| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ | 
 | 2 | /* | 
 | 3 |  * CPU frequency scaling support for Armada 37xx platform. | 
 | 4 |  * | 
 | 5 |  * Copyright (C) 2017 Marvell | 
 | 6 |  * | 
 | 7 |  * Gregory CLEMENT <gregory.clement@free-electrons.com> | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | #include <linux/clk.h> | 
 | 11 | #include <linux/cpu.h> | 
 | 12 | #include <linux/cpufreq.h> | 
 | 13 | #include <linux/err.h> | 
 | 14 | #include <linux/interrupt.h> | 
 | 15 | #include <linux/io.h> | 
 | 16 | #include <linux/mfd/syscon.h> | 
 | 17 | #include <linux/module.h> | 
 | 18 | #include <linux/of_address.h> | 
 | 19 | #include <linux/of_device.h> | 
 | 20 | #include <linux/of_irq.h> | 
 | 21 | #include <linux/platform_device.h> | 
 | 22 | #include <linux/pm_opp.h> | 
 | 23 | #include <linux/regmap.h> | 
 | 24 | #include <linux/slab.h> | 
 | 25 |  | 
 | 26 | #include "cpufreq-dt.h" | 
 | 27 |  | 
 | 28 | /* Power management in North Bridge register set */ | 
 | 29 | #define ARMADA_37XX_NB_L0L1	0x18 | 
 | 30 | #define ARMADA_37XX_NB_L2L3	0x1C | 
 | 31 | #define  ARMADA_37XX_NB_TBG_DIV_OFF	13 | 
 | 32 | #define  ARMADA_37XX_NB_TBG_DIV_MASK	0x7 | 
 | 33 | #define  ARMADA_37XX_NB_CLK_SEL_OFF	11 | 
 | 34 | #define  ARMADA_37XX_NB_CLK_SEL_MASK	0x1 | 
 | 35 | #define  ARMADA_37XX_NB_CLK_SEL_TBG	0x1 | 
 | 36 | #define  ARMADA_37XX_NB_TBG_SEL_OFF	9 | 
 | 37 | #define  ARMADA_37XX_NB_TBG_SEL_MASK	0x3 | 
 | 38 | #define  ARMADA_37XX_NB_VDD_SEL_OFF	6 | 
 | 39 | #define  ARMADA_37XX_NB_VDD_SEL_MASK	0x3 | 
 | 40 | #define  ARMADA_37XX_NB_CONFIG_SHIFT	16 | 
 | 41 | #define ARMADA_37XX_NB_DYN_MOD	0x24 | 
 | 42 | #define  ARMADA_37XX_NB_CLK_SEL_EN	BIT(26) | 
 | 43 | #define  ARMADA_37XX_NB_TBG_EN		BIT(28) | 
 | 44 | #define  ARMADA_37XX_NB_DIV_EN		BIT(29) | 
 | 45 | #define  ARMADA_37XX_NB_VDD_EN		BIT(30) | 
 | 46 | #define  ARMADA_37XX_NB_DFS_EN		BIT(31) | 
 | 47 | #define ARMADA_37XX_NB_CPU_LOAD 0x30 | 
 | 48 | #define  ARMADA_37XX_NB_CPU_LOAD_MASK	0x3 | 
 | 49 | #define  ARMADA_37XX_DVFS_LOAD_0	0 | 
 | 50 | #define  ARMADA_37XX_DVFS_LOAD_1	1 | 
 | 51 | #define  ARMADA_37XX_DVFS_LOAD_2	2 | 
 | 52 | #define  ARMADA_37XX_DVFS_LOAD_3	3 | 
 | 53 |  | 
 | 54 | /* AVS register set */ | 
 | 55 | #define ARMADA_37XX_AVS_CTL0		0x0 | 
 | 56 | #define	 ARMADA_37XX_AVS_ENABLE		BIT(30) | 
 | 57 | #define	 ARMADA_37XX_AVS_HIGH_VDD_LIMIT	16 | 
 | 58 | #define	 ARMADA_37XX_AVS_LOW_VDD_LIMIT	22 | 
 | 59 | #define	 ARMADA_37XX_AVS_VDD_MASK	0x3F | 
 | 60 | #define ARMADA_37XX_AVS_CTL2		0x8 | 
 | 61 | #define	 ARMADA_37XX_AVS_LOW_VDD_EN	BIT(6) | 
 | 62 | #define ARMADA_37XX_AVS_VSET(x)	    (0x1C + 4 * (x)) | 
 | 63 |  | 
 | 64 | /* | 
 | 65 |  * On Armada 37xx the Power management manages 4 level of CPU load, | 
 | 66 |  * each level can be associated with a CPU clock source, a CPU | 
 | 67 |  * divider, a VDD level, etc... | 
 | 68 |  */ | 
 | 69 | #define LOAD_LEVEL_NR	4 | 
 | 70 |  | 
 | 71 | #define MIN_VOLT_MV 1000 | 
 | 72 |  | 
 | 73 | /*  AVS value for the corresponding voltage (in mV) */ | 
 | 74 | static int avs_map[] = { | 
 | 75 | 	747, 758, 770, 782, 793, 805, 817, 828, 840, 852, 863, 875, 887, 898, | 
 | 76 | 	910, 922, 933, 945, 957, 968, 980, 992, 1003, 1015, 1027, 1038, 1050, | 
 | 77 | 	1062, 1073, 1085, 1097, 1108, 1120, 1132, 1143, 1155, 1167, 1178, 1190, | 
 | 78 | 	1202, 1213, 1225, 1237, 1248, 1260, 1272, 1283, 1295, 1307, 1318, 1330, | 
 | 79 | 	1342 | 
 | 80 | }; | 
 | 81 |  | 
 | 82 | struct armada37xx_cpufreq_state { | 
 | 83 | 	struct regmap *regmap; | 
 | 84 | 	u32 nb_l0l1; | 
 | 85 | 	u32 nb_l2l3; | 
 | 86 | 	u32 nb_dyn_mod; | 
 | 87 | 	u32 nb_cpu_load; | 
 | 88 | }; | 
 | 89 |  | 
 | 90 | static struct armada37xx_cpufreq_state *armada37xx_cpufreq_state; | 
 | 91 |  | 
 | 92 | struct armada_37xx_dvfs { | 
 | 93 | 	u32 cpu_freq_max; | 
 | 94 | 	u8 divider[LOAD_LEVEL_NR]; | 
 | 95 | 	u32 avs[LOAD_LEVEL_NR]; | 
 | 96 | }; | 
 | 97 |  | 
 | 98 | static struct armada_37xx_dvfs armada_37xx_dvfs[] = { | 
 | 99 | 	{.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} }, | 
 | 100 | 	{.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} }, | 
 | 101 | 	{.cpu_freq_max = 800*1000*1000,  .divider = {1, 2, 3, 4} }, | 
 | 102 | 	{.cpu_freq_max = 600*1000*1000,  .divider = {2, 4, 5, 6} }, | 
 | 103 | }; | 
 | 104 |  | 
 | 105 | static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq) | 
 | 106 | { | 
 | 107 | 	int i; | 
 | 108 |  | 
 | 109 | 	for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) { | 
 | 110 | 		if (freq == armada_37xx_dvfs[i].cpu_freq_max) | 
 | 111 | 			return &armada_37xx_dvfs[i]; | 
 | 112 | 	} | 
 | 113 |  | 
 | 114 | 	pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000); | 
 | 115 | 	return NULL; | 
 | 116 | } | 
 | 117 |  | 
 | 118 | /* | 
 | 119 |  * Setup the four level managed by the hardware. Once the four level | 
 | 120 |  * will be configured then the DVFS will be enabled. | 
 | 121 |  */ | 
 | 122 | static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base, | 
 | 123 | 						 struct clk *clk, u8 *divider) | 
 | 124 | { | 
 | 125 | 	int load_lvl; | 
 | 126 | 	struct clk *parent; | 
 | 127 |  | 
 | 128 | 	for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { | 
 | 129 | 		unsigned int reg, mask, val, offset = 0; | 
 | 130 |  | 
 | 131 | 		if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1) | 
 | 132 | 			reg = ARMADA_37XX_NB_L0L1; | 
 | 133 | 		else | 
 | 134 | 			reg = ARMADA_37XX_NB_L2L3; | 
 | 135 |  | 
 | 136 | 		if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 || | 
 | 137 | 		    load_lvl == ARMADA_37XX_DVFS_LOAD_2) | 
 | 138 | 			offset += ARMADA_37XX_NB_CONFIG_SHIFT; | 
 | 139 |  | 
 | 140 | 		/* Set cpu clock source, for all the level we use TBG */ | 
 | 141 | 		val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF; | 
 | 142 | 		mask = (ARMADA_37XX_NB_CLK_SEL_MASK | 
 | 143 | 			<< ARMADA_37XX_NB_CLK_SEL_OFF); | 
 | 144 |  | 
 | 145 | 		/* | 
 | 146 | 		 * Set cpu divider based on the pre-computed array in | 
 | 147 | 		 * order to have balanced step. | 
 | 148 | 		 */ | 
 | 149 | 		val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF; | 
 | 150 | 		mask |= (ARMADA_37XX_NB_TBG_DIV_MASK | 
 | 151 | 			<< ARMADA_37XX_NB_TBG_DIV_OFF); | 
 | 152 |  | 
 | 153 | 		/* Set VDD divider which is actually the load level. */ | 
 | 154 | 		val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF; | 
 | 155 | 		mask |= (ARMADA_37XX_NB_VDD_SEL_MASK | 
 | 156 | 			<< ARMADA_37XX_NB_VDD_SEL_OFF); | 
 | 157 |  | 
 | 158 | 		val <<= offset; | 
 | 159 | 		mask <<= offset; | 
 | 160 |  | 
 | 161 | 		regmap_update_bits(base, reg, mask, val); | 
 | 162 | 	} | 
 | 163 |  | 
 | 164 | 	/* | 
 | 165 | 	 * Set cpu clock source, for all the level we keep the same | 
 | 166 | 	 * clock source that the one already configured. For this one | 
 | 167 | 	 * we need to use the clock framework | 
 | 168 | 	 */ | 
 | 169 | 	parent = clk_get_parent(clk); | 
 | 170 | 	clk_set_parent(clk, parent); | 
 | 171 | } | 
 | 172 |  | 
 | 173 | /* | 
 | 174 |  * Find out the armada 37x supported AVS value whose voltage value is | 
 | 175 |  * the round-up closest to the target voltage value. | 
 | 176 |  */ | 
 | 177 | static u32 armada_37xx_avs_val_match(int target_vm) | 
 | 178 | { | 
 | 179 | 	u32 avs; | 
 | 180 |  | 
 | 181 | 	/* Find out the round-up closest supported voltage value */ | 
 | 182 | 	for (avs = 0; avs < ARRAY_SIZE(avs_map); avs++) | 
 | 183 | 		if (avs_map[avs] >= target_vm) | 
 | 184 | 			break; | 
 | 185 |  | 
 | 186 | 	/* | 
 | 187 | 	 * If all supported voltages are smaller than target one, | 
 | 188 | 	 * choose the largest supported voltage | 
 | 189 | 	 */ | 
 | 190 | 	if (avs == ARRAY_SIZE(avs_map)) | 
 | 191 | 		avs = ARRAY_SIZE(avs_map) - 1; | 
 | 192 |  | 
 | 193 | 	return avs; | 
 | 194 | } | 
 | 195 |  | 
 | 196 | /* | 
 | 197 |  * For Armada 37xx soc, L0(VSET0) VDD AVS value is set to SVC revision | 
 | 198 |  * value or a default value when SVC is not supported. | 
 | 199 |  * - L0 can be read out from the register of AVS_CTRL_0 and L0 voltage | 
 | 200 |  *   can be got from the mapping table of avs_map. | 
 | 201 |  * - L1 voltage should be about 100mv smaller than L0 voltage | 
 | 202 |  * - L2 & L3 voltage should be about 150mv smaller than L0 voltage. | 
 | 203 |  * This function calculates L1 & L2 & L3 AVS values dynamically based | 
 | 204 |  * on L0 voltage and fill all AVS values to the AVS value table. | 
 | 205 |  */ | 
 | 206 | static void __init armada37xx_cpufreq_avs_configure(struct regmap *base, | 
 | 207 | 						struct armada_37xx_dvfs *dvfs) | 
 | 208 | { | 
 | 209 | 	unsigned int target_vm; | 
 | 210 | 	int load_level = 0; | 
 | 211 | 	u32 l0_vdd_min; | 
 | 212 |  | 
 | 213 | 	if (base == NULL) | 
 | 214 | 		return; | 
 | 215 |  | 
 | 216 | 	/* Get L0 VDD min value */ | 
 | 217 | 	regmap_read(base, ARMADA_37XX_AVS_CTL0, &l0_vdd_min); | 
 | 218 | 	l0_vdd_min = (l0_vdd_min >> ARMADA_37XX_AVS_LOW_VDD_LIMIT) & | 
 | 219 | 		ARMADA_37XX_AVS_VDD_MASK; | 
 | 220 | 	if (l0_vdd_min >= ARRAY_SIZE(avs_map))  { | 
 | 221 | 		pr_err("L0 VDD MIN %d is not correct.\n", l0_vdd_min); | 
 | 222 | 		return; | 
 | 223 | 	} | 
 | 224 | 	dvfs->avs[0] = l0_vdd_min; | 
 | 225 |  | 
 | 226 | 	if (avs_map[l0_vdd_min] <= MIN_VOLT_MV) { | 
 | 227 | 		/* | 
 | 228 | 		 * If L0 voltage is smaller than 1000mv, then all VDD sets | 
 | 229 | 		 * use L0 voltage; | 
 | 230 | 		 */ | 
 | 231 | 		u32 avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV); | 
 | 232 |  | 
 | 233 | 		for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) | 
 | 234 | 			dvfs->avs[load_level] = avs_min; | 
 | 235 |  | 
 | 236 | 		return; | 
 | 237 | 	} | 
 | 238 |  | 
 | 239 | 	/* | 
 | 240 | 	 * L1 voltage is equal to L0 voltage - 100mv and it must be | 
 | 241 | 	 * larger than 1000mv | 
 | 242 | 	 */ | 
 | 243 |  | 
 | 244 | 	target_vm = avs_map[l0_vdd_min] - 100; | 
 | 245 | 	target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; | 
 | 246 | 	dvfs->avs[1] = armada_37xx_avs_val_match(target_vm); | 
 | 247 |  | 
 | 248 | 	/* | 
 | 249 | 	 * L2 & L3 voltage is equal to L0 voltage - 150mv and it must | 
 | 250 | 	 * be larger than 1000mv | 
 | 251 | 	 */ | 
 | 252 | 	target_vm = avs_map[l0_vdd_min] - 150; | 
 | 253 | 	target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; | 
 | 254 | 	dvfs->avs[2] = dvfs->avs[3] = armada_37xx_avs_val_match(target_vm); | 
 | 255 | } | 
 | 256 |  | 
 | 257 | static void __init armada37xx_cpufreq_avs_setup(struct regmap *base, | 
 | 258 | 						struct armada_37xx_dvfs *dvfs) | 
 | 259 | { | 
 | 260 | 	unsigned int avs_val = 0, freq; | 
 | 261 | 	int load_level = 0; | 
 | 262 |  | 
 | 263 | 	if (base == NULL) | 
 | 264 | 		return; | 
 | 265 |  | 
 | 266 | 	/* Disable AVS before the configuration */ | 
 | 267 | 	regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, | 
 | 268 | 			   ARMADA_37XX_AVS_ENABLE, 0); | 
 | 269 |  | 
 | 270 |  | 
 | 271 | 	/* Enable low voltage mode */ | 
 | 272 | 	regmap_update_bits(base, ARMADA_37XX_AVS_CTL2, | 
 | 273 | 			   ARMADA_37XX_AVS_LOW_VDD_EN, | 
 | 274 | 			   ARMADA_37XX_AVS_LOW_VDD_EN); | 
 | 275 |  | 
 | 276 |  | 
 | 277 | 	for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) { | 
 | 278 | 		freq = dvfs->cpu_freq_max / dvfs->divider[load_level]; | 
 | 279 |  | 
 | 280 | 		avs_val = dvfs->avs[load_level]; | 
 | 281 | 		regmap_update_bits(base, ARMADA_37XX_AVS_VSET(load_level-1), | 
 | 282 | 		    ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | | 
 | 283 | 		    ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_LOW_VDD_LIMIT, | 
 | 284 | 		    avs_val << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | | 
 | 285 | 		    avs_val << ARMADA_37XX_AVS_LOW_VDD_LIMIT); | 
 | 286 | 	} | 
 | 287 |  | 
 | 288 | 	/* Enable AVS after the configuration */ | 
 | 289 | 	regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, | 
 | 290 | 			   ARMADA_37XX_AVS_ENABLE, | 
 | 291 | 			   ARMADA_37XX_AVS_ENABLE); | 
 | 292 |  | 
 | 293 | } | 
 | 294 |  | 
 | 295 | static void armada37xx_cpufreq_disable_dvfs(struct regmap *base) | 
 | 296 | { | 
 | 297 | 	unsigned int reg = ARMADA_37XX_NB_DYN_MOD, | 
 | 298 | 		mask = ARMADA_37XX_NB_DFS_EN; | 
 | 299 |  | 
 | 300 | 	regmap_update_bits(base, reg, mask, 0); | 
 | 301 | } | 
 | 302 |  | 
 | 303 | static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base) | 
 | 304 | { | 
 | 305 | 	unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD, | 
 | 306 | 		mask = ARMADA_37XX_NB_CPU_LOAD_MASK; | 
 | 307 |  | 
 | 308 | 	/* Start with the highest load (0) */ | 
 | 309 | 	val = ARMADA_37XX_DVFS_LOAD_0; | 
 | 310 | 	regmap_update_bits(base, reg, mask, val); | 
 | 311 |  | 
 | 312 | 	/* Now enable DVFS for the CPUs */ | 
 | 313 | 	reg = ARMADA_37XX_NB_DYN_MOD; | 
 | 314 | 	mask =	ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN | | 
 | 315 | 		ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN | | 
 | 316 | 		ARMADA_37XX_NB_DFS_EN; | 
 | 317 |  | 
 | 318 | 	regmap_update_bits(base, reg, mask, mask); | 
 | 319 | } | 
 | 320 |  | 
 | 321 | static int armada37xx_cpufreq_suspend(struct cpufreq_policy *policy) | 
 | 322 | { | 
 | 323 | 	struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; | 
 | 324 |  | 
 | 325 | 	regmap_read(state->regmap, ARMADA_37XX_NB_L0L1, &state->nb_l0l1); | 
 | 326 | 	regmap_read(state->regmap, ARMADA_37XX_NB_L2L3, &state->nb_l2l3); | 
 | 327 | 	regmap_read(state->regmap, ARMADA_37XX_NB_CPU_LOAD, | 
 | 328 | 		    &state->nb_cpu_load); | 
 | 329 | 	regmap_read(state->regmap, ARMADA_37XX_NB_DYN_MOD, &state->nb_dyn_mod); | 
 | 330 |  | 
 | 331 | 	return 0; | 
 | 332 | } | 
 | 333 |  | 
 | 334 | static int armada37xx_cpufreq_resume(struct cpufreq_policy *policy) | 
 | 335 | { | 
 | 336 | 	struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; | 
 | 337 |  | 
 | 338 | 	/* Ensure DVFS is disabled otherwise the following registers are RO */ | 
 | 339 | 	armada37xx_cpufreq_disable_dvfs(state->regmap); | 
 | 340 |  | 
 | 341 | 	regmap_write(state->regmap, ARMADA_37XX_NB_L0L1, state->nb_l0l1); | 
 | 342 | 	regmap_write(state->regmap, ARMADA_37XX_NB_L2L3, state->nb_l2l3); | 
 | 343 | 	regmap_write(state->regmap, ARMADA_37XX_NB_CPU_LOAD, | 
 | 344 | 		     state->nb_cpu_load); | 
 | 345 |  | 
 | 346 | 	/* | 
 | 347 | 	 * NB_DYN_MOD register is the one that actually enable back DVFS if it | 
 | 348 | 	 * was enabled before the suspend operation. This must be done last | 
 | 349 | 	 * otherwise other registers are not writable. | 
 | 350 | 	 */ | 
 | 351 | 	regmap_write(state->regmap, ARMADA_37XX_NB_DYN_MOD, state->nb_dyn_mod); | 
 | 352 |  | 
 | 353 | 	return 0; | 
 | 354 | } | 
 | 355 |  | 
 | 356 | static int __init armada37xx_cpufreq_driver_init(void) | 
 | 357 | { | 
 | 358 | 	struct cpufreq_dt_platform_data pdata; | 
 | 359 | 	struct armada_37xx_dvfs *dvfs; | 
 | 360 | 	struct platform_device *pdev; | 
 | 361 | 	unsigned long freq; | 
 | 362 | 	unsigned int cur_frequency, base_frequency; | 
 | 363 | 	struct regmap *nb_pm_base, *avs_base; | 
 | 364 | 	struct device *cpu_dev; | 
 | 365 | 	int load_lvl, ret; | 
 | 366 | 	struct clk *clk, *parent; | 
 | 367 |  | 
 | 368 | 	nb_pm_base = | 
 | 369 | 		syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm"); | 
 | 370 |  | 
 | 371 | 	if (IS_ERR(nb_pm_base)) | 
 | 372 | 		return -ENODEV; | 
 | 373 |  | 
 | 374 | 	avs_base = | 
 | 375 | 		syscon_regmap_lookup_by_compatible("marvell,armada-3700-avs"); | 
 | 376 |  | 
 | 377 | 	/* if AVS is not present don't use it but still try to setup dvfs */ | 
 | 378 | 	if (IS_ERR(avs_base)) { | 
 | 379 | 		pr_info("Syscon failed for Adapting Voltage Scaling: skip it\n"); | 
 | 380 | 		avs_base = NULL; | 
 | 381 | 	} | 
 | 382 | 	/* Before doing any configuration on the DVFS first, disable it */ | 
 | 383 | 	armada37xx_cpufreq_disable_dvfs(nb_pm_base); | 
 | 384 |  | 
 | 385 | 	/* | 
 | 386 | 	 * On CPU 0 register the operating points supported (which are | 
 | 387 | 	 * the nominal CPU frequency and full integer divisions of | 
 | 388 | 	 * it). | 
 | 389 | 	 */ | 
 | 390 | 	cpu_dev = get_cpu_device(0); | 
 | 391 | 	if (!cpu_dev) { | 
 | 392 | 		dev_err(cpu_dev, "Cannot get CPU\n"); | 
 | 393 | 		return -ENODEV; | 
 | 394 | 	} | 
 | 395 |  | 
 | 396 | 	clk = clk_get(cpu_dev, 0); | 
 | 397 | 	if (IS_ERR(clk)) { | 
 | 398 | 		dev_err(cpu_dev, "Cannot get clock for CPU0\n"); | 
 | 399 | 		return PTR_ERR(clk); | 
 | 400 | 	} | 
 | 401 |  | 
 | 402 | 	parent = clk_get_parent(clk); | 
 | 403 | 	if (IS_ERR(parent)) { | 
 | 404 | 		dev_err(cpu_dev, "Cannot get parent clock for CPU0\n"); | 
 | 405 | 		clk_put(clk); | 
 | 406 | 		return PTR_ERR(parent); | 
 | 407 | 	} | 
 | 408 |  | 
 | 409 | 	/* Get parent CPU frequency */ | 
 | 410 | 	base_frequency =  clk_get_rate(parent); | 
 | 411 |  | 
 | 412 | 	if (!base_frequency) { | 
 | 413 | 		dev_err(cpu_dev, "Failed to get parent clock rate for CPU\n"); | 
 | 414 | 		clk_put(clk); | 
 | 415 | 		return -EINVAL; | 
 | 416 | 	} | 
 | 417 |  | 
 | 418 | 	/* Get nominal (current) CPU frequency */ | 
 | 419 | 	cur_frequency = clk_get_rate(clk); | 
 | 420 | 	if (!cur_frequency) { | 
 | 421 | 		dev_err(cpu_dev, "Failed to get clock rate for CPU\n"); | 
 | 422 | 		clk_put(clk); | 
 | 423 | 		return -EINVAL; | 
 | 424 | 	} | 
 | 425 |  | 
 | 426 | 	dvfs = armada_37xx_cpu_freq_info_get(cur_frequency); | 
 | 427 | 	if (!dvfs) { | 
 | 428 | 		clk_put(clk); | 
 | 429 | 		return -EINVAL; | 
 | 430 | 	} | 
 | 431 |  | 
 | 432 | 	armada37xx_cpufreq_state = kmalloc(sizeof(*armada37xx_cpufreq_state), | 
 | 433 | 					   GFP_KERNEL); | 
 | 434 | 	if (!armada37xx_cpufreq_state) { | 
 | 435 | 		clk_put(clk); | 
 | 436 | 		return -ENOMEM; | 
 | 437 | 	} | 
 | 438 |  | 
 | 439 | 	armada37xx_cpufreq_state->regmap = nb_pm_base; | 
 | 440 |  | 
 | 441 | 	armada37xx_cpufreq_avs_configure(avs_base, dvfs); | 
 | 442 | 	armada37xx_cpufreq_avs_setup(avs_base, dvfs); | 
 | 443 |  | 
 | 444 | 	armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider); | 
 | 445 | 	clk_put(clk); | 
 | 446 |  | 
 | 447 | 	for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; | 
 | 448 | 	     load_lvl++) { | 
 | 449 | 		unsigned long u_volt = avs_map[dvfs->avs[load_lvl]] * 1000; | 
 | 450 | 		freq = base_frequency / dvfs->divider[load_lvl]; | 
 | 451 | 		ret = dev_pm_opp_add(cpu_dev, freq, u_volt); | 
 | 452 | 		if (ret) | 
 | 453 | 			goto remove_opp; | 
 | 454 |  | 
 | 455 |  | 
 | 456 | 	} | 
 | 457 |  | 
 | 458 | 	/* Now that everything is setup, enable the DVFS at hardware level */ | 
 | 459 | 	armada37xx_cpufreq_enable_dvfs(nb_pm_base); | 
 | 460 |  | 
 | 461 | 	pdata.suspend = armada37xx_cpufreq_suspend; | 
 | 462 | 	pdata.resume = armada37xx_cpufreq_resume; | 
 | 463 |  | 
 | 464 | 	pdev = platform_device_register_data(NULL, "cpufreq-dt", -1, &pdata, | 
 | 465 | 					     sizeof(pdata)); | 
 | 466 | 	ret = PTR_ERR_OR_ZERO(pdev); | 
 | 467 | 	if (ret) | 
 | 468 | 		goto disable_dvfs; | 
 | 469 |  | 
 | 470 | 	return 0; | 
 | 471 |  | 
 | 472 | disable_dvfs: | 
 | 473 | 	armada37xx_cpufreq_disable_dvfs(nb_pm_base); | 
 | 474 | remove_opp: | 
 | 475 | 	/* clean-up the already added opp before leaving */ | 
 | 476 | 	while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) { | 
 | 477 | 		freq = cur_frequency / dvfs->divider[load_lvl]; | 
 | 478 | 		dev_pm_opp_remove(cpu_dev, freq); | 
 | 479 | 	} | 
 | 480 |  | 
 | 481 | 	kfree(armada37xx_cpufreq_state); | 
 | 482 |  | 
 | 483 | 	return ret; | 
 | 484 | } | 
 | 485 | /* late_initcall, to guarantee the driver is loaded after A37xx clock driver */ | 
 | 486 | late_initcall(armada37xx_cpufreq_driver_init); | 
 | 487 |  | 
 | 488 | MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); | 
 | 489 | MODULE_DESCRIPTION("Armada 37xx cpufreq driver"); | 
 | 490 | MODULE_LICENSE("GPL"); |