| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2008 Red Hat. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/pagemap.h> |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/sched/signal.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/math64.h> |
| 11 | #include <linux/ratelimit.h> |
| 12 | #include <linux/error-injection.h> |
| 13 | #include <linux/sched/mm.h> |
| 14 | #include "ctree.h" |
| 15 | #include "free-space-cache.h" |
| 16 | #include "transaction.h" |
| 17 | #include "disk-io.h" |
| 18 | #include "extent_io.h" |
| 19 | #include "inode-map.h" |
| 20 | #include "volumes.h" |
| 21 | |
| 22 | #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) |
| 23 | #define MAX_CACHE_BYTES_PER_GIG SZ_32K |
| 24 | |
| 25 | struct btrfs_trim_range { |
| 26 | u64 start; |
| 27 | u64 bytes; |
| 28 | struct list_head list; |
| 29 | }; |
| 30 | |
| 31 | static int link_free_space(struct btrfs_free_space_ctl *ctl, |
| 32 | struct btrfs_free_space *info); |
| 33 | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, |
| 34 | struct btrfs_free_space *info); |
| 35 | static int btrfs_wait_cache_io_root(struct btrfs_root *root, |
| 36 | struct btrfs_trans_handle *trans, |
| 37 | struct btrfs_io_ctl *io_ctl, |
| 38 | struct btrfs_path *path); |
| 39 | |
| 40 | static struct inode *__lookup_free_space_inode(struct btrfs_root *root, |
| 41 | struct btrfs_path *path, |
| 42 | u64 offset) |
| 43 | { |
| 44 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 45 | struct btrfs_key key; |
| 46 | struct btrfs_key location; |
| 47 | struct btrfs_disk_key disk_key; |
| 48 | struct btrfs_free_space_header *header; |
| 49 | struct extent_buffer *leaf; |
| 50 | struct inode *inode = NULL; |
| 51 | unsigned nofs_flag; |
| 52 | int ret; |
| 53 | |
| 54 | key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| 55 | key.offset = offset; |
| 56 | key.type = 0; |
| 57 | |
| 58 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 59 | if (ret < 0) |
| 60 | return ERR_PTR(ret); |
| 61 | if (ret > 0) { |
| 62 | btrfs_release_path(path); |
| 63 | return ERR_PTR(-ENOENT); |
| 64 | } |
| 65 | |
| 66 | leaf = path->nodes[0]; |
| 67 | header = btrfs_item_ptr(leaf, path->slots[0], |
| 68 | struct btrfs_free_space_header); |
| 69 | btrfs_free_space_key(leaf, header, &disk_key); |
| 70 | btrfs_disk_key_to_cpu(&location, &disk_key); |
| 71 | btrfs_release_path(path); |
| 72 | |
| 73 | /* |
| 74 | * We are often under a trans handle at this point, so we need to make |
| 75 | * sure NOFS is set to keep us from deadlocking. |
| 76 | */ |
| 77 | nofs_flag = memalloc_nofs_save(); |
| 78 | inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path); |
| 79 | btrfs_release_path(path); |
| 80 | memalloc_nofs_restore(nofs_flag); |
| 81 | if (IS_ERR(inode)) |
| 82 | return inode; |
| 83 | |
| 84 | mapping_set_gfp_mask(inode->i_mapping, |
| 85 | mapping_gfp_constraint(inode->i_mapping, |
| 86 | ~(__GFP_FS | __GFP_HIGHMEM))); |
| 87 | |
| 88 | return inode; |
| 89 | } |
| 90 | |
| 91 | struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info, |
| 92 | struct btrfs_block_group_cache |
| 93 | *block_group, struct btrfs_path *path) |
| 94 | { |
| 95 | struct inode *inode = NULL; |
| 96 | u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; |
| 97 | |
| 98 | spin_lock(&block_group->lock); |
| 99 | if (block_group->inode) |
| 100 | inode = igrab(block_group->inode); |
| 101 | spin_unlock(&block_group->lock); |
| 102 | if (inode) |
| 103 | return inode; |
| 104 | |
| 105 | inode = __lookup_free_space_inode(fs_info->tree_root, path, |
| 106 | block_group->key.objectid); |
| 107 | if (IS_ERR(inode)) |
| 108 | return inode; |
| 109 | |
| 110 | spin_lock(&block_group->lock); |
| 111 | if (!((BTRFS_I(inode)->flags & flags) == flags)) { |
| 112 | btrfs_info(fs_info, "Old style space inode found, converting."); |
| 113 | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | |
| 114 | BTRFS_INODE_NODATACOW; |
| 115 | block_group->disk_cache_state = BTRFS_DC_CLEAR; |
| 116 | } |
| 117 | |
| 118 | if (!block_group->iref) { |
| 119 | block_group->inode = igrab(inode); |
| 120 | block_group->iref = 1; |
| 121 | } |
| 122 | spin_unlock(&block_group->lock); |
| 123 | |
| 124 | return inode; |
| 125 | } |
| 126 | |
| 127 | static int __create_free_space_inode(struct btrfs_root *root, |
| 128 | struct btrfs_trans_handle *trans, |
| 129 | struct btrfs_path *path, |
| 130 | u64 ino, u64 offset) |
| 131 | { |
| 132 | struct btrfs_key key; |
| 133 | struct btrfs_disk_key disk_key; |
| 134 | struct btrfs_free_space_header *header; |
| 135 | struct btrfs_inode_item *inode_item; |
| 136 | struct extent_buffer *leaf; |
| 137 | u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; |
| 138 | int ret; |
| 139 | |
| 140 | ret = btrfs_insert_empty_inode(trans, root, path, ino); |
| 141 | if (ret) |
| 142 | return ret; |
| 143 | |
| 144 | /* We inline crc's for the free disk space cache */ |
| 145 | if (ino != BTRFS_FREE_INO_OBJECTID) |
| 146 | flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; |
| 147 | |
| 148 | leaf = path->nodes[0]; |
| 149 | inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| 150 | struct btrfs_inode_item); |
| 151 | btrfs_item_key(leaf, &disk_key, path->slots[0]); |
| 152 | memzero_extent_buffer(leaf, (unsigned long)inode_item, |
| 153 | sizeof(*inode_item)); |
| 154 | btrfs_set_inode_generation(leaf, inode_item, trans->transid); |
| 155 | btrfs_set_inode_size(leaf, inode_item, 0); |
| 156 | btrfs_set_inode_nbytes(leaf, inode_item, 0); |
| 157 | btrfs_set_inode_uid(leaf, inode_item, 0); |
| 158 | btrfs_set_inode_gid(leaf, inode_item, 0); |
| 159 | btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); |
| 160 | btrfs_set_inode_flags(leaf, inode_item, flags); |
| 161 | btrfs_set_inode_nlink(leaf, inode_item, 1); |
| 162 | btrfs_set_inode_transid(leaf, inode_item, trans->transid); |
| 163 | btrfs_set_inode_block_group(leaf, inode_item, offset); |
| 164 | btrfs_mark_buffer_dirty(leaf); |
| 165 | btrfs_release_path(path); |
| 166 | |
| 167 | key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| 168 | key.offset = offset; |
| 169 | key.type = 0; |
| 170 | ret = btrfs_insert_empty_item(trans, root, path, &key, |
| 171 | sizeof(struct btrfs_free_space_header)); |
| 172 | if (ret < 0) { |
| 173 | btrfs_release_path(path); |
| 174 | return ret; |
| 175 | } |
| 176 | |
| 177 | leaf = path->nodes[0]; |
| 178 | header = btrfs_item_ptr(leaf, path->slots[0], |
| 179 | struct btrfs_free_space_header); |
| 180 | memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); |
| 181 | btrfs_set_free_space_key(leaf, header, &disk_key); |
| 182 | btrfs_mark_buffer_dirty(leaf); |
| 183 | btrfs_release_path(path); |
| 184 | |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | int create_free_space_inode(struct btrfs_fs_info *fs_info, |
| 189 | struct btrfs_trans_handle *trans, |
| 190 | struct btrfs_block_group_cache *block_group, |
| 191 | struct btrfs_path *path) |
| 192 | { |
| 193 | int ret; |
| 194 | u64 ino; |
| 195 | |
| 196 | ret = btrfs_find_free_objectid(fs_info->tree_root, &ino); |
| 197 | if (ret < 0) |
| 198 | return ret; |
| 199 | |
| 200 | return __create_free_space_inode(fs_info->tree_root, trans, path, ino, |
| 201 | block_group->key.objectid); |
| 202 | } |
| 203 | |
| 204 | int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, |
| 205 | struct btrfs_block_rsv *rsv) |
| 206 | { |
| 207 | u64 needed_bytes; |
| 208 | int ret; |
| 209 | |
| 210 | /* 1 for slack space, 1 for updating the inode */ |
| 211 | needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) + |
| 212 | btrfs_calc_trans_metadata_size(fs_info, 1); |
| 213 | |
| 214 | spin_lock(&rsv->lock); |
| 215 | if (rsv->reserved < needed_bytes) |
| 216 | ret = -ENOSPC; |
| 217 | else |
| 218 | ret = 0; |
| 219 | spin_unlock(&rsv->lock); |
| 220 | return ret; |
| 221 | } |
| 222 | |
| 223 | int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, |
| 224 | struct btrfs_block_group_cache *block_group, |
| 225 | struct inode *inode) |
| 226 | { |
| 227 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 228 | int ret = 0; |
| 229 | bool locked = false; |
| 230 | |
| 231 | if (block_group) { |
| 232 | struct btrfs_path *path = btrfs_alloc_path(); |
| 233 | |
| 234 | if (!path) { |
| 235 | ret = -ENOMEM; |
| 236 | goto fail; |
| 237 | } |
| 238 | locked = true; |
| 239 | mutex_lock(&trans->transaction->cache_write_mutex); |
| 240 | if (!list_empty(&block_group->io_list)) { |
| 241 | list_del_init(&block_group->io_list); |
| 242 | |
| 243 | btrfs_wait_cache_io(trans, block_group, path); |
| 244 | btrfs_put_block_group(block_group); |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * now that we've truncated the cache away, its no longer |
| 249 | * setup or written |
| 250 | */ |
| 251 | spin_lock(&block_group->lock); |
| 252 | block_group->disk_cache_state = BTRFS_DC_CLEAR; |
| 253 | spin_unlock(&block_group->lock); |
| 254 | btrfs_free_path(path); |
| 255 | } |
| 256 | |
| 257 | btrfs_i_size_write(BTRFS_I(inode), 0); |
| 258 | truncate_pagecache(inode, 0); |
| 259 | |
| 260 | /* |
| 261 | * We skip the throttling logic for free space cache inodes, so we don't |
| 262 | * need to check for -EAGAIN. |
| 263 | */ |
| 264 | ret = btrfs_truncate_inode_items(trans, root, inode, |
| 265 | 0, BTRFS_EXTENT_DATA_KEY); |
| 266 | if (ret) |
| 267 | goto fail; |
| 268 | |
| 269 | ret = btrfs_update_inode(trans, root, inode); |
| 270 | |
| 271 | fail: |
| 272 | if (locked) |
| 273 | mutex_unlock(&trans->transaction->cache_write_mutex); |
| 274 | if (ret) |
| 275 | btrfs_abort_transaction(trans, ret); |
| 276 | |
| 277 | return ret; |
| 278 | } |
| 279 | |
| 280 | static void readahead_cache(struct inode *inode) |
| 281 | { |
| 282 | struct file_ra_state *ra; |
| 283 | unsigned long last_index; |
| 284 | |
| 285 | ra = kzalloc(sizeof(*ra), GFP_NOFS); |
| 286 | if (!ra) |
| 287 | return; |
| 288 | |
| 289 | file_ra_state_init(ra, inode->i_mapping); |
| 290 | last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; |
| 291 | |
| 292 | page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); |
| 293 | |
| 294 | kfree(ra); |
| 295 | } |
| 296 | |
| 297 | static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, |
| 298 | int write) |
| 299 | { |
| 300 | int num_pages; |
| 301 | int check_crcs = 0; |
| 302 | |
| 303 | num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
| 304 | |
| 305 | if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) |
| 306 | check_crcs = 1; |
| 307 | |
| 308 | /* Make sure we can fit our crcs and generation into the first page */ |
| 309 | if (write && check_crcs && |
| 310 | (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) |
| 311 | return -ENOSPC; |
| 312 | |
| 313 | memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); |
| 314 | |
| 315 | io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); |
| 316 | if (!io_ctl->pages) |
| 317 | return -ENOMEM; |
| 318 | |
| 319 | io_ctl->num_pages = num_pages; |
| 320 | io_ctl->fs_info = btrfs_sb(inode->i_sb); |
| 321 | io_ctl->check_crcs = check_crcs; |
| 322 | io_ctl->inode = inode; |
| 323 | |
| 324 | return 0; |
| 325 | } |
| 326 | ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); |
| 327 | |
| 328 | static void io_ctl_free(struct btrfs_io_ctl *io_ctl) |
| 329 | { |
| 330 | kfree(io_ctl->pages); |
| 331 | io_ctl->pages = NULL; |
| 332 | } |
| 333 | |
| 334 | static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) |
| 335 | { |
| 336 | if (io_ctl->cur) { |
| 337 | io_ctl->cur = NULL; |
| 338 | io_ctl->orig = NULL; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) |
| 343 | { |
| 344 | ASSERT(io_ctl->index < io_ctl->num_pages); |
| 345 | io_ctl->page = io_ctl->pages[io_ctl->index++]; |
| 346 | io_ctl->cur = page_address(io_ctl->page); |
| 347 | io_ctl->orig = io_ctl->cur; |
| 348 | io_ctl->size = PAGE_SIZE; |
| 349 | if (clear) |
| 350 | clear_page(io_ctl->cur); |
| 351 | } |
| 352 | |
| 353 | static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) |
| 354 | { |
| 355 | int i; |
| 356 | |
| 357 | io_ctl_unmap_page(io_ctl); |
| 358 | |
| 359 | for (i = 0; i < io_ctl->num_pages; i++) { |
| 360 | if (io_ctl->pages[i]) { |
| 361 | ClearPageChecked(io_ctl->pages[i]); |
| 362 | unlock_page(io_ctl->pages[i]); |
| 363 | put_page(io_ctl->pages[i]); |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, |
| 369 | int uptodate) |
| 370 | { |
| 371 | struct page *page; |
| 372 | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); |
| 373 | int i; |
| 374 | |
| 375 | for (i = 0; i < io_ctl->num_pages; i++) { |
| 376 | page = find_or_create_page(inode->i_mapping, i, mask); |
| 377 | if (!page) { |
| 378 | io_ctl_drop_pages(io_ctl); |
| 379 | return -ENOMEM; |
| 380 | } |
| 381 | io_ctl->pages[i] = page; |
| 382 | if (uptodate && !PageUptodate(page)) { |
| 383 | btrfs_readpage(NULL, page); |
| 384 | lock_page(page); |
| 385 | if (page->mapping != inode->i_mapping) { |
| 386 | btrfs_err(BTRFS_I(inode)->root->fs_info, |
| 387 | "free space cache page truncated"); |
| 388 | io_ctl_drop_pages(io_ctl); |
| 389 | return -EIO; |
| 390 | } |
| 391 | if (!PageUptodate(page)) { |
| 392 | btrfs_err(BTRFS_I(inode)->root->fs_info, |
| 393 | "error reading free space cache"); |
| 394 | io_ctl_drop_pages(io_ctl); |
| 395 | return -EIO; |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | for (i = 0; i < io_ctl->num_pages; i++) { |
| 401 | clear_page_dirty_for_io(io_ctl->pages[i]); |
| 402 | set_page_extent_mapped(io_ctl->pages[i]); |
| 403 | } |
| 404 | |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) |
| 409 | { |
| 410 | __le64 *val; |
| 411 | |
| 412 | io_ctl_map_page(io_ctl, 1); |
| 413 | |
| 414 | /* |
| 415 | * Skip the csum areas. If we don't check crcs then we just have a |
| 416 | * 64bit chunk at the front of the first page. |
| 417 | */ |
| 418 | if (io_ctl->check_crcs) { |
| 419 | io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); |
| 420 | io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); |
| 421 | } else { |
| 422 | io_ctl->cur += sizeof(u64); |
| 423 | io_ctl->size -= sizeof(u64) * 2; |
| 424 | } |
| 425 | |
| 426 | val = io_ctl->cur; |
| 427 | *val = cpu_to_le64(generation); |
| 428 | io_ctl->cur += sizeof(u64); |
| 429 | } |
| 430 | |
| 431 | static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) |
| 432 | { |
| 433 | __le64 *gen; |
| 434 | |
| 435 | /* |
| 436 | * Skip the crc area. If we don't check crcs then we just have a 64bit |
| 437 | * chunk at the front of the first page. |
| 438 | */ |
| 439 | if (io_ctl->check_crcs) { |
| 440 | io_ctl->cur += sizeof(u32) * io_ctl->num_pages; |
| 441 | io_ctl->size -= sizeof(u64) + |
| 442 | (sizeof(u32) * io_ctl->num_pages); |
| 443 | } else { |
| 444 | io_ctl->cur += sizeof(u64); |
| 445 | io_ctl->size -= sizeof(u64) * 2; |
| 446 | } |
| 447 | |
| 448 | gen = io_ctl->cur; |
| 449 | if (le64_to_cpu(*gen) != generation) { |
| 450 | btrfs_err_rl(io_ctl->fs_info, |
| 451 | "space cache generation (%llu) does not match inode (%llu)", |
| 452 | *gen, generation); |
| 453 | io_ctl_unmap_page(io_ctl); |
| 454 | return -EIO; |
| 455 | } |
| 456 | io_ctl->cur += sizeof(u64); |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) |
| 461 | { |
| 462 | u32 *tmp; |
| 463 | u32 crc = ~(u32)0; |
| 464 | unsigned offset = 0; |
| 465 | |
| 466 | if (!io_ctl->check_crcs) { |
| 467 | io_ctl_unmap_page(io_ctl); |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | if (index == 0) |
| 472 | offset = sizeof(u32) * io_ctl->num_pages; |
| 473 | |
| 474 | crc = btrfs_csum_data(io_ctl->orig + offset, crc, |
| 475 | PAGE_SIZE - offset); |
| 476 | btrfs_csum_final(crc, (u8 *)&crc); |
| 477 | io_ctl_unmap_page(io_ctl); |
| 478 | tmp = page_address(io_ctl->pages[0]); |
| 479 | tmp += index; |
| 480 | *tmp = crc; |
| 481 | } |
| 482 | |
| 483 | static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) |
| 484 | { |
| 485 | u32 *tmp, val; |
| 486 | u32 crc = ~(u32)0; |
| 487 | unsigned offset = 0; |
| 488 | |
| 489 | if (!io_ctl->check_crcs) { |
| 490 | io_ctl_map_page(io_ctl, 0); |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | if (index == 0) |
| 495 | offset = sizeof(u32) * io_ctl->num_pages; |
| 496 | |
| 497 | tmp = page_address(io_ctl->pages[0]); |
| 498 | tmp += index; |
| 499 | val = *tmp; |
| 500 | |
| 501 | io_ctl_map_page(io_ctl, 0); |
| 502 | crc = btrfs_csum_data(io_ctl->orig + offset, crc, |
| 503 | PAGE_SIZE - offset); |
| 504 | btrfs_csum_final(crc, (u8 *)&crc); |
| 505 | if (val != crc) { |
| 506 | btrfs_err_rl(io_ctl->fs_info, |
| 507 | "csum mismatch on free space cache"); |
| 508 | io_ctl_unmap_page(io_ctl); |
| 509 | return -EIO; |
| 510 | } |
| 511 | |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, |
| 516 | void *bitmap) |
| 517 | { |
| 518 | struct btrfs_free_space_entry *entry; |
| 519 | |
| 520 | if (!io_ctl->cur) |
| 521 | return -ENOSPC; |
| 522 | |
| 523 | entry = io_ctl->cur; |
| 524 | entry->offset = cpu_to_le64(offset); |
| 525 | entry->bytes = cpu_to_le64(bytes); |
| 526 | entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : |
| 527 | BTRFS_FREE_SPACE_EXTENT; |
| 528 | io_ctl->cur += sizeof(struct btrfs_free_space_entry); |
| 529 | io_ctl->size -= sizeof(struct btrfs_free_space_entry); |
| 530 | |
| 531 | if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) |
| 532 | return 0; |
| 533 | |
| 534 | io_ctl_set_crc(io_ctl, io_ctl->index - 1); |
| 535 | |
| 536 | /* No more pages to map */ |
| 537 | if (io_ctl->index >= io_ctl->num_pages) |
| 538 | return 0; |
| 539 | |
| 540 | /* map the next page */ |
| 541 | io_ctl_map_page(io_ctl, 1); |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) |
| 546 | { |
| 547 | if (!io_ctl->cur) |
| 548 | return -ENOSPC; |
| 549 | |
| 550 | /* |
| 551 | * If we aren't at the start of the current page, unmap this one and |
| 552 | * map the next one if there is any left. |
| 553 | */ |
| 554 | if (io_ctl->cur != io_ctl->orig) { |
| 555 | io_ctl_set_crc(io_ctl, io_ctl->index - 1); |
| 556 | if (io_ctl->index >= io_ctl->num_pages) |
| 557 | return -ENOSPC; |
| 558 | io_ctl_map_page(io_ctl, 0); |
| 559 | } |
| 560 | |
| 561 | copy_page(io_ctl->cur, bitmap); |
| 562 | io_ctl_set_crc(io_ctl, io_ctl->index - 1); |
| 563 | if (io_ctl->index < io_ctl->num_pages) |
| 564 | io_ctl_map_page(io_ctl, 0); |
| 565 | return 0; |
| 566 | } |
| 567 | |
| 568 | static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) |
| 569 | { |
| 570 | /* |
| 571 | * If we're not on the boundary we know we've modified the page and we |
| 572 | * need to crc the page. |
| 573 | */ |
| 574 | if (io_ctl->cur != io_ctl->orig) |
| 575 | io_ctl_set_crc(io_ctl, io_ctl->index - 1); |
| 576 | else |
| 577 | io_ctl_unmap_page(io_ctl); |
| 578 | |
| 579 | while (io_ctl->index < io_ctl->num_pages) { |
| 580 | io_ctl_map_page(io_ctl, 1); |
| 581 | io_ctl_set_crc(io_ctl, io_ctl->index - 1); |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, |
| 586 | struct btrfs_free_space *entry, u8 *type) |
| 587 | { |
| 588 | struct btrfs_free_space_entry *e; |
| 589 | int ret; |
| 590 | |
| 591 | if (!io_ctl->cur) { |
| 592 | ret = io_ctl_check_crc(io_ctl, io_ctl->index); |
| 593 | if (ret) |
| 594 | return ret; |
| 595 | } |
| 596 | |
| 597 | e = io_ctl->cur; |
| 598 | entry->offset = le64_to_cpu(e->offset); |
| 599 | entry->bytes = le64_to_cpu(e->bytes); |
| 600 | *type = e->type; |
| 601 | io_ctl->cur += sizeof(struct btrfs_free_space_entry); |
| 602 | io_ctl->size -= sizeof(struct btrfs_free_space_entry); |
| 603 | |
| 604 | if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) |
| 605 | return 0; |
| 606 | |
| 607 | io_ctl_unmap_page(io_ctl); |
| 608 | |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, |
| 613 | struct btrfs_free_space *entry) |
| 614 | { |
| 615 | int ret; |
| 616 | |
| 617 | ret = io_ctl_check_crc(io_ctl, io_ctl->index); |
| 618 | if (ret) |
| 619 | return ret; |
| 620 | |
| 621 | copy_page(entry->bitmap, io_ctl->cur); |
| 622 | io_ctl_unmap_page(io_ctl); |
| 623 | |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * Since we attach pinned extents after the fact we can have contiguous sections |
| 629 | * of free space that are split up in entries. This poses a problem with the |
| 630 | * tree logging stuff since it could have allocated across what appears to be 2 |
| 631 | * entries since we would have merged the entries when adding the pinned extents |
| 632 | * back to the free space cache. So run through the space cache that we just |
| 633 | * loaded and merge contiguous entries. This will make the log replay stuff not |
| 634 | * blow up and it will make for nicer allocator behavior. |
| 635 | */ |
| 636 | static void merge_space_tree(struct btrfs_free_space_ctl *ctl) |
| 637 | { |
| 638 | struct btrfs_free_space *e, *prev = NULL; |
| 639 | struct rb_node *n; |
| 640 | |
| 641 | again: |
| 642 | spin_lock(&ctl->tree_lock); |
| 643 | for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { |
| 644 | e = rb_entry(n, struct btrfs_free_space, offset_index); |
| 645 | if (!prev) |
| 646 | goto next; |
| 647 | if (e->bitmap || prev->bitmap) |
| 648 | goto next; |
| 649 | if (prev->offset + prev->bytes == e->offset) { |
| 650 | unlink_free_space(ctl, prev); |
| 651 | unlink_free_space(ctl, e); |
| 652 | prev->bytes += e->bytes; |
| 653 | kmem_cache_free(btrfs_free_space_cachep, e); |
| 654 | link_free_space(ctl, prev); |
| 655 | prev = NULL; |
| 656 | spin_unlock(&ctl->tree_lock); |
| 657 | goto again; |
| 658 | } |
| 659 | next: |
| 660 | prev = e; |
| 661 | } |
| 662 | spin_unlock(&ctl->tree_lock); |
| 663 | } |
| 664 | |
| 665 | static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, |
| 666 | struct btrfs_free_space_ctl *ctl, |
| 667 | struct btrfs_path *path, u64 offset) |
| 668 | { |
| 669 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 670 | struct btrfs_free_space_header *header; |
| 671 | struct extent_buffer *leaf; |
| 672 | struct btrfs_io_ctl io_ctl; |
| 673 | struct btrfs_key key; |
| 674 | struct btrfs_free_space *e, *n; |
| 675 | LIST_HEAD(bitmaps); |
| 676 | u64 num_entries; |
| 677 | u64 num_bitmaps; |
| 678 | u64 generation; |
| 679 | u8 type; |
| 680 | int ret = 0; |
| 681 | |
| 682 | /* Nothing in the space cache, goodbye */ |
| 683 | if (!i_size_read(inode)) |
| 684 | return 0; |
| 685 | |
| 686 | key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| 687 | key.offset = offset; |
| 688 | key.type = 0; |
| 689 | |
| 690 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 691 | if (ret < 0) |
| 692 | return 0; |
| 693 | else if (ret > 0) { |
| 694 | btrfs_release_path(path); |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | ret = -1; |
| 699 | |
| 700 | leaf = path->nodes[0]; |
| 701 | header = btrfs_item_ptr(leaf, path->slots[0], |
| 702 | struct btrfs_free_space_header); |
| 703 | num_entries = btrfs_free_space_entries(leaf, header); |
| 704 | num_bitmaps = btrfs_free_space_bitmaps(leaf, header); |
| 705 | generation = btrfs_free_space_generation(leaf, header); |
| 706 | btrfs_release_path(path); |
| 707 | |
| 708 | if (!BTRFS_I(inode)->generation) { |
| 709 | btrfs_info(fs_info, |
| 710 | "the free space cache file (%llu) is invalid, skip it", |
| 711 | offset); |
| 712 | return 0; |
| 713 | } |
| 714 | |
| 715 | if (BTRFS_I(inode)->generation != generation) { |
| 716 | btrfs_err(fs_info, |
| 717 | "free space inode generation (%llu) did not match free space cache generation (%llu)", |
| 718 | BTRFS_I(inode)->generation, generation); |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | if (!num_entries) |
| 723 | return 0; |
| 724 | |
| 725 | ret = io_ctl_init(&io_ctl, inode, 0); |
| 726 | if (ret) |
| 727 | return ret; |
| 728 | |
| 729 | readahead_cache(inode); |
| 730 | |
| 731 | ret = io_ctl_prepare_pages(&io_ctl, inode, 1); |
| 732 | if (ret) |
| 733 | goto out; |
| 734 | |
| 735 | ret = io_ctl_check_crc(&io_ctl, 0); |
| 736 | if (ret) |
| 737 | goto free_cache; |
| 738 | |
| 739 | ret = io_ctl_check_generation(&io_ctl, generation); |
| 740 | if (ret) |
| 741 | goto free_cache; |
| 742 | |
| 743 | while (num_entries) { |
| 744 | e = kmem_cache_zalloc(btrfs_free_space_cachep, |
| 745 | GFP_NOFS); |
| 746 | if (!e) |
| 747 | goto free_cache; |
| 748 | |
| 749 | ret = io_ctl_read_entry(&io_ctl, e, &type); |
| 750 | if (ret) { |
| 751 | kmem_cache_free(btrfs_free_space_cachep, e); |
| 752 | goto free_cache; |
| 753 | } |
| 754 | |
| 755 | if (!e->bytes) { |
| 756 | kmem_cache_free(btrfs_free_space_cachep, e); |
| 757 | goto free_cache; |
| 758 | } |
| 759 | |
| 760 | if (type == BTRFS_FREE_SPACE_EXTENT) { |
| 761 | spin_lock(&ctl->tree_lock); |
| 762 | ret = link_free_space(ctl, e); |
| 763 | spin_unlock(&ctl->tree_lock); |
| 764 | if (ret) { |
| 765 | btrfs_err(fs_info, |
| 766 | "Duplicate entries in free space cache, dumping"); |
| 767 | kmem_cache_free(btrfs_free_space_cachep, e); |
| 768 | goto free_cache; |
| 769 | } |
| 770 | } else { |
| 771 | ASSERT(num_bitmaps); |
| 772 | num_bitmaps--; |
| 773 | e->bitmap = kmem_cache_zalloc( |
| 774 | btrfs_free_space_bitmap_cachep, GFP_NOFS); |
| 775 | if (!e->bitmap) { |
| 776 | kmem_cache_free( |
| 777 | btrfs_free_space_cachep, e); |
| 778 | goto free_cache; |
| 779 | } |
| 780 | spin_lock(&ctl->tree_lock); |
| 781 | ret = link_free_space(ctl, e); |
| 782 | ctl->total_bitmaps++; |
| 783 | ctl->op->recalc_thresholds(ctl); |
| 784 | spin_unlock(&ctl->tree_lock); |
| 785 | if (ret) { |
| 786 | btrfs_err(fs_info, |
| 787 | "Duplicate entries in free space cache, dumping"); |
| 788 | kmem_cache_free(btrfs_free_space_cachep, e); |
| 789 | goto free_cache; |
| 790 | } |
| 791 | list_add_tail(&e->list, &bitmaps); |
| 792 | } |
| 793 | |
| 794 | num_entries--; |
| 795 | } |
| 796 | |
| 797 | io_ctl_unmap_page(&io_ctl); |
| 798 | |
| 799 | /* |
| 800 | * We add the bitmaps at the end of the entries in order that |
| 801 | * the bitmap entries are added to the cache. |
| 802 | */ |
| 803 | list_for_each_entry_safe(e, n, &bitmaps, list) { |
| 804 | list_del_init(&e->list); |
| 805 | ret = io_ctl_read_bitmap(&io_ctl, e); |
| 806 | if (ret) |
| 807 | goto free_cache; |
| 808 | } |
| 809 | |
| 810 | io_ctl_drop_pages(&io_ctl); |
| 811 | merge_space_tree(ctl); |
| 812 | ret = 1; |
| 813 | out: |
| 814 | io_ctl_free(&io_ctl); |
| 815 | return ret; |
| 816 | free_cache: |
| 817 | io_ctl_drop_pages(&io_ctl); |
| 818 | __btrfs_remove_free_space_cache(ctl); |
| 819 | goto out; |
| 820 | } |
| 821 | |
| 822 | int load_free_space_cache(struct btrfs_fs_info *fs_info, |
| 823 | struct btrfs_block_group_cache *block_group) |
| 824 | { |
| 825 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 826 | struct inode *inode; |
| 827 | struct btrfs_path *path; |
| 828 | int ret = 0; |
| 829 | bool matched; |
| 830 | u64 used = btrfs_block_group_used(&block_group->item); |
| 831 | |
| 832 | /* |
| 833 | * If this block group has been marked to be cleared for one reason or |
| 834 | * another then we can't trust the on disk cache, so just return. |
| 835 | */ |
| 836 | spin_lock(&block_group->lock); |
| 837 | if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { |
| 838 | spin_unlock(&block_group->lock); |
| 839 | return 0; |
| 840 | } |
| 841 | spin_unlock(&block_group->lock); |
| 842 | |
| 843 | path = btrfs_alloc_path(); |
| 844 | if (!path) |
| 845 | return 0; |
| 846 | path->search_commit_root = 1; |
| 847 | path->skip_locking = 1; |
| 848 | |
| 849 | /* |
| 850 | * We must pass a path with search_commit_root set to btrfs_iget in |
| 851 | * order to avoid a deadlock when allocating extents for the tree root. |
| 852 | * |
| 853 | * When we are COWing an extent buffer from the tree root, when looking |
| 854 | * for a free extent, at extent-tree.c:find_free_extent(), we can find |
| 855 | * block group without its free space cache loaded. When we find one |
| 856 | * we must load its space cache which requires reading its free space |
| 857 | * cache's inode item from the root tree. If this inode item is located |
| 858 | * in the same leaf that we started COWing before, then we end up in |
| 859 | * deadlock on the extent buffer (trying to read lock it when we |
| 860 | * previously write locked it). |
| 861 | * |
| 862 | * It's safe to read the inode item using the commit root because |
| 863 | * block groups, once loaded, stay in memory forever (until they are |
| 864 | * removed) as well as their space caches once loaded. New block groups |
| 865 | * once created get their ->cached field set to BTRFS_CACHE_FINISHED so |
| 866 | * we will never try to read their inode item while the fs is mounted. |
| 867 | */ |
| 868 | inode = lookup_free_space_inode(fs_info, block_group, path); |
| 869 | if (IS_ERR(inode)) { |
| 870 | btrfs_free_path(path); |
| 871 | return 0; |
| 872 | } |
| 873 | |
| 874 | /* We may have converted the inode and made the cache invalid. */ |
| 875 | spin_lock(&block_group->lock); |
| 876 | if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { |
| 877 | spin_unlock(&block_group->lock); |
| 878 | btrfs_free_path(path); |
| 879 | goto out; |
| 880 | } |
| 881 | spin_unlock(&block_group->lock); |
| 882 | |
| 883 | ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, |
| 884 | path, block_group->key.objectid); |
| 885 | btrfs_free_path(path); |
| 886 | if (ret <= 0) |
| 887 | goto out; |
| 888 | |
| 889 | spin_lock(&ctl->tree_lock); |
| 890 | matched = (ctl->free_space == (block_group->key.offset - used - |
| 891 | block_group->bytes_super)); |
| 892 | spin_unlock(&ctl->tree_lock); |
| 893 | |
| 894 | if (!matched) { |
| 895 | __btrfs_remove_free_space_cache(ctl); |
| 896 | btrfs_warn(fs_info, |
| 897 | "block group %llu has wrong amount of free space", |
| 898 | block_group->key.objectid); |
| 899 | ret = -1; |
| 900 | } |
| 901 | out: |
| 902 | if (ret < 0) { |
| 903 | /* This cache is bogus, make sure it gets cleared */ |
| 904 | spin_lock(&block_group->lock); |
| 905 | block_group->disk_cache_state = BTRFS_DC_CLEAR; |
| 906 | spin_unlock(&block_group->lock); |
| 907 | ret = 0; |
| 908 | |
| 909 | btrfs_warn(fs_info, |
| 910 | "failed to load free space cache for block group %llu, rebuilding it now", |
| 911 | block_group->key.objectid); |
| 912 | } |
| 913 | |
| 914 | iput(inode); |
| 915 | return ret; |
| 916 | } |
| 917 | |
| 918 | static noinline_for_stack |
| 919 | int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, |
| 920 | struct btrfs_free_space_ctl *ctl, |
| 921 | struct btrfs_block_group_cache *block_group, |
| 922 | int *entries, int *bitmaps, |
| 923 | struct list_head *bitmap_list) |
| 924 | { |
| 925 | int ret; |
| 926 | struct btrfs_free_cluster *cluster = NULL; |
| 927 | struct btrfs_free_cluster *cluster_locked = NULL; |
| 928 | struct rb_node *node = rb_first(&ctl->free_space_offset); |
| 929 | struct btrfs_trim_range *trim_entry; |
| 930 | |
| 931 | /* Get the cluster for this block_group if it exists */ |
| 932 | if (block_group && !list_empty(&block_group->cluster_list)) { |
| 933 | cluster = list_entry(block_group->cluster_list.next, |
| 934 | struct btrfs_free_cluster, |
| 935 | block_group_list); |
| 936 | } |
| 937 | |
| 938 | if (!node && cluster) { |
| 939 | cluster_locked = cluster; |
| 940 | spin_lock(&cluster_locked->lock); |
| 941 | node = rb_first(&cluster->root); |
| 942 | cluster = NULL; |
| 943 | } |
| 944 | |
| 945 | /* Write out the extent entries */ |
| 946 | while (node) { |
| 947 | struct btrfs_free_space *e; |
| 948 | |
| 949 | e = rb_entry(node, struct btrfs_free_space, offset_index); |
| 950 | *entries += 1; |
| 951 | |
| 952 | ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, |
| 953 | e->bitmap); |
| 954 | if (ret) |
| 955 | goto fail; |
| 956 | |
| 957 | if (e->bitmap) { |
| 958 | list_add_tail(&e->list, bitmap_list); |
| 959 | *bitmaps += 1; |
| 960 | } |
| 961 | node = rb_next(node); |
| 962 | if (!node && cluster) { |
| 963 | node = rb_first(&cluster->root); |
| 964 | cluster_locked = cluster; |
| 965 | spin_lock(&cluster_locked->lock); |
| 966 | cluster = NULL; |
| 967 | } |
| 968 | } |
| 969 | if (cluster_locked) { |
| 970 | spin_unlock(&cluster_locked->lock); |
| 971 | cluster_locked = NULL; |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * Make sure we don't miss any range that was removed from our rbtree |
| 976 | * because trimming is running. Otherwise after a umount+mount (or crash |
| 977 | * after committing the transaction) we would leak free space and get |
| 978 | * an inconsistent free space cache report from fsck. |
| 979 | */ |
| 980 | list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { |
| 981 | ret = io_ctl_add_entry(io_ctl, trim_entry->start, |
| 982 | trim_entry->bytes, NULL); |
| 983 | if (ret) |
| 984 | goto fail; |
| 985 | *entries += 1; |
| 986 | } |
| 987 | |
| 988 | return 0; |
| 989 | fail: |
| 990 | if (cluster_locked) |
| 991 | spin_unlock(&cluster_locked->lock); |
| 992 | return -ENOSPC; |
| 993 | } |
| 994 | |
| 995 | static noinline_for_stack int |
| 996 | update_cache_item(struct btrfs_trans_handle *trans, |
| 997 | struct btrfs_root *root, |
| 998 | struct inode *inode, |
| 999 | struct btrfs_path *path, u64 offset, |
| 1000 | int entries, int bitmaps) |
| 1001 | { |
| 1002 | struct btrfs_key key; |
| 1003 | struct btrfs_free_space_header *header; |
| 1004 | struct extent_buffer *leaf; |
| 1005 | int ret; |
| 1006 | |
| 1007 | key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| 1008 | key.offset = offset; |
| 1009 | key.type = 0; |
| 1010 | |
| 1011 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| 1012 | if (ret < 0) { |
| 1013 | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, |
| 1014 | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); |
| 1015 | goto fail; |
| 1016 | } |
| 1017 | leaf = path->nodes[0]; |
| 1018 | if (ret > 0) { |
| 1019 | struct btrfs_key found_key; |
| 1020 | ASSERT(path->slots[0]); |
| 1021 | path->slots[0]--; |
| 1022 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| 1023 | if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || |
| 1024 | found_key.offset != offset) { |
| 1025 | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, |
| 1026 | inode->i_size - 1, |
| 1027 | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, |
| 1028 | NULL); |
| 1029 | btrfs_release_path(path); |
| 1030 | goto fail; |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | BTRFS_I(inode)->generation = trans->transid; |
| 1035 | header = btrfs_item_ptr(leaf, path->slots[0], |
| 1036 | struct btrfs_free_space_header); |
| 1037 | btrfs_set_free_space_entries(leaf, header, entries); |
| 1038 | btrfs_set_free_space_bitmaps(leaf, header, bitmaps); |
| 1039 | btrfs_set_free_space_generation(leaf, header, trans->transid); |
| 1040 | btrfs_mark_buffer_dirty(leaf); |
| 1041 | btrfs_release_path(path); |
| 1042 | |
| 1043 | return 0; |
| 1044 | |
| 1045 | fail: |
| 1046 | return -1; |
| 1047 | } |
| 1048 | |
| 1049 | static noinline_for_stack int |
| 1050 | write_pinned_extent_entries(struct btrfs_fs_info *fs_info, |
| 1051 | struct btrfs_block_group_cache *block_group, |
| 1052 | struct btrfs_io_ctl *io_ctl, |
| 1053 | int *entries) |
| 1054 | { |
| 1055 | u64 start, extent_start, extent_end, len; |
| 1056 | struct extent_io_tree *unpin = NULL; |
| 1057 | int ret; |
| 1058 | |
| 1059 | if (!block_group) |
| 1060 | return 0; |
| 1061 | |
| 1062 | /* |
| 1063 | * We want to add any pinned extents to our free space cache |
| 1064 | * so we don't leak the space |
| 1065 | * |
| 1066 | * We shouldn't have switched the pinned extents yet so this is the |
| 1067 | * right one |
| 1068 | */ |
| 1069 | unpin = fs_info->pinned_extents; |
| 1070 | |
| 1071 | start = block_group->key.objectid; |
| 1072 | |
| 1073 | while (start < block_group->key.objectid + block_group->key.offset) { |
| 1074 | ret = find_first_extent_bit(unpin, start, |
| 1075 | &extent_start, &extent_end, |
| 1076 | EXTENT_DIRTY, NULL); |
| 1077 | if (ret) |
| 1078 | return 0; |
| 1079 | |
| 1080 | /* This pinned extent is out of our range */ |
| 1081 | if (extent_start >= block_group->key.objectid + |
| 1082 | block_group->key.offset) |
| 1083 | return 0; |
| 1084 | |
| 1085 | extent_start = max(extent_start, start); |
| 1086 | extent_end = min(block_group->key.objectid + |
| 1087 | block_group->key.offset, extent_end + 1); |
| 1088 | len = extent_end - extent_start; |
| 1089 | |
| 1090 | *entries += 1; |
| 1091 | ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); |
| 1092 | if (ret) |
| 1093 | return -ENOSPC; |
| 1094 | |
| 1095 | start = extent_end; |
| 1096 | } |
| 1097 | |
| 1098 | return 0; |
| 1099 | } |
| 1100 | |
| 1101 | static noinline_for_stack int |
| 1102 | write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) |
| 1103 | { |
| 1104 | struct btrfs_free_space *entry, *next; |
| 1105 | int ret; |
| 1106 | |
| 1107 | /* Write out the bitmaps */ |
| 1108 | list_for_each_entry_safe(entry, next, bitmap_list, list) { |
| 1109 | ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); |
| 1110 | if (ret) |
| 1111 | return -ENOSPC; |
| 1112 | list_del_init(&entry->list); |
| 1113 | } |
| 1114 | |
| 1115 | return 0; |
| 1116 | } |
| 1117 | |
| 1118 | static int flush_dirty_cache(struct inode *inode) |
| 1119 | { |
| 1120 | int ret; |
| 1121 | |
| 1122 | ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| 1123 | if (ret) |
| 1124 | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, |
| 1125 | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); |
| 1126 | |
| 1127 | return ret; |
| 1128 | } |
| 1129 | |
| 1130 | static void noinline_for_stack |
| 1131 | cleanup_bitmap_list(struct list_head *bitmap_list) |
| 1132 | { |
| 1133 | struct btrfs_free_space *entry, *next; |
| 1134 | |
| 1135 | list_for_each_entry_safe(entry, next, bitmap_list, list) |
| 1136 | list_del_init(&entry->list); |
| 1137 | } |
| 1138 | |
| 1139 | static void noinline_for_stack |
| 1140 | cleanup_write_cache_enospc(struct inode *inode, |
| 1141 | struct btrfs_io_ctl *io_ctl, |
| 1142 | struct extent_state **cached_state) |
| 1143 | { |
| 1144 | io_ctl_drop_pages(io_ctl); |
| 1145 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, |
| 1146 | i_size_read(inode) - 1, cached_state); |
| 1147 | } |
| 1148 | |
| 1149 | static int __btrfs_wait_cache_io(struct btrfs_root *root, |
| 1150 | struct btrfs_trans_handle *trans, |
| 1151 | struct btrfs_block_group_cache *block_group, |
| 1152 | struct btrfs_io_ctl *io_ctl, |
| 1153 | struct btrfs_path *path, u64 offset) |
| 1154 | { |
| 1155 | int ret; |
| 1156 | struct inode *inode = io_ctl->inode; |
| 1157 | |
| 1158 | if (!inode) |
| 1159 | return 0; |
| 1160 | |
| 1161 | /* Flush the dirty pages in the cache file. */ |
| 1162 | ret = flush_dirty_cache(inode); |
| 1163 | if (ret) |
| 1164 | goto out; |
| 1165 | |
| 1166 | /* Update the cache item to tell everyone this cache file is valid. */ |
| 1167 | ret = update_cache_item(trans, root, inode, path, offset, |
| 1168 | io_ctl->entries, io_ctl->bitmaps); |
| 1169 | out: |
| 1170 | io_ctl_free(io_ctl); |
| 1171 | if (ret) { |
| 1172 | invalidate_inode_pages2(inode->i_mapping); |
| 1173 | BTRFS_I(inode)->generation = 0; |
| 1174 | if (block_group) { |
| 1175 | #ifdef DEBUG |
| 1176 | btrfs_err(root->fs_info, |
| 1177 | "failed to write free space cache for block group %llu", |
| 1178 | block_group->key.objectid); |
| 1179 | #endif |
| 1180 | } |
| 1181 | } |
| 1182 | btrfs_update_inode(trans, root, inode); |
| 1183 | |
| 1184 | if (block_group) { |
| 1185 | /* the dirty list is protected by the dirty_bgs_lock */ |
| 1186 | spin_lock(&trans->transaction->dirty_bgs_lock); |
| 1187 | |
| 1188 | /* the disk_cache_state is protected by the block group lock */ |
| 1189 | spin_lock(&block_group->lock); |
| 1190 | |
| 1191 | /* |
| 1192 | * only mark this as written if we didn't get put back on |
| 1193 | * the dirty list while waiting for IO. Otherwise our |
| 1194 | * cache state won't be right, and we won't get written again |
| 1195 | */ |
| 1196 | if (!ret && list_empty(&block_group->dirty_list)) |
| 1197 | block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| 1198 | else if (ret) |
| 1199 | block_group->disk_cache_state = BTRFS_DC_ERROR; |
| 1200 | |
| 1201 | spin_unlock(&block_group->lock); |
| 1202 | spin_unlock(&trans->transaction->dirty_bgs_lock); |
| 1203 | io_ctl->inode = NULL; |
| 1204 | iput(inode); |
| 1205 | } |
| 1206 | |
| 1207 | return ret; |
| 1208 | |
| 1209 | } |
| 1210 | |
| 1211 | static int btrfs_wait_cache_io_root(struct btrfs_root *root, |
| 1212 | struct btrfs_trans_handle *trans, |
| 1213 | struct btrfs_io_ctl *io_ctl, |
| 1214 | struct btrfs_path *path) |
| 1215 | { |
| 1216 | return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); |
| 1217 | } |
| 1218 | |
| 1219 | int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, |
| 1220 | struct btrfs_block_group_cache *block_group, |
| 1221 | struct btrfs_path *path) |
| 1222 | { |
| 1223 | return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, |
| 1224 | block_group, &block_group->io_ctl, |
| 1225 | path, block_group->key.objectid); |
| 1226 | } |
| 1227 | |
| 1228 | /** |
| 1229 | * __btrfs_write_out_cache - write out cached info to an inode |
| 1230 | * @root - the root the inode belongs to |
| 1231 | * @ctl - the free space cache we are going to write out |
| 1232 | * @block_group - the block_group for this cache if it belongs to a block_group |
| 1233 | * @trans - the trans handle |
| 1234 | * |
| 1235 | * This function writes out a free space cache struct to disk for quick recovery |
| 1236 | * on mount. This will return 0 if it was successful in writing the cache out, |
| 1237 | * or an errno if it was not. |
| 1238 | */ |
| 1239 | static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, |
| 1240 | struct btrfs_free_space_ctl *ctl, |
| 1241 | struct btrfs_block_group_cache *block_group, |
| 1242 | struct btrfs_io_ctl *io_ctl, |
| 1243 | struct btrfs_trans_handle *trans) |
| 1244 | { |
| 1245 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1246 | struct extent_state *cached_state = NULL; |
| 1247 | LIST_HEAD(bitmap_list); |
| 1248 | int entries = 0; |
| 1249 | int bitmaps = 0; |
| 1250 | int ret; |
| 1251 | int must_iput = 0; |
| 1252 | |
| 1253 | if (!i_size_read(inode)) |
| 1254 | return -EIO; |
| 1255 | |
| 1256 | WARN_ON(io_ctl->pages); |
| 1257 | ret = io_ctl_init(io_ctl, inode, 1); |
| 1258 | if (ret) |
| 1259 | return ret; |
| 1260 | |
| 1261 | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { |
| 1262 | down_write(&block_group->data_rwsem); |
| 1263 | spin_lock(&block_group->lock); |
| 1264 | if (block_group->delalloc_bytes) { |
| 1265 | block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| 1266 | spin_unlock(&block_group->lock); |
| 1267 | up_write(&block_group->data_rwsem); |
| 1268 | BTRFS_I(inode)->generation = 0; |
| 1269 | ret = 0; |
| 1270 | must_iput = 1; |
| 1271 | goto out; |
| 1272 | } |
| 1273 | spin_unlock(&block_group->lock); |
| 1274 | } |
| 1275 | |
| 1276 | /* Lock all pages first so we can lock the extent safely. */ |
| 1277 | ret = io_ctl_prepare_pages(io_ctl, inode, 0); |
| 1278 | if (ret) |
| 1279 | goto out_unlock; |
| 1280 | |
| 1281 | lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, |
| 1282 | &cached_state); |
| 1283 | |
| 1284 | io_ctl_set_generation(io_ctl, trans->transid); |
| 1285 | |
| 1286 | mutex_lock(&ctl->cache_writeout_mutex); |
| 1287 | /* Write out the extent entries in the free space cache */ |
| 1288 | spin_lock(&ctl->tree_lock); |
| 1289 | ret = write_cache_extent_entries(io_ctl, ctl, |
| 1290 | block_group, &entries, &bitmaps, |
| 1291 | &bitmap_list); |
| 1292 | if (ret) |
| 1293 | goto out_nospc_locked; |
| 1294 | |
| 1295 | /* |
| 1296 | * Some spaces that are freed in the current transaction are pinned, |
| 1297 | * they will be added into free space cache after the transaction is |
| 1298 | * committed, we shouldn't lose them. |
| 1299 | * |
| 1300 | * If this changes while we are working we'll get added back to |
| 1301 | * the dirty list and redo it. No locking needed |
| 1302 | */ |
| 1303 | ret = write_pinned_extent_entries(fs_info, block_group, |
| 1304 | io_ctl, &entries); |
| 1305 | if (ret) |
| 1306 | goto out_nospc_locked; |
| 1307 | |
| 1308 | /* |
| 1309 | * At last, we write out all the bitmaps and keep cache_writeout_mutex |
| 1310 | * locked while doing it because a concurrent trim can be manipulating |
| 1311 | * or freeing the bitmap. |
| 1312 | */ |
| 1313 | ret = write_bitmap_entries(io_ctl, &bitmap_list); |
| 1314 | spin_unlock(&ctl->tree_lock); |
| 1315 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 1316 | if (ret) |
| 1317 | goto out_nospc; |
| 1318 | |
| 1319 | /* Zero out the rest of the pages just to make sure */ |
| 1320 | io_ctl_zero_remaining_pages(io_ctl); |
| 1321 | |
| 1322 | /* Everything is written out, now we dirty the pages in the file. */ |
| 1323 | ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, |
| 1324 | i_size_read(inode), &cached_state); |
| 1325 | if (ret) |
| 1326 | goto out_nospc; |
| 1327 | |
| 1328 | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) |
| 1329 | up_write(&block_group->data_rwsem); |
| 1330 | /* |
| 1331 | * Release the pages and unlock the extent, we will flush |
| 1332 | * them out later |
| 1333 | */ |
| 1334 | io_ctl_drop_pages(io_ctl); |
| 1335 | |
| 1336 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, |
| 1337 | i_size_read(inode) - 1, &cached_state); |
| 1338 | |
| 1339 | /* |
| 1340 | * at this point the pages are under IO and we're happy, |
| 1341 | * The caller is responsible for waiting on them and updating the |
| 1342 | * the cache and the inode |
| 1343 | */ |
| 1344 | io_ctl->entries = entries; |
| 1345 | io_ctl->bitmaps = bitmaps; |
| 1346 | |
| 1347 | ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); |
| 1348 | if (ret) |
| 1349 | goto out; |
| 1350 | |
| 1351 | return 0; |
| 1352 | |
| 1353 | out: |
| 1354 | io_ctl->inode = NULL; |
| 1355 | io_ctl_free(io_ctl); |
| 1356 | if (ret) { |
| 1357 | invalidate_inode_pages2(inode->i_mapping); |
| 1358 | BTRFS_I(inode)->generation = 0; |
| 1359 | } |
| 1360 | btrfs_update_inode(trans, root, inode); |
| 1361 | if (must_iput) |
| 1362 | iput(inode); |
| 1363 | return ret; |
| 1364 | |
| 1365 | out_nospc_locked: |
| 1366 | cleanup_bitmap_list(&bitmap_list); |
| 1367 | spin_unlock(&ctl->tree_lock); |
| 1368 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 1369 | |
| 1370 | out_nospc: |
| 1371 | cleanup_write_cache_enospc(inode, io_ctl, &cached_state); |
| 1372 | |
| 1373 | out_unlock: |
| 1374 | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) |
| 1375 | up_write(&block_group->data_rwsem); |
| 1376 | |
| 1377 | goto out; |
| 1378 | } |
| 1379 | |
| 1380 | int btrfs_write_out_cache(struct btrfs_fs_info *fs_info, |
| 1381 | struct btrfs_trans_handle *trans, |
| 1382 | struct btrfs_block_group_cache *block_group, |
| 1383 | struct btrfs_path *path) |
| 1384 | { |
| 1385 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 1386 | struct inode *inode; |
| 1387 | int ret = 0; |
| 1388 | |
| 1389 | spin_lock(&block_group->lock); |
| 1390 | if (block_group->disk_cache_state < BTRFS_DC_SETUP) { |
| 1391 | spin_unlock(&block_group->lock); |
| 1392 | return 0; |
| 1393 | } |
| 1394 | spin_unlock(&block_group->lock); |
| 1395 | |
| 1396 | inode = lookup_free_space_inode(fs_info, block_group, path); |
| 1397 | if (IS_ERR(inode)) |
| 1398 | return 0; |
| 1399 | |
| 1400 | ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, |
| 1401 | block_group, &block_group->io_ctl, trans); |
| 1402 | if (ret) { |
| 1403 | #ifdef DEBUG |
| 1404 | btrfs_err(fs_info, |
| 1405 | "failed to write free space cache for block group %llu", |
| 1406 | block_group->key.objectid); |
| 1407 | #endif |
| 1408 | spin_lock(&block_group->lock); |
| 1409 | block_group->disk_cache_state = BTRFS_DC_ERROR; |
| 1410 | spin_unlock(&block_group->lock); |
| 1411 | |
| 1412 | block_group->io_ctl.inode = NULL; |
| 1413 | iput(inode); |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * if ret == 0 the caller is expected to call btrfs_wait_cache_io |
| 1418 | * to wait for IO and put the inode |
| 1419 | */ |
| 1420 | |
| 1421 | return ret; |
| 1422 | } |
| 1423 | |
| 1424 | static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, |
| 1425 | u64 offset) |
| 1426 | { |
| 1427 | ASSERT(offset >= bitmap_start); |
| 1428 | offset -= bitmap_start; |
| 1429 | return (unsigned long)(div_u64(offset, unit)); |
| 1430 | } |
| 1431 | |
| 1432 | static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) |
| 1433 | { |
| 1434 | return (unsigned long)(div_u64(bytes, unit)); |
| 1435 | } |
| 1436 | |
| 1437 | static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1438 | u64 offset) |
| 1439 | { |
| 1440 | u64 bitmap_start; |
| 1441 | u64 bytes_per_bitmap; |
| 1442 | |
| 1443 | bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; |
| 1444 | bitmap_start = offset - ctl->start; |
| 1445 | bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); |
| 1446 | bitmap_start *= bytes_per_bitmap; |
| 1447 | bitmap_start += ctl->start; |
| 1448 | |
| 1449 | return bitmap_start; |
| 1450 | } |
| 1451 | |
| 1452 | static int tree_insert_offset(struct rb_root *root, u64 offset, |
| 1453 | struct rb_node *node, int bitmap) |
| 1454 | { |
| 1455 | struct rb_node **p = &root->rb_node; |
| 1456 | struct rb_node *parent = NULL; |
| 1457 | struct btrfs_free_space *info; |
| 1458 | |
| 1459 | while (*p) { |
| 1460 | parent = *p; |
| 1461 | info = rb_entry(parent, struct btrfs_free_space, offset_index); |
| 1462 | |
| 1463 | if (offset < info->offset) { |
| 1464 | p = &(*p)->rb_left; |
| 1465 | } else if (offset > info->offset) { |
| 1466 | p = &(*p)->rb_right; |
| 1467 | } else { |
| 1468 | /* |
| 1469 | * we could have a bitmap entry and an extent entry |
| 1470 | * share the same offset. If this is the case, we want |
| 1471 | * the extent entry to always be found first if we do a |
| 1472 | * linear search through the tree, since we want to have |
| 1473 | * the quickest allocation time, and allocating from an |
| 1474 | * extent is faster than allocating from a bitmap. So |
| 1475 | * if we're inserting a bitmap and we find an entry at |
| 1476 | * this offset, we want to go right, or after this entry |
| 1477 | * logically. If we are inserting an extent and we've |
| 1478 | * found a bitmap, we want to go left, or before |
| 1479 | * logically. |
| 1480 | */ |
| 1481 | if (bitmap) { |
| 1482 | if (info->bitmap) { |
| 1483 | WARN_ON_ONCE(1); |
| 1484 | return -EEXIST; |
| 1485 | } |
| 1486 | p = &(*p)->rb_right; |
| 1487 | } else { |
| 1488 | if (!info->bitmap) { |
| 1489 | WARN_ON_ONCE(1); |
| 1490 | return -EEXIST; |
| 1491 | } |
| 1492 | p = &(*p)->rb_left; |
| 1493 | } |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | rb_link_node(node, parent, p); |
| 1498 | rb_insert_color(node, root); |
| 1499 | |
| 1500 | return 0; |
| 1501 | } |
| 1502 | |
| 1503 | /* |
| 1504 | * searches the tree for the given offset. |
| 1505 | * |
| 1506 | * fuzzy - If this is set, then we are trying to make an allocation, and we just |
| 1507 | * want a section that has at least bytes size and comes at or after the given |
| 1508 | * offset. |
| 1509 | */ |
| 1510 | static struct btrfs_free_space * |
| 1511 | tree_search_offset(struct btrfs_free_space_ctl *ctl, |
| 1512 | u64 offset, int bitmap_only, int fuzzy) |
| 1513 | { |
| 1514 | struct rb_node *n = ctl->free_space_offset.rb_node; |
| 1515 | struct btrfs_free_space *entry, *prev = NULL; |
| 1516 | |
| 1517 | /* find entry that is closest to the 'offset' */ |
| 1518 | while (1) { |
| 1519 | if (!n) { |
| 1520 | entry = NULL; |
| 1521 | break; |
| 1522 | } |
| 1523 | |
| 1524 | entry = rb_entry(n, struct btrfs_free_space, offset_index); |
| 1525 | prev = entry; |
| 1526 | |
| 1527 | if (offset < entry->offset) |
| 1528 | n = n->rb_left; |
| 1529 | else if (offset > entry->offset) |
| 1530 | n = n->rb_right; |
| 1531 | else |
| 1532 | break; |
| 1533 | } |
| 1534 | |
| 1535 | if (bitmap_only) { |
| 1536 | if (!entry) |
| 1537 | return NULL; |
| 1538 | if (entry->bitmap) |
| 1539 | return entry; |
| 1540 | |
| 1541 | /* |
| 1542 | * bitmap entry and extent entry may share same offset, |
| 1543 | * in that case, bitmap entry comes after extent entry. |
| 1544 | */ |
| 1545 | n = rb_next(n); |
| 1546 | if (!n) |
| 1547 | return NULL; |
| 1548 | entry = rb_entry(n, struct btrfs_free_space, offset_index); |
| 1549 | if (entry->offset != offset) |
| 1550 | return NULL; |
| 1551 | |
| 1552 | WARN_ON(!entry->bitmap); |
| 1553 | return entry; |
| 1554 | } else if (entry) { |
| 1555 | if (entry->bitmap) { |
| 1556 | /* |
| 1557 | * if previous extent entry covers the offset, |
| 1558 | * we should return it instead of the bitmap entry |
| 1559 | */ |
| 1560 | n = rb_prev(&entry->offset_index); |
| 1561 | if (n) { |
| 1562 | prev = rb_entry(n, struct btrfs_free_space, |
| 1563 | offset_index); |
| 1564 | if (!prev->bitmap && |
| 1565 | prev->offset + prev->bytes > offset) |
| 1566 | entry = prev; |
| 1567 | } |
| 1568 | } |
| 1569 | return entry; |
| 1570 | } |
| 1571 | |
| 1572 | if (!prev) |
| 1573 | return NULL; |
| 1574 | |
| 1575 | /* find last entry before the 'offset' */ |
| 1576 | entry = prev; |
| 1577 | if (entry->offset > offset) { |
| 1578 | n = rb_prev(&entry->offset_index); |
| 1579 | if (n) { |
| 1580 | entry = rb_entry(n, struct btrfs_free_space, |
| 1581 | offset_index); |
| 1582 | ASSERT(entry->offset <= offset); |
| 1583 | } else { |
| 1584 | if (fuzzy) |
| 1585 | return entry; |
| 1586 | else |
| 1587 | return NULL; |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | if (entry->bitmap) { |
| 1592 | n = rb_prev(&entry->offset_index); |
| 1593 | if (n) { |
| 1594 | prev = rb_entry(n, struct btrfs_free_space, |
| 1595 | offset_index); |
| 1596 | if (!prev->bitmap && |
| 1597 | prev->offset + prev->bytes > offset) |
| 1598 | return prev; |
| 1599 | } |
| 1600 | if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) |
| 1601 | return entry; |
| 1602 | } else if (entry->offset + entry->bytes > offset) |
| 1603 | return entry; |
| 1604 | |
| 1605 | if (!fuzzy) |
| 1606 | return NULL; |
| 1607 | |
| 1608 | while (1) { |
| 1609 | if (entry->bitmap) { |
| 1610 | if (entry->offset + BITS_PER_BITMAP * |
| 1611 | ctl->unit > offset) |
| 1612 | break; |
| 1613 | } else { |
| 1614 | if (entry->offset + entry->bytes > offset) |
| 1615 | break; |
| 1616 | } |
| 1617 | |
| 1618 | n = rb_next(&entry->offset_index); |
| 1619 | if (!n) |
| 1620 | return NULL; |
| 1621 | entry = rb_entry(n, struct btrfs_free_space, offset_index); |
| 1622 | } |
| 1623 | return entry; |
| 1624 | } |
| 1625 | |
| 1626 | static inline void |
| 1627 | __unlink_free_space(struct btrfs_free_space_ctl *ctl, |
| 1628 | struct btrfs_free_space *info) |
| 1629 | { |
| 1630 | rb_erase(&info->offset_index, &ctl->free_space_offset); |
| 1631 | ctl->free_extents--; |
| 1632 | } |
| 1633 | |
| 1634 | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, |
| 1635 | struct btrfs_free_space *info) |
| 1636 | { |
| 1637 | __unlink_free_space(ctl, info); |
| 1638 | ctl->free_space -= info->bytes; |
| 1639 | } |
| 1640 | |
| 1641 | static int link_free_space(struct btrfs_free_space_ctl *ctl, |
| 1642 | struct btrfs_free_space *info) |
| 1643 | { |
| 1644 | int ret = 0; |
| 1645 | |
| 1646 | ASSERT(info->bytes || info->bitmap); |
| 1647 | ret = tree_insert_offset(&ctl->free_space_offset, info->offset, |
| 1648 | &info->offset_index, (info->bitmap != NULL)); |
| 1649 | if (ret) |
| 1650 | return ret; |
| 1651 | |
| 1652 | ctl->free_space += info->bytes; |
| 1653 | ctl->free_extents++; |
| 1654 | return ret; |
| 1655 | } |
| 1656 | |
| 1657 | static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) |
| 1658 | { |
| 1659 | struct btrfs_block_group_cache *block_group = ctl->private; |
| 1660 | u64 max_bytes; |
| 1661 | u64 bitmap_bytes; |
| 1662 | u64 extent_bytes; |
| 1663 | u64 size = block_group->key.offset; |
| 1664 | u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; |
| 1665 | u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); |
| 1666 | |
| 1667 | max_bitmaps = max_t(u64, max_bitmaps, 1); |
| 1668 | |
| 1669 | ASSERT(ctl->total_bitmaps <= max_bitmaps); |
| 1670 | |
| 1671 | /* |
| 1672 | * The goal is to keep the total amount of memory used per 1gb of space |
| 1673 | * at or below 32k, so we need to adjust how much memory we allow to be |
| 1674 | * used by extent based free space tracking |
| 1675 | */ |
| 1676 | if (size < SZ_1G) |
| 1677 | max_bytes = MAX_CACHE_BYTES_PER_GIG; |
| 1678 | else |
| 1679 | max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); |
| 1680 | |
| 1681 | /* |
| 1682 | * we want to account for 1 more bitmap than what we have so we can make |
| 1683 | * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as |
| 1684 | * we add more bitmaps. |
| 1685 | */ |
| 1686 | bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; |
| 1687 | |
| 1688 | if (bitmap_bytes >= max_bytes) { |
| 1689 | ctl->extents_thresh = 0; |
| 1690 | return; |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * we want the extent entry threshold to always be at most 1/2 the max |
| 1695 | * bytes we can have, or whatever is less than that. |
| 1696 | */ |
| 1697 | extent_bytes = max_bytes - bitmap_bytes; |
| 1698 | extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); |
| 1699 | |
| 1700 | ctl->extents_thresh = |
| 1701 | div_u64(extent_bytes, sizeof(struct btrfs_free_space)); |
| 1702 | } |
| 1703 | |
| 1704 | static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, |
| 1705 | struct btrfs_free_space *info, |
| 1706 | u64 offset, u64 bytes) |
| 1707 | { |
| 1708 | unsigned long start, count; |
| 1709 | |
| 1710 | start = offset_to_bit(info->offset, ctl->unit, offset); |
| 1711 | count = bytes_to_bits(bytes, ctl->unit); |
| 1712 | ASSERT(start + count <= BITS_PER_BITMAP); |
| 1713 | |
| 1714 | bitmap_clear(info->bitmap, start, count); |
| 1715 | |
| 1716 | info->bytes -= bytes; |
| 1717 | if (info->max_extent_size > ctl->unit) |
| 1718 | info->max_extent_size = 0; |
| 1719 | } |
| 1720 | |
| 1721 | static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, |
| 1722 | struct btrfs_free_space *info, u64 offset, |
| 1723 | u64 bytes) |
| 1724 | { |
| 1725 | __bitmap_clear_bits(ctl, info, offset, bytes); |
| 1726 | ctl->free_space -= bytes; |
| 1727 | } |
| 1728 | |
| 1729 | static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, |
| 1730 | struct btrfs_free_space *info, u64 offset, |
| 1731 | u64 bytes) |
| 1732 | { |
| 1733 | unsigned long start, count; |
| 1734 | |
| 1735 | start = offset_to_bit(info->offset, ctl->unit, offset); |
| 1736 | count = bytes_to_bits(bytes, ctl->unit); |
| 1737 | ASSERT(start + count <= BITS_PER_BITMAP); |
| 1738 | |
| 1739 | bitmap_set(info->bitmap, start, count); |
| 1740 | |
| 1741 | info->bytes += bytes; |
| 1742 | ctl->free_space += bytes; |
| 1743 | } |
| 1744 | |
| 1745 | /* |
| 1746 | * If we can not find suitable extent, we will use bytes to record |
| 1747 | * the size of the max extent. |
| 1748 | */ |
| 1749 | static int search_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1750 | struct btrfs_free_space *bitmap_info, u64 *offset, |
| 1751 | u64 *bytes, bool for_alloc) |
| 1752 | { |
| 1753 | unsigned long found_bits = 0; |
| 1754 | unsigned long max_bits = 0; |
| 1755 | unsigned long bits, i; |
| 1756 | unsigned long next_zero; |
| 1757 | unsigned long extent_bits; |
| 1758 | |
| 1759 | /* |
| 1760 | * Skip searching the bitmap if we don't have a contiguous section that |
| 1761 | * is large enough for this allocation. |
| 1762 | */ |
| 1763 | if (for_alloc && |
| 1764 | bitmap_info->max_extent_size && |
| 1765 | bitmap_info->max_extent_size < *bytes) { |
| 1766 | *bytes = bitmap_info->max_extent_size; |
| 1767 | return -1; |
| 1768 | } |
| 1769 | |
| 1770 | i = offset_to_bit(bitmap_info->offset, ctl->unit, |
| 1771 | max_t(u64, *offset, bitmap_info->offset)); |
| 1772 | bits = bytes_to_bits(*bytes, ctl->unit); |
| 1773 | |
| 1774 | for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { |
| 1775 | if (for_alloc && bits == 1) { |
| 1776 | found_bits = 1; |
| 1777 | break; |
| 1778 | } |
| 1779 | next_zero = find_next_zero_bit(bitmap_info->bitmap, |
| 1780 | BITS_PER_BITMAP, i); |
| 1781 | extent_bits = next_zero - i; |
| 1782 | if (extent_bits >= bits) { |
| 1783 | found_bits = extent_bits; |
| 1784 | break; |
| 1785 | } else if (extent_bits > max_bits) { |
| 1786 | max_bits = extent_bits; |
| 1787 | } |
| 1788 | i = next_zero; |
| 1789 | } |
| 1790 | |
| 1791 | if (found_bits) { |
| 1792 | *offset = (u64)(i * ctl->unit) + bitmap_info->offset; |
| 1793 | *bytes = (u64)(found_bits) * ctl->unit; |
| 1794 | return 0; |
| 1795 | } |
| 1796 | |
| 1797 | *bytes = (u64)(max_bits) * ctl->unit; |
| 1798 | bitmap_info->max_extent_size = *bytes; |
| 1799 | return -1; |
| 1800 | } |
| 1801 | |
| 1802 | static inline u64 get_max_extent_size(struct btrfs_free_space *entry) |
| 1803 | { |
| 1804 | if (entry->bitmap) |
| 1805 | return entry->max_extent_size; |
| 1806 | return entry->bytes; |
| 1807 | } |
| 1808 | |
| 1809 | /* Cache the size of the max extent in bytes */ |
| 1810 | static struct btrfs_free_space * |
| 1811 | find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, |
| 1812 | unsigned long align, u64 *max_extent_size) |
| 1813 | { |
| 1814 | struct btrfs_free_space *entry; |
| 1815 | struct rb_node *node; |
| 1816 | u64 tmp; |
| 1817 | u64 align_off; |
| 1818 | int ret; |
| 1819 | |
| 1820 | if (!ctl->free_space_offset.rb_node) |
| 1821 | goto out; |
| 1822 | |
| 1823 | entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); |
| 1824 | if (!entry) |
| 1825 | goto out; |
| 1826 | |
| 1827 | for (node = &entry->offset_index; node; node = rb_next(node)) { |
| 1828 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 1829 | if (entry->bytes < *bytes) { |
| 1830 | *max_extent_size = max(get_max_extent_size(entry), |
| 1831 | *max_extent_size); |
| 1832 | continue; |
| 1833 | } |
| 1834 | |
| 1835 | /* make sure the space returned is big enough |
| 1836 | * to match our requested alignment |
| 1837 | */ |
| 1838 | if (*bytes >= align) { |
| 1839 | tmp = entry->offset - ctl->start + align - 1; |
| 1840 | tmp = div64_u64(tmp, align); |
| 1841 | tmp = tmp * align + ctl->start; |
| 1842 | align_off = tmp - entry->offset; |
| 1843 | } else { |
| 1844 | align_off = 0; |
| 1845 | tmp = entry->offset; |
| 1846 | } |
| 1847 | |
| 1848 | if (entry->bytes < *bytes + align_off) { |
| 1849 | *max_extent_size = max(get_max_extent_size(entry), |
| 1850 | *max_extent_size); |
| 1851 | continue; |
| 1852 | } |
| 1853 | |
| 1854 | if (entry->bitmap) { |
| 1855 | u64 size = *bytes; |
| 1856 | |
| 1857 | ret = search_bitmap(ctl, entry, &tmp, &size, true); |
| 1858 | if (!ret) { |
| 1859 | *offset = tmp; |
| 1860 | *bytes = size; |
| 1861 | return entry; |
| 1862 | } else { |
| 1863 | *max_extent_size = |
| 1864 | max(get_max_extent_size(entry), |
| 1865 | *max_extent_size); |
| 1866 | } |
| 1867 | continue; |
| 1868 | } |
| 1869 | |
| 1870 | *offset = tmp; |
| 1871 | *bytes = entry->bytes - align_off; |
| 1872 | return entry; |
| 1873 | } |
| 1874 | out: |
| 1875 | return NULL; |
| 1876 | } |
| 1877 | |
| 1878 | static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1879 | struct btrfs_free_space *info, u64 offset) |
| 1880 | { |
| 1881 | info->offset = offset_to_bitmap(ctl, offset); |
| 1882 | info->bytes = 0; |
| 1883 | INIT_LIST_HEAD(&info->list); |
| 1884 | link_free_space(ctl, info); |
| 1885 | ctl->total_bitmaps++; |
| 1886 | |
| 1887 | ctl->op->recalc_thresholds(ctl); |
| 1888 | } |
| 1889 | |
| 1890 | static void free_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1891 | struct btrfs_free_space *bitmap_info) |
| 1892 | { |
| 1893 | unlink_free_space(ctl, bitmap_info); |
| 1894 | kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); |
| 1895 | kmem_cache_free(btrfs_free_space_cachep, bitmap_info); |
| 1896 | ctl->total_bitmaps--; |
| 1897 | ctl->op->recalc_thresholds(ctl); |
| 1898 | } |
| 1899 | |
| 1900 | static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1901 | struct btrfs_free_space *bitmap_info, |
| 1902 | u64 *offset, u64 *bytes) |
| 1903 | { |
| 1904 | u64 end; |
| 1905 | u64 search_start, search_bytes; |
| 1906 | int ret; |
| 1907 | |
| 1908 | again: |
| 1909 | end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; |
| 1910 | |
| 1911 | /* |
| 1912 | * We need to search for bits in this bitmap. We could only cover some |
| 1913 | * of the extent in this bitmap thanks to how we add space, so we need |
| 1914 | * to search for as much as it as we can and clear that amount, and then |
| 1915 | * go searching for the next bit. |
| 1916 | */ |
| 1917 | search_start = *offset; |
| 1918 | search_bytes = ctl->unit; |
| 1919 | search_bytes = min(search_bytes, end - search_start + 1); |
| 1920 | ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, |
| 1921 | false); |
| 1922 | if (ret < 0 || search_start != *offset) |
| 1923 | return -EINVAL; |
| 1924 | |
| 1925 | /* We may have found more bits than what we need */ |
| 1926 | search_bytes = min(search_bytes, *bytes); |
| 1927 | |
| 1928 | /* Cannot clear past the end of the bitmap */ |
| 1929 | search_bytes = min(search_bytes, end - search_start + 1); |
| 1930 | |
| 1931 | bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); |
| 1932 | *offset += search_bytes; |
| 1933 | *bytes -= search_bytes; |
| 1934 | |
| 1935 | if (*bytes) { |
| 1936 | struct rb_node *next = rb_next(&bitmap_info->offset_index); |
| 1937 | if (!bitmap_info->bytes) |
| 1938 | free_bitmap(ctl, bitmap_info); |
| 1939 | |
| 1940 | /* |
| 1941 | * no entry after this bitmap, but we still have bytes to |
| 1942 | * remove, so something has gone wrong. |
| 1943 | */ |
| 1944 | if (!next) |
| 1945 | return -EINVAL; |
| 1946 | |
| 1947 | bitmap_info = rb_entry(next, struct btrfs_free_space, |
| 1948 | offset_index); |
| 1949 | |
| 1950 | /* |
| 1951 | * if the next entry isn't a bitmap we need to return to let the |
| 1952 | * extent stuff do its work. |
| 1953 | */ |
| 1954 | if (!bitmap_info->bitmap) |
| 1955 | return -EAGAIN; |
| 1956 | |
| 1957 | /* |
| 1958 | * Ok the next item is a bitmap, but it may not actually hold |
| 1959 | * the information for the rest of this free space stuff, so |
| 1960 | * look for it, and if we don't find it return so we can try |
| 1961 | * everything over again. |
| 1962 | */ |
| 1963 | search_start = *offset; |
| 1964 | search_bytes = ctl->unit; |
| 1965 | ret = search_bitmap(ctl, bitmap_info, &search_start, |
| 1966 | &search_bytes, false); |
| 1967 | if (ret < 0 || search_start != *offset) |
| 1968 | return -EAGAIN; |
| 1969 | |
| 1970 | goto again; |
| 1971 | } else if (!bitmap_info->bytes) |
| 1972 | free_bitmap(ctl, bitmap_info); |
| 1973 | |
| 1974 | return 0; |
| 1975 | } |
| 1976 | |
| 1977 | static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, |
| 1978 | struct btrfs_free_space *info, u64 offset, |
| 1979 | u64 bytes) |
| 1980 | { |
| 1981 | u64 bytes_to_set = 0; |
| 1982 | u64 end; |
| 1983 | |
| 1984 | end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); |
| 1985 | |
| 1986 | bytes_to_set = min(end - offset, bytes); |
| 1987 | |
| 1988 | bitmap_set_bits(ctl, info, offset, bytes_to_set); |
| 1989 | |
| 1990 | /* |
| 1991 | * We set some bytes, we have no idea what the max extent size is |
| 1992 | * anymore. |
| 1993 | */ |
| 1994 | info->max_extent_size = 0; |
| 1995 | |
| 1996 | return bytes_to_set; |
| 1997 | |
| 1998 | } |
| 1999 | |
| 2000 | static bool use_bitmap(struct btrfs_free_space_ctl *ctl, |
| 2001 | struct btrfs_free_space *info) |
| 2002 | { |
| 2003 | struct btrfs_block_group_cache *block_group = ctl->private; |
| 2004 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 2005 | bool forced = false; |
| 2006 | |
| 2007 | #ifdef CONFIG_BTRFS_DEBUG |
| 2008 | if (btrfs_should_fragment_free_space(block_group)) |
| 2009 | forced = true; |
| 2010 | #endif |
| 2011 | |
| 2012 | /* |
| 2013 | * If we are below the extents threshold then we can add this as an |
| 2014 | * extent, and don't have to deal with the bitmap |
| 2015 | */ |
| 2016 | if (!forced && ctl->free_extents < ctl->extents_thresh) { |
| 2017 | /* |
| 2018 | * If this block group has some small extents we don't want to |
| 2019 | * use up all of our free slots in the cache with them, we want |
| 2020 | * to reserve them to larger extents, however if we have plenty |
| 2021 | * of cache left then go ahead an dadd them, no sense in adding |
| 2022 | * the overhead of a bitmap if we don't have to. |
| 2023 | */ |
| 2024 | if (info->bytes <= fs_info->sectorsize * 4) { |
| 2025 | if (ctl->free_extents * 2 <= ctl->extents_thresh) |
| 2026 | return false; |
| 2027 | } else { |
| 2028 | return false; |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | /* |
| 2033 | * The original block groups from mkfs can be really small, like 8 |
| 2034 | * megabytes, so don't bother with a bitmap for those entries. However |
| 2035 | * some block groups can be smaller than what a bitmap would cover but |
| 2036 | * are still large enough that they could overflow the 32k memory limit, |
| 2037 | * so allow those block groups to still be allowed to have a bitmap |
| 2038 | * entry. |
| 2039 | */ |
| 2040 | if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) |
| 2041 | return false; |
| 2042 | |
| 2043 | return true; |
| 2044 | } |
| 2045 | |
| 2046 | static const struct btrfs_free_space_op free_space_op = { |
| 2047 | .recalc_thresholds = recalculate_thresholds, |
| 2048 | .use_bitmap = use_bitmap, |
| 2049 | }; |
| 2050 | |
| 2051 | static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, |
| 2052 | struct btrfs_free_space *info) |
| 2053 | { |
| 2054 | struct btrfs_free_space *bitmap_info; |
| 2055 | struct btrfs_block_group_cache *block_group = NULL; |
| 2056 | int added = 0; |
| 2057 | u64 bytes, offset, bytes_added; |
| 2058 | int ret; |
| 2059 | |
| 2060 | bytes = info->bytes; |
| 2061 | offset = info->offset; |
| 2062 | |
| 2063 | if (!ctl->op->use_bitmap(ctl, info)) |
| 2064 | return 0; |
| 2065 | |
| 2066 | if (ctl->op == &free_space_op) |
| 2067 | block_group = ctl->private; |
| 2068 | again: |
| 2069 | /* |
| 2070 | * Since we link bitmaps right into the cluster we need to see if we |
| 2071 | * have a cluster here, and if so and it has our bitmap we need to add |
| 2072 | * the free space to that bitmap. |
| 2073 | */ |
| 2074 | if (block_group && !list_empty(&block_group->cluster_list)) { |
| 2075 | struct btrfs_free_cluster *cluster; |
| 2076 | struct rb_node *node; |
| 2077 | struct btrfs_free_space *entry; |
| 2078 | |
| 2079 | cluster = list_entry(block_group->cluster_list.next, |
| 2080 | struct btrfs_free_cluster, |
| 2081 | block_group_list); |
| 2082 | spin_lock(&cluster->lock); |
| 2083 | node = rb_first(&cluster->root); |
| 2084 | if (!node) { |
| 2085 | spin_unlock(&cluster->lock); |
| 2086 | goto no_cluster_bitmap; |
| 2087 | } |
| 2088 | |
| 2089 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2090 | if (!entry->bitmap) { |
| 2091 | spin_unlock(&cluster->lock); |
| 2092 | goto no_cluster_bitmap; |
| 2093 | } |
| 2094 | |
| 2095 | if (entry->offset == offset_to_bitmap(ctl, offset)) { |
| 2096 | bytes_added = add_bytes_to_bitmap(ctl, entry, |
| 2097 | offset, bytes); |
| 2098 | bytes -= bytes_added; |
| 2099 | offset += bytes_added; |
| 2100 | } |
| 2101 | spin_unlock(&cluster->lock); |
| 2102 | if (!bytes) { |
| 2103 | ret = 1; |
| 2104 | goto out; |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | no_cluster_bitmap: |
| 2109 | bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), |
| 2110 | 1, 0); |
| 2111 | if (!bitmap_info) { |
| 2112 | ASSERT(added == 0); |
| 2113 | goto new_bitmap; |
| 2114 | } |
| 2115 | |
| 2116 | bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); |
| 2117 | bytes -= bytes_added; |
| 2118 | offset += bytes_added; |
| 2119 | added = 0; |
| 2120 | |
| 2121 | if (!bytes) { |
| 2122 | ret = 1; |
| 2123 | goto out; |
| 2124 | } else |
| 2125 | goto again; |
| 2126 | |
| 2127 | new_bitmap: |
| 2128 | if (info && info->bitmap) { |
| 2129 | add_new_bitmap(ctl, info, offset); |
| 2130 | added = 1; |
| 2131 | info = NULL; |
| 2132 | goto again; |
| 2133 | } else { |
| 2134 | spin_unlock(&ctl->tree_lock); |
| 2135 | |
| 2136 | /* no pre-allocated info, allocate a new one */ |
| 2137 | if (!info) { |
| 2138 | info = kmem_cache_zalloc(btrfs_free_space_cachep, |
| 2139 | GFP_NOFS); |
| 2140 | if (!info) { |
| 2141 | spin_lock(&ctl->tree_lock); |
| 2142 | ret = -ENOMEM; |
| 2143 | goto out; |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | /* allocate the bitmap */ |
| 2148 | info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, |
| 2149 | GFP_NOFS); |
| 2150 | spin_lock(&ctl->tree_lock); |
| 2151 | if (!info->bitmap) { |
| 2152 | ret = -ENOMEM; |
| 2153 | goto out; |
| 2154 | } |
| 2155 | goto again; |
| 2156 | } |
| 2157 | |
| 2158 | out: |
| 2159 | if (info) { |
| 2160 | if (info->bitmap) |
| 2161 | kmem_cache_free(btrfs_free_space_bitmap_cachep, |
| 2162 | info->bitmap); |
| 2163 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 2164 | } |
| 2165 | |
| 2166 | return ret; |
| 2167 | } |
| 2168 | |
| 2169 | static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, |
| 2170 | struct btrfs_free_space *info, bool update_stat) |
| 2171 | { |
| 2172 | struct btrfs_free_space *left_info; |
| 2173 | struct btrfs_free_space *right_info; |
| 2174 | bool merged = false; |
| 2175 | u64 offset = info->offset; |
| 2176 | u64 bytes = info->bytes; |
| 2177 | |
| 2178 | /* |
| 2179 | * first we want to see if there is free space adjacent to the range we |
| 2180 | * are adding, if there is remove that struct and add a new one to |
| 2181 | * cover the entire range |
| 2182 | */ |
| 2183 | right_info = tree_search_offset(ctl, offset + bytes, 0, 0); |
| 2184 | if (right_info && rb_prev(&right_info->offset_index)) |
| 2185 | left_info = rb_entry(rb_prev(&right_info->offset_index), |
| 2186 | struct btrfs_free_space, offset_index); |
| 2187 | else |
| 2188 | left_info = tree_search_offset(ctl, offset - 1, 0, 0); |
| 2189 | |
| 2190 | if (right_info && !right_info->bitmap) { |
| 2191 | if (update_stat) |
| 2192 | unlink_free_space(ctl, right_info); |
| 2193 | else |
| 2194 | __unlink_free_space(ctl, right_info); |
| 2195 | info->bytes += right_info->bytes; |
| 2196 | kmem_cache_free(btrfs_free_space_cachep, right_info); |
| 2197 | merged = true; |
| 2198 | } |
| 2199 | |
| 2200 | if (left_info && !left_info->bitmap && |
| 2201 | left_info->offset + left_info->bytes == offset) { |
| 2202 | if (update_stat) |
| 2203 | unlink_free_space(ctl, left_info); |
| 2204 | else |
| 2205 | __unlink_free_space(ctl, left_info); |
| 2206 | info->offset = left_info->offset; |
| 2207 | info->bytes += left_info->bytes; |
| 2208 | kmem_cache_free(btrfs_free_space_cachep, left_info); |
| 2209 | merged = true; |
| 2210 | } |
| 2211 | |
| 2212 | return merged; |
| 2213 | } |
| 2214 | |
| 2215 | static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, |
| 2216 | struct btrfs_free_space *info, |
| 2217 | bool update_stat) |
| 2218 | { |
| 2219 | struct btrfs_free_space *bitmap; |
| 2220 | unsigned long i; |
| 2221 | unsigned long j; |
| 2222 | const u64 end = info->offset + info->bytes; |
| 2223 | const u64 bitmap_offset = offset_to_bitmap(ctl, end); |
| 2224 | u64 bytes; |
| 2225 | |
| 2226 | bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); |
| 2227 | if (!bitmap) |
| 2228 | return false; |
| 2229 | |
| 2230 | i = offset_to_bit(bitmap->offset, ctl->unit, end); |
| 2231 | j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); |
| 2232 | if (j == i) |
| 2233 | return false; |
| 2234 | bytes = (j - i) * ctl->unit; |
| 2235 | info->bytes += bytes; |
| 2236 | |
| 2237 | if (update_stat) |
| 2238 | bitmap_clear_bits(ctl, bitmap, end, bytes); |
| 2239 | else |
| 2240 | __bitmap_clear_bits(ctl, bitmap, end, bytes); |
| 2241 | |
| 2242 | if (!bitmap->bytes) |
| 2243 | free_bitmap(ctl, bitmap); |
| 2244 | |
| 2245 | return true; |
| 2246 | } |
| 2247 | |
| 2248 | static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, |
| 2249 | struct btrfs_free_space *info, |
| 2250 | bool update_stat) |
| 2251 | { |
| 2252 | struct btrfs_free_space *bitmap; |
| 2253 | u64 bitmap_offset; |
| 2254 | unsigned long i; |
| 2255 | unsigned long j; |
| 2256 | unsigned long prev_j; |
| 2257 | u64 bytes; |
| 2258 | |
| 2259 | bitmap_offset = offset_to_bitmap(ctl, info->offset); |
| 2260 | /* If we're on a boundary, try the previous logical bitmap. */ |
| 2261 | if (bitmap_offset == info->offset) { |
| 2262 | if (info->offset == 0) |
| 2263 | return false; |
| 2264 | bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); |
| 2265 | } |
| 2266 | |
| 2267 | bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); |
| 2268 | if (!bitmap) |
| 2269 | return false; |
| 2270 | |
| 2271 | i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; |
| 2272 | j = 0; |
| 2273 | prev_j = (unsigned long)-1; |
| 2274 | for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { |
| 2275 | if (j > i) |
| 2276 | break; |
| 2277 | prev_j = j; |
| 2278 | } |
| 2279 | if (prev_j == i) |
| 2280 | return false; |
| 2281 | |
| 2282 | if (prev_j == (unsigned long)-1) |
| 2283 | bytes = (i + 1) * ctl->unit; |
| 2284 | else |
| 2285 | bytes = (i - prev_j) * ctl->unit; |
| 2286 | |
| 2287 | info->offset -= bytes; |
| 2288 | info->bytes += bytes; |
| 2289 | |
| 2290 | if (update_stat) |
| 2291 | bitmap_clear_bits(ctl, bitmap, info->offset, bytes); |
| 2292 | else |
| 2293 | __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); |
| 2294 | |
| 2295 | if (!bitmap->bytes) |
| 2296 | free_bitmap(ctl, bitmap); |
| 2297 | |
| 2298 | return true; |
| 2299 | } |
| 2300 | |
| 2301 | /* |
| 2302 | * We prefer always to allocate from extent entries, both for clustered and |
| 2303 | * non-clustered allocation requests. So when attempting to add a new extent |
| 2304 | * entry, try to see if there's adjacent free space in bitmap entries, and if |
| 2305 | * there is, migrate that space from the bitmaps to the extent. |
| 2306 | * Like this we get better chances of satisfying space allocation requests |
| 2307 | * because we attempt to satisfy them based on a single cache entry, and never |
| 2308 | * on 2 or more entries - even if the entries represent a contiguous free space |
| 2309 | * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry |
| 2310 | * ends). |
| 2311 | */ |
| 2312 | static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, |
| 2313 | struct btrfs_free_space *info, |
| 2314 | bool update_stat) |
| 2315 | { |
| 2316 | /* |
| 2317 | * Only work with disconnected entries, as we can change their offset, |
| 2318 | * and must be extent entries. |
| 2319 | */ |
| 2320 | ASSERT(!info->bitmap); |
| 2321 | ASSERT(RB_EMPTY_NODE(&info->offset_index)); |
| 2322 | |
| 2323 | if (ctl->total_bitmaps > 0) { |
| 2324 | bool stole_end; |
| 2325 | bool stole_front = false; |
| 2326 | |
| 2327 | stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); |
| 2328 | if (ctl->total_bitmaps > 0) |
| 2329 | stole_front = steal_from_bitmap_to_front(ctl, info, |
| 2330 | update_stat); |
| 2331 | |
| 2332 | if (stole_end || stole_front) |
| 2333 | try_merge_free_space(ctl, info, update_stat); |
| 2334 | } |
| 2335 | } |
| 2336 | |
| 2337 | int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, |
| 2338 | struct btrfs_free_space_ctl *ctl, |
| 2339 | u64 offset, u64 bytes) |
| 2340 | { |
| 2341 | struct btrfs_free_space *info; |
| 2342 | int ret = 0; |
| 2343 | |
| 2344 | info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); |
| 2345 | if (!info) |
| 2346 | return -ENOMEM; |
| 2347 | |
| 2348 | info->offset = offset; |
| 2349 | info->bytes = bytes; |
| 2350 | RB_CLEAR_NODE(&info->offset_index); |
| 2351 | |
| 2352 | spin_lock(&ctl->tree_lock); |
| 2353 | |
| 2354 | if (try_merge_free_space(ctl, info, true)) |
| 2355 | goto link; |
| 2356 | |
| 2357 | /* |
| 2358 | * There was no extent directly to the left or right of this new |
| 2359 | * extent then we know we're going to have to allocate a new extent, so |
| 2360 | * before we do that see if we need to drop this into a bitmap |
| 2361 | */ |
| 2362 | ret = insert_into_bitmap(ctl, info); |
| 2363 | if (ret < 0) { |
| 2364 | goto out; |
| 2365 | } else if (ret) { |
| 2366 | ret = 0; |
| 2367 | goto out; |
| 2368 | } |
| 2369 | link: |
| 2370 | /* |
| 2371 | * Only steal free space from adjacent bitmaps if we're sure we're not |
| 2372 | * going to add the new free space to existing bitmap entries - because |
| 2373 | * that would mean unnecessary work that would be reverted. Therefore |
| 2374 | * attempt to steal space from bitmaps if we're adding an extent entry. |
| 2375 | */ |
| 2376 | steal_from_bitmap(ctl, info, true); |
| 2377 | |
| 2378 | ret = link_free_space(ctl, info); |
| 2379 | if (ret) |
| 2380 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 2381 | out: |
| 2382 | spin_unlock(&ctl->tree_lock); |
| 2383 | |
| 2384 | if (ret) { |
| 2385 | btrfs_crit(fs_info, "unable to add free space :%d", ret); |
| 2386 | ASSERT(ret != -EEXIST); |
| 2387 | } |
| 2388 | |
| 2389 | return ret; |
| 2390 | } |
| 2391 | |
| 2392 | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, |
| 2393 | u64 offset, u64 bytes) |
| 2394 | { |
| 2395 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2396 | struct btrfs_free_space *info; |
| 2397 | int ret; |
| 2398 | bool re_search = false; |
| 2399 | |
| 2400 | spin_lock(&ctl->tree_lock); |
| 2401 | |
| 2402 | again: |
| 2403 | ret = 0; |
| 2404 | if (!bytes) |
| 2405 | goto out_lock; |
| 2406 | |
| 2407 | info = tree_search_offset(ctl, offset, 0, 0); |
| 2408 | if (!info) { |
| 2409 | /* |
| 2410 | * oops didn't find an extent that matched the space we wanted |
| 2411 | * to remove, look for a bitmap instead |
| 2412 | */ |
| 2413 | info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), |
| 2414 | 1, 0); |
| 2415 | if (!info) { |
| 2416 | /* |
| 2417 | * If we found a partial bit of our free space in a |
| 2418 | * bitmap but then couldn't find the other part this may |
| 2419 | * be a problem, so WARN about it. |
| 2420 | */ |
| 2421 | WARN_ON(re_search); |
| 2422 | goto out_lock; |
| 2423 | } |
| 2424 | } |
| 2425 | |
| 2426 | re_search = false; |
| 2427 | if (!info->bitmap) { |
| 2428 | unlink_free_space(ctl, info); |
| 2429 | if (offset == info->offset) { |
| 2430 | u64 to_free = min(bytes, info->bytes); |
| 2431 | |
| 2432 | info->bytes -= to_free; |
| 2433 | info->offset += to_free; |
| 2434 | if (info->bytes) { |
| 2435 | ret = link_free_space(ctl, info); |
| 2436 | WARN_ON(ret); |
| 2437 | } else { |
| 2438 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 2439 | } |
| 2440 | |
| 2441 | offset += to_free; |
| 2442 | bytes -= to_free; |
| 2443 | goto again; |
| 2444 | } else { |
| 2445 | u64 old_end = info->bytes + info->offset; |
| 2446 | |
| 2447 | info->bytes = offset - info->offset; |
| 2448 | ret = link_free_space(ctl, info); |
| 2449 | WARN_ON(ret); |
| 2450 | if (ret) |
| 2451 | goto out_lock; |
| 2452 | |
| 2453 | /* Not enough bytes in this entry to satisfy us */ |
| 2454 | if (old_end < offset + bytes) { |
| 2455 | bytes -= old_end - offset; |
| 2456 | offset = old_end; |
| 2457 | goto again; |
| 2458 | } else if (old_end == offset + bytes) { |
| 2459 | /* all done */ |
| 2460 | goto out_lock; |
| 2461 | } |
| 2462 | spin_unlock(&ctl->tree_lock); |
| 2463 | |
| 2464 | ret = btrfs_add_free_space(block_group, offset + bytes, |
| 2465 | old_end - (offset + bytes)); |
| 2466 | WARN_ON(ret); |
| 2467 | goto out; |
| 2468 | } |
| 2469 | } |
| 2470 | |
| 2471 | ret = remove_from_bitmap(ctl, info, &offset, &bytes); |
| 2472 | if (ret == -EAGAIN) { |
| 2473 | re_search = true; |
| 2474 | goto again; |
| 2475 | } |
| 2476 | out_lock: |
| 2477 | spin_unlock(&ctl->tree_lock); |
| 2478 | out: |
| 2479 | return ret; |
| 2480 | } |
| 2481 | |
| 2482 | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, |
| 2483 | u64 bytes) |
| 2484 | { |
| 2485 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 2486 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2487 | struct btrfs_free_space *info; |
| 2488 | struct rb_node *n; |
| 2489 | int count = 0; |
| 2490 | |
| 2491 | spin_lock(&ctl->tree_lock); |
| 2492 | for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { |
| 2493 | info = rb_entry(n, struct btrfs_free_space, offset_index); |
| 2494 | if (info->bytes >= bytes && !block_group->ro) |
| 2495 | count++; |
| 2496 | btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", |
| 2497 | info->offset, info->bytes, |
| 2498 | (info->bitmap) ? "yes" : "no"); |
| 2499 | } |
| 2500 | spin_unlock(&ctl->tree_lock); |
| 2501 | btrfs_info(fs_info, "block group has cluster?: %s", |
| 2502 | list_empty(&block_group->cluster_list) ? "no" : "yes"); |
| 2503 | btrfs_info(fs_info, |
| 2504 | "%d blocks of free space at or bigger than bytes is", count); |
| 2505 | } |
| 2506 | |
| 2507 | void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) |
| 2508 | { |
| 2509 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 2510 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2511 | |
| 2512 | spin_lock_init(&ctl->tree_lock); |
| 2513 | ctl->unit = fs_info->sectorsize; |
| 2514 | ctl->start = block_group->key.objectid; |
| 2515 | ctl->private = block_group; |
| 2516 | ctl->op = &free_space_op; |
| 2517 | INIT_LIST_HEAD(&ctl->trimming_ranges); |
| 2518 | mutex_init(&ctl->cache_writeout_mutex); |
| 2519 | |
| 2520 | /* |
| 2521 | * we only want to have 32k of ram per block group for keeping |
| 2522 | * track of free space, and if we pass 1/2 of that we want to |
| 2523 | * start converting things over to using bitmaps |
| 2524 | */ |
| 2525 | ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); |
| 2526 | } |
| 2527 | |
| 2528 | /* |
| 2529 | * for a given cluster, put all of its extents back into the free |
| 2530 | * space cache. If the block group passed doesn't match the block group |
| 2531 | * pointed to by the cluster, someone else raced in and freed the |
| 2532 | * cluster already. In that case, we just return without changing anything |
| 2533 | */ |
| 2534 | static int |
| 2535 | __btrfs_return_cluster_to_free_space( |
| 2536 | struct btrfs_block_group_cache *block_group, |
| 2537 | struct btrfs_free_cluster *cluster) |
| 2538 | { |
| 2539 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2540 | struct btrfs_free_space *entry; |
| 2541 | struct rb_node *node; |
| 2542 | |
| 2543 | spin_lock(&cluster->lock); |
| 2544 | if (cluster->block_group != block_group) |
| 2545 | goto out; |
| 2546 | |
| 2547 | cluster->block_group = NULL; |
| 2548 | cluster->window_start = 0; |
| 2549 | list_del_init(&cluster->block_group_list); |
| 2550 | |
| 2551 | node = rb_first(&cluster->root); |
| 2552 | while (node) { |
| 2553 | bool bitmap; |
| 2554 | |
| 2555 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2556 | node = rb_next(&entry->offset_index); |
| 2557 | rb_erase(&entry->offset_index, &cluster->root); |
| 2558 | RB_CLEAR_NODE(&entry->offset_index); |
| 2559 | |
| 2560 | bitmap = (entry->bitmap != NULL); |
| 2561 | if (!bitmap) { |
| 2562 | try_merge_free_space(ctl, entry, false); |
| 2563 | steal_from_bitmap(ctl, entry, false); |
| 2564 | } |
| 2565 | tree_insert_offset(&ctl->free_space_offset, |
| 2566 | entry->offset, &entry->offset_index, bitmap); |
| 2567 | } |
| 2568 | cluster->root = RB_ROOT; |
| 2569 | |
| 2570 | out: |
| 2571 | spin_unlock(&cluster->lock); |
| 2572 | btrfs_put_block_group(block_group); |
| 2573 | return 0; |
| 2574 | } |
| 2575 | |
| 2576 | static void __btrfs_remove_free_space_cache_locked( |
| 2577 | struct btrfs_free_space_ctl *ctl) |
| 2578 | { |
| 2579 | struct btrfs_free_space *info; |
| 2580 | struct rb_node *node; |
| 2581 | |
| 2582 | while ((node = rb_last(&ctl->free_space_offset)) != NULL) { |
| 2583 | info = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2584 | if (!info->bitmap) { |
| 2585 | unlink_free_space(ctl, info); |
| 2586 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 2587 | } else { |
| 2588 | free_bitmap(ctl, info); |
| 2589 | } |
| 2590 | |
| 2591 | cond_resched_lock(&ctl->tree_lock); |
| 2592 | } |
| 2593 | } |
| 2594 | |
| 2595 | void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) |
| 2596 | { |
| 2597 | spin_lock(&ctl->tree_lock); |
| 2598 | __btrfs_remove_free_space_cache_locked(ctl); |
| 2599 | spin_unlock(&ctl->tree_lock); |
| 2600 | } |
| 2601 | |
| 2602 | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) |
| 2603 | { |
| 2604 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2605 | struct btrfs_free_cluster *cluster; |
| 2606 | struct list_head *head; |
| 2607 | |
| 2608 | spin_lock(&ctl->tree_lock); |
| 2609 | while ((head = block_group->cluster_list.next) != |
| 2610 | &block_group->cluster_list) { |
| 2611 | cluster = list_entry(head, struct btrfs_free_cluster, |
| 2612 | block_group_list); |
| 2613 | |
| 2614 | WARN_ON(cluster->block_group != block_group); |
| 2615 | __btrfs_return_cluster_to_free_space(block_group, cluster); |
| 2616 | |
| 2617 | cond_resched_lock(&ctl->tree_lock); |
| 2618 | } |
| 2619 | __btrfs_remove_free_space_cache_locked(ctl); |
| 2620 | spin_unlock(&ctl->tree_lock); |
| 2621 | |
| 2622 | } |
| 2623 | |
| 2624 | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, |
| 2625 | u64 offset, u64 bytes, u64 empty_size, |
| 2626 | u64 *max_extent_size) |
| 2627 | { |
| 2628 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2629 | struct btrfs_free_space *entry = NULL; |
| 2630 | u64 bytes_search = bytes + empty_size; |
| 2631 | u64 ret = 0; |
| 2632 | u64 align_gap = 0; |
| 2633 | u64 align_gap_len = 0; |
| 2634 | |
| 2635 | spin_lock(&ctl->tree_lock); |
| 2636 | entry = find_free_space(ctl, &offset, &bytes_search, |
| 2637 | block_group->full_stripe_len, max_extent_size); |
| 2638 | if (!entry) |
| 2639 | goto out; |
| 2640 | |
| 2641 | ret = offset; |
| 2642 | if (entry->bitmap) { |
| 2643 | bitmap_clear_bits(ctl, entry, offset, bytes); |
| 2644 | if (!entry->bytes) |
| 2645 | free_bitmap(ctl, entry); |
| 2646 | } else { |
| 2647 | unlink_free_space(ctl, entry); |
| 2648 | align_gap_len = offset - entry->offset; |
| 2649 | align_gap = entry->offset; |
| 2650 | |
| 2651 | entry->offset = offset + bytes; |
| 2652 | WARN_ON(entry->bytes < bytes + align_gap_len); |
| 2653 | |
| 2654 | entry->bytes -= bytes + align_gap_len; |
| 2655 | if (!entry->bytes) |
| 2656 | kmem_cache_free(btrfs_free_space_cachep, entry); |
| 2657 | else |
| 2658 | link_free_space(ctl, entry); |
| 2659 | } |
| 2660 | out: |
| 2661 | spin_unlock(&ctl->tree_lock); |
| 2662 | |
| 2663 | if (align_gap_len) |
| 2664 | __btrfs_add_free_space(block_group->fs_info, ctl, |
| 2665 | align_gap, align_gap_len); |
| 2666 | return ret; |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * given a cluster, put all of its extents back into the free space |
| 2671 | * cache. If a block group is passed, this function will only free |
| 2672 | * a cluster that belongs to the passed block group. |
| 2673 | * |
| 2674 | * Otherwise, it'll get a reference on the block group pointed to by the |
| 2675 | * cluster and remove the cluster from it. |
| 2676 | */ |
| 2677 | int btrfs_return_cluster_to_free_space( |
| 2678 | struct btrfs_block_group_cache *block_group, |
| 2679 | struct btrfs_free_cluster *cluster) |
| 2680 | { |
| 2681 | struct btrfs_free_space_ctl *ctl; |
| 2682 | int ret; |
| 2683 | |
| 2684 | /* first, get a safe pointer to the block group */ |
| 2685 | spin_lock(&cluster->lock); |
| 2686 | if (!block_group) { |
| 2687 | block_group = cluster->block_group; |
| 2688 | if (!block_group) { |
| 2689 | spin_unlock(&cluster->lock); |
| 2690 | return 0; |
| 2691 | } |
| 2692 | } else if (cluster->block_group != block_group) { |
| 2693 | /* someone else has already freed it don't redo their work */ |
| 2694 | spin_unlock(&cluster->lock); |
| 2695 | return 0; |
| 2696 | } |
| 2697 | atomic_inc(&block_group->count); |
| 2698 | spin_unlock(&cluster->lock); |
| 2699 | |
| 2700 | ctl = block_group->free_space_ctl; |
| 2701 | |
| 2702 | /* now return any extents the cluster had on it */ |
| 2703 | spin_lock(&ctl->tree_lock); |
| 2704 | ret = __btrfs_return_cluster_to_free_space(block_group, cluster); |
| 2705 | spin_unlock(&ctl->tree_lock); |
| 2706 | |
| 2707 | /* finally drop our ref */ |
| 2708 | btrfs_put_block_group(block_group); |
| 2709 | return ret; |
| 2710 | } |
| 2711 | |
| 2712 | static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, |
| 2713 | struct btrfs_free_cluster *cluster, |
| 2714 | struct btrfs_free_space *entry, |
| 2715 | u64 bytes, u64 min_start, |
| 2716 | u64 *max_extent_size) |
| 2717 | { |
| 2718 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2719 | int err; |
| 2720 | u64 search_start = cluster->window_start; |
| 2721 | u64 search_bytes = bytes; |
| 2722 | u64 ret = 0; |
| 2723 | |
| 2724 | search_start = min_start; |
| 2725 | search_bytes = bytes; |
| 2726 | |
| 2727 | err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); |
| 2728 | if (err) { |
| 2729 | *max_extent_size = max(get_max_extent_size(entry), |
| 2730 | *max_extent_size); |
| 2731 | return 0; |
| 2732 | } |
| 2733 | |
| 2734 | ret = search_start; |
| 2735 | __bitmap_clear_bits(ctl, entry, ret, bytes); |
| 2736 | |
| 2737 | return ret; |
| 2738 | } |
| 2739 | |
| 2740 | /* |
| 2741 | * given a cluster, try to allocate 'bytes' from it, returns 0 |
| 2742 | * if it couldn't find anything suitably large, or a logical disk offset |
| 2743 | * if things worked out |
| 2744 | */ |
| 2745 | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, |
| 2746 | struct btrfs_free_cluster *cluster, u64 bytes, |
| 2747 | u64 min_start, u64 *max_extent_size) |
| 2748 | { |
| 2749 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2750 | struct btrfs_free_space *entry = NULL; |
| 2751 | struct rb_node *node; |
| 2752 | u64 ret = 0; |
| 2753 | |
| 2754 | spin_lock(&cluster->lock); |
| 2755 | if (bytes > cluster->max_size) |
| 2756 | goto out; |
| 2757 | |
| 2758 | if (cluster->block_group != block_group) |
| 2759 | goto out; |
| 2760 | |
| 2761 | node = rb_first(&cluster->root); |
| 2762 | if (!node) |
| 2763 | goto out; |
| 2764 | |
| 2765 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2766 | while (1) { |
| 2767 | if (entry->bytes < bytes) |
| 2768 | *max_extent_size = max(get_max_extent_size(entry), |
| 2769 | *max_extent_size); |
| 2770 | |
| 2771 | if (entry->bytes < bytes || |
| 2772 | (!entry->bitmap && entry->offset < min_start)) { |
| 2773 | node = rb_next(&entry->offset_index); |
| 2774 | if (!node) |
| 2775 | break; |
| 2776 | entry = rb_entry(node, struct btrfs_free_space, |
| 2777 | offset_index); |
| 2778 | continue; |
| 2779 | } |
| 2780 | |
| 2781 | if (entry->bitmap) { |
| 2782 | ret = btrfs_alloc_from_bitmap(block_group, |
| 2783 | cluster, entry, bytes, |
| 2784 | cluster->window_start, |
| 2785 | max_extent_size); |
| 2786 | if (ret == 0) { |
| 2787 | node = rb_next(&entry->offset_index); |
| 2788 | if (!node) |
| 2789 | break; |
| 2790 | entry = rb_entry(node, struct btrfs_free_space, |
| 2791 | offset_index); |
| 2792 | continue; |
| 2793 | } |
| 2794 | cluster->window_start += bytes; |
| 2795 | } else { |
| 2796 | ret = entry->offset; |
| 2797 | |
| 2798 | entry->offset += bytes; |
| 2799 | entry->bytes -= bytes; |
| 2800 | } |
| 2801 | |
| 2802 | if (entry->bytes == 0) |
| 2803 | rb_erase(&entry->offset_index, &cluster->root); |
| 2804 | break; |
| 2805 | } |
| 2806 | out: |
| 2807 | spin_unlock(&cluster->lock); |
| 2808 | |
| 2809 | if (!ret) |
| 2810 | return 0; |
| 2811 | |
| 2812 | spin_lock(&ctl->tree_lock); |
| 2813 | |
| 2814 | ctl->free_space -= bytes; |
| 2815 | if (entry->bytes == 0) { |
| 2816 | ctl->free_extents--; |
| 2817 | if (entry->bitmap) { |
| 2818 | kmem_cache_free(btrfs_free_space_bitmap_cachep, |
| 2819 | entry->bitmap); |
| 2820 | ctl->total_bitmaps--; |
| 2821 | ctl->op->recalc_thresholds(ctl); |
| 2822 | } |
| 2823 | kmem_cache_free(btrfs_free_space_cachep, entry); |
| 2824 | } |
| 2825 | |
| 2826 | spin_unlock(&ctl->tree_lock); |
| 2827 | |
| 2828 | return ret; |
| 2829 | } |
| 2830 | |
| 2831 | static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, |
| 2832 | struct btrfs_free_space *entry, |
| 2833 | struct btrfs_free_cluster *cluster, |
| 2834 | u64 offset, u64 bytes, |
| 2835 | u64 cont1_bytes, u64 min_bytes) |
| 2836 | { |
| 2837 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2838 | unsigned long next_zero; |
| 2839 | unsigned long i; |
| 2840 | unsigned long want_bits; |
| 2841 | unsigned long min_bits; |
| 2842 | unsigned long found_bits; |
| 2843 | unsigned long max_bits = 0; |
| 2844 | unsigned long start = 0; |
| 2845 | unsigned long total_found = 0; |
| 2846 | int ret; |
| 2847 | |
| 2848 | i = offset_to_bit(entry->offset, ctl->unit, |
| 2849 | max_t(u64, offset, entry->offset)); |
| 2850 | want_bits = bytes_to_bits(bytes, ctl->unit); |
| 2851 | min_bits = bytes_to_bits(min_bytes, ctl->unit); |
| 2852 | |
| 2853 | /* |
| 2854 | * Don't bother looking for a cluster in this bitmap if it's heavily |
| 2855 | * fragmented. |
| 2856 | */ |
| 2857 | if (entry->max_extent_size && |
| 2858 | entry->max_extent_size < cont1_bytes) |
| 2859 | return -ENOSPC; |
| 2860 | again: |
| 2861 | found_bits = 0; |
| 2862 | for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { |
| 2863 | next_zero = find_next_zero_bit(entry->bitmap, |
| 2864 | BITS_PER_BITMAP, i); |
| 2865 | if (next_zero - i >= min_bits) { |
| 2866 | found_bits = next_zero - i; |
| 2867 | if (found_bits > max_bits) |
| 2868 | max_bits = found_bits; |
| 2869 | break; |
| 2870 | } |
| 2871 | if (next_zero - i > max_bits) |
| 2872 | max_bits = next_zero - i; |
| 2873 | i = next_zero; |
| 2874 | } |
| 2875 | |
| 2876 | if (!found_bits) { |
| 2877 | entry->max_extent_size = (u64)max_bits * ctl->unit; |
| 2878 | return -ENOSPC; |
| 2879 | } |
| 2880 | |
| 2881 | if (!total_found) { |
| 2882 | start = i; |
| 2883 | cluster->max_size = 0; |
| 2884 | } |
| 2885 | |
| 2886 | total_found += found_bits; |
| 2887 | |
| 2888 | if (cluster->max_size < found_bits * ctl->unit) |
| 2889 | cluster->max_size = found_bits * ctl->unit; |
| 2890 | |
| 2891 | if (total_found < want_bits || cluster->max_size < cont1_bytes) { |
| 2892 | i = next_zero + 1; |
| 2893 | goto again; |
| 2894 | } |
| 2895 | |
| 2896 | cluster->window_start = start * ctl->unit + entry->offset; |
| 2897 | rb_erase(&entry->offset_index, &ctl->free_space_offset); |
| 2898 | ret = tree_insert_offset(&cluster->root, entry->offset, |
| 2899 | &entry->offset_index, 1); |
| 2900 | ASSERT(!ret); /* -EEXIST; Logic error */ |
| 2901 | |
| 2902 | trace_btrfs_setup_cluster(block_group, cluster, |
| 2903 | total_found * ctl->unit, 1); |
| 2904 | return 0; |
| 2905 | } |
| 2906 | |
| 2907 | /* |
| 2908 | * This searches the block group for just extents to fill the cluster with. |
| 2909 | * Try to find a cluster with at least bytes total bytes, at least one |
| 2910 | * extent of cont1_bytes, and other clusters of at least min_bytes. |
| 2911 | */ |
| 2912 | static noinline int |
| 2913 | setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, |
| 2914 | struct btrfs_free_cluster *cluster, |
| 2915 | struct list_head *bitmaps, u64 offset, u64 bytes, |
| 2916 | u64 cont1_bytes, u64 min_bytes) |
| 2917 | { |
| 2918 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 2919 | struct btrfs_free_space *first = NULL; |
| 2920 | struct btrfs_free_space *entry = NULL; |
| 2921 | struct btrfs_free_space *last; |
| 2922 | struct rb_node *node; |
| 2923 | u64 window_free; |
| 2924 | u64 max_extent; |
| 2925 | u64 total_size = 0; |
| 2926 | |
| 2927 | entry = tree_search_offset(ctl, offset, 0, 1); |
| 2928 | if (!entry) |
| 2929 | return -ENOSPC; |
| 2930 | |
| 2931 | /* |
| 2932 | * We don't want bitmaps, so just move along until we find a normal |
| 2933 | * extent entry. |
| 2934 | */ |
| 2935 | while (entry->bitmap || entry->bytes < min_bytes) { |
| 2936 | if (entry->bitmap && list_empty(&entry->list)) |
| 2937 | list_add_tail(&entry->list, bitmaps); |
| 2938 | node = rb_next(&entry->offset_index); |
| 2939 | if (!node) |
| 2940 | return -ENOSPC; |
| 2941 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2942 | } |
| 2943 | |
| 2944 | window_free = entry->bytes; |
| 2945 | max_extent = entry->bytes; |
| 2946 | first = entry; |
| 2947 | last = entry; |
| 2948 | |
| 2949 | for (node = rb_next(&entry->offset_index); node; |
| 2950 | node = rb_next(&entry->offset_index)) { |
| 2951 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2952 | |
| 2953 | if (entry->bitmap) { |
| 2954 | if (list_empty(&entry->list)) |
| 2955 | list_add_tail(&entry->list, bitmaps); |
| 2956 | continue; |
| 2957 | } |
| 2958 | |
| 2959 | if (entry->bytes < min_bytes) |
| 2960 | continue; |
| 2961 | |
| 2962 | last = entry; |
| 2963 | window_free += entry->bytes; |
| 2964 | if (entry->bytes > max_extent) |
| 2965 | max_extent = entry->bytes; |
| 2966 | } |
| 2967 | |
| 2968 | if (window_free < bytes || max_extent < cont1_bytes) |
| 2969 | return -ENOSPC; |
| 2970 | |
| 2971 | cluster->window_start = first->offset; |
| 2972 | |
| 2973 | node = &first->offset_index; |
| 2974 | |
| 2975 | /* |
| 2976 | * now we've found our entries, pull them out of the free space |
| 2977 | * cache and put them into the cluster rbtree |
| 2978 | */ |
| 2979 | do { |
| 2980 | int ret; |
| 2981 | |
| 2982 | entry = rb_entry(node, struct btrfs_free_space, offset_index); |
| 2983 | node = rb_next(&entry->offset_index); |
| 2984 | if (entry->bitmap || entry->bytes < min_bytes) |
| 2985 | continue; |
| 2986 | |
| 2987 | rb_erase(&entry->offset_index, &ctl->free_space_offset); |
| 2988 | ret = tree_insert_offset(&cluster->root, entry->offset, |
| 2989 | &entry->offset_index, 0); |
| 2990 | total_size += entry->bytes; |
| 2991 | ASSERT(!ret); /* -EEXIST; Logic error */ |
| 2992 | } while (node && entry != last); |
| 2993 | |
| 2994 | cluster->max_size = max_extent; |
| 2995 | trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); |
| 2996 | return 0; |
| 2997 | } |
| 2998 | |
| 2999 | /* |
| 3000 | * This specifically looks for bitmaps that may work in the cluster, we assume |
| 3001 | * that we have already failed to find extents that will work. |
| 3002 | */ |
| 3003 | static noinline int |
| 3004 | setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, |
| 3005 | struct btrfs_free_cluster *cluster, |
| 3006 | struct list_head *bitmaps, u64 offset, u64 bytes, |
| 3007 | u64 cont1_bytes, u64 min_bytes) |
| 3008 | { |
| 3009 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 3010 | struct btrfs_free_space *entry = NULL; |
| 3011 | int ret = -ENOSPC; |
| 3012 | u64 bitmap_offset = offset_to_bitmap(ctl, offset); |
| 3013 | |
| 3014 | if (ctl->total_bitmaps == 0) |
| 3015 | return -ENOSPC; |
| 3016 | |
| 3017 | /* |
| 3018 | * The bitmap that covers offset won't be in the list unless offset |
| 3019 | * is just its start offset. |
| 3020 | */ |
| 3021 | if (!list_empty(bitmaps)) |
| 3022 | entry = list_first_entry(bitmaps, struct btrfs_free_space, list); |
| 3023 | |
| 3024 | if (!entry || entry->offset != bitmap_offset) { |
| 3025 | entry = tree_search_offset(ctl, bitmap_offset, 1, 0); |
| 3026 | if (entry && list_empty(&entry->list)) |
| 3027 | list_add(&entry->list, bitmaps); |
| 3028 | } |
| 3029 | |
| 3030 | list_for_each_entry(entry, bitmaps, list) { |
| 3031 | if (entry->bytes < bytes) |
| 3032 | continue; |
| 3033 | ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, |
| 3034 | bytes, cont1_bytes, min_bytes); |
| 3035 | if (!ret) |
| 3036 | return 0; |
| 3037 | } |
| 3038 | |
| 3039 | /* |
| 3040 | * The bitmaps list has all the bitmaps that record free space |
| 3041 | * starting after offset, so no more search is required. |
| 3042 | */ |
| 3043 | return -ENOSPC; |
| 3044 | } |
| 3045 | |
| 3046 | /* |
| 3047 | * here we try to find a cluster of blocks in a block group. The goal |
| 3048 | * is to find at least bytes+empty_size. |
| 3049 | * We might not find them all in one contiguous area. |
| 3050 | * |
| 3051 | * returns zero and sets up cluster if things worked out, otherwise |
| 3052 | * it returns -enospc |
| 3053 | */ |
| 3054 | int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info, |
| 3055 | struct btrfs_block_group_cache *block_group, |
| 3056 | struct btrfs_free_cluster *cluster, |
| 3057 | u64 offset, u64 bytes, u64 empty_size) |
| 3058 | { |
| 3059 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 3060 | struct btrfs_free_space *entry, *tmp; |
| 3061 | LIST_HEAD(bitmaps); |
| 3062 | u64 min_bytes; |
| 3063 | u64 cont1_bytes; |
| 3064 | int ret; |
| 3065 | |
| 3066 | /* |
| 3067 | * Choose the minimum extent size we'll require for this |
| 3068 | * cluster. For SSD_SPREAD, don't allow any fragmentation. |
| 3069 | * For metadata, allow allocates with smaller extents. For |
| 3070 | * data, keep it dense. |
| 3071 | */ |
| 3072 | if (btrfs_test_opt(fs_info, SSD_SPREAD)) { |
| 3073 | cont1_bytes = min_bytes = bytes + empty_size; |
| 3074 | } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| 3075 | cont1_bytes = bytes; |
| 3076 | min_bytes = fs_info->sectorsize; |
| 3077 | } else { |
| 3078 | cont1_bytes = max(bytes, (bytes + empty_size) >> 2); |
| 3079 | min_bytes = fs_info->sectorsize; |
| 3080 | } |
| 3081 | |
| 3082 | spin_lock(&ctl->tree_lock); |
| 3083 | |
| 3084 | /* |
| 3085 | * If we know we don't have enough space to make a cluster don't even |
| 3086 | * bother doing all the work to try and find one. |
| 3087 | */ |
| 3088 | if (ctl->free_space < bytes) { |
| 3089 | spin_unlock(&ctl->tree_lock); |
| 3090 | return -ENOSPC; |
| 3091 | } |
| 3092 | |
| 3093 | spin_lock(&cluster->lock); |
| 3094 | |
| 3095 | /* someone already found a cluster, hooray */ |
| 3096 | if (cluster->block_group) { |
| 3097 | ret = 0; |
| 3098 | goto out; |
| 3099 | } |
| 3100 | |
| 3101 | trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, |
| 3102 | min_bytes); |
| 3103 | |
| 3104 | ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, |
| 3105 | bytes + empty_size, |
| 3106 | cont1_bytes, min_bytes); |
| 3107 | if (ret) |
| 3108 | ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, |
| 3109 | offset, bytes + empty_size, |
| 3110 | cont1_bytes, min_bytes); |
| 3111 | |
| 3112 | /* Clear our temporary list */ |
| 3113 | list_for_each_entry_safe(entry, tmp, &bitmaps, list) |
| 3114 | list_del_init(&entry->list); |
| 3115 | |
| 3116 | if (!ret) { |
| 3117 | atomic_inc(&block_group->count); |
| 3118 | list_add_tail(&cluster->block_group_list, |
| 3119 | &block_group->cluster_list); |
| 3120 | cluster->block_group = block_group; |
| 3121 | } else { |
| 3122 | trace_btrfs_failed_cluster_setup(block_group); |
| 3123 | } |
| 3124 | out: |
| 3125 | spin_unlock(&cluster->lock); |
| 3126 | spin_unlock(&ctl->tree_lock); |
| 3127 | |
| 3128 | return ret; |
| 3129 | } |
| 3130 | |
| 3131 | /* |
| 3132 | * simple code to zero out a cluster |
| 3133 | */ |
| 3134 | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) |
| 3135 | { |
| 3136 | spin_lock_init(&cluster->lock); |
| 3137 | spin_lock_init(&cluster->refill_lock); |
| 3138 | cluster->root = RB_ROOT; |
| 3139 | cluster->max_size = 0; |
| 3140 | cluster->fragmented = false; |
| 3141 | INIT_LIST_HEAD(&cluster->block_group_list); |
| 3142 | cluster->block_group = NULL; |
| 3143 | } |
| 3144 | |
| 3145 | static int do_trimming(struct btrfs_block_group_cache *block_group, |
| 3146 | u64 *total_trimmed, u64 start, u64 bytes, |
| 3147 | u64 reserved_start, u64 reserved_bytes, |
| 3148 | struct btrfs_trim_range *trim_entry) |
| 3149 | { |
| 3150 | struct btrfs_space_info *space_info = block_group->space_info; |
| 3151 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 3152 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 3153 | int ret; |
| 3154 | int update = 0; |
| 3155 | u64 trimmed = 0; |
| 3156 | |
| 3157 | spin_lock(&space_info->lock); |
| 3158 | spin_lock(&block_group->lock); |
| 3159 | if (!block_group->ro) { |
| 3160 | block_group->reserved += reserved_bytes; |
| 3161 | space_info->bytes_reserved += reserved_bytes; |
| 3162 | update = 1; |
| 3163 | } |
| 3164 | spin_unlock(&block_group->lock); |
| 3165 | spin_unlock(&space_info->lock); |
| 3166 | |
| 3167 | ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); |
| 3168 | if (!ret) |
| 3169 | *total_trimmed += trimmed; |
| 3170 | |
| 3171 | mutex_lock(&ctl->cache_writeout_mutex); |
| 3172 | btrfs_add_free_space(block_group, reserved_start, reserved_bytes); |
| 3173 | list_del(&trim_entry->list); |
| 3174 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3175 | |
| 3176 | if (update) { |
| 3177 | spin_lock(&space_info->lock); |
| 3178 | spin_lock(&block_group->lock); |
| 3179 | if (block_group->ro) |
| 3180 | space_info->bytes_readonly += reserved_bytes; |
| 3181 | block_group->reserved -= reserved_bytes; |
| 3182 | space_info->bytes_reserved -= reserved_bytes; |
| 3183 | spin_unlock(&space_info->lock); |
| 3184 | spin_unlock(&block_group->lock); |
| 3185 | } |
| 3186 | |
| 3187 | return ret; |
| 3188 | } |
| 3189 | |
| 3190 | static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, |
| 3191 | u64 *total_trimmed, u64 start, u64 end, u64 minlen) |
| 3192 | { |
| 3193 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 3194 | struct btrfs_free_space *entry; |
| 3195 | struct rb_node *node; |
| 3196 | int ret = 0; |
| 3197 | u64 extent_start; |
| 3198 | u64 extent_bytes; |
| 3199 | u64 bytes; |
| 3200 | |
| 3201 | while (start < end) { |
| 3202 | struct btrfs_trim_range trim_entry; |
| 3203 | |
| 3204 | mutex_lock(&ctl->cache_writeout_mutex); |
| 3205 | spin_lock(&ctl->tree_lock); |
| 3206 | |
| 3207 | if (ctl->free_space < minlen) { |
| 3208 | spin_unlock(&ctl->tree_lock); |
| 3209 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3210 | break; |
| 3211 | } |
| 3212 | |
| 3213 | entry = tree_search_offset(ctl, start, 0, 1); |
| 3214 | if (!entry) { |
| 3215 | spin_unlock(&ctl->tree_lock); |
| 3216 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3217 | break; |
| 3218 | } |
| 3219 | |
| 3220 | /* skip bitmaps */ |
| 3221 | while (entry->bitmap) { |
| 3222 | node = rb_next(&entry->offset_index); |
| 3223 | if (!node) { |
| 3224 | spin_unlock(&ctl->tree_lock); |
| 3225 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3226 | goto out; |
| 3227 | } |
| 3228 | entry = rb_entry(node, struct btrfs_free_space, |
| 3229 | offset_index); |
| 3230 | } |
| 3231 | |
| 3232 | if (entry->offset >= end) { |
| 3233 | spin_unlock(&ctl->tree_lock); |
| 3234 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3235 | break; |
| 3236 | } |
| 3237 | |
| 3238 | extent_start = entry->offset; |
| 3239 | extent_bytes = entry->bytes; |
| 3240 | start = max(start, extent_start); |
| 3241 | bytes = min(extent_start + extent_bytes, end) - start; |
| 3242 | if (bytes < minlen) { |
| 3243 | spin_unlock(&ctl->tree_lock); |
| 3244 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3245 | goto next; |
| 3246 | } |
| 3247 | |
| 3248 | unlink_free_space(ctl, entry); |
| 3249 | kmem_cache_free(btrfs_free_space_cachep, entry); |
| 3250 | |
| 3251 | spin_unlock(&ctl->tree_lock); |
| 3252 | trim_entry.start = extent_start; |
| 3253 | trim_entry.bytes = extent_bytes; |
| 3254 | list_add_tail(&trim_entry.list, &ctl->trimming_ranges); |
| 3255 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3256 | |
| 3257 | ret = do_trimming(block_group, total_trimmed, start, bytes, |
| 3258 | extent_start, extent_bytes, &trim_entry); |
| 3259 | if (ret) |
| 3260 | break; |
| 3261 | next: |
| 3262 | start += bytes; |
| 3263 | |
| 3264 | if (fatal_signal_pending(current)) { |
| 3265 | ret = -ERESTARTSYS; |
| 3266 | break; |
| 3267 | } |
| 3268 | |
| 3269 | cond_resched(); |
| 3270 | } |
| 3271 | out: |
| 3272 | return ret; |
| 3273 | } |
| 3274 | |
| 3275 | static int trim_bitmaps(struct btrfs_block_group_cache *block_group, |
| 3276 | u64 *total_trimmed, u64 start, u64 end, u64 minlen) |
| 3277 | { |
| 3278 | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| 3279 | struct btrfs_free_space *entry; |
| 3280 | int ret = 0; |
| 3281 | int ret2; |
| 3282 | u64 bytes; |
| 3283 | u64 offset = offset_to_bitmap(ctl, start); |
| 3284 | |
| 3285 | while (offset < end) { |
| 3286 | bool next_bitmap = false; |
| 3287 | struct btrfs_trim_range trim_entry; |
| 3288 | |
| 3289 | mutex_lock(&ctl->cache_writeout_mutex); |
| 3290 | spin_lock(&ctl->tree_lock); |
| 3291 | |
| 3292 | if (ctl->free_space < minlen) { |
| 3293 | spin_unlock(&ctl->tree_lock); |
| 3294 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3295 | break; |
| 3296 | } |
| 3297 | |
| 3298 | entry = tree_search_offset(ctl, offset, 1, 0); |
| 3299 | if (!entry) { |
| 3300 | spin_unlock(&ctl->tree_lock); |
| 3301 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3302 | next_bitmap = true; |
| 3303 | goto next; |
| 3304 | } |
| 3305 | |
| 3306 | bytes = minlen; |
| 3307 | ret2 = search_bitmap(ctl, entry, &start, &bytes, false); |
| 3308 | if (ret2 || start >= end) { |
| 3309 | spin_unlock(&ctl->tree_lock); |
| 3310 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3311 | next_bitmap = true; |
| 3312 | goto next; |
| 3313 | } |
| 3314 | |
| 3315 | bytes = min(bytes, end - start); |
| 3316 | if (bytes < minlen) { |
| 3317 | spin_unlock(&ctl->tree_lock); |
| 3318 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3319 | goto next; |
| 3320 | } |
| 3321 | |
| 3322 | bitmap_clear_bits(ctl, entry, start, bytes); |
| 3323 | if (entry->bytes == 0) |
| 3324 | free_bitmap(ctl, entry); |
| 3325 | |
| 3326 | spin_unlock(&ctl->tree_lock); |
| 3327 | trim_entry.start = start; |
| 3328 | trim_entry.bytes = bytes; |
| 3329 | list_add_tail(&trim_entry.list, &ctl->trimming_ranges); |
| 3330 | mutex_unlock(&ctl->cache_writeout_mutex); |
| 3331 | |
| 3332 | ret = do_trimming(block_group, total_trimmed, start, bytes, |
| 3333 | start, bytes, &trim_entry); |
| 3334 | if (ret) |
| 3335 | break; |
| 3336 | next: |
| 3337 | if (next_bitmap) { |
| 3338 | offset += BITS_PER_BITMAP * ctl->unit; |
| 3339 | } else { |
| 3340 | start += bytes; |
| 3341 | if (start >= offset + BITS_PER_BITMAP * ctl->unit) |
| 3342 | offset += BITS_PER_BITMAP * ctl->unit; |
| 3343 | } |
| 3344 | |
| 3345 | if (fatal_signal_pending(current)) { |
| 3346 | ret = -ERESTARTSYS; |
| 3347 | break; |
| 3348 | } |
| 3349 | |
| 3350 | cond_resched(); |
| 3351 | } |
| 3352 | |
| 3353 | return ret; |
| 3354 | } |
| 3355 | |
| 3356 | void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) |
| 3357 | { |
| 3358 | atomic_inc(&cache->trimming); |
| 3359 | } |
| 3360 | |
| 3361 | void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) |
| 3362 | { |
| 3363 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 3364 | struct extent_map_tree *em_tree; |
| 3365 | struct extent_map *em; |
| 3366 | bool cleanup; |
| 3367 | |
| 3368 | spin_lock(&block_group->lock); |
| 3369 | cleanup = (atomic_dec_and_test(&block_group->trimming) && |
| 3370 | block_group->removed); |
| 3371 | spin_unlock(&block_group->lock); |
| 3372 | |
| 3373 | if (cleanup) { |
| 3374 | mutex_lock(&fs_info->chunk_mutex); |
| 3375 | em_tree = &fs_info->mapping_tree.map_tree; |
| 3376 | write_lock(&em_tree->lock); |
| 3377 | em = lookup_extent_mapping(em_tree, block_group->key.objectid, |
| 3378 | 1); |
| 3379 | BUG_ON(!em); /* logic error, can't happen */ |
| 3380 | /* |
| 3381 | * remove_extent_mapping() will delete us from the pinned_chunks |
| 3382 | * list, which is protected by the chunk mutex. |
| 3383 | */ |
| 3384 | remove_extent_mapping(em_tree, em); |
| 3385 | write_unlock(&em_tree->lock); |
| 3386 | mutex_unlock(&fs_info->chunk_mutex); |
| 3387 | |
| 3388 | /* once for us and once for the tree */ |
| 3389 | free_extent_map(em); |
| 3390 | free_extent_map(em); |
| 3391 | |
| 3392 | /* |
| 3393 | * We've left one free space entry and other tasks trimming |
| 3394 | * this block group have left 1 entry each one. Free them. |
| 3395 | */ |
| 3396 | __btrfs_remove_free_space_cache(block_group->free_space_ctl); |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, |
| 3401 | u64 *trimmed, u64 start, u64 end, u64 minlen) |
| 3402 | { |
| 3403 | int ret; |
| 3404 | |
| 3405 | *trimmed = 0; |
| 3406 | |
| 3407 | spin_lock(&block_group->lock); |
| 3408 | if (block_group->removed) { |
| 3409 | spin_unlock(&block_group->lock); |
| 3410 | return 0; |
| 3411 | } |
| 3412 | btrfs_get_block_group_trimming(block_group); |
| 3413 | spin_unlock(&block_group->lock); |
| 3414 | |
| 3415 | ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); |
| 3416 | if (ret) |
| 3417 | goto out; |
| 3418 | |
| 3419 | ret = trim_bitmaps(block_group, trimmed, start, end, minlen); |
| 3420 | out: |
| 3421 | btrfs_put_block_group_trimming(block_group); |
| 3422 | return ret; |
| 3423 | } |
| 3424 | |
| 3425 | /* |
| 3426 | * Find the left-most item in the cache tree, and then return the |
| 3427 | * smallest inode number in the item. |
| 3428 | * |
| 3429 | * Note: the returned inode number may not be the smallest one in |
| 3430 | * the tree, if the left-most item is a bitmap. |
| 3431 | */ |
| 3432 | u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) |
| 3433 | { |
| 3434 | struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; |
| 3435 | struct btrfs_free_space *entry = NULL; |
| 3436 | u64 ino = 0; |
| 3437 | |
| 3438 | spin_lock(&ctl->tree_lock); |
| 3439 | |
| 3440 | if (RB_EMPTY_ROOT(&ctl->free_space_offset)) |
| 3441 | goto out; |
| 3442 | |
| 3443 | entry = rb_entry(rb_first(&ctl->free_space_offset), |
| 3444 | struct btrfs_free_space, offset_index); |
| 3445 | |
| 3446 | if (!entry->bitmap) { |
| 3447 | ino = entry->offset; |
| 3448 | |
| 3449 | unlink_free_space(ctl, entry); |
| 3450 | entry->offset++; |
| 3451 | entry->bytes--; |
| 3452 | if (!entry->bytes) |
| 3453 | kmem_cache_free(btrfs_free_space_cachep, entry); |
| 3454 | else |
| 3455 | link_free_space(ctl, entry); |
| 3456 | } else { |
| 3457 | u64 offset = 0; |
| 3458 | u64 count = 1; |
| 3459 | int ret; |
| 3460 | |
| 3461 | ret = search_bitmap(ctl, entry, &offset, &count, true); |
| 3462 | /* Logic error; Should be empty if it can't find anything */ |
| 3463 | ASSERT(!ret); |
| 3464 | |
| 3465 | ino = offset; |
| 3466 | bitmap_clear_bits(ctl, entry, offset, 1); |
| 3467 | if (entry->bytes == 0) |
| 3468 | free_bitmap(ctl, entry); |
| 3469 | } |
| 3470 | out: |
| 3471 | spin_unlock(&ctl->tree_lock); |
| 3472 | |
| 3473 | return ino; |
| 3474 | } |
| 3475 | |
| 3476 | struct inode *lookup_free_ino_inode(struct btrfs_root *root, |
| 3477 | struct btrfs_path *path) |
| 3478 | { |
| 3479 | struct inode *inode = NULL; |
| 3480 | |
| 3481 | spin_lock(&root->ino_cache_lock); |
| 3482 | if (root->ino_cache_inode) |
| 3483 | inode = igrab(root->ino_cache_inode); |
| 3484 | spin_unlock(&root->ino_cache_lock); |
| 3485 | if (inode) |
| 3486 | return inode; |
| 3487 | |
| 3488 | inode = __lookup_free_space_inode(root, path, 0); |
| 3489 | if (IS_ERR(inode)) |
| 3490 | return inode; |
| 3491 | |
| 3492 | spin_lock(&root->ino_cache_lock); |
| 3493 | if (!btrfs_fs_closing(root->fs_info)) |
| 3494 | root->ino_cache_inode = igrab(inode); |
| 3495 | spin_unlock(&root->ino_cache_lock); |
| 3496 | |
| 3497 | return inode; |
| 3498 | } |
| 3499 | |
| 3500 | int create_free_ino_inode(struct btrfs_root *root, |
| 3501 | struct btrfs_trans_handle *trans, |
| 3502 | struct btrfs_path *path) |
| 3503 | { |
| 3504 | return __create_free_space_inode(root, trans, path, |
| 3505 | BTRFS_FREE_INO_OBJECTID, 0); |
| 3506 | } |
| 3507 | |
| 3508 | int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) |
| 3509 | { |
| 3510 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 3511 | struct btrfs_path *path; |
| 3512 | struct inode *inode; |
| 3513 | int ret = 0; |
| 3514 | u64 root_gen = btrfs_root_generation(&root->root_item); |
| 3515 | |
| 3516 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 3517 | return 0; |
| 3518 | |
| 3519 | /* |
| 3520 | * If we're unmounting then just return, since this does a search on the |
| 3521 | * normal root and not the commit root and we could deadlock. |
| 3522 | */ |
| 3523 | if (btrfs_fs_closing(fs_info)) |
| 3524 | return 0; |
| 3525 | |
| 3526 | path = btrfs_alloc_path(); |
| 3527 | if (!path) |
| 3528 | return 0; |
| 3529 | |
| 3530 | inode = lookup_free_ino_inode(root, path); |
| 3531 | if (IS_ERR(inode)) |
| 3532 | goto out; |
| 3533 | |
| 3534 | if (root_gen != BTRFS_I(inode)->generation) |
| 3535 | goto out_put; |
| 3536 | |
| 3537 | ret = __load_free_space_cache(root, inode, ctl, path, 0); |
| 3538 | |
| 3539 | if (ret < 0) |
| 3540 | btrfs_err(fs_info, |
| 3541 | "failed to load free ino cache for root %llu", |
| 3542 | root->root_key.objectid); |
| 3543 | out_put: |
| 3544 | iput(inode); |
| 3545 | out: |
| 3546 | btrfs_free_path(path); |
| 3547 | return ret; |
| 3548 | } |
| 3549 | |
| 3550 | int btrfs_write_out_ino_cache(struct btrfs_root *root, |
| 3551 | struct btrfs_trans_handle *trans, |
| 3552 | struct btrfs_path *path, |
| 3553 | struct inode *inode) |
| 3554 | { |
| 3555 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3556 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 3557 | int ret; |
| 3558 | struct btrfs_io_ctl io_ctl; |
| 3559 | bool release_metadata = true; |
| 3560 | |
| 3561 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 3562 | return 0; |
| 3563 | |
| 3564 | memset(&io_ctl, 0, sizeof(io_ctl)); |
| 3565 | ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); |
| 3566 | if (!ret) { |
| 3567 | /* |
| 3568 | * At this point writepages() didn't error out, so our metadata |
| 3569 | * reservation is released when the writeback finishes, at |
| 3570 | * inode.c:btrfs_finish_ordered_io(), regardless of it finishing |
| 3571 | * with or without an error. |
| 3572 | */ |
| 3573 | release_metadata = false; |
| 3574 | ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); |
| 3575 | } |
| 3576 | |
| 3577 | if (ret) { |
| 3578 | if (release_metadata) |
| 3579 | btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| 3580 | inode->i_size, true); |
| 3581 | #ifdef DEBUG |
| 3582 | btrfs_err(fs_info, |
| 3583 | "failed to write free ino cache for root %llu", |
| 3584 | root->root_key.objectid); |
| 3585 | #endif |
| 3586 | } |
| 3587 | |
| 3588 | return ret; |
| 3589 | } |
| 3590 | |
| 3591 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 3592 | /* |
| 3593 | * Use this if you need to make a bitmap or extent entry specifically, it |
| 3594 | * doesn't do any of the merging that add_free_space does, this acts a lot like |
| 3595 | * how the free space cache loading stuff works, so you can get really weird |
| 3596 | * configurations. |
| 3597 | */ |
| 3598 | int test_add_free_space_entry(struct btrfs_block_group_cache *cache, |
| 3599 | u64 offset, u64 bytes, bool bitmap) |
| 3600 | { |
| 3601 | struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; |
| 3602 | struct btrfs_free_space *info = NULL, *bitmap_info; |
| 3603 | void *map = NULL; |
| 3604 | u64 bytes_added; |
| 3605 | int ret; |
| 3606 | |
| 3607 | again: |
| 3608 | if (!info) { |
| 3609 | info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); |
| 3610 | if (!info) |
| 3611 | return -ENOMEM; |
| 3612 | } |
| 3613 | |
| 3614 | if (!bitmap) { |
| 3615 | spin_lock(&ctl->tree_lock); |
| 3616 | info->offset = offset; |
| 3617 | info->bytes = bytes; |
| 3618 | info->max_extent_size = 0; |
| 3619 | ret = link_free_space(ctl, info); |
| 3620 | spin_unlock(&ctl->tree_lock); |
| 3621 | if (ret) |
| 3622 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 3623 | return ret; |
| 3624 | } |
| 3625 | |
| 3626 | if (!map) { |
| 3627 | map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); |
| 3628 | if (!map) { |
| 3629 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 3630 | return -ENOMEM; |
| 3631 | } |
| 3632 | } |
| 3633 | |
| 3634 | spin_lock(&ctl->tree_lock); |
| 3635 | bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), |
| 3636 | 1, 0); |
| 3637 | if (!bitmap_info) { |
| 3638 | info->bitmap = map; |
| 3639 | map = NULL; |
| 3640 | add_new_bitmap(ctl, info, offset); |
| 3641 | bitmap_info = info; |
| 3642 | info = NULL; |
| 3643 | } |
| 3644 | |
| 3645 | bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); |
| 3646 | |
| 3647 | bytes -= bytes_added; |
| 3648 | offset += bytes_added; |
| 3649 | spin_unlock(&ctl->tree_lock); |
| 3650 | |
| 3651 | if (bytes) |
| 3652 | goto again; |
| 3653 | |
| 3654 | if (info) |
| 3655 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 3656 | if (map) |
| 3657 | kmem_cache_free(btrfs_free_space_bitmap_cachep, map); |
| 3658 | return 0; |
| 3659 | } |
| 3660 | |
| 3661 | /* |
| 3662 | * Checks to see if the given range is in the free space cache. This is really |
| 3663 | * just used to check the absence of space, so if there is free space in the |
| 3664 | * range at all we will return 1. |
| 3665 | */ |
| 3666 | int test_check_exists(struct btrfs_block_group_cache *cache, |
| 3667 | u64 offset, u64 bytes) |
| 3668 | { |
| 3669 | struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; |
| 3670 | struct btrfs_free_space *info; |
| 3671 | int ret = 0; |
| 3672 | |
| 3673 | spin_lock(&ctl->tree_lock); |
| 3674 | info = tree_search_offset(ctl, offset, 0, 0); |
| 3675 | if (!info) { |
| 3676 | info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), |
| 3677 | 1, 0); |
| 3678 | if (!info) |
| 3679 | goto out; |
| 3680 | } |
| 3681 | |
| 3682 | have_info: |
| 3683 | if (info->bitmap) { |
| 3684 | u64 bit_off, bit_bytes; |
| 3685 | struct rb_node *n; |
| 3686 | struct btrfs_free_space *tmp; |
| 3687 | |
| 3688 | bit_off = offset; |
| 3689 | bit_bytes = ctl->unit; |
| 3690 | ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); |
| 3691 | if (!ret) { |
| 3692 | if (bit_off == offset) { |
| 3693 | ret = 1; |
| 3694 | goto out; |
| 3695 | } else if (bit_off > offset && |
| 3696 | offset + bytes > bit_off) { |
| 3697 | ret = 1; |
| 3698 | goto out; |
| 3699 | } |
| 3700 | } |
| 3701 | |
| 3702 | n = rb_prev(&info->offset_index); |
| 3703 | while (n) { |
| 3704 | tmp = rb_entry(n, struct btrfs_free_space, |
| 3705 | offset_index); |
| 3706 | if (tmp->offset + tmp->bytes < offset) |
| 3707 | break; |
| 3708 | if (offset + bytes < tmp->offset) { |
| 3709 | n = rb_prev(&tmp->offset_index); |
| 3710 | continue; |
| 3711 | } |
| 3712 | info = tmp; |
| 3713 | goto have_info; |
| 3714 | } |
| 3715 | |
| 3716 | n = rb_next(&info->offset_index); |
| 3717 | while (n) { |
| 3718 | tmp = rb_entry(n, struct btrfs_free_space, |
| 3719 | offset_index); |
| 3720 | if (offset + bytes < tmp->offset) |
| 3721 | break; |
| 3722 | if (tmp->offset + tmp->bytes < offset) { |
| 3723 | n = rb_next(&tmp->offset_index); |
| 3724 | continue; |
| 3725 | } |
| 3726 | info = tmp; |
| 3727 | goto have_info; |
| 3728 | } |
| 3729 | |
| 3730 | ret = 0; |
| 3731 | goto out; |
| 3732 | } |
| 3733 | |
| 3734 | if (info->offset == offset) { |
| 3735 | ret = 1; |
| 3736 | goto out; |
| 3737 | } |
| 3738 | |
| 3739 | if (offset > info->offset && offset < info->offset + info->bytes) |
| 3740 | ret = 1; |
| 3741 | out: |
| 3742 | spin_unlock(&ctl->tree_lock); |
| 3743 | return ret; |
| 3744 | } |
| 3745 | #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ |