blob: 3288bdff9889457bf9c9caf5de6226c4ecd5a105 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42
43#include <net/tls.h>
44
45MODULE_AUTHOR("Mellanox Technologies");
46MODULE_DESCRIPTION("Transport Layer Security Support");
47MODULE_LICENSE("Dual BSD/GPL");
48MODULE_ALIAS_TCP_ULP("tls");
49
50enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
54};
55
56static struct proto *saved_tcpv6_prot;
57static DEFINE_MUTEX(tcpv6_prot_mutex);
58static LIST_HEAD(device_list);
59static DEFINE_MUTEX(device_mutex);
60static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61static struct proto_ops tls_sw_proto_ops;
62
63static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64{
65 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68}
69
70int wait_on_pending_writer(struct sock *sk, long *timeo)
71{
72 int rc = 0;
73 DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75 add_wait_queue(sk_sleep(sk), &wait);
76 while (1) {
77 if (!*timeo) {
78 rc = -EAGAIN;
79 break;
80 }
81
82 if (signal_pending(current)) {
83 rc = sock_intr_errno(*timeo);
84 break;
85 }
86
87 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 break;
89 }
90 remove_wait_queue(sk_sleep(sk), &wait);
91 return rc;
92}
93
94int tls_push_sg(struct sock *sk,
95 struct tls_context *ctx,
96 struct scatterlist *sg,
97 u16 first_offset,
98 int flags)
99{
100 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 int ret = 0;
102 struct page *p;
103 size_t size;
104 int offset = first_offset;
105
106 size = sg->length - offset;
107 offset += sg->offset;
108
109 ctx->in_tcp_sendpages = true;
110 while (1) {
111 if (sg_is_last(sg))
112 sendpage_flags = flags;
113
114 /* is sending application-limited? */
115 tcp_rate_check_app_limited(sk);
116 p = sg_page(sg);
117retry:
118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120 if (ret != size) {
121 if (ret > 0) {
122 offset += ret;
123 size -= ret;
124 goto retry;
125 }
126
127 offset -= sg->offset;
128 ctx->partially_sent_offset = offset;
129 ctx->partially_sent_record = (void *)sg;
130 ctx->in_tcp_sendpages = false;
131 return ret;
132 }
133
134 put_page(p);
135 sk_mem_uncharge(sk, sg->length);
136 sg = sg_next(sg);
137 if (!sg)
138 break;
139
140 offset = sg->offset;
141 size = sg->length;
142 }
143
144 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 ctx->in_tcp_sendpages = false;
146 ctx->sk_write_space(sk);
147
148 return 0;
149}
150
151static int tls_handle_open_record(struct sock *sk, int flags)
152{
153 struct tls_context *ctx = tls_get_ctx(sk);
154
155 if (tls_is_pending_open_record(ctx))
156 return ctx->push_pending_record(sk, flags);
157
158 return 0;
159}
160
161int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 unsigned char *record_type)
163{
164 struct cmsghdr *cmsg;
165 int rc = -EINVAL;
166
167 for_each_cmsghdr(cmsg, msg) {
168 if (!CMSG_OK(msg, cmsg))
169 return -EINVAL;
170 if (cmsg->cmsg_level != SOL_TLS)
171 continue;
172
173 switch (cmsg->cmsg_type) {
174 case TLS_SET_RECORD_TYPE:
175 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 return -EINVAL;
177
178 if (msg->msg_flags & MSG_MORE)
179 return -EINVAL;
180
181 rc = tls_handle_open_record(sk, msg->msg_flags);
182 if (rc)
183 return rc;
184
185 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 rc = 0;
187 break;
188 default:
189 return -EINVAL;
190 }
191 }
192
193 return rc;
194}
195
196int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 int flags, long *timeo)
198{
199 struct scatterlist *sg;
200 u16 offset;
201
202 if (!tls_is_partially_sent_record(ctx))
203 return ctx->push_pending_record(sk, flags);
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212static void tls_write_space(struct sock *sk)
213{
214 struct tls_context *ctx = tls_get_ctx(sk);
215
216 /* If in_tcp_sendpages call lower protocol write space handler
217 * to ensure we wake up any waiting operations there. For example
218 * if do_tcp_sendpages where to call sk_wait_event.
219 */
220 if (ctx->in_tcp_sendpages) {
221 ctx->sk_write_space(sk);
222 return;
223 }
224
225 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226 gfp_t sk_allocation = sk->sk_allocation;
227 int rc;
228 long timeo = 0;
229
230 sk->sk_allocation = GFP_ATOMIC;
231 rc = tls_push_pending_closed_record(sk, ctx,
232 MSG_DONTWAIT |
233 MSG_NOSIGNAL,
234 &timeo);
235 sk->sk_allocation = sk_allocation;
236
237 if (rc < 0)
238 return;
239 }
240
241 ctx->sk_write_space(sk);
242}
243
244void tls_ctx_free(struct tls_context *ctx)
245{
246 if (!ctx)
247 return;
248
249 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251 kfree(ctx);
252}
253
254static void tls_sk_proto_close(struct sock *sk, long timeout)
255{
256 struct tls_context *ctx = tls_get_ctx(sk);
257 long timeo = sock_sndtimeo(sk, 0);
258 void (*sk_proto_close)(struct sock *sk, long timeout);
259 bool free_ctx = false;
260
261 lock_sock(sk);
262 sk_proto_close = ctx->sk_proto_close;
263
264 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266 free_ctx = true;
267 goto skip_tx_cleanup;
268 }
269
270 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271 tls_handle_open_record(sk, 0);
272
273 if (ctx->partially_sent_record) {
274 struct scatterlist *sg = ctx->partially_sent_record;
275
276 while (1) {
277 put_page(sg_page(sg));
278 sk_mem_uncharge(sk, sg->length);
279
280 if (sg_is_last(sg))
281 break;
282 sg++;
283 }
284 }
285
286 /* We need these for tls_sw_fallback handling of other packets */
287 if (ctx->tx_conf == TLS_SW) {
288 kfree(ctx->tx.rec_seq);
289 kfree(ctx->tx.iv);
290 tls_sw_free_resources_tx(sk);
291 }
292
293 if (ctx->rx_conf == TLS_SW)
294 tls_sw_free_resources_rx(sk);
295
296#ifdef CONFIG_TLS_DEVICE
297 if (ctx->rx_conf == TLS_HW)
298 tls_device_offload_cleanup_rx(sk);
299
300 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
301#else
302 {
303#endif
304 if (sk->sk_write_space == tls_write_space)
305 sk->sk_write_space = ctx->sk_write_space;
306 tls_ctx_free(ctx);
307 ctx = NULL;
308 }
309
310skip_tx_cleanup:
311 release_sock(sk);
312 sk_proto_close(sk, timeout);
313 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
314 * for sk->sk_prot->unhash [tls_hw_unhash]
315 */
316 if (free_ctx)
317 tls_ctx_free(ctx);
318}
319
320static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
321 int __user *optlen)
322{
323 int rc = 0;
324 struct tls_context *ctx = tls_get_ctx(sk);
325 struct tls_crypto_info *crypto_info;
326 int len;
327
328 if (get_user(len, optlen))
329 return -EFAULT;
330
331 if (!optval || (len < sizeof(*crypto_info))) {
332 rc = -EINVAL;
333 goto out;
334 }
335
336 if (!ctx) {
337 rc = -EBUSY;
338 goto out;
339 }
340
341 /* get user crypto info */
342 crypto_info = &ctx->crypto_send.info;
343
344 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
345 rc = -EBUSY;
346 goto out;
347 }
348
349 if (len == sizeof(*crypto_info)) {
350 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
351 rc = -EFAULT;
352 goto out;
353 }
354
355 switch (crypto_info->cipher_type) {
356 case TLS_CIPHER_AES_GCM_128: {
357 struct tls12_crypto_info_aes_gcm_128 *
358 crypto_info_aes_gcm_128 =
359 container_of(crypto_info,
360 struct tls12_crypto_info_aes_gcm_128,
361 info);
362
363 if (len != sizeof(*crypto_info_aes_gcm_128)) {
364 rc = -EINVAL;
365 goto out;
366 }
367 lock_sock(sk);
368 memcpy(crypto_info_aes_gcm_128->iv,
369 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
370 TLS_CIPHER_AES_GCM_128_IV_SIZE);
371 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
372 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
373 release_sock(sk);
374 if (copy_to_user(optval,
375 crypto_info_aes_gcm_128,
376 sizeof(*crypto_info_aes_gcm_128)))
377 rc = -EFAULT;
378 break;
379 }
380 default:
381 rc = -EINVAL;
382 }
383
384out:
385 return rc;
386}
387
388static int do_tls_getsockopt(struct sock *sk, int optname,
389 char __user *optval, int __user *optlen)
390{
391 int rc = 0;
392
393 switch (optname) {
394 case TLS_TX:
395 rc = do_tls_getsockopt_tx(sk, optval, optlen);
396 break;
397 default:
398 rc = -ENOPROTOOPT;
399 break;
400 }
401 return rc;
402}
403
404static int tls_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen)
406{
407 struct tls_context *ctx = tls_get_ctx(sk);
408
409 if (level != SOL_TLS)
410 return ctx->getsockopt(sk, level, optname, optval, optlen);
411
412 return do_tls_getsockopt(sk, optname, optval, optlen);
413}
414
415static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
416 unsigned int optlen, int tx)
417{
418 struct tls_crypto_info *crypto_info;
419 struct tls_context *ctx = tls_get_ctx(sk);
420 int rc = 0;
421 int conf;
422
423 if (!optval || (optlen < sizeof(*crypto_info))) {
424 rc = -EINVAL;
425 goto out;
426 }
427
428 if (tx)
429 crypto_info = &ctx->crypto_send.info;
430 else
431 crypto_info = &ctx->crypto_recv.info;
432
433 /* Currently we don't support set crypto info more than one time */
434 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
435 rc = -EBUSY;
436 goto out;
437 }
438
439 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
440 if (rc) {
441 rc = -EFAULT;
442 goto err_crypto_info;
443 }
444
445 /* check version */
446 if (crypto_info->version != TLS_1_2_VERSION) {
447 rc = -ENOTSUPP;
448 goto err_crypto_info;
449 }
450
451 switch (crypto_info->cipher_type) {
452 case TLS_CIPHER_AES_GCM_128: {
453 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
454 rc = -EINVAL;
455 goto err_crypto_info;
456 }
457 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
458 optlen - sizeof(*crypto_info));
459 if (rc) {
460 rc = -EFAULT;
461 goto err_crypto_info;
462 }
463 break;
464 }
465 default:
466 rc = -EINVAL;
467 goto err_crypto_info;
468 }
469
470 if (tx) {
471#ifdef CONFIG_TLS_DEVICE
472 rc = tls_set_device_offload(sk, ctx);
473 conf = TLS_HW;
474 if (rc) {
475#else
476 {
477#endif
478 rc = tls_set_sw_offload(sk, ctx, 1);
479 conf = TLS_SW;
480 }
481 } else {
482#ifdef CONFIG_TLS_DEVICE
483 rc = tls_set_device_offload_rx(sk, ctx);
484 conf = TLS_HW;
485 if (rc) {
486#else
487 {
488#endif
489 rc = tls_set_sw_offload(sk, ctx, 0);
490 conf = TLS_SW;
491 }
492 }
493
494 if (rc)
495 goto err_crypto_info;
496
497 if (tx)
498 ctx->tx_conf = conf;
499 else
500 ctx->rx_conf = conf;
501 update_sk_prot(sk, ctx);
502 if (tx) {
503 ctx->sk_write_space = sk->sk_write_space;
504 sk->sk_write_space = tls_write_space;
505 } else {
506 sk->sk_socket->ops = &tls_sw_proto_ops;
507 }
508 goto out;
509
510err_crypto_info:
511 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
512out:
513 return rc;
514}
515
516static int do_tls_setsockopt(struct sock *sk, int optname,
517 char __user *optval, unsigned int optlen)
518{
519 int rc = 0;
520
521 switch (optname) {
522 case TLS_TX:
523 case TLS_RX:
524 lock_sock(sk);
525 rc = do_tls_setsockopt_conf(sk, optval, optlen,
526 optname == TLS_TX);
527 release_sock(sk);
528 break;
529 default:
530 rc = -ENOPROTOOPT;
531 break;
532 }
533 return rc;
534}
535
536static int tls_setsockopt(struct sock *sk, int level, int optname,
537 char __user *optval, unsigned int optlen)
538{
539 struct tls_context *ctx = tls_get_ctx(sk);
540
541 if (level != SOL_TLS)
542 return ctx->setsockopt(sk, level, optname, optval, optlen);
543
544 return do_tls_setsockopt(sk, optname, optval, optlen);
545}
546
547static struct tls_context *create_ctx(struct sock *sk)
548{
549 struct inet_connection_sock *icsk = inet_csk(sk);
550 struct tls_context *ctx;
551
552 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
553 if (!ctx)
554 return NULL;
555
556 icsk->icsk_ulp_data = ctx;
557 ctx->setsockopt = sk->sk_prot->setsockopt;
558 ctx->getsockopt = sk->sk_prot->getsockopt;
559 ctx->sk_proto_close = sk->sk_prot->close;
560 return ctx;
561}
562
563static int tls_hw_prot(struct sock *sk)
564{
565 struct tls_context *ctx;
566 struct tls_device *dev;
567 int rc = 0;
568
569 mutex_lock(&device_mutex);
570 list_for_each_entry(dev, &device_list, dev_list) {
571 if (dev->feature && dev->feature(dev)) {
572 ctx = create_ctx(sk);
573 if (!ctx)
574 goto out;
575
576 ctx->hash = sk->sk_prot->hash;
577 ctx->unhash = sk->sk_prot->unhash;
578 ctx->sk_proto_close = sk->sk_prot->close;
579 ctx->rx_conf = TLS_HW_RECORD;
580 ctx->tx_conf = TLS_HW_RECORD;
581 update_sk_prot(sk, ctx);
582 rc = 1;
583 break;
584 }
585 }
586out:
587 mutex_unlock(&device_mutex);
588 return rc;
589}
590
591static void tls_hw_unhash(struct sock *sk)
592{
593 struct tls_context *ctx = tls_get_ctx(sk);
594 struct tls_device *dev;
595
596 mutex_lock(&device_mutex);
597 list_for_each_entry(dev, &device_list, dev_list) {
598 if (dev->unhash)
599 dev->unhash(dev, sk);
600 }
601 mutex_unlock(&device_mutex);
602 ctx->unhash(sk);
603}
604
605static int tls_hw_hash(struct sock *sk)
606{
607 struct tls_context *ctx = tls_get_ctx(sk);
608 struct tls_device *dev;
609 int err;
610
611 err = ctx->hash(sk);
612 mutex_lock(&device_mutex);
613 list_for_each_entry(dev, &device_list, dev_list) {
614 if (dev->hash)
615 err |= dev->hash(dev, sk);
616 }
617 mutex_unlock(&device_mutex);
618
619 if (err)
620 tls_hw_unhash(sk);
621 return err;
622}
623
624static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
625 struct proto *base)
626{
627 prot[TLS_BASE][TLS_BASE] = *base;
628 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
629 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
630 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
631
632 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
633 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
634 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
635
636 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
637 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
638 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
639
640 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
641 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
642 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
643
644#ifdef CONFIG_TLS_DEVICE
645 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
646 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
647 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
648
649 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
650 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
651 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
652
653 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
654
655 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
656
657 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
658#endif
659
660 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
661 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
662 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
663 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
664}
665
666static int tls_init(struct sock *sk)
667{
668 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
669 struct tls_context *ctx;
670 int rc = 0;
671
672 if (tls_hw_prot(sk))
673 goto out;
674
675 /* The TLS ulp is currently supported only for TCP sockets
676 * in ESTABLISHED state.
677 * Supporting sockets in LISTEN state will require us
678 * to modify the accept implementation to clone rather then
679 * share the ulp context.
680 */
681 if (sk->sk_state != TCP_ESTABLISHED)
682 return -ENOTSUPP;
683
684 /* allocate tls context */
685 ctx = create_ctx(sk);
686 if (!ctx) {
687 rc = -ENOMEM;
688 goto out;
689 }
690
691 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
692 if (ip_ver == TLSV6 &&
693 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
694 mutex_lock(&tcpv6_prot_mutex);
695 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
696 build_protos(tls_prots[TLSV6], sk->sk_prot);
697 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
698 }
699 mutex_unlock(&tcpv6_prot_mutex);
700 }
701
702 ctx->tx_conf = TLS_BASE;
703 ctx->rx_conf = TLS_BASE;
704 update_sk_prot(sk, ctx);
705out:
706 return rc;
707}
708
709void tls_register_device(struct tls_device *device)
710{
711 mutex_lock(&device_mutex);
712 list_add_tail(&device->dev_list, &device_list);
713 mutex_unlock(&device_mutex);
714}
715EXPORT_SYMBOL(tls_register_device);
716
717void tls_unregister_device(struct tls_device *device)
718{
719 mutex_lock(&device_mutex);
720 list_del(&device->dev_list);
721 mutex_unlock(&device_mutex);
722}
723EXPORT_SYMBOL(tls_unregister_device);
724
725static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
726 .name = "tls",
727 .uid = TCP_ULP_TLS,
728 .user_visible = true,
729 .owner = THIS_MODULE,
730 .init = tls_init,
731};
732
733static int __init tls_register(void)
734{
735 build_protos(tls_prots[TLSV4], &tcp_prot);
736
737 tls_sw_proto_ops = inet_stream_ops;
738 tls_sw_proto_ops.poll = tls_sw_poll;
739 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
740
741#ifdef CONFIG_TLS_DEVICE
742 tls_device_init();
743#endif
744 tcp_register_ulp(&tcp_tls_ulp_ops);
745
746 return 0;
747}
748
749static void __exit tls_unregister(void)
750{
751 tcp_unregister_ulp(&tcp_tls_ulp_ops);
752#ifdef CONFIG_TLS_DEVICE
753 tls_device_cleanup();
754#endif
755}
756
757module_init(tls_register);
758module_exit(tls_unregister);