| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * This file is subject to the terms and conditions of the GNU General Public | 
|  | 3 | * License.  See the file "COPYING" in the main directory of this archive | 
|  | 4 | * for more details. | 
|  | 5 | * | 
|  | 6 | * Copyright (C) 2005-2009 Cavium Networks | 
|  | 7 | */ | 
|  | 8 | #include <linux/kernel.h> | 
|  | 9 | #include <linux/init.h> | 
|  | 10 | #include <linux/pci.h> | 
|  | 11 | #include <linux/interrupt.h> | 
|  | 12 | #include <linux/time.h> | 
|  | 13 | #include <linux/delay.h> | 
|  | 14 | #include <linux/platform_device.h> | 
|  | 15 | #include <linux/swiotlb.h> | 
|  | 16 |  | 
|  | 17 | #include <asm/time.h> | 
|  | 18 |  | 
|  | 19 | #include <asm/octeon/octeon.h> | 
|  | 20 | #include <asm/octeon/cvmx-npi-defs.h> | 
|  | 21 | #include <asm/octeon/cvmx-pci-defs.h> | 
|  | 22 | #include <asm/octeon/pci-octeon.h> | 
|  | 23 |  | 
|  | 24 | #define USE_OCTEON_INTERNAL_ARBITER | 
|  | 25 |  | 
|  | 26 | /* | 
|  | 27 | * Octeon's PCI controller uses did=3, subdid=2 for PCI IO | 
|  | 28 | * addresses. Use PCI endian swapping 1 so no address swapping is | 
|  | 29 | * necessary. The Linux io routines will endian swap the data. | 
|  | 30 | */ | 
|  | 31 | #define OCTEON_PCI_IOSPACE_BASE	    0x80011a0400000000ull | 
|  | 32 | #define OCTEON_PCI_IOSPACE_SIZE	    (1ull<<32) | 
|  | 33 |  | 
|  | 34 | /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ | 
|  | 35 | #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull) | 
|  | 36 |  | 
|  | 37 | u64 octeon_bar1_pci_phys; | 
|  | 38 |  | 
|  | 39 | /** | 
|  | 40 | * This is the bit decoding used for the Octeon PCI controller addresses | 
|  | 41 | */ | 
|  | 42 | union octeon_pci_address { | 
|  | 43 | uint64_t u64; | 
|  | 44 | struct { | 
|  | 45 | uint64_t upper:2; | 
|  | 46 | uint64_t reserved:13; | 
|  | 47 | uint64_t io:1; | 
|  | 48 | uint64_t did:5; | 
|  | 49 | uint64_t subdid:3; | 
|  | 50 | uint64_t reserved2:4; | 
|  | 51 | uint64_t endian_swap:2; | 
|  | 52 | uint64_t reserved3:10; | 
|  | 53 | uint64_t bus:8; | 
|  | 54 | uint64_t dev:5; | 
|  | 55 | uint64_t func:3; | 
|  | 56 | uint64_t reg:8; | 
|  | 57 | } s; | 
|  | 58 | }; | 
|  | 59 |  | 
|  | 60 | int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin); | 
|  | 61 | enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; | 
|  | 62 |  | 
|  | 63 | /** | 
|  | 64 | * Map a PCI device to the appropriate interrupt line | 
|  | 65 | * | 
|  | 66 | * @dev:    The Linux PCI device structure for the device to map | 
|  | 67 | * @slot:   The slot number for this device on __BUS 0__. Linux | 
|  | 68 | *		 enumerates through all the bridges and figures out the | 
|  | 69 | *		 slot on Bus 0 where this device eventually hooks to. | 
|  | 70 | * @pin:    The PCI interrupt pin read from the device, then swizzled | 
|  | 71 | *		 as it goes through each bridge. | 
|  | 72 | * Returns Interrupt number for the device | 
|  | 73 | */ | 
|  | 74 | int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) | 
|  | 75 | { | 
|  | 76 | if (octeon_pcibios_map_irq) | 
|  | 77 | return octeon_pcibios_map_irq(dev, slot, pin); | 
|  | 78 | else | 
|  | 79 | panic("octeon_pcibios_map_irq not set."); | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 |  | 
|  | 83 | /* | 
|  | 84 | * Called to perform platform specific PCI setup | 
|  | 85 | */ | 
|  | 86 | int pcibios_plat_dev_init(struct pci_dev *dev) | 
|  | 87 | { | 
|  | 88 | uint16_t config; | 
|  | 89 | uint32_t dconfig; | 
|  | 90 | int pos; | 
|  | 91 | /* | 
|  | 92 | * Force the Cache line setting to 64 bytes. The standard | 
|  | 93 | * Linux bus scan doesn't seem to set it. Octeon really has | 
|  | 94 | * 128 byte lines, but Intel bridges get really upset if you | 
|  | 95 | * try and set values above 64 bytes. Value is specified in | 
|  | 96 | * 32bit words. | 
|  | 97 | */ | 
|  | 98 | pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); | 
|  | 99 | /* Set latency timers for all devices */ | 
|  | 100 | pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); | 
|  | 101 |  | 
|  | 102 | /* Enable reporting System errors and parity errors on all devices */ | 
|  | 103 | /* Enable parity checking and error reporting */ | 
|  | 104 | pci_read_config_word(dev, PCI_COMMAND, &config); | 
|  | 105 | config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; | 
|  | 106 | pci_write_config_word(dev, PCI_COMMAND, config); | 
|  | 107 |  | 
|  | 108 | if (dev->subordinate) { | 
|  | 109 | /* Set latency timers on sub bridges */ | 
|  | 110 | pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); | 
|  | 111 | /* More bridge error detection */ | 
|  | 112 | pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); | 
|  | 113 | config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; | 
|  | 114 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); | 
|  | 115 | } | 
|  | 116 |  | 
|  | 117 | /* Enable the PCIe normal error reporting */ | 
|  | 118 | config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ | 
|  | 119 | config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ | 
|  | 120 | config |= PCI_EXP_DEVCTL_FERE;	/* Fatal Error Reporting */ | 
|  | 121 | config |= PCI_EXP_DEVCTL_URRE;	/* Unsupported Request */ | 
|  | 122 | pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); | 
|  | 123 |  | 
|  | 124 | /* Find the Advanced Error Reporting capability */ | 
|  | 125 | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); | 
|  | 126 | if (pos) { | 
|  | 127 | /* Clear Uncorrectable Error Status */ | 
|  | 128 | pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | 
|  | 129 | &dconfig); | 
|  | 130 | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, | 
|  | 131 | dconfig); | 
|  | 132 | /* Enable reporting of all uncorrectable errors */ | 
|  | 133 | /* Uncorrectable Error Mask - turned on bits disable errors */ | 
|  | 134 | pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); | 
|  | 135 | /* | 
|  | 136 | * Leave severity at HW default. This only controls if | 
|  | 137 | * errors are reported as uncorrectable or | 
|  | 138 | * correctable, not if the error is reported. | 
|  | 139 | */ | 
|  | 140 | /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ | 
|  | 141 | /* Clear Correctable Error Status */ | 
|  | 142 | pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); | 
|  | 143 | pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); | 
|  | 144 | /* Enable reporting of all correctable errors */ | 
|  | 145 | /* Correctable Error Mask - turned on bits disable errors */ | 
|  | 146 | pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); | 
|  | 147 | /* Advanced Error Capabilities */ | 
|  | 148 | pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); | 
|  | 149 | /* ECRC Generation Enable */ | 
|  | 150 | if (config & PCI_ERR_CAP_ECRC_GENC) | 
|  | 151 | config |= PCI_ERR_CAP_ECRC_GENE; | 
|  | 152 | /* ECRC Check Enable */ | 
|  | 153 | if (config & PCI_ERR_CAP_ECRC_CHKC) | 
|  | 154 | config |= PCI_ERR_CAP_ECRC_CHKE; | 
|  | 155 | pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); | 
|  | 156 | /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ | 
|  | 157 | /* Report all errors to the root complex */ | 
|  | 158 | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, | 
|  | 159 | PCI_ERR_ROOT_CMD_COR_EN | | 
|  | 160 | PCI_ERR_ROOT_CMD_NONFATAL_EN | | 
|  | 161 | PCI_ERR_ROOT_CMD_FATAL_EN); | 
|  | 162 | /* Clear the Root status register */ | 
|  | 163 | pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); | 
|  | 164 | pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); | 
|  | 165 | } | 
|  | 166 |  | 
|  | 167 | return 0; | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | /** | 
|  | 171 | * Return the mapping of PCI device number to IRQ line. Each | 
|  | 172 | * character in the return string represents the interrupt | 
|  | 173 | * line for the device at that position. Device 1 maps to the | 
|  | 174 | * first character, etc. The characters A-D are used for PCI | 
|  | 175 | * interrupts. | 
|  | 176 | * | 
|  | 177 | * Returns PCI interrupt mapping | 
|  | 178 | */ | 
|  | 179 | const char *octeon_get_pci_interrupts(void) | 
|  | 180 | { | 
|  | 181 | /* | 
|  | 182 | * Returning an empty string causes the interrupts to be | 
|  | 183 | * routed based on the PCI specification. From the PCI spec: | 
|  | 184 | * | 
|  | 185 | * INTA# of Device Number 0 is connected to IRQW on the system | 
|  | 186 | * board.  (Device Number has no significance regarding being | 
|  | 187 | * located on the system board or in a connector.) INTA# of | 
|  | 188 | * Device Number 1 is connected to IRQX on the system | 
|  | 189 | * board. INTA# of Device Number 2 is connected to IRQY on the | 
|  | 190 | * system board. INTA# of Device Number 3 is connected to IRQZ | 
|  | 191 | * on the system board. The table below describes how each | 
|  | 192 | * agent's INTx# lines are connected to the system board | 
|  | 193 | * interrupt lines. The following equation can be used to | 
|  | 194 | * determine to which INTx# signal on the system board a given | 
|  | 195 | * device's INTx# line(s) is connected. | 
|  | 196 | * | 
|  | 197 | * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, | 
|  | 198 | * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = | 
|  | 199 | * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and | 
|  | 200 | * INTD# = 3) | 
|  | 201 | */ | 
|  | 202 | if (of_machine_is_compatible("dlink,dsr-500n")) | 
|  | 203 | return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; | 
|  | 204 | switch (octeon_bootinfo->board_type) { | 
|  | 205 | case CVMX_BOARD_TYPE_NAO38: | 
|  | 206 | /* This is really the NAC38 */ | 
|  | 207 | return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; | 
|  | 208 | case CVMX_BOARD_TYPE_EBH3100: | 
|  | 209 | case CVMX_BOARD_TYPE_CN3010_EVB_HS5: | 
|  | 210 | case CVMX_BOARD_TYPE_CN3005_EVB_HS5: | 
|  | 211 | return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; | 
|  | 212 | case CVMX_BOARD_TYPE_BBGW_REF: | 
|  | 213 | return "AABCD"; | 
|  | 214 | case CVMX_BOARD_TYPE_CUST_DSR1000N: | 
|  | 215 | return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; | 
|  | 216 | case CVMX_BOARD_TYPE_THUNDER: | 
|  | 217 | case CVMX_BOARD_TYPE_EBH3000: | 
|  | 218 | default: | 
|  | 219 | return ""; | 
|  | 220 | } | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | /** | 
|  | 224 | * Map a PCI device to the appropriate interrupt line | 
|  | 225 | * | 
|  | 226 | * @dev:    The Linux PCI device structure for the device to map | 
|  | 227 | * @slot:   The slot number for this device on __BUS 0__. Linux | 
|  | 228 | *		 enumerates through all the bridges and figures out the | 
|  | 229 | *		 slot on Bus 0 where this device eventually hooks to. | 
|  | 230 | * @pin:    The PCI interrupt pin read from the device, then swizzled | 
|  | 231 | *		 as it goes through each bridge. | 
|  | 232 | * Returns Interrupt number for the device | 
|  | 233 | */ | 
|  | 234 | int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, | 
|  | 235 | u8 slot, u8 pin) | 
|  | 236 | { | 
|  | 237 | int irq_num; | 
|  | 238 | const char *interrupts; | 
|  | 239 | int dev_num; | 
|  | 240 |  | 
|  | 241 | /* Get the board specific interrupt mapping */ | 
|  | 242 | interrupts = octeon_get_pci_interrupts(); | 
|  | 243 |  | 
|  | 244 | dev_num = dev->devfn >> 3; | 
|  | 245 | if (dev_num < strlen(interrupts)) | 
|  | 246 | irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + | 
|  | 247 | OCTEON_IRQ_PCI_INT0; | 
|  | 248 | else | 
|  | 249 | irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; | 
|  | 250 | return irq_num; | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 |  | 
|  | 254 | /* | 
|  | 255 | * Read a value from configuration space | 
|  | 256 | */ | 
|  | 257 | static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, | 
|  | 258 | int reg, int size, u32 *val) | 
|  | 259 | { | 
|  | 260 | union octeon_pci_address pci_addr; | 
|  | 261 |  | 
|  | 262 | pci_addr.u64 = 0; | 
|  | 263 | pci_addr.s.upper = 2; | 
|  | 264 | pci_addr.s.io = 1; | 
|  | 265 | pci_addr.s.did = 3; | 
|  | 266 | pci_addr.s.subdid = 1; | 
|  | 267 | pci_addr.s.endian_swap = 1; | 
|  | 268 | pci_addr.s.bus = bus->number; | 
|  | 269 | pci_addr.s.dev = devfn >> 3; | 
|  | 270 | pci_addr.s.func = devfn & 0x7; | 
|  | 271 | pci_addr.s.reg = reg; | 
|  | 272 |  | 
|  | 273 | switch (size) { | 
|  | 274 | case 4: | 
|  | 275 | *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); | 
|  | 276 | return PCIBIOS_SUCCESSFUL; | 
|  | 277 | case 2: | 
|  | 278 | *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); | 
|  | 279 | return PCIBIOS_SUCCESSFUL; | 
|  | 280 | case 1: | 
|  | 281 | *val = cvmx_read64_uint8(pci_addr.u64); | 
|  | 282 | return PCIBIOS_SUCCESSFUL; | 
|  | 283 | } | 
|  | 284 | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 |  | 
|  | 288 | /* | 
|  | 289 | * Write a value to PCI configuration space | 
|  | 290 | */ | 
|  | 291 | static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, | 
|  | 292 | int reg, int size, u32 val) | 
|  | 293 | { | 
|  | 294 | union octeon_pci_address pci_addr; | 
|  | 295 |  | 
|  | 296 | pci_addr.u64 = 0; | 
|  | 297 | pci_addr.s.upper = 2; | 
|  | 298 | pci_addr.s.io = 1; | 
|  | 299 | pci_addr.s.did = 3; | 
|  | 300 | pci_addr.s.subdid = 1; | 
|  | 301 | pci_addr.s.endian_swap = 1; | 
|  | 302 | pci_addr.s.bus = bus->number; | 
|  | 303 | pci_addr.s.dev = devfn >> 3; | 
|  | 304 | pci_addr.s.func = devfn & 0x7; | 
|  | 305 | pci_addr.s.reg = reg; | 
|  | 306 |  | 
|  | 307 | switch (size) { | 
|  | 308 | case 4: | 
|  | 309 | cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); | 
|  | 310 | return PCIBIOS_SUCCESSFUL; | 
|  | 311 | case 2: | 
|  | 312 | cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); | 
|  | 313 | return PCIBIOS_SUCCESSFUL; | 
|  | 314 | case 1: | 
|  | 315 | cvmx_write64_uint8(pci_addr.u64, val); | 
|  | 316 | return PCIBIOS_SUCCESSFUL; | 
|  | 317 | } | 
|  | 318 | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 |  | 
|  | 322 | static struct pci_ops octeon_pci_ops = { | 
|  | 323 | .read	= octeon_read_config, | 
|  | 324 | .write	= octeon_write_config, | 
|  | 325 | }; | 
|  | 326 |  | 
|  | 327 | static struct resource octeon_pci_mem_resource = { | 
|  | 328 | .start = 0, | 
|  | 329 | .end = 0, | 
|  | 330 | .name = "Octeon PCI MEM", | 
|  | 331 | .flags = IORESOURCE_MEM, | 
|  | 332 | }; | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI | 
|  | 336 | * bridge | 
|  | 337 | */ | 
|  | 338 | static struct resource octeon_pci_io_resource = { | 
|  | 339 | .start = 0x4000, | 
|  | 340 | .end = OCTEON_PCI_IOSPACE_SIZE - 1, | 
|  | 341 | .name = "Octeon PCI IO", | 
|  | 342 | .flags = IORESOURCE_IO, | 
|  | 343 | }; | 
|  | 344 |  | 
|  | 345 | static struct pci_controller octeon_pci_controller = { | 
|  | 346 | .pci_ops = &octeon_pci_ops, | 
|  | 347 | .mem_resource = &octeon_pci_mem_resource, | 
|  | 348 | .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, | 
|  | 349 | .io_resource = &octeon_pci_io_resource, | 
|  | 350 | .io_offset = 0, | 
|  | 351 | .io_map_base = OCTEON_PCI_IOSPACE_BASE, | 
|  | 352 | }; | 
|  | 353 |  | 
|  | 354 |  | 
|  | 355 | /* | 
|  | 356 | * Low level initialize the Octeon PCI controller | 
|  | 357 | */ | 
|  | 358 | static void octeon_pci_initialize(void) | 
|  | 359 | { | 
|  | 360 | union cvmx_pci_cfg01 cfg01; | 
|  | 361 | union cvmx_npi_ctl_status ctl_status; | 
|  | 362 | union cvmx_pci_ctl_status_2 ctl_status_2; | 
|  | 363 | union cvmx_pci_cfg19 cfg19; | 
|  | 364 | union cvmx_pci_cfg16 cfg16; | 
|  | 365 | union cvmx_pci_cfg22 cfg22; | 
|  | 366 | union cvmx_pci_cfg56 cfg56; | 
|  | 367 |  | 
|  | 368 | /* Reset the PCI Bus */ | 
|  | 369 | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); | 
|  | 370 | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | 
|  | 371 |  | 
|  | 372 | udelay(2000);		/* Hold PCI reset for 2 ms */ | 
|  | 373 |  | 
|  | 374 | ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ | 
|  | 375 | ctl_status.s.max_word = 1; | 
|  | 376 | ctl_status.s.timer = 1; | 
|  | 377 | cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); | 
|  | 378 |  | 
|  | 379 | /* Deassert PCI reset and advertize PCX Host Mode Device Capability | 
|  | 380 | (64b) */ | 
|  | 381 | cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); | 
|  | 382 | cvmx_read_csr(CVMX_CIU_SOFT_PRST); | 
|  | 383 |  | 
|  | 384 | udelay(2000);		/* Wait 2 ms after deasserting PCI reset */ | 
|  | 385 |  | 
|  | 386 | ctl_status_2.u32 = 0; | 
|  | 387 | ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set | 
|  | 388 | before any PCI reads. */ | 
|  | 389 | ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */ | 
|  | 390 | ctl_status_2.s.bar2_enb = 1; | 
|  | 391 | ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */ | 
|  | 392 | ctl_status_2.s.bar2_esx = 1; | 
|  | 393 | ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */ | 
|  | 394 | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | 
|  | 395 | /* BAR1 hole */ | 
|  | 396 | ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; | 
|  | 397 | ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */ | 
|  | 398 | ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */ | 
|  | 399 | ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */ | 
|  | 400 | ctl_status_2.s.bb1 = 1;	     /* BAR1 is big */ | 
|  | 401 | ctl_status_2.s.bb0 = 1;	     /* BAR0 is big */ | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 | octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); | 
|  | 405 | udelay(2000);		/* Wait 2 ms before doing PCI reads */ | 
|  | 406 |  | 
|  | 407 | ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); | 
|  | 408 | pr_notice("PCI Status: %s %s-bit\n", | 
|  | 409 | ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", | 
|  | 410 | ctl_status_2.s.ap_64ad ? "64" : "32"); | 
|  | 411 |  | 
|  | 412 | if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { | 
|  | 413 | union cvmx_pci_cnt_reg cnt_reg_start; | 
|  | 414 | union cvmx_pci_cnt_reg cnt_reg_end; | 
|  | 415 | unsigned long cycles, pci_clock; | 
|  | 416 |  | 
|  | 417 | cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | 
|  | 418 | cycles = read_c0_cvmcount(); | 
|  | 419 | udelay(1000); | 
|  | 420 | cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); | 
|  | 421 | cycles = read_c0_cvmcount() - cycles; | 
|  | 422 | pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / | 
|  | 423 | (cycles / (mips_hpt_frequency / 1000000)); | 
|  | 424 | pr_notice("PCI Clock: %lu MHz\n", pci_clock); | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | /* | 
|  | 428 | * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 | 
|  | 429 | * in PCI-X mode to allow four outstanding splits. Otherwise, | 
|  | 430 | * should not change from its reset value. Don't write PCI_CFG19 | 
|  | 431 | * in PCI mode (0x82000001 reset value), write it to 0x82000004 | 
|  | 432 | * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. | 
|  | 433 | * MRBCM -> must be one. | 
|  | 434 | */ | 
|  | 435 | if (ctl_status_2.s.ap_pcix) { | 
|  | 436 | cfg19.u32 = 0; | 
|  | 437 | /* | 
|  | 438 | * Target Delayed/Split request outstanding maximum | 
|  | 439 | * count. [1..31] and 0=32.  NOTE: If the user | 
|  | 440 | * programs these bits beyond the Designed Maximum | 
|  | 441 | * outstanding count, then the designed maximum table | 
|  | 442 | * depth will be used instead.	No additional | 
|  | 443 | * Deferred/Split transactions will be accepted if | 
|  | 444 | * this outstanding maximum count is | 
|  | 445 | * reached. Furthermore, no additional deferred/split | 
|  | 446 | * transactions will be accepted if the I/O delay/ I/O | 
|  | 447 | * Split Request outstanding maximum is reached. | 
|  | 448 | */ | 
|  | 449 | cfg19.s.tdomc = 4; | 
|  | 450 | /* | 
|  | 451 | * Master Deferred Read Request Outstanding Max Count | 
|  | 452 | * (PCI only).	CR4C[26:24] Max SAC cycles MAX DAC | 
|  | 453 | * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 | 
|  | 454 | * 5 2 110 6 3 111 7 3 For example, if these bits are | 
|  | 455 | * programmed to 100, the core can support 2 DAC | 
|  | 456 | * cycles, 4 SAC cycles or a combination of 1 DAC and | 
|  | 457 | * 2 SAC cycles. NOTE: For the PCI-X maximum | 
|  | 458 | * outstanding split transactions, refer to | 
|  | 459 | * CRE0[22:20]. | 
|  | 460 | */ | 
|  | 461 | cfg19.s.mdrrmc = 2; | 
|  | 462 | /* | 
|  | 463 | * Master Request (Memory Read) Byte Count/Byte Enable | 
|  | 464 | * select. 0 = Byte Enables valid. In PCI mode, a | 
|  | 465 | * burst transaction cannot be performed using Memory | 
|  | 466 | * Read command=4?h6. 1 = DWORD Byte Count valid | 
|  | 467 | * (default). In PCI Mode, the memory read byte | 
|  | 468 | * enables are automatically generated by the | 
|  | 469 | * core. Note: N3 Master Request transaction sizes are | 
|  | 470 | * always determined through the | 
|  | 471 | * am_attr[<35:32>|<7:0>] field. | 
|  | 472 | */ | 
|  | 473 | cfg19.s.mrbcm = 1; | 
|  | 474 | octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); | 
|  | 475 | } | 
|  | 476 |  | 
|  | 477 |  | 
|  | 478 | cfg01.u32 = 0; | 
|  | 479 | cfg01.s.msae = 1;	/* Memory Space Access Enable */ | 
|  | 480 | cfg01.s.me = 1;		/* Master Enable */ | 
|  | 481 | cfg01.s.pee = 1;	/* PERR# Enable */ | 
|  | 482 | cfg01.s.see = 1;	/* System Error Enable */ | 
|  | 483 | cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */ | 
|  | 484 |  | 
|  | 485 | octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); | 
|  | 486 |  | 
|  | 487 | #ifdef USE_OCTEON_INTERNAL_ARBITER | 
|  | 488 | /* | 
|  | 489 | * When OCTEON is a PCI host, most systems will use OCTEON's | 
|  | 490 | * internal arbiter, so must enable it before any PCI/PCI-X | 
|  | 491 | * traffic can occur. | 
|  | 492 | */ | 
|  | 493 | { | 
|  | 494 | union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; | 
|  | 495 |  | 
|  | 496 | pci_int_arb_cfg.u64 = 0; | 
|  | 497 | pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */ | 
|  | 498 | cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); | 
|  | 499 | } | 
|  | 500 | #endif	/* USE_OCTEON_INTERNAL_ARBITER */ | 
|  | 501 |  | 
|  | 502 | /* | 
|  | 503 | * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, | 
|  | 504 | * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to | 
|  | 505 | * 1..7. | 
|  | 506 | */ | 
|  | 507 | cfg16.u32 = 0; | 
|  | 508 | cfg16.s.mltd = 1;	/* Master Latency Timer Disable */ | 
|  | 509 | octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); | 
|  | 510 |  | 
|  | 511 | /* | 
|  | 512 | * Should be written to 0x4ff00. MTTV -> must be zero. | 
|  | 513 | * FLUSH -> must be 1. MRV -> should be 0xFF. | 
|  | 514 | */ | 
|  | 515 | cfg22.u32 = 0; | 
|  | 516 | /* Master Retry Value [1..255] and 0=infinite */ | 
|  | 517 | cfg22.s.mrv = 0xff; | 
|  | 518 | /* | 
|  | 519 | * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper | 
|  | 520 | * N3K operation. | 
|  | 521 | */ | 
|  | 522 | cfg22.s.flush = 1; | 
|  | 523 | octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); | 
|  | 524 |  | 
|  | 525 | /* | 
|  | 526 | * MOST Indicates the maximum number of outstanding splits (in -1 | 
|  | 527 | * notation) when OCTEON is in PCI-X mode.  PCI-X performance is | 
|  | 528 | * affected by the MOST selection.  Should generally be written | 
|  | 529 | * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, | 
|  | 530 | * depending on the desired MOST of 3, 2, 1, or 0, respectively. | 
|  | 531 | */ | 
|  | 532 | cfg56.u32 = 0; | 
|  | 533 | cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */ | 
|  | 534 | cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */ | 
|  | 535 | cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */ | 
|  | 536 | cfg56.s.roe = 1;	/* Relaxed Ordering Enable */ | 
|  | 537 | cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count | 
|  | 538 | [0=512B,1=1024B,2=2048B,3=4096B] */ | 
|  | 539 | cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1 | 
|  | 540 | .. 7=32] */ | 
|  | 541 |  | 
|  | 542 | octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); | 
|  | 543 |  | 
|  | 544 | /* | 
|  | 545 | * Affects PCI performance when OCTEON services reads to its | 
|  | 546 | * BAR1/BAR2. Refer to Section 10.6.1.	The recommended values are | 
|  | 547 | * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and | 
|  | 548 | * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, | 
|  | 549 | * these values need to be changed so they won't possibly prefetch off | 
|  | 550 | * of the end of memory if PCI is DMAing a buffer at the end of | 
|  | 551 | * memory. Note that these values differ from their reset values. | 
|  | 552 | */ | 
|  | 553 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); | 
|  | 554 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); | 
|  | 555 | octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 |  | 
|  | 559 | /* | 
|  | 560 | * Initialize the Octeon PCI controller | 
|  | 561 | */ | 
|  | 562 | static int __init octeon_pci_setup(void) | 
|  | 563 | { | 
|  | 564 | union cvmx_npi_mem_access_subidx mem_access; | 
|  | 565 | int index; | 
|  | 566 |  | 
|  | 567 | /* Only these chips have PCI */ | 
|  | 568 | if (octeon_has_feature(OCTEON_FEATURE_PCIE)) | 
|  | 569 | return 0; | 
|  | 570 |  | 
|  | 571 | if (!octeon_is_pci_host()) { | 
|  | 572 | pr_notice("Not in host mode, PCI Controller not initialized\n"); | 
|  | 573 | return 0; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | /* Point pcibios_map_irq() to the PCI version of it */ | 
|  | 577 | octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; | 
|  | 578 |  | 
|  | 579 | /* Only use the big bars on chips that support it */ | 
|  | 580 | if (OCTEON_IS_MODEL(OCTEON_CN31XX) || | 
|  | 581 | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || | 
|  | 582 | OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) | 
|  | 583 | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; | 
|  | 584 | else | 
|  | 585 | octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; | 
|  | 586 |  | 
|  | 587 | /* PCI I/O and PCI MEM values */ | 
|  | 588 | set_io_port_base(OCTEON_PCI_IOSPACE_BASE); | 
|  | 589 | ioport_resource.start = 0; | 
|  | 590 | ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; | 
|  | 591 |  | 
|  | 592 | pr_notice("%s Octeon big bar support\n", | 
|  | 593 | (octeon_dma_bar_type == | 
|  | 594 | OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); | 
|  | 595 |  | 
|  | 596 | octeon_pci_initialize(); | 
|  | 597 |  | 
|  | 598 | mem_access.u64 = 0; | 
|  | 599 | mem_access.s.esr = 1;	/* Endian-Swap on read. */ | 
|  | 600 | mem_access.s.esw = 1;	/* Endian-Swap on write. */ | 
|  | 601 | mem_access.s.nsr = 0;	/* No-Snoop on read. */ | 
|  | 602 | mem_access.s.nsw = 0;	/* No-Snoop on write. */ | 
|  | 603 | mem_access.s.ror = 0;	/* Relax Read on read. */ | 
|  | 604 | mem_access.s.row = 0;	/* Relax Order on write. */ | 
|  | 605 | mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */ | 
|  | 606 | cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); | 
|  | 607 |  | 
|  | 608 | /* | 
|  | 609 | * Remap the Octeon BAR 2 above all 32 bit devices | 
|  | 610 | * (0x8000000000ul).  This is done here so it is remapped | 
|  | 611 | * before the readl()'s below. We don't want BAR2 overlapping | 
|  | 612 | * with BAR0/BAR1 during these reads. | 
|  | 613 | */ | 
|  | 614 | octeon_npi_write32(CVMX_NPI_PCI_CFG08, | 
|  | 615 | (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); | 
|  | 616 | octeon_npi_write32(CVMX_NPI_PCI_CFG09, | 
|  | 617 | (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); | 
|  | 618 |  | 
|  | 619 | if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { | 
|  | 620 | /* Remap the Octeon BAR 0 to 0-2GB */ | 
|  | 621 | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); | 
|  | 622 | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | 
|  | 623 |  | 
|  | 624 | /* | 
|  | 625 | * Remap the Octeon BAR 1 to map 2GB-4GB (minus the | 
|  | 626 | * BAR 1 hole). | 
|  | 627 | */ | 
|  | 628 | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); | 
|  | 629 | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | 
|  | 630 |  | 
|  | 631 | /* BAR1 movable mappings set for identity mapping */ | 
|  | 632 | octeon_bar1_pci_phys = 0x80000000ull; | 
|  | 633 | for (index = 0; index < 32; index++) { | 
|  | 634 | union cvmx_pci_bar1_indexx bar1_index; | 
|  | 635 |  | 
|  | 636 | bar1_index.u32 = 0; | 
|  | 637 | /* Address bits[35:22] sent to L2C */ | 
|  | 638 | bar1_index.s.addr_idx = | 
|  | 639 | (octeon_bar1_pci_phys >> 22) + index; | 
|  | 640 | /* Don't put PCI accesses in L2. */ | 
|  | 641 | bar1_index.s.ca = 1; | 
|  | 642 | /* Endian Swap Mode */ | 
|  | 643 | bar1_index.s.end_swp = 1; | 
|  | 644 | /* Set '1' when the selected address range is valid. */ | 
|  | 645 | bar1_index.s.addr_v = 1; | 
|  | 646 | octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), | 
|  | 647 | bar1_index.u32); | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | /* Devices go after BAR1 */ | 
|  | 651 | octeon_pci_mem_resource.start = | 
|  | 652 | OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - | 
|  | 653 | (OCTEON_PCI_BAR1_HOLE_SIZE << 20); | 
|  | 654 | octeon_pci_mem_resource.end = | 
|  | 655 | octeon_pci_mem_resource.start + (1ul << 30); | 
|  | 656 | } else { | 
|  | 657 | /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ | 
|  | 658 | octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); | 
|  | 659 | octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); | 
|  | 660 |  | 
|  | 661 | /* Remap the Octeon BAR 1 to map 0-128MB */ | 
|  | 662 | octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); | 
|  | 663 | octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); | 
|  | 664 |  | 
|  | 665 | /* BAR1 movable regions contiguous to cover the swiotlb */ | 
|  | 666 | octeon_bar1_pci_phys = | 
|  | 667 | virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); | 
|  | 668 |  | 
|  | 669 | for (index = 0; index < 32; index++) { | 
|  | 670 | union cvmx_pci_bar1_indexx bar1_index; | 
|  | 671 |  | 
|  | 672 | bar1_index.u32 = 0; | 
|  | 673 | /* Address bits[35:22] sent to L2C */ | 
|  | 674 | bar1_index.s.addr_idx = | 
|  | 675 | (octeon_bar1_pci_phys >> 22) + index; | 
|  | 676 | /* Don't put PCI accesses in L2. */ | 
|  | 677 | bar1_index.s.ca = 1; | 
|  | 678 | /* Endian Swap Mode */ | 
|  | 679 | bar1_index.s.end_swp = 1; | 
|  | 680 | /* Set '1' when the selected address range is valid. */ | 
|  | 681 | bar1_index.s.addr_v = 1; | 
|  | 682 | octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), | 
|  | 683 | bar1_index.u32); | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | /* Devices go after BAR0 */ | 
|  | 687 | octeon_pci_mem_resource.start = | 
|  | 688 | OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + | 
|  | 689 | (4ul << 10); | 
|  | 690 | octeon_pci_mem_resource.end = | 
|  | 691 | octeon_pci_mem_resource.start + (1ul << 30); | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | register_pci_controller(&octeon_pci_controller); | 
|  | 695 |  | 
|  | 696 | /* | 
|  | 697 | * Clear any errors that might be pending from before the bus | 
|  | 698 | * was setup properly. | 
|  | 699 | */ | 
|  | 700 | cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); | 
|  | 701 |  | 
|  | 702 | if (IS_ERR(platform_device_register_simple("octeon_pci_edac", | 
|  | 703 | -1, NULL, 0))) | 
|  | 704 | pr_err("Registration of co_pci_edac failed!\n"); | 
|  | 705 |  | 
|  | 706 | octeon_pci_dma_init(); | 
|  | 707 |  | 
|  | 708 | return 0; | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | arch_initcall(octeon_pci_setup); |