| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | #include <linux/tcp.h> | 
|  | 3 | #include <net/tcp.h> | 
|  | 4 |  | 
|  | 5 | void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) | 
|  | 6 | { | 
|  | 7 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 8 |  | 
|  | 9 | tcp_skb_mark_lost_uncond_verify(tp, skb); | 
|  | 10 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { | 
|  | 11 | /* Account for retransmits that are lost again */ | 
|  | 12 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | 13 | tp->retrans_out -= tcp_skb_pcount(skb); | 
|  | 14 | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, | 
|  | 15 | tcp_skb_pcount(skb)); | 
|  | 16 | } | 
|  | 17 | } | 
|  | 18 |  | 
|  | 19 | static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) | 
|  | 20 | { | 
|  | 21 | return t1 > t2 || (t1 == t2 && after(seq1, seq2)); | 
|  | 22 | } | 
|  | 23 |  | 
|  | 24 | static u32 tcp_rack_reo_wnd(const struct sock *sk) | 
|  | 25 | { | 
|  | 26 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 27 |  | 
|  | 28 | if (!tp->reord_seen) { | 
|  | 29 | /* If reordering has not been observed, be aggressive during | 
|  | 30 | * the recovery or starting the recovery by DUPACK threshold. | 
|  | 31 | */ | 
|  | 32 | if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery) | 
|  | 33 | return 0; | 
|  | 34 |  | 
|  | 35 | if (tp->sacked_out >= tp->reordering && | 
|  | 36 | !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH)) | 
|  | 37 | return 0; | 
|  | 38 | } | 
|  | 39 |  | 
|  | 40 | /* To be more reordering resilient, allow min_rtt/4 settling delay. | 
|  | 41 | * Use min_rtt instead of the smoothed RTT because reordering is | 
|  | 42 | * often a path property and less related to queuing or delayed ACKs. | 
|  | 43 | * Upon receiving DSACKs, linearly increase the window up to the | 
|  | 44 | * smoothed RTT. | 
|  | 45 | */ | 
|  | 46 | return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps, | 
|  | 47 | tp->srtt_us >> 3); | 
|  | 48 | } | 
|  | 49 |  | 
|  | 50 | s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd) | 
|  | 51 | { | 
|  | 52 | return tp->rack.rtt_us + reo_wnd - | 
|  | 53 | tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp); | 
|  | 54 | } | 
|  | 55 |  | 
|  | 56 | /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01): | 
|  | 57 | * | 
|  | 58 | * Marks a packet lost, if some packet sent later has been (s)acked. | 
|  | 59 | * The underlying idea is similar to the traditional dupthresh and FACK | 
|  | 60 | * but they look at different metrics: | 
|  | 61 | * | 
|  | 62 | * dupthresh: 3 OOO packets delivered (packet count) | 
|  | 63 | * FACK: sequence delta to highest sacked sequence (sequence space) | 
|  | 64 | * RACK: sent time delta to the latest delivered packet (time domain) | 
|  | 65 | * | 
|  | 66 | * The advantage of RACK is it applies to both original and retransmitted | 
|  | 67 | * packet and therefore is robust against tail losses. Another advantage | 
|  | 68 | * is being more resilient to reordering by simply allowing some | 
|  | 69 | * "settling delay", instead of tweaking the dupthresh. | 
|  | 70 | * | 
|  | 71 | * When tcp_rack_detect_loss() detects some packets are lost and we | 
|  | 72 | * are not already in the CA_Recovery state, either tcp_rack_reo_timeout() | 
|  | 73 | * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will | 
|  | 74 | * make us enter the CA_Recovery state. | 
|  | 75 | */ | 
|  | 76 | static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout) | 
|  | 77 | { | 
|  | 78 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 79 | struct sk_buff *skb, *n; | 
|  | 80 | u32 reo_wnd; | 
|  | 81 |  | 
|  | 82 | *reo_timeout = 0; | 
|  | 83 | reo_wnd = tcp_rack_reo_wnd(sk); | 
|  | 84 | list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue, | 
|  | 85 | tcp_tsorted_anchor) { | 
|  | 86 | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | 
|  | 87 | s32 remaining; | 
|  | 88 |  | 
|  | 89 | /* Skip ones marked lost but not yet retransmitted */ | 
|  | 90 | if ((scb->sacked & TCPCB_LOST) && | 
|  | 91 | !(scb->sacked & TCPCB_SACKED_RETRANS)) | 
|  | 92 | continue; | 
|  | 93 |  | 
|  | 94 | if (!tcp_rack_sent_after(tp->rack.mstamp, skb->skb_mstamp, | 
|  | 95 | tp->rack.end_seq, scb->end_seq)) | 
|  | 96 | break; | 
|  | 97 |  | 
|  | 98 | /* A packet is lost if it has not been s/acked beyond | 
|  | 99 | * the recent RTT plus the reordering window. | 
|  | 100 | */ | 
|  | 101 | remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd); | 
|  | 102 | if (remaining <= 0) { | 
|  | 103 | tcp_mark_skb_lost(sk, skb); | 
|  | 104 | list_del_init(&skb->tcp_tsorted_anchor); | 
|  | 105 | } else { | 
|  | 106 | /* Record maximum wait time */ | 
|  | 107 | *reo_timeout = max_t(u32, *reo_timeout, remaining); | 
|  | 108 | } | 
|  | 109 | } | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | void tcp_rack_mark_lost(struct sock *sk) | 
|  | 113 | { | 
|  | 114 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 115 | u32 timeout; | 
|  | 116 |  | 
|  | 117 | if (!tp->rack.advanced) | 
|  | 118 | return; | 
|  | 119 |  | 
|  | 120 | /* Reset the advanced flag to avoid unnecessary queue scanning */ | 
|  | 121 | tp->rack.advanced = 0; | 
|  | 122 | tcp_rack_detect_loss(sk, &timeout); | 
|  | 123 | if (timeout) { | 
|  | 124 | timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN; | 
|  | 125 | inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT, | 
|  | 126 | timeout, inet_csk(sk)->icsk_rto); | 
|  | 127 | } | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | /* Record the most recently (re)sent time among the (s)acked packets | 
|  | 131 | * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from | 
|  | 132 | * draft-cheng-tcpm-rack-00.txt | 
|  | 133 | */ | 
|  | 134 | void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, | 
|  | 135 | u64 xmit_time) | 
|  | 136 | { | 
|  | 137 | u32 rtt_us; | 
|  | 138 |  | 
|  | 139 | rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time); | 
|  | 140 | if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) { | 
|  | 141 | /* If the sacked packet was retransmitted, it's ambiguous | 
|  | 142 | * whether the retransmission or the original (or the prior | 
|  | 143 | * retransmission) was sacked. | 
|  | 144 | * | 
|  | 145 | * If the original is lost, there is no ambiguity. Otherwise | 
|  | 146 | * we assume the original can be delayed up to aRTT + min_rtt. | 
|  | 147 | * the aRTT term is bounded by the fast recovery or timeout, | 
|  | 148 | * so it's at least one RTT (i.e., retransmission is at least | 
|  | 149 | * an RTT later). | 
|  | 150 | */ | 
|  | 151 | return; | 
|  | 152 | } | 
|  | 153 | tp->rack.advanced = 1; | 
|  | 154 | tp->rack.rtt_us = rtt_us; | 
|  | 155 | if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp, | 
|  | 156 | end_seq, tp->rack.end_seq)) { | 
|  | 157 | tp->rack.mstamp = xmit_time; | 
|  | 158 | tp->rack.end_seq = end_seq; | 
|  | 159 | } | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | /* We have waited long enough to accommodate reordering. Mark the expired | 
|  | 163 | * packets lost and retransmit them. | 
|  | 164 | */ | 
|  | 165 | void tcp_rack_reo_timeout(struct sock *sk) | 
|  | 166 | { | 
|  | 167 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 168 | u32 timeout, prior_inflight; | 
|  | 169 |  | 
|  | 170 | prior_inflight = tcp_packets_in_flight(tp); | 
|  | 171 | tcp_rack_detect_loss(sk, &timeout); | 
|  | 172 | if (prior_inflight != tcp_packets_in_flight(tp)) { | 
|  | 173 | if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) { | 
|  | 174 | tcp_enter_recovery(sk, false); | 
|  | 175 | if (!inet_csk(sk)->icsk_ca_ops->cong_control) | 
|  | 176 | tcp_cwnd_reduction(sk, 1, 0); | 
|  | 177 | } | 
|  | 178 | tcp_xmit_retransmit_queue(sk); | 
|  | 179 | } | 
|  | 180 | if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS) | 
|  | 181 | tcp_rearm_rto(sk); | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries. | 
|  | 185 | * | 
|  | 186 | * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded | 
|  | 187 | * by srtt), since there is possibility that spurious retransmission was | 
|  | 188 | * due to reordering delay longer than reo_wnd. | 
|  | 189 | * | 
|  | 190 | * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) | 
|  | 191 | * no. of successful recoveries (accounts for full DSACK-based loss | 
|  | 192 | * recovery undo). After that, reset it to default (min_rtt/4). | 
|  | 193 | * | 
|  | 194 | * At max, reo_wnd is incremented only once per rtt. So that the new | 
|  | 195 | * DSACK on which we are reacting, is due to the spurious retx (approx) | 
|  | 196 | * after the reo_wnd has been updated last time. | 
|  | 197 | * | 
|  | 198 | * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than | 
|  | 199 | * absolute value to account for change in rtt. | 
|  | 200 | */ | 
|  | 201 | void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs) | 
|  | 202 | { | 
|  | 203 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 204 |  | 
|  | 205 | if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND || | 
|  | 206 | !rs->prior_delivered) | 
|  | 207 | return; | 
|  | 208 |  | 
|  | 209 | /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */ | 
|  | 210 | if (before(rs->prior_delivered, tp->rack.last_delivered)) | 
|  | 211 | tp->rack.dsack_seen = 0; | 
|  | 212 |  | 
|  | 213 | /* Adjust the reo_wnd if update is pending */ | 
|  | 214 | if (tp->rack.dsack_seen) { | 
|  | 215 | tp->rack.reo_wnd_steps = min_t(u32, 0xFF, | 
|  | 216 | tp->rack.reo_wnd_steps + 1); | 
|  | 217 | tp->rack.dsack_seen = 0; | 
|  | 218 | tp->rack.last_delivered = tp->delivered; | 
|  | 219 | tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH; | 
|  | 220 | } else if (!tp->rack.reo_wnd_persist) { | 
|  | 221 | tp->rack.reo_wnd_steps = 1; | 
|  | 222 | } | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits | 
|  | 226 | * the next unacked packet upon receiving | 
|  | 227 | * a) three or more DUPACKs to start the fast recovery | 
|  | 228 | * b) an ACK acknowledging new data during the fast recovery. | 
|  | 229 | */ | 
|  | 230 | void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced) | 
|  | 231 | { | 
|  | 232 | const u8 state = inet_csk(sk)->icsk_ca_state; | 
|  | 233 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 234 |  | 
|  | 235 | if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) || | 
|  | 236 | (state == TCP_CA_Recovery && snd_una_advanced)) { | 
|  | 237 | struct sk_buff *skb = tcp_rtx_queue_head(sk); | 
|  | 238 | u32 mss; | 
|  | 239 |  | 
|  | 240 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) | 
|  | 241 | return; | 
|  | 242 |  | 
|  | 243 | mss = tcp_skb_mss(skb); | 
|  | 244 | if (tcp_skb_pcount(skb) > 1 && skb->len > mss) | 
|  | 245 | tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, | 
|  | 246 | mss, mss, GFP_ATOMIC); | 
|  | 247 |  | 
|  | 248 | tcp_skb_mark_lost_uncond_verify(tp, skb); | 
|  | 249 | } | 
|  | 250 | } |