994 | * This is the main entry point to direct page reclaim. | 
|  | 2995 | * | 
|  | 2996 | * If a full scan of the inactive list fails to free enough memory then we | 
|  | 2997 | * are "out of memory" and something needs to be killed. | 
|  | 2998 | * | 
|  | 2999 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | 
|  | 3000 | * high - the zone may be full of dirty or under-writeback pages, which this | 
|  | 3001 | * caller can't do much about.  We kick the writeback threads and take explicit | 
|  | 3002 | * naps in the hope that some of these pages can be written.  But if the | 
|  | 3003 | * allocating task holds filesystem locks which prevent writeout this might not | 
|  | 3004 | * work, and the allocation attempt will fail. | 
|  | 3005 | * | 
|  | 3006 | * returns:	0, if no pages reclaimed | 
|  | 3007 | * 		else, the number of pages reclaimed | 
|  | 3008 | */ | 
|  | 3009 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | 
|  | 3010 | struct scan_control *sc) | 
|  | 3011 | { | 
|  | 3012 | int initial_priority = sc->priority; | 
|  | 3013 | pg_data_t *last_pgdat; | 
|  | 3014 | struct zoneref *z; | 
|  | 3015 | struct zone *zone; | 
|  | 3016 | retry: | 
|  | 3017 | delayacct_freepages_start(); | 
|  | 3018 |  | 
|  | 3019 | if (global_reclaim(sc)) | 
|  | 3020 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); | 
|  | 3021 |  | 
|  | 3022 | do { | 
|  | 3023 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | 
|  | 3024 | sc->priority); | 
|  | 3025 | sc->nr_scanned = 0; | 
|  | 3026 | shrink_zones(zonelist, sc); | 
|  | 3027 |  | 
|  | 3028 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) | 
|  | 3029 | break; | 
|  | 3030 |  | 
|  | 3031 | if (sc->compaction_ready) | 
|  | 3032 | break; | 
|  | 3033 |  | 
|  | 3034 | /* | 
|  | 3035 | * If we're getting trouble reclaiming, start doing | 
|  | 3036 | * writepage even in laptop mode. | 
|  | 3037 | */ | 
|  | 3038 | if (sc->priority < DEF_PRIORITY - 2) | 
|  | 3039 | sc->may_writepage = 1; | 
|  | 3040 | } while (--sc->priority >= 0); | 
|  | 3041 |  | 
|  | 3042 | last_pgdat = NULL; | 
|  | 3043 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | 
|  | 3044 | sc->nodemask) { | 
|  | 3045 | if (zone->zone_pgdat == last_pgdat) | 
|  | 3046 | continue; | 
|  | 3047 | last_pgdat = zone->zone_pgdat; | 
|  | 3048 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | 
|  | 3049 | set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); | 
|  | 3050 | } | 
|  | 3051 |  | 
|  | 3052 | delayacct_freepages_end(); | 
|  | 3053 |  | 
|  | 3054 | if (sc->nr_reclaimed) | 
|  | 3055 | return sc->nr_reclaimed; | 
|  | 3056 |  | 
|  | 3057 | /* Aborted reclaim to try compaction? don't OOM, then */ | 
|  | 3058 | if (sc->compaction_ready) | 
|  | 3059 | return 1; | 
|  | 3060 |  | 
|  | 3061 | /* Untapped cgroup reserves?  Don't OOM, retry. */ | 
|  | 3062 | if (sc->memcg_low_skipped) { | 
|  | 3063 | sc->priority = initial_priority; | 
|  | 3064 | sc->memcg_low_reclaim = 1; | 
|  | 3065 | sc->memcg_low_skipped = 0; | 
|  | 3066 | goto retry; | 
|  | 3067 | } | 
|  | 3068 |  | 
|  | 3069 | return 0; | 
|  | 3070 | } | 
|  | 3071 |  | 
|  | 3072 | static bool allow_direct_reclaim(pg_data_t *pgdat) | 
|  | 3073 | { | 
|  | 3074 | struct zone *zone; | 
|  | 3075 | unsigned long pfmemalloc_reserve = 0; | 
|  | 3076 | unsigned long free_pages = 0; | 
|  | 3077 | int i; | 
|  | 3078 | bool wmark_ok; | 
|  | 3079 |  | 
|  | 3080 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | 
|  | 3081 | return true; | 
|  | 3082 |  | 
|  | 3083 | for (i = 0; i <= ZONE_NORMAL; i++) { | 
|  | 3084 | zone = &pgdat->node_zones[i]; | 
|  | 3085 | if (!managed_zone(zone)) | 
|  | 3086 | continue; | 
|  | 3087 |  | 
|  | 3088 | if (!zone_reclaimable_pages(zone)) | 
|  | 3089 | continue; | 
|  | 3090 |  | 
|  | 3091 | pfmemalloc_reserve += min_wmark_pages(zone); | 
|  | 3092 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | 
|  | 3093 | } | 
|  | 3094 |  | 
|  | 3095 | /* If there are no reserves (unexpected config) then do not throttle */ | 
|  | 3096 | if (!pfmemalloc_reserve) | 
|  | 3097 | return true; | 
|  | 3098 |  | 
|  | 3099 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | 
|  | 3100 |  | 
|  | 3101 | /* kswapd must be awake if processes are being throttled */ | 
|  | 3102 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | 
|  | 3103 | pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, | 
|  | 3104 | (enum zone_type)ZONE_NORMAL); | 
|  | 3105 | wake_up_interruptible(&pgdat->kswapd_wait); | 
|  | 3106 | } | 
|  | 3107 |  | 
|  | 3108 | return wmark_ok; | 
|  | 3109 | } | 
|  | 3110 |  | 
|  | 3111 | /* | 
|  | 3112 | * Throttle direct reclaimers if backing storage is backed by the network | 
|  | 3113 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | 
|  | 3114 | * depleted. kswapd will continue to make progress and wake the processes | 
|  | 3115 | * when the low watermark is reached. | 
|  | 3116 | * | 
|  | 3117 | * Returns true if a fatal signal was delivered during throttling. If this | 
|  | 3118 | * happens, the page allocator should not consider triggering the OOM killer. | 
|  | 3119 | */ | 
|  | 3120 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | 
|  | 3121 | nodemask_t *nodemask) | 
|  | 3122 | { | 
|  | 3123 | struct zoneref *z; | 
|  | 3124 | struct zone *zone; | 
|  | 3125 | pg_data_t *pgdat = NULL; | 
|  | 3126 |  | 
|  | 3127 | /* | 
|  | 3128 | * Kernel threads should not be throttled as they may be indirectly | 
|  | 3129 | * responsible for cleaning pages necessary for reclaim to make forward | 
|  | 3130 | * progress. kjournald for example may enter direct reclaim while | 
|  | 3131 | * committing a transaction where throttling it could forcing other | 
|  | 3132 | * processes to block on log_wait_commit(). | 
|  | 3133 | */ | 
|  | 3134 | if (current->flags & PF_KTHREAD) | 
|  | 3135 | goto out; | 
|  | 3136 |  | 
|  | 3137 | /* | 
|  | 3138 | * If a fatal signal is pending, this process should not throttle. | 
|  | 3139 | * It should return quickly so it can exit and free its memory | 
|  | 3140 | */ | 
|  | 3141 | if (fatal_signal_pending(current)) | 
|  | 3142 | goto out; | 
|  | 3143 |  | 
|  | 3144 | /* | 
|  | 3145 | * Check if the pfmemalloc reserves are ok by finding the first node | 
|  | 3146 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | 
|  | 3147 | * GFP_KERNEL will be required for allocating network buffers when | 
|  | 3148 | * swapping over the network so ZONE_HIGHMEM is unusable. | 
|  | 3149 | * | 
|  | 3150 | * Throttling is based on the first usable node and throttled processes | 
|  | 3151 | * wait on a queue until kswapd makes progress and wakes them. There | 
|  | 3152 | * is an affinity then between processes waking up and where reclaim | 
|  | 3153 | * progress has been made assuming the process wakes on the same node. | 
|  | 3154 | * More importantly, processes running on remote nodes will not compete | 
|  | 3155 | * for remote pfmemalloc reserves and processes on different nodes | 
|  | 3156 | * should make reasonable progress. | 
|  | 3157 | */ | 
|  | 3158 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | 3159 | gfp_zone(gfp_mask), nodemask) { | 
|  | 3160 | if (zone_idx(zone) > ZONE_NORMAL) | 
|  | 3161 | continue; | 
|  | 3162 |  | 
|  | 3163 | /* Throttle based on the first usable node */ | 
|  | 3164 | pgdat = zone->zone_pgdat; | 
|  | 3165 | if (allow_direct_reclaim(pgdat)) | 
|  | 3166 | goto out; | 
|  | 3167 | break; | 
|  | 3168 | } | 
|  | 3169 |  | 
|  | 3170 | /* If no zone was usable by the allocation flags then do not throttle */ | 
|  | 3171 | if (!pgdat) | 
|  | 3172 | goto out; | 
|  | 3173 |  | 
|  | 3174 | /* Account for the throttling */ | 
|  | 3175 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | 
|  | 3176 |  | 
|  | 3177 | /* | 
|  | 3178 | * If the caller cannot enter the filesystem, it's possible that it | 
|  | 3179 | * is due to the caller holding an FS lock or performing a journal | 
|  | 3180 | * transaction in the case of a filesystem like ext[3|4]. In this case, | 
|  | 3181 | * it is not safe to block on pfmemalloc_wait as kswapd could be | 
|  | 3182 | * blocked waiting on the same lock. Instead, throttle for up to a | 
|  | 3183 | * second before continuing. | 
|  | 3184 | */ | 
|  | 3185 | if (!(gfp_mask & __GFP_FS)) { | 
|  | 3186 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | 
|  | 3187 | allow_direct_reclaim(pgdat), HZ); | 
|  | 3188 |  | 
|  | 3189 | goto check_pending; | 
|  | 3190 | } | 
|  | 3191 |  | 
|  | 3192 | /* Throttle until kswapd wakes the process */ | 
|  | 3193 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | 
|  | 3194 | allow_direct_reclaim(pgdat)); | 
|  | 3195 |  | 
|  | 3196 | check_pending: | 
|  | 3197 | if (fatal_signal_pending(current)) | 
|  | 3198 | return true; | 
|  | 3199 |  | 
|  | 3200 | out: | 
|  | 3201 | return false; | 
|  | 3202 | } | 
|  | 3203 |  | 
|  | 3204 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 
|  | 3205 | gfp_t gfp_mask, nodemask_t *nodemask) | 
|  | 3206 | { | 
|  | 3207 | unsigned long nr_reclaimed; | 
|  | 3208 | struct scan_control sc = { | 
|  | 3209 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | 
|  | 3210 | .gfp_mask = current_gfp_context(gfp_mask), | 
|  | 3211 | .reclaim_idx = gfp_zone(gfp_mask), | 
|  | 3212 | .order = order, | 
|  | 3213 | .nodemask = nodemask, | 
|  | 3214 | .priority = DEF_PRIORITY, | 
|  | 3215 | .may_writepage = !laptop_mode, | 
|  | 3216 | .may_unmap = 1, | 
|  | 3217 | .may_swap = 1, | 
|  | 3218 | }; | 
|  | 3219 |  | 
|  | 3220 | /* | 
|  | 3221 | * scan_control uses s8 fields for order, priority, and reclaim_idx. | 
|  | 3222 | * Confirm they are large enough for max values. | 
|  | 3223 | */ | 
|  | 3224 | BUILD_BUG_ON(MAX_ORDER > S8_MAX); | 
|  | 3225 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | 
|  | 3226 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | 
|  | 3227 |  | 
|  | 3228 | /* | 
|  | 3229 | * Do not enter reclaim if fatal signal was delivered while throttled. | 
|  | 3230 | * 1 is returned so that the page allocator does not OOM kill at this | 
|  | 3231 | * point. | 
|  | 3232 | */ | 
|  | 3233 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) | 
|  | 3234 | return 1; | 
|  | 3235 |  | 
|  | 3236 | trace_mm_vmscan_direct_reclaim_begin(order, | 
|  | 3237 | sc.may_writepage, | 
|  | 3238 | sc.gfp_mask, | 
|  | 3239 | sc.reclaim_idx); | 
|  | 3240 |  | 
|  | 3241 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  | 3242 |  | 
|  | 3243 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | 
|  | 3244 |  | 
|  | 3245 | return nr_reclaimed; | 
|  | 3246 | } | 
|  | 3247 |  | 
|  | 3248 | #ifdef CONFIG_MEMCG | 
|  | 3249 |  | 
|  | 3250 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, | 
|  | 3251 | gfp_t gfp_mask, bool noswap, | 
|  | 3252 | pg_data_t *pgdat, | 
|  | 3253 | unsigned long *nr_scanned) | 
|  | 3254 | { | 
|  | 3255 | struct scan_control sc = { | 
|  | 3256 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | 
|  | 3257 | .target_mem_cgroup = memcg, | 
|  | 3258 | .may_writepage = !laptop_mode, | 
|  | 3259 | .may_unmap = 1, | 
|  | 3260 | .reclaim_idx = MAX_NR_ZONES - 1, | 
|  | 3261 | .may_swap = !noswap, | 
|  | 3262 | }; | 
|  | 3263 | unsigned long lru_pages; | 
|  | 3264 |  | 
|  | 3265 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 
|  | 3266 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 
|  | 3267 |  | 
|  | 3268 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, | 
|  | 3269 | sc.may_writepage, | 
|  | 3270 | sc.gfp_mask, | 
|  | 3271 | sc.reclaim_idx); | 
|  | 3272 |  | 
|  | 3273 | /* | 
|  | 3274 | * NOTE: Although we can get the priority field, using it | 
|  | 3275 | * here is not a good idea, since it limits the pages we can scan. | 
|  | 3276 | * if we don't reclaim here, the shrink_node from balance_pgdat | 
|  | 3277 | * will pick up pages from other mem cgroup's as well. We hack | 
|  | 3278 | * the priority and make it zero. | 
|  | 3279 | */ | 
|  | 3280 | shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); | 
|  | 3281 |  | 
|  | 3282 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | 
|  | 3283 |  | 
|  | 3284 | *nr_scanned = sc.nr_scanned; | 
|  | 3285 | return sc.nr_reclaimed; | 
|  | 3286 | } | 
|  | 3287 |  | 
|  | 3288 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, | 
|  | 3289 | unsigned long nr_pages, | 
|  | 3290 | gfp_t gfp_mask, | 
|  | 3291 | bool may_swap) | 
|  | 3292 | { | 
|  | 3293 | struct zonelist *zonelist; | 
|  | 3294 | unsigned long nr_reclaimed; | 
|  | 3295 | unsigned long pflags; | 
|  | 3296 | int nid; | 
|  | 3297 | unsigned int noreclaim_flag; | 
|  | 3298 | struct scan_control sc = { | 
|  | 3299 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | 
|  | 3300 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | | 
|  | 3301 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | 
|  | 3302 | .reclaim_idx = MAX_NR_ZONES - 1, | 
|  | 3303 | .target_mem_cgroup = memcg, | 
|  | 3304 | .priority = DEF_PRIORITY, | 
|  | 3305 | .may_writepage = !laptop_mode, | 
|  | 3306 | .may_unmap = 1, | 
|  | 3307 | .may_swap = may_swap, | 
|  | 3308 | }; | 
|  | 3309 |  | 
|  | 3310 | /* | 
|  | 3311 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | 
|  | 3312 | * take care of from where we get pages. So the node where we start the | 
|  | 3313 | * scan does not need to be the current node. | 
|  | 3314 | */ | 
|  | 3315 | nid = mem_cgroup_select_victim_node(memcg); | 
|  | 3316 |  | 
|  | 3317 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; | 
|  | 3318 |  | 
|  | 3319 | trace_mm_vmscan_memcg_reclaim_begin(0, | 
|  | 3320 | sc.may_writepage, | 
|  | 3321 | sc.gfp_mask, | 
|  | 3322 | sc.reclaim_idx); | 
|  | 3323 |  | 
|  | 3324 | psi_memstall_enter(&pflags); | 
|  | 3325 | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | 3326 |  | 
|  | 3327 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  | 3328 |  | 
|  | 3329 | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | 3330 | psi_memstall_leave(&pflags); | 
|  | 3331 |  | 
|  | 3332 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | 
|  | 3333 |  | 
|  | 3334 | return nr_reclaimed; | 
|  | 3335 | } | 
|  | 3336 | #endif | 
|  | 3337 |  | 
|  | 3338 | static void age_active_anon(struct pglist_data *pgdat, | 
|  | 3339 | struct scan_control *sc) | 
|  | 3340 | { | 
|  | 3341 | struct mem_cgroup *memcg; | 
|  | 3342 |  | 
|  | 3343 | if (!total_swap_pages) | 
|  | 3344 | return; | 
|  | 3345 |  | 
|  | 3346 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
|  | 3347 | do { | 
|  | 3348 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); | 
|  | 3349 |  | 
|  | 3350 | if (inactive_list_is_low(lruvec, false, sc, true)) | 
|  | 3351 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | 
|  | 3352 | sc, LRU_ACTIVE_ANON); | 
|  | 3353 |  | 
|  | 3354 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | 
|  | 3355 | } while (memcg); | 
|  | 3356 | } | 
|  | 3357 |  | 
|  | 3358 | /* | 
|  | 3359 | * Returns true if there is an eligible zone balanced for the request order | 
|  | 3360 | * and classzone_idx | 
|  | 3361 | */ | 
|  | 3362 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) | 
|  | 3363 | { | 
|  | 3364 | int i; | 
|  | 3365 | unsigned long mark = -1; | 
|  | 3366 | struct zone *zone; | 
|  | 3367 |  | 
|  | 3368 | for (i = 0; i <= classzone_idx; i++) { | 
|  | 3369 | zone = pgdat->node_zones + i; | 
|  | 3370 |  | 
|  | 3371 | if (!managed_zone(zone)) | 
|  | 3372 | continue; | 
|  | 3373 |  | 
|  | 3374 | mark = high_wmark_pages(zone); | 
|  | 3375 | if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) | 
|  | 3376 | return true; | 
|  | 3377 | } | 
|  | 3378 |  | 
|  | 3379 | /* | 
|  | 3380 | * If a node has no populated zone within classzone_idx, it does not | 
|  | 3381 | * need balancing by definition. This can happen if a zone-restricted | 
|  | 3382 | * allocation tries to wake a remote kswapd. | 
|  | 3383 | */ | 
|  | 3384 | if (mark == -1) | 
|  | 3385 | return true; | 
|  | 3386 |  | 
|  | 3387 | return false; | 
|  | 3388 | } | 
|  | 3389 |  | 
|  | 3390 | /* Clear pgdat state for congested, dirty or under writeback. */ | 
|  | 3391 | static void clear_pgdat_congested(pg_data_t *pgdat) | 
|  | 3392 | { | 
|  | 3393 | clear_bit(PGDAT_CONGESTED, &pgdat->flags); | 
|  | 3394 | clear_bit(PGDAT_DIRTY, &pgdat->flags); | 
|  | 3395 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | 
|  | 3396 | } | 
|  | 3397 |  | 
|  | 3398 | /* | 
|  | 3399 | * Prepare kswapd for sleeping. This verifies that there are no processes | 
|  | 3400 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | 
|  | 3401 | * | 
|  | 3402 | * Returns true if kswapd is ready to sleep | 
|  | 3403 | */ | 
|  | 3404 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) | 
|  | 3405 | { | 
|  | 3406 | /* | 
|  | 3407 | * The throttled processes are normally woken up in balance_pgdat() as | 
|  | 3408 | * soon as allow_direct_reclaim() is true. But there is a potential | 
|  | 3409 | * race between when kswapd checks the watermarks and a process gets | 
|  | 3410 | * throttled. There is also a potential race if processes get | 
|  | 3411 | * throttled, kswapd wakes, a large process exits thereby balancing the | 
|  | 3412 | * zones, which causes kswapd to exit balance_pgdat() before reaching | 
|  | 3413 | * the wake up checks. If kswapd is going to sleep, no process should | 
|  | 3414 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | 
|  | 3415 | * the wake up is premature, processes will wake kswapd and get | 
|  | 3416 | * throttled again. The difference from wake ups in balance_pgdat() is | 
|  | 3417 | * that here we are under prepare_to_wait(). | 
|  | 3418 | */ | 
|  | 3419 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) | 
|  | 3420 | wake_up_all(&pgdat->pfmemalloc_wait); | 
|  | 3421 |  | 
|  | 3422 | /* Hopeless node, leave it to direct reclaim */ | 
|  | 3423 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | 
|  | 3424 | return true; | 
|  | 3425 |  | 
|  | 3426 | if (pgdat_balanced(pgdat, order, classzone_idx)) { | 
|  | 3427 | clear_pgdat_congested(pgdat); | 
|  | 3428 | return true; | 
|  | 3429 | } | 
|  | 3430 |  | 
|  | 3431 | return false; | 
|  | 3432 | } | 
|  | 3433 |  | 
|  | 3434 | /* | 
|  | 3435 | * kswapd shrinks a node of pages that are at or below the highest usable | 
|  | 3436 | * zone that is currently unbalanced. | 
|  | 3437 | * | 
|  | 3438 | * Returns true if kswapd scanned at least the requested number of pages to | 
|  | 3439 | * reclaim or if the lack of progress was due to pages under writeback. | 
|  | 3440 | * This is used to determine if the scanning priority needs to be raised. | 
|  | 3441 | */ | 
|  | 3442 | static bool kswapd_shrink_node(pg_data_t *pgdat, | 
|  | 3443 | struct scan_control *sc) | 
|  | 3444 | { | 
|  | 3445 | struct zone *zone; | 
|  | 3446 | int z; | 
|  | 3447 |  | 
|  | 3448 | /* Reclaim a number of pages proportional to the number of zones */ | 
|  | 3449 | sc->nr_to_reclaim = 0; | 
|  | 3450 | for (z = 0; z <= sc->reclaim_idx; z++) { | 
|  | 3451 | zone = pgdat->node_zones + z; | 
|  | 3452 | if (!managed_zone(zone)) | 
|  | 3453 | continue; | 
|  | 3454 |  | 
|  | 3455 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); | 
|  | 3456 | } | 
|  | 3457 |  | 
|  | 3458 | /* | 
|  | 3459 | * Historically care was taken to put equal pressure on all zones but | 
|  | 3460 | * now pressure is applied based on node LRU order. | 
|  | 3461 | */ | 
|  | 3462 | shrink_node(pgdat, sc); | 
|  | 3463 |  | 
|  | 3464 | /* | 
|  | 3465 | * Fragmentation may mean that the system cannot be rebalanced for | 
|  | 3466 | * high-order allocations. If twice the allocation size has been | 
|  | 3467 | * reclaimed then recheck watermarks only at order-0 to prevent | 
|  | 3468 | * excessive reclaim. Assume that a process requested a high-order | 
|  | 3469 | * can direct reclaim/compact. | 
|  | 3470 | */ | 
|  | 3471 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) | 
|  | 3472 | sc->order = 0; | 
|  | 3473 |  | 
|  | 3474 | return sc->nr_scanned >= sc->nr_to_reclaim; | 
|  | 3475 | } | 
|  | 3476 |  | 
|  | 3477 | /* | 
|  | 3478 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones | 
|  | 3479 | * that are eligible for use by the caller until at least one zone is | 
|  | 3480 | * balanced. | 
|  | 3481 | * | 
|  | 3482 | * Returns the order kswapd finished reclaiming at. | 
|  | 3483 | * | 
|  | 3484 | * kswapd scans the zones in the highmem->normal->dma direction.  It skips | 
|  | 3485 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is | 
|  | 3486 | * found to have free_pages <= high_wmark_pages(zone), any page is that zone | 
|  | 3487 | * or lower is eligible for reclaim until at least one usable zone is | 
|  | 3488 | * balanced. | 
|  | 3489 | */ | 
|  | 3490 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) | 
|  | 3491 | { | 
|  | 3492 | int i; | 
|  | 3493 | unsigned long nr_soft_reclaimed; | 
|  | 3494 | unsigned long nr_soft_scanned; | 
|  | 3495 | unsigned long pflags; | 
|  | 3496 | struct zone *zone; | 
|  | 3497 | struct scan_control sc = { | 
|  | 3498 | .gfp_mask = GFP_KERNEL, | 
|  | 3499 | .order = order, | 
|  | 3500 | .priority = DEF_PRIORITY, | 
|  | 3501 | .may_writepage = !laptop_mode, | 
|  | 3502 | .may_unmap = 1, | 
|  | 3503 | .may_swap = 1, | 
|  | 3504 | }; | 
|  | 3505 |  | 
|  | 3506 | psi_memstall_enter(&pflags); | 
|  | 3507 | __fs_reclaim_acquire(); | 
|  | 3508 |  | 
|  | 3509 | count_vm_event(PAGEOUTRUN); | 
|  | 3510 |  | 
|  | 3511 | do { | 
|  | 3512 | unsigned long nr_reclaimed = sc.nr_reclaimed; | 
|  | 3513 | bool raise_priority = true; | 
|  | 3514 | bool ret; | 
|  | 3515 |  | 
|  | 3516 | sc.reclaim_idx = classzone_idx; | 
|  | 3517 |  | 
|  | 3518 | /* | 
|  | 3519 | * If the number of buffer_heads exceeds the maximum allowed | 
|  | 3520 | * then consider reclaiming from all zones. This has a dual | 
|  | 3521 | * purpose -- on 64-bit systems it is expected that | 
|  | 3522 | * buffer_heads are stripped during active rotation. On 32-bit | 
|  | 3523 | * systems, highmem pages can pin lowmem memory and shrinking | 
|  | 3524 | * buffers can relieve lowmem pressure. Reclaim may still not | 
|  | 3525 | * go ahead if all eligible zones for the original allocation | 
|  | 3526 | * request are balanced to avoid excessive reclaim from kswapd. | 
|  | 3527 | */ | 
|  | 3528 | if (buffer_heads_over_limit) { | 
|  | 3529 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | 
|  | 3530 | zone = pgdat->node_zones + i; | 
|  | 3531 | if (!managed_zone(zone)) | 
|  | 3532 | continue; | 
|  | 3533 |  | 
|  | 3534 | sc.reclaim_idx = i; | 
|  | 3535 | break; | 
|  | 3536 | } | 
|  | 3537 | } | 
|  | 3538 |  | 
|  | 3539 | /* | 
|  | 3540 | * Only reclaim if there are no eligible zones. Note that | 
|  | 3541 | * sc.reclaim_idx is not used as buffer_heads_over_limit may | 
|  | 3542 | * have adjusted it. | 
|  | 3543 | */ | 
|  | 3544 | if (pgdat_balanced(pgdat, sc.order, classzone_idx)) | 
|  | 3545 | goto out; | 
|  | 3546 |  | 
|  | 3547 | /* | 
|  | 3548 | * Do some background aging of the anon list, to give | 
|  | 3549 | * pages a chance to be referenced before reclaiming. All | 
|  | 3550 | * pages are rotated regardless of classzone as this is | 
|  | 3551 | * about consistent aging. | 
|  | 3552 | */ | 
|  | 3553 | age_active_anon(pgdat, &sc); | 
|  | 3554 |  | 
|  | 3555 | /* | 
|  | 3556 | * If we're getting trouble reclaiming, start doing writepage | 
|  | 3557 | * even in laptop mode. | 
|  | 3558 | */ | 
|  | 3559 | if (sc.priority < DEF_PRIORITY - 2) | 
|  | 3560 | sc.may_writepage = 1; | 
|  | 3561 |  | 
|  | 3562 | /* Call soft limit reclaim before calling shrink_node. */ | 
|  | 3563 | sc.nr_scanned = 0; | 
|  | 3564 | nr_soft_scanned = 0; | 
|  | 3565 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, | 
|  | 3566 | sc.gfp_mask, &nr_soft_scanned); | 
|  | 3567 | sc.nr_reclaimed += nr_soft_reclaimed; | 
|  | 3568 |  | 
|  | 3569 | /* | 
|  | 3570 | * There should be no need to raise the scanning priority if | 
|  | 3571 | * enough pages are already being scanned that that high | 
|  | 3572 | * watermark would be met at 100% efficiency. | 
|  | 3573 | */ | 
|  | 3574 | if (kswapd_shrink_node(pgdat, &sc)) | 
|  | 3575 | raise_priority = false; | 
|  | 3576 |  | 
|  | 3577 | /* | 
|  | 3578 | * If the low watermark is met there is no need for processes | 
|  | 3579 | * to be throttled on pfmemalloc_wait as they should not be | 
|  | 3580 | * able to safely make forward progress. Wake them | 
|  | 3581 | */ | 
|  | 3582 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | 
|  | 3583 | allow_direct_reclaim(pgdat)) | 
|  | 3584 | wake_up_all(&pgdat->pfmemalloc_wait); | 
|  | 3585 |  | 
|  | 3586 | /* Check if kswapd should be suspending */ | 
|  | 3587 | __fs_reclaim_release(); | 
|  | 3588 | ret = try_to_freeze(); | 
|  | 3589 | __fs_reclaim_acquire(); | 
|  | 3590 | if (ret || kthread_should_stop()) | 
|  | 3591 | break; | 
|  | 3592 |  | 
|  | 3593 | /* | 
|  | 3594 | * Raise priority if scanning rate is too low or there was no | 
|  | 3595 | * progress in reclaiming pages | 
|  | 3596 | */ | 
|  | 3597 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; | 
|  | 3598 | if (raise_priority || !nr_reclaimed) | 
|  | 3599 | sc.priority--; | 
|  | 3600 | } while (sc.priority >= 1); | 
|  | 3601 |  | 
|  | 3602 | if (!sc.nr_reclaimed) | 
|  | 3603 | pgdat->kswapd_failures++; | 
|  | 3604 |  | 
|  | 3605 | out: | 
|  | 3606 | snapshot_refaults(NULL, pgdat); | 
|  | 3607 | __fs_reclaim_release(); | 
|  | 3608 | psi_memstall_leave(&pflags); | 
|  | 3609 | /* | 
|  | 3610 | * Return the order kswapd stopped reclaiming at as | 
|  | 3611 | * prepare_kswapd_sleep() takes it into account. If another caller | 
|  | 3612 | * entered the allocator slow path while kswapd was awake, order will | 
|  | 3613 | * remain at the higher level. | 
|  | 3614 | */ | 
|  | 3615 | return sc.order; | 
|  | 3616 | } | 
|  | 3617 |  | 
|  | 3618 | /* | 
|  | 3619 | * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be | 
|  | 3620 | * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not | 
|  | 3621 | * a valid index then either kswapd runs for first time or kswapd couldn't sleep | 
|  | 3622 | * after previous reclaim attempt (node is still unbalanced). In that case | 
|  | 3623 | * return the zone index of the previous kswapd reclaim cycle. | 
|  | 3624 | */ | 
|  | 3625 | static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, | 
|  | 3626 | enum zone_type prev_classzone_idx) | 
|  | 3627 | { | 
|  | 3628 | if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) | 
|  | 3629 | return prev_classzone_idx; | 
|  | 3630 | return pgdat->kswapd_classzone_idx; | 
|  | 3631 | } | 
|  | 3632 |  | 
|  | 3633 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, | 
|  | 3634 | unsigned int classzone_idx) | 
|  | 3635 | { | 
|  | 3636 | long remaining = 0; | 
|  | 3637 | DEFINE_WAIT(wait); | 
|  | 3638 |  | 
|  | 3639 | if (freezing(current) || kthread_should_stop()) | 
|  | 3640 | return; | 
|  | 3641 |  | 
|  | 3642 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
|  | 3643 |  | 
|  | 3644 | /* | 
|  | 3645 | * Try to sleep for a short interval. Note that kcompactd will only be | 
|  | 3646 | * woken if it is possible to sleep for a short interval. This is | 
|  | 3647 | * deliberate on the assumption that if reclaim cannot keep an | 
|  | 3648 | * eligible zone balanced that it's also unlikely that compaction will | 
|  | 3649 | * succeed. | 
|  | 3650 | */ | 
|  | 3651 | if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | 
|  | 3652 | /* | 
|  | 3653 | * Compaction records what page blocks it recently failed to | 
|  | 3654 | * isolate pages from and skips them in the future scanning. | 
|  | 3655 | * When kswapd is going to sleep, it is reasonable to assume | 
|  | 3656 | * that pages and compaction may succeed so reset the cache. | 
|  | 3657 | */ | 
|  | 3658 | reset_isolation_suitable(pgdat); | 
|  | 3659 |  | 
|  | 3660 | /* | 
|  | 3661 | * We have freed the memory, now we should compact it to make | 
|  | 3662 | * allocation of the requested order possible. | 
|  | 3663 | */ | 
|  | 3664 | wakeup_kcompactd(pgdat, alloc_order, classzone_idx); | 
|  | 3665 |  | 
|  | 3666 | remaining = schedule_timeout(HZ/10); | 
|  | 3667 |  | 
|  | 3668 | /* | 
|  | 3669 | * If woken prematurely then reset kswapd_classzone_idx and | 
|  | 3670 | * order. The values will either be from a wakeup request or | 
|  | 3671 | * the previous request that slept prematurely. | 
|  | 3672 | */ | 
|  | 3673 | if (remaining) { | 
|  | 3674 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); | 
|  | 3675 | pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); | 
|  | 3676 | } | 
|  | 3677 |  | 
|  | 3678 | finish_wait(&pgdat->kswapd_wait, &wait); | 
|  | 3679 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
|  | 3680 | } | 
|  | 3681 |  | 
|  | 3682 | /* | 
|  | 3683 | * After a short sleep, check if it was a premature sleep. If not, then | 
|  | 3684 | * go fully to sleep until explicitly woken up. | 
|  | 3685 | */ | 
|  | 3686 | if (!remaining && | 
|  | 3687 | prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | 
|  | 3688 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | 
|  | 3689 |  | 
|  | 3690 | /* | 
|  | 3691 | * vmstat counters are not perfectly accurate and the estimated | 
|  | 3692 | * value for counters such as NR_FREE_PAGES can deviate from the | 
|  | 3693 | * true value by nr_online_cpus * threshold. To avoid the zone | 
|  | 3694 | * watermarks being breached while under pressure, we reduce the | 
|  | 3695 | * per-cpu vmstat threshold while kswapd is awake and restore | 
|  | 3696 | * them before going back to sleep. | 
|  | 3697 | */ | 
|  | 3698 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | 
|  | 3699 |  | 
|  | 3700 | if (!kthread_should_stop()) | 
|  | 3701 | schedule(); | 
|  | 3702 |  | 
|  | 3703 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); | 
|  | 3704 | } else { | 
|  | 3705 | if (remaining) | 
|  | 3706 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | 
|  | 3707 | else | 
|  | 3708 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | 
|  | 3709 | } | 
|  | 3710 | finish_wait(&pgdat->kswapd_wait, &wait); | 
|  | 3711 | } | 
|  | 3712 |  | 
|  | 3713 | /* | 
|  | 3714 | * The background pageout daemon, started as a kernel thread | 
|  | 3715 | * from the init process. | 
|  | 3716 | * | 
|  | 3717 | * This basically trickles out pages so that we have _some_ | 
|  | 3718 | * free memory available even if there is no other activity | 
|  | 3719 | * that frees anything up. This is needed for things like routing | 
|  | 3720 | * etc, where we otherwise might have all activity going on in | 
|  | 3721 | * asynchronous contexts that cannot page things out. | 
|  | 3722 | * | 
|  | 3723 | * If there are applications that are active memory-allocators | 
|  | 3724 | * (most normal use), this basically shouldn't matter. | 
|  | 3725 | */ | 
|  | 3726 | static int kswapd(void *p) | 
|  | 3727 | { | 
|  | 3728 | unsigned int alloc_order, reclaim_order; | 
|  | 3729 | unsigned int classzone_idx = MAX_NR_ZONES - 1; | 
|  | 3730 | pg_data_t *pgdat = (pg_data_t*)p; | 
|  | 3731 | struct task_struct *tsk = current; | 
|  | 3732 |  | 
|  | 3733 | struct reclaim_state reclaim_state = { | 
|  | 3734 | .reclaimed_slab = 0, | 
|  | 3735 | }; | 
|  | 3736 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
|  | 3737 |  | 
|  | 3738 | if (!cpumask_empty(cpumask)) | 
|  | 3739 | set_cpus_allowed_ptr(tsk, cpumask); | 
|  | 3740 | current->reclaim_state = &reclaim_state; | 
|  | 3741 |  | 
|  | 3742 | /* | 
|  | 3743 | * Tell the memory management that we're a "memory allocator", | 
|  | 3744 | * and that if we need more memory we should get access to it | 
|  | 3745 | * regardless (see "__alloc_pages()"). "kswapd" should | 
|  | 3746 | * never get caught in the normal page freeing logic. | 
|  | 3747 | * | 
|  | 3748 | * (Kswapd normally doesn't need memory anyway, but sometimes | 
|  | 3749 | * you need a small amount of memory in order to be able to | 
|  | 3750 | * page out something else, and this flag essentially protects | 
|  | 3751 | * us from recursively trying to free more memory as we're | 
|  | 3752 | * trying to free the first piece of memory in the first place). | 
|  | 3753 | */ | 
|  | 3754 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; | 
|  | 3755 | set_freezable(); | 
|  | 3756 |  | 
|  | 3757 | pgdat->kswapd_order = 0; | 
|  | 3758 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; | 
|  | 3759 | for ( ; ; ) { | 
|  | 3760 | bool ret; | 
|  | 3761 |  | 
|  | 3762 | alloc_order = reclaim_order = pgdat->kswapd_order; | 
|  | 3763 | classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); | 
|  | 3764 |  | 
|  | 3765 | kswapd_try_sleep: | 
|  | 3766 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | 
|  | 3767 | classzone_idx); | 
|  | 3768 |  | 
|  | 3769 | /* Read the new order and classzone_idx */ | 
|  | 3770 | alloc_order = reclaim_order = pgdat->kswapd_order; | 
|  | 3771 | classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); | 
|  | 3772 | pgdat->kswapd_order = 0; | 
|  | 3773 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; | 
|  | 3774 |  | 
|  | 3775 | ret = try_to_freeze(); | 
|  | 3776 | if (kthread_should_stop()) | 
|  | 3777 | break; | 
|  | 3778 |  | 
|  | 3779 | /* | 
|  | 3780 | * We can speed up thawing tasks if we don't call balance_pgdat | 
|  | 3781 | * after returning from the refrigerator | 
|  | 3782 | */ | 
|  | 3783 | if (ret) | 
|  | 3784 | continue; | 
|  | 3785 |  | 
|  | 3786 | /* | 
|  | 3787 | * Reclaim begins at the requested order but if a high-order | 
|  | 3788 | * reclaim fails then kswapd falls back to reclaiming for | 
|  | 3789 | * order-0. If that happens, kswapd will consider sleeping | 
|  | 3790 | * for the order it finished reclaiming at (reclaim_order) | 
|  | 3791 | * but kcompactd is woken to compact for the original | 
|  | 3792 | * request (alloc_order). | 
|  | 3793 | */ | 
|  | 3794 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, | 
|  | 3795 | alloc_order); | 
|  | 3796 | reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); | 
|  | 3797 | if (reclaim_order < alloc_order) | 
|  | 3798 | goto kswapd_try_sleep; | 
|  | 3799 | } | 
|  | 3800 |  | 
|  | 3801 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); | 
|  | 3802 | current->reclaim_state = NULL; | 
|  | 3803 |  | 
|  | 3804 | return 0; | 
|  | 3805 | } | 
|  | 3806 |  | 
|  | 3807 | /* | 
|  | 3808 | * A zone is low on free memory or too fragmented for high-order memory.  If | 
|  | 3809 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | 
|  | 3810 | * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim | 
|  | 3811 | * has failed or is not needed, still wake up kcompactd if only compaction is | 
|  | 3812 | * needed. | 
|  | 3813 | */ | 
|  | 3814 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, | 
|  | 3815 | enum zone_type classzone_idx) | 
|  | 3816 | { | 
|  | 3817 | pg_data_t *pgdat; | 
|  | 3818 |  | 
|  | 3819 | if (!managed_zone(zone)) | 
|  | 3820 | return; | 
|  | 3821 |  | 
|  | 3822 | if (!cpuset_zone_allowed(zone, gfp_flags)) | 
|  | 3823 | return; | 
|  | 3824 | pgdat = zone->zone_pgdat; | 
|  | 3825 |  | 
|  | 3826 | if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) | 
|  | 3827 | pgdat->kswapd_classzone_idx = classzone_idx; | 
|  | 3828 | else | 
|  | 3829 | pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, | 
|  | 3830 | classzone_idx); | 
|  | 3831 | pgdat->kswapd_order = max(pgdat->kswapd_order, order); | 
|  | 3832 | if (!waitqueue_active(&pgdat->kswapd_wait)) | 
|  | 3833 | return; | 
|  | 3834 |  | 
|  | 3835 | /* Hopeless node, leave it to direct reclaim if possible */ | 
|  | 3836 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | 
|  | 3837 | pgdat_balanced(pgdat, order, classzone_idx)) { | 
|  | 3838 | /* | 
|  | 3839 | * There may be plenty of free memory available, but it's too | 
|  | 3840 | * fragmented for high-order allocations.  Wake up kcompactd | 
|  | 3841 | * and rely on compaction_suitable() to determine if it's | 
|  | 3842 | * needed.  If it fails, it will defer subsequent attempts to | 
|  | 3843 | * ratelimit its work. | 
|  | 3844 | */ | 
|  | 3845 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | 
|  | 3846 | wakeup_kcompactd(pgdat, order, classzone_idx); | 
|  | 3847 | return; | 
|  | 3848 | } | 
|  | 3849 |  | 
|  | 3850 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, | 
|  | 3851 | gfp_flags); | 
|  | 3852 | wake_up_interruptible(&pgdat->kswapd_wait); | 
|  | 3853 | } | 
|  | 3854 |  | 
|  | 3855 | #ifdef CONFIG_HIBERNATION | 
|  | 3856 | /* | 
|  | 3857 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | 
|  | 3858 | * freed pages. | 
|  | 3859 | * | 
|  | 3860 | * Rather than trying to age LRUs the aim is to preserve the overall | 
|  | 3861 | * LRU order by reclaiming preferentially | 
|  | 3862 | * inactive > active > active referenced > active mapped | 
|  | 3863 | */ | 
|  | 3864 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | 
|  | 3865 | { | 
|  | 3866 | struct reclaim_state reclaim_state; | 
|  | 3867 | struct scan_control sc = { | 
|  | 3868 | .nr_to_reclaim = nr_to_reclaim, | 
|  | 3869 | .gfp_mask = GFP_HIGHUSER_MOVABLE, | 
|  | 3870 | .reclaim_idx = MAX_NR_ZONES - 1, | 
|  | 3871 | .priority = DEF_PRIORITY, | 
|  | 3872 | .may_writepage = 1, | 
|  | 3873 | .may_unmap = 1, | 
|  | 3874 | .may_swap = 1, | 
|  | 3875 | .hibernation_mode = 1, | 
|  | 3876 | }; | 
|  | 3877 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | 
|  | 3878 | struct task_struct *p = current; | 
|  | 3879 | unsigned long nr_reclaimed; | 
|  | 3880 | unsigned int noreclaim_flag; | 
|  | 3881 |  | 
|  | 3882 | fs_reclaim_acquire(sc.gfp_mask); | 
|  | 3883 | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | 3884 | reclaim_state.reclaimed_slab = 0; | 
|  | 3885 | p->reclaim_state = &reclaim_state; | 
|  | 3886 |  | 
|  | 3887 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  | 3888 |  | 
|  | 3889 | p->reclaim_state = NULL; | 
|  | 3890 | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | 3891 | fs_reclaim_release(sc.gfp_mask); | 
|  | 3892 |  | 
|  | 3893 | return nr_reclaimed; | 
|  | 3894 | } | 
|  | 3895 | #endif /* CONFIG_HIBERNATION */ | 
|  | 3896 |  | 
|  | 3897 | /* It's optimal to keep kswapds on the same CPUs as their memory, but | 
|  | 3898 | not required for correctness.  So if the last cpu in a node goes | 
|  | 3899 | away, we get changed to run anywhere: as the first one comes back, | 
|  | 3900 | restore their cpu bindings. */ | 
|  | 3901 | static int kswapd_cpu_online(unsigned int cpu) | 
|  | 3902 | { | 
|  | 3903 | int nid; | 
|  | 3904 |  | 
|  | 3905 | for_each_node_state(nid, N_MEMORY) { | 
|  | 3906 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 3907 | const struct cpumask *mask; | 
|  | 3908 |  | 
|  | 3909 | mask = cpumask_of_node(pgdat->node_id); | 
|  | 3910 |  | 
|  | 3911 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | 
|  | 3912 | /* One of our CPUs online: restore mask */ | 
|  | 3913 | set_cpus_allowed_ptr(pgdat->kswapd, mask); | 
|  | 3914 | } | 
|  | 3915 | return 0; | 
|  | 3916 | } | 
|  | 3917 |  | 
|  | 3918 | /* | 
|  | 3919 | * This kswapd start function will be called by init and node-hot-add. | 
|  | 3920 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | 
|  | 3921 | */ | 
|  | 3922 | int kswapd_run(int nid) | 
|  | 3923 | { | 
|  | 3924 | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | 3925 | int ret = 0; | 
|  | 3926 |  | 
|  | 3927 | if (pgdat->kswapd) | 
|  | 3928 | return 0; | 
|  | 3929 |  | 
|  | 3930 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | 
|  | 3931 | if (IS_ERR(pgdat->kswapd)) { | 
|  | 3932 | /* failure at boot is fatal */ | 
|  | 3933 | BUG_ON(system_state < SYSTEM_RUNNING); | 
|  | 3934 | pr_err("Failed to start kswapd on node %d\n", nid); | 
|  | 3935 | ret = PTR_ERR(pgdat->kswapd); | 
|  | 3936 | pgdat->kswapd = NULL; | 
|  | 3937 | } | 
|  | 3938 | return ret; | 
|  | 3939 | } | 
|  | 3940 |  | 
|  | 3941 | /* | 
|  | 3942 | * Called by memory hotplug when all memory in a node is offlined.  Caller must | 
|  | 3943 | * hold mem_hotplug_begin/end(). | 
|  | 3944 | */ | 
|  | 3945 | void kswapd_stop(int nid) | 
|  | 3946 | { | 
|  | 3947 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | 
|  | 3948 |  | 
|  | 3949 | if (kswapd) { | 
|  | 3950 | kthread_stop(kswapd); | 
|  | 3951 | NODE_DATA(nid)->kswapd = NULL; | 
|  | 3952 | } | 
|  | 3953 | } | 
|  | 3954 |  | 
|  | 3955 | static int __init kswapd_init(void) | 
|  | 3956 | { | 
|  | 3957 | int nid, ret; | 
|  | 3958 |  | 
|  | 3959 | swap_setup(); | 
|  | 3960 | for_each_node_state(nid, N_MEMORY) | 
|  | 3961 | kswapd_run(nid); | 
|  | 3962 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
|  | 3963 | "mm/vmscan:online", kswapd_cpu_online, | 
|  | 3964 | NULL); | 
|  | 3965 | WARN_ON(ret < 0); | 
|  | 3966 | return 0; | 
|  | 3967 | } | 
|  | 3968 |  | 
|  | 3969 | module_init(kswapd_init) | 
|  | 3970 |  | 
|  | 3971 | #ifdef CONFIG_NUMA | 
|  | 3972 | /* | 
|  | 3973 | * Node reclaim mode | 
|  | 3974 | * | 
|  | 3975 | * If non-zero call node_reclaim when the number of free pages falls below | 
|  | 3976 | * the watermarks. | 
|  | 3977 | */ | 
|  | 3978 | int node_reclaim_mode __read_mostly; | 
|  | 3979 |  | 
|  | 3980 | #define RECLAIM_OFF 0 | 
|  | 3981 | #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */ | 
|  | 3982 | #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */ | 
|  | 3983 | #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */ | 
|  | 3984 |  | 
|  | 3985 | /* | 
|  | 3986 | * Priority for NODE_RECLAIM. This determines the fraction of pages | 
|  | 3987 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | 
|  | 3988 | * a zone. | 
|  | 3989 | */ | 
|  | 3990 | #define NODE_RECLAIM_PRIORITY 4 | 
|  | 3991 |  | 
|  | 3992 | /* | 
|  | 3993 | * Percentage of pages in a zone that must be unmapped for node_reclaim to | 
|  | 3994 | * occur. | 
|  | 3995 | */ | 
|  | 3996 | int sysctl_min_unmapped_ratio = 1; | 
|  | 3997 |  | 
|  | 3998 | /* | 
|  | 3999 | * If the number of slab pages in a zone grows beyond this percentage then | 
|  | 4000 | * slab reclaim needs to occur. | 
|  | 4001 | */ | 
|  | 4002 | int sysctl_min_slab_ratio = 5; | 
|  | 4003 |  | 
|  | 4004 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) | 
|  | 4005 | { | 
|  | 4006 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); | 
|  | 4007 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | 
|  | 4008 | node_page_state(pgdat, NR_ACTIVE_FILE); | 
|  | 4009 |  | 
|  | 4010 | /* | 
|  | 4011 | * It's possible for there to be more file mapped pages than | 
|  | 4012 | * accounted for by the pages on the file LRU lists because | 
|  | 4013 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | 
|  | 4014 | */ | 
|  | 4015 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | 
|  | 4016 | } | 
|  | 4017 |  | 
|  | 4018 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | 
|  | 4019 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) | 
|  | 4020 | { | 
|  | 4021 | unsigned long nr_pagecache_reclaimable; | 
|  | 4022 | unsigned long delta = 0; | 
|  | 4023 |  | 
|  | 4024 | /* | 
|  | 4025 | * If RECLAIM_UNMAP is set, then all file pages are considered | 
|  | 4026 | * potentially reclaimable. Otherwise, we have to worry about | 
|  | 4027 | * pages like swapcache and node_unmapped_file_pages() provides | 
|  | 4028 | * a better estimate | 
|  | 4029 | */ | 
|  | 4030 | if (node_reclaim_mode & RECLAIM_UNMAP) | 
|  | 4031 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | 
|  | 4032 | else | 
|  | 4033 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); | 
|  | 4034 |  | 
|  | 4035 | /* If we can't clean pages, remove dirty pages from consideration */ | 
|  | 4036 | if (!(node_reclaim_mode & RECLAIM_WRITE)) | 
|  | 4037 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | 
|  | 4038 |  | 
|  | 4039 | /* Watch for any possible underflows due to delta */ | 
|  | 4040 | if (unlikely(delta > nr_pagecache_reclaimable)) | 
|  | 4041 | delta = nr_pagecache_reclaimable; | 
|  | 4042 |  | 
|  | 4043 | return nr_pagecache_reclaimable - delta; | 
|  | 4044 | } | 
|  | 4045 |  | 
|  | 4046 | /* | 
|  | 4047 | * Try to free up some pages from this node through reclaim. | 
|  | 4048 | */ | 
|  | 4049 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | 
|  | 4050 | { | 
|  | 4051 | /* Minimum pages needed in order to stay on node */ | 
|  | 4052 | const unsigned long nr_pages = 1 << order; | 
|  | 4053 | struct task_struct *p = current; | 
|  | 4054 | struct reclaim_state reclaim_state; | 
|  | 4055 | unsigned int noreclaim_flag; | 
|  | 4056 | struct scan_control sc = { | 
|  | 4057 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | 
|  | 4058 | .gfp_mask = current_gfp_context(gfp_mask), | 
|  | 4059 | .order = order, | 
|  | 4060 | .priority = NODE_RECLAIM_PRIORITY, | 
|  | 4061 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | 
|  | 4062 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | 
|  | 4063 | .may_swap = 1, | 
|  | 4064 | .reclaim_idx = gfp_zone(gfp_mask), | 
|  | 4065 | }; | 
|  | 4066 |  | 
|  | 4067 | cond_resched(); | 
|  | 4068 | fs_reclaim_acquire(sc.gfp_mask); | 
|  | 4069 | /* | 
|  | 4070 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP | 
|  | 4071 | * and we also need to be able to write out pages for RECLAIM_WRITE | 
|  | 4072 | * and RECLAIM_UNMAP. | 
|  | 4073 | */ | 
|  | 4074 | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | 4075 | p->flags |= PF_SWAPWRITE; | 
|  | 4076 | reclaim_state.reclaimed_slab = 0; | 
|  | 4077 | p->reclaim_state = &reclaim_state; | 
|  | 4078 |  | 
|  | 4079 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { | 
|  | 4080 | /* | 
|  | 4081 | * Free memory by calling shrink node with increasing | 
|  | 4082 | * priorities until we have enough memory freed. | 
|  | 4083 | */ | 
|  | 4084 | do { | 
|  | 4085 | shrink_node(pgdat, &sc); | 
|  | 4086 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | 
|  | 4087 | } | 
|  | 4088 |  | 
|  | 4089 | p->reclaim_state = NULL; | 
|  | 4090 | current->flags &= ~PF_SWAPWRITE; | 
|  | 4091 | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | 4092 | fs_reclaim_release(sc.gfp_mask); | 
|  | 4093 | return sc.nr_reclaimed >= nr_pages; | 
|  | 4094 | } | 
|  | 4095 |  | 
|  | 4096 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | 
|  | 4097 | { | 
|  | 4098 | int ret; | 
|  | 4099 |  | 
|  | 4100 | /* | 
|  | 4101 | * Node reclaim reclaims unmapped file backed pages and | 
|  | 4102 | * slab pages if we are over the defined limits. | 
|  | 4103 | * | 
|  | 4104 | * A small portion of unmapped file backed pages is needed for | 
|  | 4105 | * file I/O otherwise pages read by file I/O will be immediately | 
|  | 4106 | * thrown out if the node is overallocated. So we do not reclaim | 
|  | 4107 | * if less than a specified percentage of the node is used by | 
|  | 4108 | * unmapped file backed pages. | 
|  | 4109 | */ | 
|  | 4110 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && | 
|  | 4111 | node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) | 
|  | 4112 | return NODE_RECLAIM_FULL; | 
|  | 4113 |  | 
|  | 4114 | /* | 
|  | 4115 | * Do not scan if the allocation should not be delayed. | 
|  | 4116 | */ | 
|  | 4117 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) | 
|  | 4118 | return NODE_RECLAIM_NOSCAN; | 
|  | 4119 |  | 
|  | 4120 | /* | 
|  | 4121 | * Only run node reclaim on the local node or on nodes that do not | 
|  | 4122 | * have associated processors. This will favor the local processor | 
|  | 4123 | * over remote processors and spread off node memory allocations | 
|  | 4124 | * as wide as possible. | 
|  | 4125 | */ | 
|  | 4126 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) | 
|  | 4127 | return NODE_RECLAIM_NOSCAN; | 
|  | 4128 |  | 
|  | 4129 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) | 
|  | 4130 | return NODE_RECLAIM_NOSCAN; | 
|  | 4131 |  | 
|  | 4132 | ret = __node_reclaim(pgdat, gfp_mask, order); | 
|  | 4133 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | 
|  | 4134 |  | 
|  | 4135 | if (!ret) | 
|  | 4136 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | 
|  | 4137 |  | 
|  | 4138 | return ret; | 
|  | 4139 | } | 
|  | 4140 | #endif | 
|  | 4141 |  | 
|  | 4142 | /* | 
|  | 4143 | * page_evictable - test whether a page is evictable | 
|  | 4144 | * @page: the page to test | 
|  | 4145 | * | 
|  | 4146 | * Test whether page is evictable--i.e., should be placed on active/inactive | 
|  | 4147 | * lists vs unevictable list. | 
|  | 4148 | * | 
|  | 4149 | * Reasons page might not be evictable: | 
|  | 4150 | * (1) page's mapping marked unevictable | 
|  | 4151 | * (2) page is part of an mlocked VMA | 
|  | 4152 | * | 
|  | 4153 | */ | 
|  | 4154 | int page_evictable(struct page *page) | 
|  | 4155 | { | 
|  | 4156 | int ret; | 
|  | 4157 |  | 
|  | 4158 | /* Prevent address_space of inode and swap cache from being freed */ | 
|  | 4159 | rcu_read_lock(); | 
|  | 4160 | ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); | 
|  | 4161 | rcu_read_unlock(); | 
|  | 4162 | return ret; | 
|  | 4163 | } | 
|  | 4164 |  | 
|  | 4165 | #ifdef CONFIG_SHMEM | 
|  | 4166 | /** | 
|  | 4167 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list | 
|  | 4168 | * @pages:	array of pages to check | 
|  | 4169 | * @nr_pages:	number of pages to check | 
|  | 4170 | * | 
|  | 4171 | * Checks pages for evictability and moves them to the appropriate lru list. | 
|  | 4172 | * | 
|  | 4173 | * This function is only used for SysV IPC SHM_UNLOCK. | 
|  | 4174 | */ | 
|  | 4175 | void check_move_unevictable_pages(struct page **pages, int nr_pages) | 
|  | 4176 | { | 
|  | 4177 | struct lruvec *lruvec; | 
|  | 4178 | struct pglist_data *pgdat = NULL; | 
|  | 4179 | int pgscanned = 0; | 
|  | 4180 | int pgrescued = 0; | 
|  | 4181 | int i; | 
|  | 4182 |  | 
|  | 4183 | for (i = 0; i < nr_pages; i++) { | 
|  | 4184 | struct page *page = pages[i]; | 
|  | 4185 | struct pglist_data *pagepgdat = page_pgdat(page); | 
|  | 4186 |  | 
|  | 4187 | pgscanned++; | 
|  | 4188 | if (pagepgdat != pgdat) { | 
|  | 4189 | if (pgdat) | 
|  | 4190 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 4191 | pgdat = pagepgdat; | 
|  | 4192 | spin_lock_irq(&pgdat->lru_lock); | 
|  | 4193 | } | 
|  | 4194 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
|  | 4195 |  | 
|  | 4196 | if (!PageLRU(page) || !PageUnevictable(page)) | 
|  | 4197 | continue; | 
|  | 4198 |  | 
|  | 4199 | if (page_evictable(page)) { | 
|  | 4200 | enum lru_list lru = page_lru_base_type(page); | 
|  | 4201 |  | 
|  | 4202 | VM_BUG_ON_PAGE(PageActive(page), page); | 
|  | 4203 | ClearPageUnevictable(page); | 
|  | 4204 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); | 
|  | 4205 | add_page_to_lru_list(page, lruvec, lru); | 
|  | 4206 | pgrescued++; | 
|  | 4207 | } | 
|  | 4208 | } | 
|  | 4209 |  | 
|  | 4210 | if (pgdat) { | 
|  | 4211 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | 
|  | 4212 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | 
|  | 4213 | spin_unlock_irq(&pgdat->lru_lock); | 
|  | 4214 | } | 
|  | 4215 | } | 
|  | 4216 | #endif /* CONFIG_SHMEM */ |