| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/fs/exec.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | /* | 
|  | 8 | * #!-checking implemented by tytso. | 
|  | 9 | */ | 
|  | 10 | /* | 
|  | 11 | * Demand-loading implemented 01.12.91 - no need to read anything but | 
|  | 12 | * the header into memory. The inode of the executable is put into | 
|  | 13 | * "current->executable", and page faults do the actual loading. Clean. | 
|  | 14 | * | 
|  | 15 | * Once more I can proudly say that linux stood up to being changed: it | 
|  | 16 | * was less than 2 hours work to get demand-loading completely implemented. | 
|  | 17 | * | 
|  | 18 | * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead, | 
|  | 19 | * current->executable is only used by the procfs.  This allows a dispatch | 
|  | 20 | * table to check for several different types  of binary formats.  We keep | 
|  | 21 | * trying until we recognize the file or we run out of supported binary | 
|  | 22 | * formats. | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | #include <linux/slab.h> | 
|  | 26 | #include <linux/file.h> | 
|  | 27 | #include <linux/fdtable.h> | 
|  | 28 | #include <linux/mm.h> | 
|  | 29 | #include <linux/vmacache.h> | 
|  | 30 | #include <linux/stat.h> | 
|  | 31 | #include <linux/fcntl.h> | 
|  | 32 | #include <linux/swap.h> | 
|  | 33 | #include <linux/string.h> | 
|  | 34 | #include <linux/init.h> | 
|  | 35 | #include <linux/sched/mm.h> | 
|  | 36 | #include <linux/sched/coredump.h> | 
|  | 37 | #include <linux/sched/signal.h> | 
|  | 38 | #include <linux/sched/numa_balancing.h> | 
|  | 39 | #include <linux/sched/task.h> | 
|  | 40 | #include <linux/pagemap.h> | 
|  | 41 | #include <linux/perf_event.h> | 
|  | 42 | #include <linux/highmem.h> | 
|  | 43 | #include <linux/spinlock.h> | 
|  | 44 | #include <linux/key.h> | 
|  | 45 | #include <linux/personality.h> | 
|  | 46 | #include <linux/binfmts.h> | 
|  | 47 | #include <linux/utsname.h> | 
|  | 48 | #include <linux/pid_namespace.h> | 
|  | 49 | #include <linux/module.h> | 
|  | 50 | #include <linux/namei.h> | 
|  | 51 | #include <linux/mount.h> | 
|  | 52 | #include <linux/security.h> | 
|  | 53 | #include <linux/syscalls.h> | 
|  | 54 | #include <linux/tsacct_kern.h> | 
|  | 55 | #include <linux/cn_proc.h> | 
|  | 56 | #include <linux/audit.h> | 
|  | 57 | #include <linux/tracehook.h> | 
|  | 58 | #include <linux/kmod.h> | 
|  | 59 | #include <linux/fsnotify.h> | 
|  | 60 | #include <linux/fs_struct.h> | 
|  | 61 | #include <linux/pipe_fs_i.h> | 
|  | 62 | #include <linux/oom.h> | 
|  | 63 | #include <linux/compat.h> | 
|  | 64 | #include <linux/vmalloc.h> | 
|  | 65 |  | 
|  | 66 | #include <linux/uaccess.h> | 
|  | 67 | #include <asm/mmu_context.h> | 
|  | 68 | #include <asm/tlb.h> | 
|  | 69 |  | 
|  | 70 | #include <trace/events/task.h> | 
|  | 71 | #include "internal.h" | 
|  | 72 |  | 
|  | 73 | #include <trace/events/sched.h> | 
|  | 74 |  | 
|  | 75 | int suid_dumpable = 0; | 
|  | 76 |  | 
|  | 77 | static LIST_HEAD(formats); | 
|  | 78 | static DEFINE_RWLOCK(binfmt_lock); | 
|  | 79 |  | 
|  | 80 | void __register_binfmt(struct linux_binfmt * fmt, int insert) | 
|  | 81 | { | 
|  | 82 | BUG_ON(!fmt); | 
|  | 83 | if (WARN_ON(!fmt->load_binary)) | 
|  | 84 | return; | 
|  | 85 | write_lock(&binfmt_lock); | 
|  | 86 | insert ? list_add(&fmt->lh, &formats) : | 
|  | 87 | list_add_tail(&fmt->lh, &formats); | 
|  | 88 | write_unlock(&binfmt_lock); | 
|  | 89 | } | 
|  | 90 |  | 
|  | 91 | EXPORT_SYMBOL(__register_binfmt); | 
|  | 92 |  | 
|  | 93 | void unregister_binfmt(struct linux_binfmt * fmt) | 
|  | 94 | { | 
|  | 95 | write_lock(&binfmt_lock); | 
|  | 96 | list_del(&fmt->lh); | 
|  | 97 | write_unlock(&binfmt_lock); | 
|  | 98 | } | 
|  | 99 |  | 
|  | 100 | EXPORT_SYMBOL(unregister_binfmt); | 
|  | 101 |  | 
|  | 102 | static inline void put_binfmt(struct linux_binfmt * fmt) | 
|  | 103 | { | 
|  | 104 | module_put(fmt->module); | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | bool path_noexec(const struct path *path) | 
|  | 108 | { | 
|  | 109 | return (path->mnt->mnt_flags & MNT_NOEXEC) || | 
|  | 110 | (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); | 
|  | 111 | } | 
|  | 112 |  | 
|  | 113 | #ifdef CONFIG_USELIB | 
|  | 114 | /* | 
|  | 115 | * Note that a shared library must be both readable and executable due to | 
|  | 116 | * security reasons. | 
|  | 117 | * | 
|  | 118 | * Also note that we take the address to load from from the file itself. | 
|  | 119 | */ | 
|  | 120 | SYSCALL_DEFINE1(uselib, const char __user *, library) | 
|  | 121 | { | 
|  | 122 | struct linux_binfmt *fmt; | 
|  | 123 | struct file *file; | 
|  | 124 | struct filename *tmp = getname(library); | 
|  | 125 | int error = PTR_ERR(tmp); | 
|  | 126 | static const struct open_flags uselib_flags = { | 
|  | 127 | .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
|  | 128 | .acc_mode = MAY_READ | MAY_EXEC, | 
|  | 129 | .intent = LOOKUP_OPEN, | 
|  | 130 | .lookup_flags = LOOKUP_FOLLOW, | 
|  | 131 | }; | 
|  | 132 |  | 
|  | 133 | if (IS_ERR(tmp)) | 
|  | 134 | goto out; | 
|  | 135 |  | 
|  | 136 | file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); | 
|  | 137 | putname(tmp); | 
|  | 138 | error = PTR_ERR(file); | 
|  | 139 | if (IS_ERR(file)) | 
|  | 140 | goto out; | 
|  | 141 |  | 
|  | 142 | error = -EINVAL; | 
|  | 143 | if (!S_ISREG(file_inode(file)->i_mode)) | 
|  | 144 | goto exit; | 
|  | 145 |  | 
|  | 146 | error = -EACCES; | 
|  | 147 | if (path_noexec(&file->f_path)) | 
|  | 148 | goto exit; | 
|  | 149 |  | 
|  | 150 | fsnotify_open(file); | 
|  | 151 |  | 
|  | 152 | error = -ENOEXEC; | 
|  | 153 |  | 
|  | 154 | read_lock(&binfmt_lock); | 
|  | 155 | list_for_each_entry(fmt, &formats, lh) { | 
|  | 156 | if (!fmt->load_shlib) | 
|  | 157 | continue; | 
|  | 158 | if (!try_module_get(fmt->module)) | 
|  | 159 | continue; | 
|  | 160 | read_unlock(&binfmt_lock); | 
|  | 161 | error = fmt->load_shlib(file); | 
|  | 162 | read_lock(&binfmt_lock); | 
|  | 163 | put_binfmt(fmt); | 
|  | 164 | if (error != -ENOEXEC) | 
|  | 165 | break; | 
|  | 166 | } | 
|  | 167 | read_unlock(&binfmt_lock); | 
|  | 168 | exit: | 
|  | 169 | fput(file); | 
|  | 170 | out: | 
|  | 171 | return error; | 
|  | 172 | } | 
|  | 173 | #endif /* #ifdef CONFIG_USELIB */ | 
|  | 174 |  | 
|  | 175 | #ifdef CONFIG_MMU | 
|  | 176 | /* | 
|  | 177 | * The nascent bprm->mm is not visible until exec_mmap() but it can | 
|  | 178 | * use a lot of memory, account these pages in current->mm temporary | 
|  | 179 | * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we | 
|  | 180 | * change the counter back via acct_arg_size(0). | 
|  | 181 | */ | 
|  | 182 | static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
|  | 183 | { | 
|  | 184 | struct mm_struct *mm = current->mm; | 
|  | 185 | long diff = (long)(pages - bprm->vma_pages); | 
|  | 186 |  | 
|  | 187 | if (!mm || !diff) | 
|  | 188 | return; | 
|  | 189 |  | 
|  | 190 | bprm->vma_pages = pages; | 
|  | 191 | add_mm_counter(mm, MM_ANONPAGES, diff); | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | 195 | int write) | 
|  | 196 | { | 
|  | 197 | struct page *page; | 
|  | 198 | int ret; | 
|  | 199 | unsigned int gup_flags = FOLL_FORCE; | 
|  | 200 |  | 
|  | 201 | #ifdef CONFIG_STACK_GROWSUP | 
|  | 202 | if (write) { | 
|  | 203 | ret = expand_downwards(bprm->vma, pos); | 
|  | 204 | if (ret < 0) | 
|  | 205 | return NULL; | 
|  | 206 | } | 
|  | 207 | #endif | 
|  | 208 |  | 
|  | 209 | if (write) | 
|  | 210 | gup_flags |= FOLL_WRITE; | 
|  | 211 |  | 
|  | 212 | /* | 
|  | 213 | * We are doing an exec().  'current' is the process | 
|  | 214 | * doing the exec and bprm->mm is the new process's mm. | 
|  | 215 | */ | 
|  | 216 | ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, | 
|  | 217 | &page, NULL, NULL); | 
|  | 218 | if (ret <= 0) | 
|  | 219 | return NULL; | 
|  | 220 |  | 
|  | 221 | if (write) { | 
|  | 222 | unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | 
|  | 223 | unsigned long ptr_size, limit; | 
|  | 224 |  | 
|  | 225 | /* | 
|  | 226 | * Since the stack will hold pointers to the strings, we | 
|  | 227 | * must account for them as well. | 
|  | 228 | * | 
|  | 229 | * The size calculation is the entire vma while each arg page is | 
|  | 230 | * built, so each time we get here it's calculating how far it | 
|  | 231 | * is currently (rather than each call being just the newly | 
|  | 232 | * added size from the arg page).  As a result, we need to | 
|  | 233 | * always add the entire size of the pointers, so that on the | 
|  | 234 | * last call to get_arg_page() we'll actually have the entire | 
|  | 235 | * correct size. | 
|  | 236 | */ | 
|  | 237 | ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); | 
|  | 238 | if (ptr_size > ULONG_MAX - size) | 
|  | 239 | goto fail; | 
|  | 240 | size += ptr_size; | 
|  | 241 |  | 
|  | 242 | acct_arg_size(bprm, size / PAGE_SIZE); | 
|  | 243 |  | 
|  | 244 | /* | 
|  | 245 | * We've historically supported up to 32 pages (ARG_MAX) | 
|  | 246 | * of argument strings even with small stacks | 
|  | 247 | */ | 
|  | 248 | if (size <= ARG_MAX) | 
|  | 249 | return page; | 
|  | 250 |  | 
|  | 251 | /* | 
|  | 252 | * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM | 
|  | 253 | * (whichever is smaller) for the argv+env strings. | 
|  | 254 | * This ensures that: | 
|  | 255 | *  - the remaining binfmt code will not run out of stack space, | 
|  | 256 | *  - the program will have a reasonable amount of stack left | 
|  | 257 | *    to work from. | 
|  | 258 | */ | 
|  | 259 | limit = _STK_LIM / 4 * 3; | 
|  | 260 | limit = min(limit, bprm->rlim_stack.rlim_cur / 4); | 
|  | 261 | if (size > limit) | 
|  | 262 | goto fail; | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | return page; | 
|  | 266 |  | 
|  | 267 | fail: | 
|  | 268 | put_page(page); | 
|  | 269 | return NULL; | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | static void put_arg_page(struct page *page) | 
|  | 273 | { | 
|  | 274 | put_page(page); | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | 278 | { | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | 282 | struct page *page) | 
|  | 283 | { | 
|  | 284 | flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | 288 | { | 
|  | 289 | int err; | 
|  | 290 | struct vm_area_struct *vma = NULL; | 
|  | 291 | struct mm_struct *mm = bprm->mm; | 
|  | 292 |  | 
|  | 293 | bprm->vma = vma = vm_area_alloc(mm); | 
|  | 294 | if (!vma) | 
|  | 295 | return -ENOMEM; | 
|  | 296 | vma_set_anonymous(vma); | 
|  | 297 |  | 
|  | 298 | if (down_write_killable(&mm->mmap_sem)) { | 
|  | 299 | err = -EINTR; | 
|  | 300 | goto err_free; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | /* | 
|  | 304 | * Place the stack at the largest stack address the architecture | 
|  | 305 | * supports. Later, we'll move this to an appropriate place. We don't | 
|  | 306 | * use STACK_TOP because that can depend on attributes which aren't | 
|  | 307 | * configured yet. | 
|  | 308 | */ | 
|  | 309 | BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); | 
|  | 310 | vma->vm_end = STACK_TOP_MAX; | 
|  | 311 | vma->vm_start = vma->vm_end - PAGE_SIZE; | 
|  | 312 | vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; | 
|  | 313 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  | 314 |  | 
|  | 315 | err = insert_vm_struct(mm, vma); | 
|  | 316 | if (err) | 
|  | 317 | goto err; | 
|  | 318 |  | 
|  | 319 | mm->stack_vm = mm->total_vm = 1; | 
|  | 320 | arch_bprm_mm_init(mm, vma); | 
|  | 321 | up_write(&mm->mmap_sem); | 
|  | 322 | bprm->p = vma->vm_end - sizeof(void *); | 
|  | 323 | return 0; | 
|  | 324 | err: | 
|  | 325 | up_write(&mm->mmap_sem); | 
|  | 326 | err_free: | 
|  | 327 | bprm->vma = NULL; | 
|  | 328 | vm_area_free(vma); | 
|  | 329 | return err; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | 333 | { | 
|  | 334 | return len <= MAX_ARG_STRLEN; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | #else | 
|  | 338 |  | 
|  | 339 | static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
|  | 340 | { | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | 344 | int write) | 
|  | 345 | { | 
|  | 346 | struct page *page; | 
|  | 347 |  | 
|  | 348 | page = bprm->page[pos / PAGE_SIZE]; | 
|  | 349 | if (!page && write) { | 
|  | 350 | page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | 
|  | 351 | if (!page) | 
|  | 352 | return NULL; | 
|  | 353 | bprm->page[pos / PAGE_SIZE] = page; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | return page; | 
|  | 357 | } | 
|  | 358 |  | 
|  | 359 | static void put_arg_page(struct page *page) | 
|  | 360 | { | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | static void free_arg_page(struct linux_binprm *bprm, int i) | 
|  | 364 | { | 
|  | 365 | if (bprm->page[i]) { | 
|  | 366 | __free_page(bprm->page[i]); | 
|  | 367 | bprm->page[i] = NULL; | 
|  | 368 | } | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | 372 | { | 
|  | 373 | int i; | 
|  | 374 |  | 
|  | 375 | for (i = 0; i < MAX_ARG_PAGES; i++) | 
|  | 376 | free_arg_page(bprm, i); | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | 380 | struct page *page) | 
|  | 381 | { | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | 385 | { | 
|  | 386 | bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | 
|  | 387 | return 0; | 
|  | 388 | } | 
|  | 389 |  | 
|  | 390 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | 391 | { | 
|  | 392 | return len <= bprm->p; | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | #endif /* CONFIG_MMU */ | 
|  | 396 |  | 
|  | 397 | /* | 
|  | 398 | * Create a new mm_struct and populate it with a temporary stack | 
|  | 399 | * vm_area_struct.  We don't have enough context at this point to set the stack | 
|  | 400 | * flags, permissions, and offset, so we use temporary values.  We'll update | 
|  | 401 | * them later in setup_arg_pages(). | 
|  | 402 | */ | 
|  | 403 | static int bprm_mm_init(struct linux_binprm *bprm) | 
|  | 404 | { | 
|  | 405 | int err; | 
|  | 406 | struct mm_struct *mm = NULL; | 
|  | 407 |  | 
|  | 408 | bprm->mm = mm = mm_alloc(); | 
|  | 409 | err = -ENOMEM; | 
|  | 410 | if (!mm) | 
|  | 411 | goto err; | 
|  | 412 |  | 
|  | 413 | /* Save current stack limit for all calculations made during exec. */ | 
|  | 414 | task_lock(current->group_leader); | 
|  | 415 | bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; | 
|  | 416 | task_unlock(current->group_leader); | 
|  | 417 |  | 
|  | 418 | err = __bprm_mm_init(bprm); | 
|  | 419 | if (err) | 
|  | 420 | goto err; | 
|  | 421 |  | 
|  | 422 | return 0; | 
|  | 423 |  | 
|  | 424 | err: | 
|  | 425 | if (mm) { | 
|  | 426 | bprm->mm = NULL; | 
|  | 427 | mmdrop(mm); | 
|  | 428 | } | 
|  | 429 |  | 
|  | 430 | return err; | 
|  | 431 | } | 
|  | 432 |  | 
|  | 433 | struct user_arg_ptr { | 
|  | 434 | #ifdef CONFIG_COMPAT | 
|  | 435 | bool is_compat; | 
|  | 436 | #endif | 
|  | 437 | union { | 
|  | 438 | const char __user *const __user *native; | 
|  | 439 | #ifdef CONFIG_COMPAT | 
|  | 440 | const compat_uptr_t __user *compat; | 
|  | 441 | #endif | 
|  | 442 | } ptr; | 
|  | 443 | }; | 
|  | 444 |  | 
|  | 445 | static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) | 
|  | 446 | { | 
|  | 447 | const char __user *native; | 
|  | 448 |  | 
|  | 449 | #ifdef CONFIG_COMPAT | 
|  | 450 | if (unlikely(argv.is_compat)) { | 
|  | 451 | compat_uptr_t compat; | 
|  | 452 |  | 
|  | 453 | if (get_user(compat, argv.ptr.compat + nr)) | 
|  | 454 | return ERR_PTR(-EFAULT); | 
|  | 455 |  | 
|  | 456 | return compat_ptr(compat); | 
|  | 457 | } | 
|  | 458 | #endif | 
|  | 459 |  | 
|  | 460 | if (get_user(native, argv.ptr.native + nr)) | 
|  | 461 | return ERR_PTR(-EFAULT); | 
|  | 462 |  | 
|  | 463 | return native; | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | /* | 
|  | 467 | * count() counts the number of strings in array ARGV. | 
|  | 468 | */ | 
|  | 469 | static int count(struct user_arg_ptr argv, int max) | 
|  | 470 | { | 
|  | 471 | int i = 0; | 
|  | 472 |  | 
|  | 473 | if (argv.ptr.native != NULL) { | 
|  | 474 | for (;;) { | 
|  | 475 | const char __user *p = get_user_arg_ptr(argv, i); | 
|  | 476 |  | 
|  | 477 | if (!p) | 
|  | 478 | break; | 
|  | 479 |  | 
|  | 480 | if (IS_ERR(p)) | 
|  | 481 | return -EFAULT; | 
|  | 482 |  | 
|  | 483 | if (i >= max) | 
|  | 484 | return -E2BIG; | 
|  | 485 | ++i; | 
|  | 486 |  | 
|  | 487 | if (fatal_signal_pending(current)) | 
|  | 488 | return -ERESTARTNOHAND; | 
|  | 489 | cond_resched(); | 
|  | 490 | } | 
|  | 491 | } | 
|  | 492 | return i; | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | /* | 
|  | 496 | * 'copy_strings()' copies argument/environment strings from the old | 
|  | 497 | * processes's memory to the new process's stack.  The call to get_user_pages() | 
|  | 498 | * ensures the destination page is created and not swapped out. | 
|  | 499 | */ | 
|  | 500 | static int copy_strings(int argc, struct user_arg_ptr argv, | 
|  | 501 | struct linux_binprm *bprm) | 
|  | 502 | { | 
|  | 503 | struct page *kmapped_page = NULL; | 
|  | 504 | char *kaddr = NULL; | 
|  | 505 | unsigned long kpos = 0; | 
|  | 506 | int ret; | 
|  | 507 |  | 
|  | 508 | while (argc-- > 0) { | 
|  | 509 | const char __user *str; | 
|  | 510 | int len; | 
|  | 511 | unsigned long pos; | 
|  | 512 |  | 
|  | 513 | ret = -EFAULT; | 
|  | 514 | str = get_user_arg_ptr(argv, argc); | 
|  | 515 | if (IS_ERR(str)) | 
|  | 516 | goto out; | 
|  | 517 |  | 
|  | 518 | len = strnlen_user(str, MAX_ARG_STRLEN); | 
|  | 519 | if (!len) | 
|  | 520 | goto out; | 
|  | 521 |  | 
|  | 522 | ret = -E2BIG; | 
|  | 523 | if (!valid_arg_len(bprm, len)) | 
|  | 524 | goto out; | 
|  | 525 |  | 
|  | 526 | /* We're going to work our way backwords. */ | 
|  | 527 | pos = bprm->p; | 
|  | 528 | str += len; | 
|  | 529 | bprm->p -= len; | 
|  | 530 |  | 
|  | 531 | while (len > 0) { | 
|  | 532 | int offset, bytes_to_copy; | 
|  | 533 |  | 
|  | 534 | if (fatal_signal_pending(current)) { | 
|  | 535 | ret = -ERESTARTNOHAND; | 
|  | 536 | goto out; | 
|  | 537 | } | 
|  | 538 | cond_resched(); | 
|  | 539 |  | 
|  | 540 | offset = pos % PAGE_SIZE; | 
|  | 541 | if (offset == 0) | 
|  | 542 | offset = PAGE_SIZE; | 
|  | 543 |  | 
|  | 544 | bytes_to_copy = offset; | 
|  | 545 | if (bytes_to_copy > len) | 
|  | 546 | bytes_to_copy = len; | 
|  | 547 |  | 
|  | 548 | offset -= bytes_to_copy; | 
|  | 549 | pos -= bytes_to_copy; | 
|  | 550 | str -= bytes_to_copy; | 
|  | 551 | len -= bytes_to_copy; | 
|  | 552 |  | 
|  | 553 | if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | 
|  | 554 | struct page *page; | 
|  | 555 |  | 
|  | 556 | page = get_arg_page(bprm, pos, 1); | 
|  | 557 | if (!page) { | 
|  | 558 | ret = -E2BIG; | 
|  | 559 | goto out; | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | if (kmapped_page) { | 
|  | 563 | flush_kernel_dcache_page(kmapped_page); | 
|  | 564 | kunmap(kmapped_page); | 
|  | 565 | put_arg_page(kmapped_page); | 
|  | 566 | } | 
|  | 567 | kmapped_page = page; | 
|  | 568 | kaddr = kmap(kmapped_page); | 
|  | 569 | kpos = pos & PAGE_MASK; | 
|  | 570 | flush_arg_page(bprm, kpos, kmapped_page); | 
|  | 571 | } | 
|  | 572 | if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | 
|  | 573 | ret = -EFAULT; | 
|  | 574 | goto out; | 
|  | 575 | } | 
|  | 576 | } | 
|  | 577 | } | 
|  | 578 | ret = 0; | 
|  | 579 | out: | 
|  | 580 | if (kmapped_page) { | 
|  | 581 | flush_kernel_dcache_page(kmapped_page); | 
|  | 582 | kunmap(kmapped_page); | 
|  | 583 | put_arg_page(kmapped_page); | 
|  | 584 | } | 
|  | 585 | return ret; | 
|  | 586 | } | 
|  | 587 |  | 
|  | 588 | /* | 
|  | 589 | * Like copy_strings, but get argv and its values from kernel memory. | 
|  | 590 | */ | 
|  | 591 | int copy_strings_kernel(int argc, const char *const *__argv, | 
|  | 592 | struct linux_binprm *bprm) | 
|  | 593 | { | 
|  | 594 | int r; | 
|  | 595 | mm_segment_t oldfs = get_fs(); | 
|  | 596 | struct user_arg_ptr argv = { | 
|  | 597 | .ptr.native = (const char __user *const  __user *)__argv, | 
|  | 598 | }; | 
|  | 599 |  | 
|  | 600 | set_fs(KERNEL_DS); | 
|  | 601 | r = copy_strings(argc, argv, bprm); | 
|  | 602 | set_fs(oldfs); | 
|  | 603 |  | 
|  | 604 | return r; | 
|  | 605 | } | 
|  | 606 | EXPORT_SYMBOL(copy_strings_kernel); | 
|  | 607 |  | 
|  | 608 | #ifdef CONFIG_MMU | 
|  | 609 |  | 
|  | 610 | /* | 
|  | 611 | * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once | 
|  | 612 | * the binfmt code determines where the new stack should reside, we shift it to | 
|  | 613 | * its final location.  The process proceeds as follows: | 
|  | 614 | * | 
|  | 615 | * 1) Use shift to calculate the new vma endpoints. | 
|  | 616 | * 2) Extend vma to cover both the old and new ranges.  This ensures the | 
|  | 617 | *    arguments passed to subsequent functions are consistent. | 
|  | 618 | * 3) Move vma's page tables to the new range. | 
|  | 619 | * 4) Free up any cleared pgd range. | 
|  | 620 | * 5) Shrink the vma to cover only the new range. | 
|  | 621 | */ | 
|  | 622 | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | 
|  | 623 | { | 
|  | 624 | struct mm_struct *mm = vma->vm_mm; | 
|  | 625 | unsigned long old_start = vma->vm_start; | 
|  | 626 | unsigned long old_end = vma->vm_end; | 
|  | 627 | unsigned long length = old_end - old_start; | 
|  | 628 | unsigned long new_start = old_start - shift; | 
|  | 629 | unsigned long new_end = old_end - shift; | 
|  | 630 | struct mmu_gather tlb; | 
|  | 631 |  | 
|  | 632 | BUG_ON(new_start > new_end); | 
|  | 633 |  | 
|  | 634 | /* | 
|  | 635 | * ensure there are no vmas between where we want to go | 
|  | 636 | * and where we are | 
|  | 637 | */ | 
|  | 638 | if (vma != find_vma(mm, new_start)) | 
|  | 639 | return -EFAULT; | 
|  | 640 |  | 
|  | 641 | /* | 
|  | 642 | * cover the whole range: [new_start, old_end) | 
|  | 643 | */ | 
|  | 644 | if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) | 
|  | 645 | return -ENOMEM; | 
|  | 646 |  | 
|  | 647 | /* | 
|  | 648 | * move the page tables downwards, on failure we rely on | 
|  | 649 | * process cleanup to remove whatever mess we made. | 
|  | 650 | */ | 
|  | 651 | if (length != move_page_tables(vma, old_start, | 
|  | 652 | vma, new_start, length, false)) | 
|  | 653 | return -ENOMEM; | 
|  | 654 |  | 
|  | 655 | lru_add_drain(); | 
|  | 656 | tlb_gather_mmu(&tlb, mm, old_start, old_end); | 
|  | 657 | if (new_end > old_start) { | 
|  | 658 | /* | 
|  | 659 | * when the old and new regions overlap clear from new_end. | 
|  | 660 | */ | 
|  | 661 | free_pgd_range(&tlb, new_end, old_end, new_end, | 
|  | 662 | vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); | 
|  | 663 | } else { | 
|  | 664 | /* | 
|  | 665 | * otherwise, clean from old_start; this is done to not touch | 
|  | 666 | * the address space in [new_end, old_start) some architectures | 
|  | 667 | * have constraints on va-space that make this illegal (IA64) - | 
|  | 668 | * for the others its just a little faster. | 
|  | 669 | */ | 
|  | 670 | free_pgd_range(&tlb, old_start, old_end, new_end, | 
|  | 671 | vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); | 
|  | 672 | } | 
|  | 673 | tlb_finish_mmu(&tlb, old_start, old_end); | 
|  | 674 |  | 
|  | 675 | /* | 
|  | 676 | * Shrink the vma to just the new range.  Always succeeds. | 
|  | 677 | */ | 
|  | 678 | vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | 
|  | 679 |  | 
|  | 680 | return 0; | 
|  | 681 | } | 
|  | 682 |  | 
|  | 683 | /* | 
|  | 684 | * Finalizes the stack vm_area_struct. The flags and permissions are updated, | 
|  | 685 | * the stack is optionally relocated, and some extra space is added. | 
|  | 686 | */ | 
|  | 687 | int setup_arg_pages(struct linux_binprm *bprm, | 
|  | 688 | unsigned long stack_top, | 
|  | 689 | int executable_stack) | 
|  | 690 | { | 
|  | 691 | unsigned long ret; | 
|  | 692 | unsigned long stack_shift; | 
|  | 693 | struct mm_struct *mm = current->mm; | 
|  | 694 | struct vm_area_struct *vma = bprm->vma; | 
|  | 695 | struct vm_area_struct *prev = NULL; | 
|  | 696 | unsigned long vm_flags; | 
|  | 697 | unsigned long stack_base; | 
|  | 698 | unsigned long stack_size; | 
|  | 699 | unsigned long stack_expand; | 
|  | 700 | unsigned long rlim_stack; | 
|  | 701 |  | 
|  | 702 | #ifdef CONFIG_STACK_GROWSUP | 
|  | 703 | /* Limit stack size */ | 
|  | 704 | stack_base = bprm->rlim_stack.rlim_max; | 
|  | 705 | if (stack_base > STACK_SIZE_MAX) | 
|  | 706 | stack_base = STACK_SIZE_MAX; | 
|  | 707 |  | 
|  | 708 | /* Add space for stack randomization. */ | 
|  | 709 | stack_base += (STACK_RND_MASK << PAGE_SHIFT); | 
|  | 710 |  | 
|  | 711 | /* Make sure we didn't let the argument array grow too large. */ | 
|  | 712 | if (vma->vm_end - vma->vm_start > stack_base) | 
|  | 713 | return -ENOMEM; | 
|  | 714 |  | 
|  | 715 | stack_base = PAGE_ALIGN(stack_top - stack_base); | 
|  | 716 |  | 
|  | 717 | stack_shift = vma->vm_start - stack_base; | 
|  | 718 | mm->arg_start = bprm->p - stack_shift; | 
|  | 719 | bprm->p = vma->vm_end - stack_shift; | 
|  | 720 | #else | 
|  | 721 | stack_top = arch_align_stack(stack_top); | 
|  | 722 | stack_top = PAGE_ALIGN(stack_top); | 
|  | 723 |  | 
|  | 724 | if (unlikely(stack_top < mmap_min_addr) || | 
|  | 725 | unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) | 
|  | 726 | return -ENOMEM; | 
|  | 727 |  | 
|  | 728 | stack_shift = vma->vm_end - stack_top; | 
|  | 729 |  | 
|  | 730 | bprm->p -= stack_shift; | 
|  | 731 | mm->arg_start = bprm->p; | 
|  | 732 | #endif | 
|  | 733 |  | 
|  | 734 | if (bprm->loader) | 
|  | 735 | bprm->loader -= stack_shift; | 
|  | 736 | bprm->exec -= stack_shift; | 
|  | 737 |  | 
|  | 738 | if (down_write_killable(&mm->mmap_sem)) | 
|  | 739 | return -EINTR; | 
|  | 740 |  | 
|  | 741 | vm_flags = VM_STACK_FLAGS; | 
|  | 742 |  | 
|  | 743 | /* | 
|  | 744 | * Adjust stack execute permissions; explicitly enable for | 
|  | 745 | * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | 
|  | 746 | * (arch default) otherwise. | 
|  | 747 | */ | 
|  | 748 | if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | 
|  | 749 | vm_flags |= VM_EXEC; | 
|  | 750 | else if (executable_stack == EXSTACK_DISABLE_X) | 
|  | 751 | vm_flags &= ~VM_EXEC; | 
|  | 752 | vm_flags |= mm->def_flags; | 
|  | 753 | vm_flags |= VM_STACK_INCOMPLETE_SETUP; | 
|  | 754 |  | 
|  | 755 | ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | 
|  | 756 | vm_flags); | 
|  | 757 | if (ret) | 
|  | 758 | goto out_unlock; | 
|  | 759 | BUG_ON(prev != vma); | 
|  | 760 |  | 
|  | 761 | /* Move stack pages down in memory. */ | 
|  | 762 | if (stack_shift) { | 
|  | 763 | ret = shift_arg_pages(vma, stack_shift); | 
|  | 764 | if (ret) | 
|  | 765 | goto out_unlock; | 
|  | 766 | } | 
|  | 767 |  | 
|  | 768 | /* mprotect_fixup is overkill to remove the temporary stack flags */ | 
|  | 769 | vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; | 
|  | 770 |  | 
|  | 771 | stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ | 
|  | 772 | stack_size = vma->vm_end - vma->vm_start; | 
|  | 773 | /* | 
|  | 774 | * Align this down to a page boundary as expand_stack | 
|  | 775 | * will align it up. | 
|  | 776 | */ | 
|  | 777 | rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; | 
|  | 778 | #ifdef CONFIG_STACK_GROWSUP | 
|  | 779 | if (stack_size + stack_expand > rlim_stack) | 
|  | 780 | stack_base = vma->vm_start + rlim_stack; | 
|  | 781 | else | 
|  | 782 | stack_base = vma->vm_end + stack_expand; | 
|  | 783 | #else | 
|  | 784 | if (stack_size + stack_expand > rlim_stack) | 
|  | 785 | stack_base = vma->vm_end - rlim_stack; | 
|  | 786 | else | 
|  | 787 | stack_base = vma->vm_start - stack_expand; | 
|  | 788 | #endif | 
|  | 789 | current->mm->start_stack = bprm->p; | 
|  | 790 | ret = expand_stack(vma, stack_base); | 
|  | 791 | if (ret) | 
|  | 792 | ret = -EFAULT; | 
|  | 793 |  | 
|  | 794 | out_unlock: | 
|  | 795 | up_write(&mm->mmap_sem); | 
|  | 796 | return ret; | 
|  | 797 | } | 
|  | 798 | EXPORT_SYMBOL(setup_arg_pages); | 
|  | 799 |  | 
|  | 800 | #else | 
|  | 801 |  | 
|  | 802 | /* | 
|  | 803 | * Transfer the program arguments and environment from the holding pages | 
|  | 804 | * onto the stack. The provided stack pointer is adjusted accordingly. | 
|  | 805 | */ | 
|  | 806 | int transfer_args_to_stack(struct linux_binprm *bprm, | 
|  | 807 | unsigned long *sp_location) | 
|  | 808 | { | 
|  | 809 | unsigned long index, stop, sp; | 
|  | 810 | int ret = 0; | 
|  | 811 |  | 
|  | 812 | stop = bprm->p >> PAGE_SHIFT; | 
|  | 813 | sp = *sp_location; | 
|  | 814 |  | 
|  | 815 | for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { | 
|  | 816 | unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; | 
|  | 817 | char *src = kmap(bprm->page[index]) + offset; | 
|  | 818 | sp -= PAGE_SIZE - offset; | 
|  | 819 | if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) | 
|  | 820 | ret = -EFAULT; | 
|  | 821 | kunmap(bprm->page[index]); | 
|  | 822 | if (ret) | 
|  | 823 | goto out; | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | *sp_location = sp; | 
|  | 827 |  | 
|  | 828 | out: | 
|  | 829 | return ret; | 
|  | 830 | } | 
|  | 831 | EXPORT_SYMBOL(transfer_args_to_stack); | 
|  | 832 |  | 
|  | 833 | #endif /* CONFIG_MMU */ | 
|  | 834 |  | 
|  | 835 | static struct file *do_open_execat(int fd, struct filename *name, int flags) | 
|  | 836 | { | 
|  | 837 | struct file *file; | 
|  | 838 | int err; | 
|  | 839 | struct open_flags open_exec_flags = { | 
|  | 840 | .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
|  | 841 | .acc_mode = MAY_EXEC, | 
|  | 842 | .intent = LOOKUP_OPEN, | 
|  | 843 | .lookup_flags = LOOKUP_FOLLOW, | 
|  | 844 | }; | 
|  | 845 |  | 
|  | 846 | if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) | 
|  | 847 | return ERR_PTR(-EINVAL); | 
|  | 848 | if (flags & AT_SYMLINK_NOFOLLOW) | 
|  | 849 | open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; | 
|  | 850 | if (flags & AT_EMPTY_PATH) | 
|  | 851 | open_exec_flags.lookup_flags |= LOOKUP_EMPTY; | 
|  | 852 |  | 
|  | 853 | file = do_filp_open(fd, name, &open_exec_flags); | 
|  | 854 | if (IS_ERR(file)) | 
|  | 855 | goto out; | 
|  | 856 |  | 
|  | 857 | err = -EACCES; | 
|  | 858 | if (!S_ISREG(file_inode(file)->i_mode)) | 
|  | 859 | goto exit; | 
|  | 860 |  | 
|  | 861 | if (path_noexec(&file->f_path)) | 
|  | 862 | goto exit; | 
|  | 863 |  | 
|  | 864 | err = deny_write_access(file); | 
|  | 865 | if (err) | 
|  | 866 | goto exit; | 
|  | 867 |  | 
|  | 868 | if (name->name[0] != '\0') | 
|  | 869 | fsnotify_open(file); | 
|  | 870 |  | 
|  | 871 | out: | 
|  | 872 | return file; | 
|  | 873 |  | 
|  | 874 | exit: | 
|  | 875 | fput(file); | 
|  | 876 | return ERR_PTR(err); | 
|  | 877 | } | 
|  | 878 |  | 
|  | 879 | struct file *open_exec(const char *name) | 
|  | 880 | { | 
|  | 881 | struct filename *filename = getname_kernel(name); | 
|  | 882 | struct file *f = ERR_CAST(filename); | 
|  | 883 |  | 
|  | 884 | if (!IS_ERR(filename)) { | 
|  | 885 | f = do_open_execat(AT_FDCWD, filename, 0); | 
|  | 886 | putname(filename); | 
|  | 887 | } | 
|  | 888 | return f; | 
|  | 889 | } | 
|  | 890 | EXPORT_SYMBOL(open_exec); | 
|  | 891 |  | 
|  | 892 | int kernel_read_file(struct file *file, void **buf, loff_t *size, | 
|  | 893 | loff_t max_size, enum kernel_read_file_id id) | 
|  | 894 | { | 
|  | 895 | loff_t i_size, pos; | 
|  | 896 | ssize_t bytes = 0; | 
|  | 897 | int ret; | 
|  | 898 |  | 
|  | 899 | if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) | 
|  | 900 | return -EINVAL; | 
|  | 901 |  | 
|  | 902 | ret = deny_write_access(file); | 
|  | 903 | if (ret) | 
|  | 904 | return ret; | 
|  | 905 |  | 
|  | 906 | ret = security_kernel_read_file(file, id); | 
|  | 907 | if (ret) | 
|  | 908 | goto out; | 
|  | 909 |  | 
|  | 910 | i_size = i_size_read(file_inode(file)); | 
|  | 911 | if (max_size > 0 && i_size > max_size) { | 
|  | 912 | ret = -EFBIG; | 
|  | 913 | goto out; | 
|  | 914 | } | 
|  | 915 | if (i_size <= 0) { | 
|  | 916 | ret = -EINVAL; | 
|  | 917 | goto out; | 
|  | 918 | } | 
|  | 919 |  | 
|  | 920 | if (id != READING_FIRMWARE_PREALLOC_BUFFER) | 
|  | 921 | *buf = vmalloc(i_size); | 
|  | 922 | if (!*buf) { | 
|  | 923 | ret = -ENOMEM; | 
|  | 924 | goto out; | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | pos = 0; | 
|  | 928 | while (pos < i_size) { | 
|  | 929 | bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); | 
|  | 930 | if (bytes < 0) { | 
|  | 931 | ret = bytes; | 
|  | 932 | goto out_free; | 
|  | 933 | } | 
|  | 934 |  | 
|  | 935 | if (bytes == 0) | 
|  | 936 | break; | 
|  | 937 | } | 
|  | 938 |  | 
|  | 939 | if (pos != i_size) { | 
|  | 940 | ret = -EIO; | 
|  | 941 | goto out_free; | 
|  | 942 | } | 
|  | 943 |  | 
|  | 944 | ret = security_kernel_post_read_file(file, *buf, i_size, id); | 
|  | 945 | if (!ret) | 
|  | 946 | *size = pos; | 
|  | 947 |  | 
|  | 948 | out_free: | 
|  | 949 | if (ret < 0) { | 
|  | 950 | if (id != READING_FIRMWARE_PREALLOC_BUFFER) { | 
|  | 951 | vfree(*buf); | 
|  | 952 | *buf = NULL; | 
|  | 953 | } | 
|  | 954 | } | 
|  | 955 |  | 
|  | 956 | out: | 
|  | 957 | allow_write_access(file); | 
|  | 958 | return ret; | 
|  | 959 | } | 
|  | 960 | EXPORT_SYMBOL_GPL(kernel_read_file); | 
|  | 961 |  | 
|  | 962 | int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, | 
|  | 963 | loff_t max_size, enum kernel_read_file_id id) | 
|  | 964 | { | 
|  | 965 | struct file *file; | 
|  | 966 | int ret; | 
|  | 967 |  | 
|  | 968 | if (!path || !*path) | 
|  | 969 | return -EINVAL; | 
|  | 970 |  | 
|  | 971 | file = filp_open(path, O_RDONLY, 0); | 
|  | 972 | if (IS_ERR(file)) | 
|  | 973 | return PTR_ERR(file); | 
|  | 974 |  | 
|  | 975 | ret = kernel_read_file(file, buf, size, max_size, id); | 
|  | 976 | fput(file); | 
|  | 977 | return ret; | 
|  | 978 | } | 
|  | 979 | EXPORT_SYMBOL_GPL(kernel_read_file_from_path); | 
|  | 980 |  | 
|  | 981 | int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, | 
|  | 982 | enum kernel_read_file_id id) | 
|  | 983 | { | 
|  | 984 | struct fd f = fdget(fd); | 
|  | 985 | int ret = -EBADF; | 
|  | 986 |  | 
|  | 987 | if (!f.file) | 
|  | 988 | goto out; | 
|  | 989 |  | 
|  | 990 | ret = kernel_read_file(f.file, buf, size, max_size, id); | 
|  | 991 | out: | 
|  | 992 | fdput(f); | 
|  | 993 | return ret; | 
|  | 994 | } | 
|  | 995 | EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); | 
|  | 996 |  | 
|  | 997 | ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) | 
|  | 998 | { | 
|  | 999 | ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); | 
|  | 1000 | if (res > 0) | 
|  | 1001 | flush_icache_range(addr, addr + len); | 
|  | 1002 | return res; | 
|  | 1003 | } | 
|  | 1004 | EXPORT_SYMBOL(read_code); | 
|  | 1005 |  | 
|  | 1006 | static int exec_mmap(struct mm_struct *mm) | 
|  | 1007 | { | 
|  | 1008 | struct task_struct *tsk; | 
|  | 1009 | struct mm_struct *old_mm, *active_mm; | 
|  | 1010 |  | 
|  | 1011 | /* Notify parent that we're no longer interested in the old VM */ | 
|  | 1012 | tsk = current; | 
|  | 1013 | old_mm = current->mm; | 
|  | 1014 | mm_release(tsk, old_mm); | 
|  | 1015 |  | 
|  | 1016 | if (old_mm) { | 
|  | 1017 | sync_mm_rss(old_mm); | 
|  | 1018 | /* | 
|  | 1019 | * Make sure that if there is a core dump in progress | 
|  | 1020 | * for the old mm, we get out and die instead of going | 
|  | 1021 | * through with the exec.  We must hold mmap_sem around | 
|  | 1022 | * checking core_state and changing tsk->mm. | 
|  | 1023 | */ | 
|  | 1024 | down_read(&old_mm->mmap_sem); | 
|  | 1025 | if (unlikely(old_mm->core_state)) { | 
|  | 1026 | up_read(&old_mm->mmap_sem); | 
|  | 1027 | return -EINTR; | 
|  | 1028 | } | 
|  | 1029 | } | 
|  | 1030 | task_lock(tsk); | 
|  | 1031 | active_mm = tsk->active_mm; | 
|  | 1032 | tsk->mm = mm; | 
|  | 1033 | tsk->active_mm = mm; | 
|  | 1034 | activate_mm(active_mm, mm); | 
|  | 1035 | tsk->mm->vmacache_seqnum = 0; | 
|  | 1036 | vmacache_flush(tsk); | 
|  | 1037 | task_unlock(tsk); | 
|  | 1038 | if (old_mm) { | 
|  | 1039 | up_read(&old_mm->mmap_sem); | 
|  | 1040 | BUG_ON(active_mm != old_mm); | 
|  | 1041 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); | 
|  | 1042 | mm_update_next_owner(old_mm); | 
|  | 1043 | mmput(old_mm); | 
|  | 1044 | return 0; | 
|  | 1045 | } | 
|  | 1046 | mmdrop(active_mm); | 
|  | 1047 | return 0; | 
|  | 1048 | } | 
|  | 1049 |  | 
|  | 1050 | /* | 
|  | 1051 | * This function makes sure the current process has its own signal table, | 
|  | 1052 | * so that flush_signal_handlers can later reset the handlers without | 
|  | 1053 | * disturbing other processes.  (Other processes might share the signal | 
|  | 1054 | * table via the CLONE_SIGHAND option to clone().) | 
|  | 1055 | */ | 
|  | 1056 | static int de_thread(struct task_struct *tsk) | 
|  | 1057 | { | 
|  | 1058 | struct signal_struct *sig = tsk->signal; | 
|  | 1059 | struct sighand_struct *oldsighand = tsk->sighand; | 
|  | 1060 | spinlock_t *lock = &oldsighand->siglock; | 
|  | 1061 |  | 
|  | 1062 | if (thread_group_empty(tsk)) | 
|  | 1063 | goto no_thread_group; | 
|  | 1064 |  | 
|  | 1065 | /* | 
|  | 1066 | * Kill all other threads in the thread group. | 
|  | 1067 | */ | 
|  | 1068 | spin_lock_irq(lock); | 
|  | 1069 | if (signal_group_exit(sig)) { | 
|  | 1070 | /* | 
|  | 1071 | * Another group action in progress, just | 
|  | 1072 | * return so that the signal is processed. | 
|  | 1073 | */ | 
|  | 1074 | spin_unlock_irq(lock); | 
|  | 1075 | return -EAGAIN; | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | sig->group_exit_task = tsk; | 
|  | 1079 | sig->notify_count = zap_other_threads(tsk); | 
|  | 1080 | if (!thread_group_leader(tsk)) | 
|  | 1081 | sig->notify_count--; | 
|  | 1082 |  | 
|  | 1083 | while (sig->notify_count) { | 
|  | 1084 | __set_current_state(TASK_KILLABLE); | 
|  | 1085 | spin_unlock_irq(lock); | 
|  | 1086 | schedule(); | 
|  | 1087 | if (unlikely(__fatal_signal_pending(tsk))) | 
|  | 1088 | goto killed; | 
|  | 1089 | spin_lock_irq(lock); | 
|  | 1090 | } | 
|  | 1091 | spin_unlock_irq(lock); | 
|  | 1092 |  | 
|  | 1093 | /* | 
|  | 1094 | * At this point all other threads have exited, all we have to | 
|  | 1095 | * do is to wait for the thread group leader to become inactive, | 
|  | 1096 | * and to assume its PID: | 
|  | 1097 | */ | 
|  | 1098 | if (!thread_group_leader(tsk)) { | 
|  | 1099 | struct task_struct *leader = tsk->group_leader; | 
|  | 1100 |  | 
|  | 1101 | for (;;) { | 
|  | 1102 | cgroup_threadgroup_change_begin(tsk); | 
|  | 1103 | write_lock_irq(&tasklist_lock); | 
|  | 1104 | /* | 
|  | 1105 | * Do this under tasklist_lock to ensure that | 
|  | 1106 | * exit_notify() can't miss ->group_exit_task | 
|  | 1107 | */ | 
|  | 1108 | sig->notify_count = -1; | 
|  | 1109 | if (likely(leader->exit_state)) | 
|  | 1110 | break; | 
|  | 1111 | __set_current_state(TASK_KILLABLE); | 
|  | 1112 | write_unlock_irq(&tasklist_lock); | 
|  | 1113 | cgroup_threadgroup_change_end(tsk); | 
|  | 1114 | schedule(); | 
|  | 1115 | if (unlikely(__fatal_signal_pending(tsk))) | 
|  | 1116 | goto killed; | 
|  | 1117 | } | 
|  | 1118 |  | 
|  | 1119 | /* | 
|  | 1120 | * The only record we have of the real-time age of a | 
|  | 1121 | * process, regardless of execs it's done, is start_time. | 
|  | 1122 | * All the past CPU time is accumulated in signal_struct | 
|  | 1123 | * from sister threads now dead.  But in this non-leader | 
|  | 1124 | * exec, nothing survives from the original leader thread, | 
|  | 1125 | * whose birth marks the true age of this process now. | 
|  | 1126 | * When we take on its identity by switching to its PID, we | 
|  | 1127 | * also take its birthdate (always earlier than our own). | 
|  | 1128 | */ | 
|  | 1129 | tsk->start_time = leader->start_time; | 
|  | 1130 | tsk->real_start_time = leader->real_start_time; | 
|  | 1131 |  | 
|  | 1132 | BUG_ON(!same_thread_group(leader, tsk)); | 
|  | 1133 | BUG_ON(has_group_leader_pid(tsk)); | 
|  | 1134 | /* | 
|  | 1135 | * An exec() starts a new thread group with the | 
|  | 1136 | * TGID of the previous thread group. Rehash the | 
|  | 1137 | * two threads with a switched PID, and release | 
|  | 1138 | * the former thread group leader: | 
|  | 1139 | */ | 
|  | 1140 |  | 
|  | 1141 | /* Become a process group leader with the old leader's pid. | 
|  | 1142 | * The old leader becomes a thread of the this thread group. | 
|  | 1143 | * Note: The old leader also uses this pid until release_task | 
|  | 1144 | *       is called.  Odd but simple and correct. | 
|  | 1145 | */ | 
|  | 1146 | tsk->pid = leader->pid; | 
|  | 1147 | change_pid(tsk, PIDTYPE_PID, task_pid(leader)); | 
|  | 1148 | transfer_pid(leader, tsk, PIDTYPE_TGID); | 
|  | 1149 | transfer_pid(leader, tsk, PIDTYPE_PGID); | 
|  | 1150 | transfer_pid(leader, tsk, PIDTYPE_SID); | 
|  | 1151 |  | 
|  | 1152 | list_replace_rcu(&leader->tasks, &tsk->tasks); | 
|  | 1153 | list_replace_init(&leader->sibling, &tsk->sibling); | 
|  | 1154 |  | 
|  | 1155 | tsk->group_leader = tsk; | 
|  | 1156 | leader->group_leader = tsk; | 
|  | 1157 |  | 
|  | 1158 | tsk->exit_signal = SIGCHLD; | 
|  | 1159 | leader->exit_signal = -1; | 
|  | 1160 |  | 
|  | 1161 | BUG_ON(leader->exit_state != EXIT_ZOMBIE); | 
|  | 1162 | leader->exit_state = EXIT_DEAD; | 
|  | 1163 |  | 
|  | 1164 | /* | 
|  | 1165 | * We are going to release_task()->ptrace_unlink() silently, | 
|  | 1166 | * the tracer can sleep in do_wait(). EXIT_DEAD guarantees | 
|  | 1167 | * the tracer wont't block again waiting for this thread. | 
|  | 1168 | */ | 
|  | 1169 | if (unlikely(leader->ptrace)) | 
|  | 1170 | __wake_up_parent(leader, leader->parent); | 
|  | 1171 | write_unlock_irq(&tasklist_lock); | 
|  | 1172 | cgroup_threadgroup_change_end(tsk); | 
|  | 1173 |  | 
|  | 1174 | release_task(leader); | 
|  | 1175 | } | 
|  | 1176 |  | 
|  | 1177 | sig->group_exit_task = NULL; | 
|  | 1178 | sig->notify_count = 0; | 
|  | 1179 |  | 
|  | 1180 | no_thread_group: | 
|  | 1181 | /* we have changed execution domain */ | 
|  | 1182 | tsk->exit_signal = SIGCHLD; | 
|  | 1183 |  | 
|  | 1184 | #ifdef CONFIG_POSIX_TIMERS | 
|  | 1185 | exit_itimers(sig); | 
|  | 1186 | flush_itimer_signals(); | 
|  | 1187 | #endif | 
|  | 1188 |  | 
|  | 1189 | if (atomic_read(&oldsighand->count) != 1) { | 
|  | 1190 | struct sighand_struct *newsighand; | 
|  | 1191 | /* | 
|  | 1192 | * This ->sighand is shared with the CLONE_SIGHAND | 
|  | 1193 | * but not CLONE_THREAD task, switch to the new one. | 
|  | 1194 | */ | 
|  | 1195 | newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | 1196 | if (!newsighand) | 
|  | 1197 | return -ENOMEM; | 
|  | 1198 |  | 
|  | 1199 | atomic_set(&newsighand->count, 1); | 
|  | 1200 | memcpy(newsighand->action, oldsighand->action, | 
|  | 1201 | sizeof(newsighand->action)); | 
|  | 1202 |  | 
|  | 1203 | write_lock_irq(&tasklist_lock); | 
|  | 1204 | spin_lock(&oldsighand->siglock); | 
|  | 1205 | rcu_assign_pointer(tsk->sighand, newsighand); | 
|  | 1206 | spin_unlock(&oldsighand->siglock); | 
|  | 1207 | write_unlock_irq(&tasklist_lock); | 
|  | 1208 |  | 
|  | 1209 | __cleanup_sighand(oldsighand); | 
|  | 1210 | } | 
|  | 1211 |  | 
|  | 1212 | BUG_ON(!thread_group_leader(tsk)); | 
|  | 1213 | return 0; | 
|  | 1214 |  | 
|  | 1215 | killed: | 
|  | 1216 | /* protects against exit_notify() and __exit_signal() */ | 
|  | 1217 | read_lock(&tasklist_lock); | 
|  | 1218 | sig->group_exit_task = NULL; | 
|  | 1219 | sig->notify_count = 0; | 
|  | 1220 | read_unlock(&tasklist_lock); | 
|  | 1221 | return -EAGAIN; | 
|  | 1222 | } | 
|  | 1223 |  | 
|  | 1224 | char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) | 
|  | 1225 | { | 
|  | 1226 | task_lock(tsk); | 
|  | 1227 | strncpy(buf, tsk->comm, buf_size); | 
|  | 1228 | task_unlock(tsk); | 
|  | 1229 | return buf; | 
|  | 1230 | } | 
|  | 1231 | EXPORT_SYMBOL_GPL(__get_task_comm); | 
|  | 1232 |  | 
|  | 1233 | /* | 
|  | 1234 | * These functions flushes out all traces of the currently running executable | 
|  | 1235 | * so that a new one can be started | 
|  | 1236 | */ | 
|  | 1237 |  | 
|  | 1238 | void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) | 
|  | 1239 | { | 
|  | 1240 | task_lock(tsk); | 
|  | 1241 | trace_task_rename(tsk, buf); | 
|  | 1242 | strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | 
|  | 1243 | task_unlock(tsk); | 
|  | 1244 | perf_event_comm(tsk, exec); | 
|  | 1245 | } | 
|  | 1246 |  | 
|  | 1247 | /* | 
|  | 1248 | * Calling this is the point of no return. None of the failures will be | 
|  | 1249 | * seen by userspace since either the process is already taking a fatal | 
|  | 1250 | * signal (via de_thread() or coredump), or will have SEGV raised | 
|  | 1251 | * (after exec_mmap()) by search_binary_handlers (see below). | 
|  | 1252 | */ | 
|  | 1253 | int flush_old_exec(struct linux_binprm * bprm) | 
|  | 1254 | { | 
|  | 1255 | int retval; | 
|  | 1256 |  | 
|  | 1257 | /* | 
|  | 1258 | * Make sure we have a private signal table and that | 
|  | 1259 | * we are unassociated from the previous thread group. | 
|  | 1260 | */ | 
|  | 1261 | retval = de_thread(current); | 
|  | 1262 | if (retval) | 
|  | 1263 | goto out; | 
|  | 1264 |  | 
|  | 1265 | /* | 
|  | 1266 | * Must be called _before_ exec_mmap() as bprm->mm is | 
|  | 1267 | * not visibile until then. This also enables the update | 
|  | 1268 | * to be lockless. | 
|  | 1269 | */ | 
|  | 1270 | set_mm_exe_file(bprm->mm, bprm->file); | 
|  | 1271 |  | 
|  | 1272 | /* | 
|  | 1273 | * Release all of the old mmap stuff | 
|  | 1274 | */ | 
|  | 1275 | acct_arg_size(bprm, 0); | 
|  | 1276 | retval = exec_mmap(bprm->mm); | 
|  | 1277 | if (retval) | 
|  | 1278 | goto out; | 
|  | 1279 |  | 
|  | 1280 | /* | 
|  | 1281 | * After clearing bprm->mm (to mark that current is using the | 
|  | 1282 | * prepared mm now), we have nothing left of the original | 
|  | 1283 | * process. If anything from here on returns an error, the check | 
|  | 1284 | * in search_binary_handler() will SEGV current. | 
|  | 1285 | */ | 
|  | 1286 | bprm->mm = NULL; | 
|  | 1287 |  | 
|  | 1288 | set_fs(USER_DS); | 
|  | 1289 | current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | | 
|  | 1290 | PF_NOFREEZE | PF_NO_SETAFFINITY); | 
|  | 1291 | flush_thread(); | 
|  | 1292 | current->personality &= ~bprm->per_clear; | 
|  | 1293 |  | 
|  | 1294 | /* | 
|  | 1295 | * We have to apply CLOEXEC before we change whether the process is | 
|  | 1296 | * dumpable (in setup_new_exec) to avoid a race with a process in userspace | 
|  | 1297 | * trying to access the should-be-closed file descriptors of a process | 
|  | 1298 | * undergoing exec(2). | 
|  | 1299 | */ | 
|  | 1300 | do_close_on_exec(current->files); | 
|  | 1301 | return 0; | 
|  | 1302 |  | 
|  | 1303 | out: | 
|  | 1304 | return retval; | 
|  | 1305 | } | 
|  | 1306 | EXPORT_SYMBOL(flush_old_exec); | 
|  | 1307 |  | 
|  | 1308 | void would_dump(struct linux_binprm *bprm, struct file *file) | 
|  | 1309 | { | 
|  | 1310 | struct inode *inode = file_inode(file); | 
|  | 1311 | if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) { | 
|  | 1312 | struct user_namespace *old, *user_ns; | 
|  | 1313 | bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; | 
|  | 1314 |  | 
|  | 1315 | /* Ensure mm->user_ns contains the executable */ | 
|  | 1316 | user_ns = old = bprm->mm->user_ns; | 
|  | 1317 | while ((user_ns != &init_user_ns) && | 
|  | 1318 | !privileged_wrt_inode_uidgid(user_ns, inode)) | 
|  | 1319 | user_ns = user_ns->parent; | 
|  | 1320 |  | 
|  | 1321 | if (old != user_ns) { | 
|  | 1322 | bprm->mm->user_ns = get_user_ns(user_ns); | 
|  | 1323 | put_user_ns(old); | 
|  | 1324 | } | 
|  | 1325 | } | 
|  | 1326 | } | 
|  | 1327 | EXPORT_SYMBOL(would_dump); | 
|  | 1328 |  | 
|  | 1329 | void setup_new_exec(struct linux_binprm * bprm) | 
|  | 1330 | { | 
|  | 1331 | /* | 
|  | 1332 | * Once here, prepare_binrpm() will not be called any more, so | 
|  | 1333 | * the final state of setuid/setgid/fscaps can be merged into the | 
|  | 1334 | * secureexec flag. | 
|  | 1335 | */ | 
|  | 1336 | bprm->secureexec |= bprm->cap_elevated; | 
|  | 1337 |  | 
|  | 1338 | if (bprm->secureexec) { | 
|  | 1339 | /* Make sure parent cannot signal privileged process. */ | 
|  | 1340 | current->pdeath_signal = 0; | 
|  | 1341 |  | 
|  | 1342 | /* | 
|  | 1343 | * For secureexec, reset the stack limit to sane default to | 
|  | 1344 | * avoid bad behavior from the prior rlimits. This has to | 
|  | 1345 | * happen before arch_pick_mmap_layout(), which examines | 
|  | 1346 | * RLIMIT_STACK, but after the point of no return to avoid | 
|  | 1347 | * needing to clean up the change on failure. | 
|  | 1348 | */ | 
|  | 1349 | if (bprm->rlim_stack.rlim_cur > _STK_LIM) | 
|  | 1350 | bprm->rlim_stack.rlim_cur = _STK_LIM; | 
|  | 1351 | } | 
|  | 1352 |  | 
|  | 1353 | arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); | 
|  | 1354 |  | 
|  | 1355 | current->sas_ss_sp = current->sas_ss_size = 0; | 
|  | 1356 |  | 
|  | 1357 | /* | 
|  | 1358 | * Figure out dumpability. Note that this checking only of current | 
|  | 1359 | * is wrong, but userspace depends on it. This should be testing | 
|  | 1360 | * bprm->secureexec instead. | 
|  | 1361 | */ | 
|  | 1362 | if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || | 
|  | 1363 | !(uid_eq(current_euid(), current_uid()) && | 
|  | 1364 | gid_eq(current_egid(), current_gid()))) | 
|  | 1365 | set_dumpable(current->mm, suid_dumpable); | 
|  | 1366 | else | 
|  | 1367 | set_dumpable(current->mm, SUID_DUMP_USER); | 
|  | 1368 |  | 
|  | 1369 | arch_setup_new_exec(); | 
|  | 1370 | perf_event_exec(); | 
|  | 1371 | __set_task_comm(current, kbasename(bprm->filename), true); | 
|  | 1372 |  | 
|  | 1373 | /* Set the new mm task size. We have to do that late because it may | 
|  | 1374 | * depend on TIF_32BIT which is only updated in flush_thread() on | 
|  | 1375 | * some architectures like powerpc | 
|  | 1376 | */ | 
|  | 1377 | current->mm->task_size = TASK_SIZE; | 
|  | 1378 |  | 
|  | 1379 | /* An exec changes our domain. We are no longer part of the thread | 
|  | 1380 | group */ | 
|  | 1381 | current->self_exec_id++; | 
|  | 1382 | flush_signal_handlers(current, 0); | 
|  | 1383 | } | 
|  | 1384 | EXPORT_SYMBOL(setup_new_exec); | 
|  | 1385 |  | 
|  | 1386 | /* Runs immediately before start_thread() takes over. */ | 
|  | 1387 | void finalize_exec(struct linux_binprm *bprm) | 
|  | 1388 | { | 
|  | 1389 | /* Store any stack rlimit changes before starting thread. */ | 
|  | 1390 | task_lock(current->group_leader); | 
|  | 1391 | current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; | 
|  | 1392 | task_unlock(current->group_leader); | 
|  | 1393 | } | 
|  | 1394 | EXPORT_SYMBOL(finalize_exec); | 
|  | 1395 |  | 
|  | 1396 | /* | 
|  | 1397 | * Prepare credentials and lock ->cred_guard_mutex. | 
|  | 1398 | * install_exec_creds() commits the new creds and drops the lock. | 
|  | 1399 | * Or, if exec fails before, free_bprm() should release ->cred and | 
|  | 1400 | * and unlock. | 
|  | 1401 | */ | 
|  | 1402 | int prepare_bprm_creds(struct linux_binprm *bprm) | 
|  | 1403 | { | 
|  | 1404 | if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) | 
|  | 1405 | return -ERESTARTNOINTR; | 
|  | 1406 |  | 
|  | 1407 | bprm->cred = prepare_exec_creds(); | 
|  | 1408 | if (likely(bprm->cred)) | 
|  | 1409 | return 0; | 
|  | 1410 |  | 
|  | 1411 | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | 1412 | return -ENOMEM; | 
|  | 1413 | } | 
|  | 1414 |  | 
|  | 1415 | static void free_bprm(struct linux_binprm *bprm) | 
|  | 1416 | { | 
|  | 1417 | free_arg_pages(bprm); | 
|  | 1418 | if (bprm->cred) { | 
|  | 1419 | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | 1420 | abort_creds(bprm->cred); | 
|  | 1421 | } | 
|  | 1422 | if (bprm->file) { | 
|  | 1423 | allow_write_access(bprm->file); | 
|  | 1424 | fput(bprm->file); | 
|  | 1425 | } | 
|  | 1426 | /* If a binfmt changed the interp, free it. */ | 
|  | 1427 | if (bprm->interp != bprm->filename) | 
|  | 1428 | kfree(bprm->interp); | 
|  | 1429 | kfree(bprm); | 
|  | 1430 | } | 
|  | 1431 |  | 
|  | 1432 | int bprm_change_interp(const char *interp, struct linux_binprm *bprm) | 
|  | 1433 | { | 
|  | 1434 | /* If a binfmt changed the interp, free it first. */ | 
|  | 1435 | if (bprm->interp != bprm->filename) | 
|  | 1436 | kfree(bprm->interp); | 
|  | 1437 | bprm->interp = kstrdup(interp, GFP_KERNEL); | 
|  | 1438 | if (!bprm->interp) | 
|  | 1439 | return -ENOMEM; | 
|  | 1440 | return 0; | 
|  | 1441 | } | 
|  | 1442 | EXPORT_SYMBOL(bprm_change_interp); | 
|  | 1443 |  | 
|  | 1444 | /* | 
|  | 1445 | * install the new credentials for this executable | 
|  | 1446 | */ | 
|  | 1447 | void install_exec_creds(struct linux_binprm *bprm) | 
|  | 1448 | { | 
|  | 1449 | security_bprm_committing_creds(bprm); | 
|  | 1450 |  | 
|  | 1451 | commit_creds(bprm->cred); | 
|  | 1452 | bprm->cred = NULL; | 
|  | 1453 |  | 
|  | 1454 | /* | 
|  | 1455 | * Disable monitoring for regular users | 
|  | 1456 | * when executing setuid binaries. Must | 
|  | 1457 | * wait until new credentials are committed | 
|  | 1458 | * by commit_creds() above | 
|  | 1459 | */ | 
|  | 1460 | if (get_dumpable(current->mm) != SUID_DUMP_USER) | 
|  | 1461 | perf_event_exit_task(current); | 
|  | 1462 | /* | 
|  | 1463 | * cred_guard_mutex must be held at least to this point to prevent | 
|  | 1464 | * ptrace_attach() from altering our determination of the task's | 
|  | 1465 | * credentials; any time after this it may be unlocked. | 
|  | 1466 | */ | 
|  | 1467 | security_bprm_committed_creds(bprm); | 
|  | 1468 | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | 1469 | } | 
|  | 1470 | EXPORT_SYMBOL(install_exec_creds); | 
|  | 1471 |  | 
|  | 1472 | /* | 
|  | 1473 | * determine how safe it is to execute the proposed program | 
|  | 1474 | * - the caller must hold ->cred_guard_mutex to protect against | 
|  | 1475 | *   PTRACE_ATTACH or seccomp thread-sync | 
|  | 1476 | */ | 
|  | 1477 | static void check_unsafe_exec(struct linux_binprm *bprm) | 
|  | 1478 | { | 
|  | 1479 | struct task_struct *p = current, *t; | 
|  | 1480 | unsigned n_fs; | 
|  | 1481 |  | 
|  | 1482 | if (p->ptrace) | 
|  | 1483 | bprm->unsafe |= LSM_UNSAFE_PTRACE; | 
|  | 1484 |  | 
|  | 1485 | /* | 
|  | 1486 | * This isn't strictly necessary, but it makes it harder for LSMs to | 
|  | 1487 | * mess up. | 
|  | 1488 | */ | 
|  | 1489 | if (task_no_new_privs(current)) | 
|  | 1490 | bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; | 
|  | 1491 |  | 
|  | 1492 | t = p; | 
|  | 1493 | n_fs = 1; | 
|  | 1494 | spin_lock(&p->fs->lock); | 
|  | 1495 | rcu_read_lock(); | 
|  | 1496 | while_each_thread(p, t) { | 
|  | 1497 | if (t->fs == p->fs) | 
|  | 1498 | n_fs++; | 
|  | 1499 | } | 
|  | 1500 | rcu_read_unlock(); | 
|  | 1501 |  | 
|  | 1502 | if (p->fs->users > n_fs) | 
|  | 1503 | bprm->unsafe |= LSM_UNSAFE_SHARE; | 
|  | 1504 | else | 
|  | 1505 | p->fs->in_exec = 1; | 
|  | 1506 | spin_unlock(&p->fs->lock); | 
|  | 1507 | } | 
|  | 1508 |  | 
|  | 1509 | static void bprm_fill_uid(struct linux_binprm *bprm) | 
|  | 1510 | { | 
|  | 1511 | struct inode *inode; | 
|  | 1512 | unsigned int mode; | 
|  | 1513 | kuid_t uid; | 
|  | 1514 | kgid_t gid; | 
|  | 1515 |  | 
|  | 1516 | /* | 
|  | 1517 | * Since this can be called multiple times (via prepare_binprm), | 
|  | 1518 | * we must clear any previous work done when setting set[ug]id | 
|  | 1519 | * bits from any earlier bprm->file uses (for example when run | 
|  | 1520 | * first for a setuid script then again for its interpreter). | 
|  | 1521 | */ | 
|  | 1522 | bprm->cred->euid = current_euid(); | 
|  | 1523 | bprm->cred->egid = current_egid(); | 
|  | 1524 |  | 
|  | 1525 | if (!mnt_may_suid(bprm->file->f_path.mnt)) | 
|  | 1526 | return; | 
|  | 1527 |  | 
|  | 1528 | if (task_no_new_privs(current)) | 
|  | 1529 | return; | 
|  | 1530 |  | 
|  | 1531 | inode = bprm->file->f_path.dentry->d_inode; | 
|  | 1532 | mode = READ_ONCE(inode->i_mode); | 
|  | 1533 | if (!(mode & (S_ISUID|S_ISGID))) | 
|  | 1534 | return; | 
|  | 1535 |  | 
|  | 1536 | /* Be careful if suid/sgid is set */ | 
|  | 1537 | inode_lock(inode); | 
|  | 1538 |  | 
|  | 1539 | /* reload atomically mode/uid/gid now that lock held */ | 
|  | 1540 | mode = inode->i_mode; | 
|  | 1541 | uid = inode->i_uid; | 
|  | 1542 | gid = inode->i_gid; | 
|  | 1543 | inode_unlock(inode); | 
|  | 1544 |  | 
|  | 1545 | /* We ignore suid/sgid if there are no mappings for them in the ns */ | 
|  | 1546 | if (!kuid_has_mapping(bprm->cred->user_ns, uid) || | 
|  | 1547 | !kgid_has_mapping(bprm->cred->user_ns, gid)) | 
|  | 1548 | return; | 
|  | 1549 |  | 
|  | 1550 | if (mode & S_ISUID) { | 
|  | 1551 | bprm->per_clear |= PER_CLEAR_ON_SETID; | 
|  | 1552 | bprm->cred->euid = uid; | 
|  | 1553 | } | 
|  | 1554 |  | 
|  | 1555 | if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | 
|  | 1556 | bprm->per_clear |= PER_CLEAR_ON_SETID; | 
|  | 1557 | bprm->cred->egid = gid; | 
|  | 1558 | } | 
|  | 1559 | } | 
|  | 1560 |  | 
|  | 1561 | /* | 
|  | 1562 | * Fill the binprm structure from the inode. | 
|  | 1563 | * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | 
|  | 1564 | * | 
|  | 1565 | * This may be called multiple times for binary chains (scripts for example). | 
|  | 1566 | */ | 
|  | 1567 | int prepare_binprm(struct linux_binprm *bprm) | 
|  | 1568 | { | 
|  | 1569 | int retval; | 
|  | 1570 | loff_t pos = 0; | 
|  | 1571 |  | 
|  | 1572 | bprm_fill_uid(bprm); | 
|  | 1573 |  | 
|  | 1574 | /* fill in binprm security blob */ | 
|  | 1575 | retval = security_bprm_set_creds(bprm); | 
|  | 1576 | if (retval) | 
|  | 1577 | return retval; | 
|  | 1578 | bprm->called_set_creds = 1; | 
|  | 1579 |  | 
|  | 1580 | memset(bprm->buf, 0, BINPRM_BUF_SIZE); | 
|  | 1581 | return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); | 
|  | 1582 | } | 
|  | 1583 |  | 
|  | 1584 | EXPORT_SYMBOL(prepare_binprm); | 
|  | 1585 |  | 
|  | 1586 | /* | 
|  | 1587 | * Arguments are '\0' separated strings found at the location bprm->p | 
|  | 1588 | * points to; chop off the first by relocating brpm->p to right after | 
|  | 1589 | * the first '\0' encountered. | 
|  | 1590 | */ | 
|  | 1591 | int remove_arg_zero(struct linux_binprm *bprm) | 
|  | 1592 | { | 
|  | 1593 | int ret = 0; | 
|  | 1594 | unsigned long offset; | 
|  | 1595 | char *kaddr; | 
|  | 1596 | struct page *page; | 
|  | 1597 |  | 
|  | 1598 | if (!bprm->argc) | 
|  | 1599 | return 0; | 
|  | 1600 |  | 
|  | 1601 | do { | 
|  | 1602 | offset = bprm->p & ~PAGE_MASK; | 
|  | 1603 | page = get_arg_page(bprm, bprm->p, 0); | 
|  | 1604 | if (!page) { | 
|  | 1605 | ret = -EFAULT; | 
|  | 1606 | goto out; | 
|  | 1607 | } | 
|  | 1608 | kaddr = kmap_atomic(page); | 
|  | 1609 |  | 
|  | 1610 | for (; offset < PAGE_SIZE && kaddr[offset]; | 
|  | 1611 | offset++, bprm->p++) | 
|  | 1612 | ; | 
|  | 1613 |  | 
|  | 1614 | kunmap_atomic(kaddr); | 
|  | 1615 | put_arg_page(page); | 
|  | 1616 | } while (offset == PAGE_SIZE); | 
|  | 1617 |  | 
|  | 1618 | bprm->p++; | 
|  | 1619 | bprm->argc--; | 
|  | 1620 | ret = 0; | 
|  | 1621 |  | 
|  | 1622 | out: | 
|  | 1623 | return ret; | 
|  | 1624 | } | 
|  | 1625 | EXPORT_SYMBOL(remove_arg_zero); | 
|  | 1626 |  | 
|  | 1627 | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | 
|  | 1628 | /* | 
|  | 1629 | * cycle the list of binary formats handler, until one recognizes the image | 
|  | 1630 | */ | 
|  | 1631 | int search_binary_handler(struct linux_binprm *bprm) | 
|  | 1632 | { | 
|  | 1633 | bool need_retry = IS_ENABLED(CONFIG_MODULES); | 
|  | 1634 | struct linux_binfmt *fmt; | 
|  | 1635 | int retval; | 
|  | 1636 |  | 
|  | 1637 | /* This allows 4 levels of binfmt rewrites before failing hard. */ | 
|  | 1638 | if (bprm->recursion_depth > 5) | 
|  | 1639 | return -ELOOP; | 
|  | 1640 |  | 
|  | 1641 | retval = security_bprm_check(bprm); | 
|  | 1642 | if (retval) | 
|  | 1643 | return retval; | 
|  | 1644 |  | 
|  | 1645 | retval = -ENOENT; | 
|  | 1646 | retry: | 
|  | 1647 | read_lock(&binfmt_lock); | 
|  | 1648 | list_for_each_entry(fmt, &formats, lh) { | 
|  | 1649 | if (!try_module_get(fmt->module)) | 
|  | 1650 | continue; | 
|  | 1651 | read_unlock(&binfmt_lock); | 
|  | 1652 | bprm->recursion_depth++; | 
|  | 1653 | retval = fmt->load_binary(bprm); | 
|  | 1654 | read_lock(&binfmt_lock); | 
|  | 1655 | put_binfmt(fmt); | 
|  | 1656 | bprm->recursion_depth--; | 
|  | 1657 | if (retval < 0 && !bprm->mm) { | 
|  | 1658 | /* we got to flush_old_exec() and failed after it */ | 
|  | 1659 | read_unlock(&binfmt_lock); | 
|  | 1660 | force_sigsegv(SIGSEGV, current); | 
|  | 1661 | return retval; | 
|  | 1662 | } | 
|  | 1663 | if (retval != -ENOEXEC || !bprm->file) { | 
|  | 1664 | read_unlock(&binfmt_lock); | 
|  | 1665 | return retval; | 
|  | 1666 | } | 
|  | 1667 | } | 
|  | 1668 | read_unlock(&binfmt_lock); | 
|  | 1669 |  | 
|  | 1670 | if (need_retry) { | 
|  | 1671 | if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && | 
|  | 1672 | printable(bprm->buf[2]) && printable(bprm->buf[3])) | 
|  | 1673 | return retval; | 
|  | 1674 | if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) | 
|  | 1675 | return retval; | 
|  | 1676 | need_retry = false; | 
|  | 1677 | goto retry; | 
|  | 1678 | } | 
|  | 1679 |  | 
|  | 1680 | return retval; | 
|  | 1681 | } | 
|  | 1682 | EXPORT_SYMBOL(search_binary_handler); | 
|  | 1683 |  | 
|  | 1684 | static int exec_binprm(struct linux_binprm *bprm) | 
|  | 1685 | { | 
|  | 1686 | pid_t old_pid, old_vpid; | 
|  | 1687 | int ret; | 
|  | 1688 |  | 
|  | 1689 | /* Need to fetch pid before load_binary changes it */ | 
|  | 1690 | old_pid = current->pid; | 
|  | 1691 | rcu_read_lock(); | 
|  | 1692 | old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); | 
|  | 1693 | rcu_read_unlock(); | 
|  | 1694 |  | 
|  | 1695 | ret = search_binary_handler(bprm); | 
|  | 1696 | if (ret >= 0) { | 
|  | 1697 | audit_bprm(bprm); | 
|  | 1698 | trace_sched_process_exec(current, old_pid, bprm); | 
|  | 1699 | ptrace_event(PTRACE_EVENT_EXEC, old_vpid); | 
|  | 1700 | proc_exec_connector(current); | 
|  | 1701 | } | 
|  | 1702 |  | 
|  | 1703 | return ret; | 
|  | 1704 | } | 
|  | 1705 |  | 
|  | 1706 | /* | 
|  | 1707 | * sys_execve() executes a new program. | 
|  | 1708 | */ | 
|  | 1709 | static int __do_execve_file(int fd, struct filename *filename, | 
|  | 1710 | struct user_arg_ptr argv, | 
|  | 1711 | struct user_arg_ptr envp, | 
|  | 1712 | int flags, struct file *file) | 
|  | 1713 | { | 
|  | 1714 | char *pathbuf = NULL; | 
|  | 1715 | struct linux_binprm *bprm; | 
|  | 1716 | struct files_struct *displaced; | 
|  | 1717 | int retval; | 
|  | 1718 |  | 
|  | 1719 | if (IS_ERR(filename)) | 
|  | 1720 | return PTR_ERR(filename); | 
|  | 1721 |  | 
|  | 1722 | /* | 
|  | 1723 | * We move the actual failure in case of RLIMIT_NPROC excess from | 
|  | 1724 | * set*uid() to execve() because too many poorly written programs | 
|  | 1725 | * don't check setuid() return code.  Here we additionally recheck | 
|  | 1726 | * whether NPROC limit is still exceeded. | 
|  | 1727 | */ | 
|  | 1728 | if ((current->flags & PF_NPROC_EXCEEDED) && | 
|  | 1729 | atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { | 
|  | 1730 | retval = -EAGAIN; | 
|  | 1731 | goto out_ret; | 
|  | 1732 | } | 
|  | 1733 |  | 
|  | 1734 | /* We're below the limit (still or again), so we don't want to make | 
|  | 1735 | * further execve() calls fail. */ | 
|  | 1736 | current->flags &= ~PF_NPROC_EXCEEDED; | 
|  | 1737 |  | 
|  | 1738 | retval = unshare_files(&displaced); | 
|  | 1739 | if (retval) | 
|  | 1740 | goto out_ret; | 
|  | 1741 |  | 
|  | 1742 | retval = -ENOMEM; | 
|  | 1743 | bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | 
|  | 1744 | if (!bprm) | 
|  | 1745 | goto out_files; | 
|  | 1746 |  | 
|  | 1747 | retval = prepare_bprm_creds(bprm); | 
|  | 1748 | if (retval) | 
|  | 1749 | goto out_free; | 
|  | 1750 |  | 
|  | 1751 | check_unsafe_exec(bprm); | 
|  | 1752 | current->in_execve = 1; | 
|  | 1753 |  | 
|  | 1754 | if (!file) | 
|  | 1755 | file = do_open_execat(fd, filename, flags); | 
|  | 1756 | retval = PTR_ERR(file); | 
|  | 1757 | if (IS_ERR(file)) | 
|  | 1758 | goto out_unmark; | 
|  | 1759 |  | 
|  | 1760 | sched_exec(); | 
|  | 1761 |  | 
|  | 1762 | bprm->file = file; | 
|  | 1763 | if (!filename) { | 
|  | 1764 | bprm->filename = "none"; | 
|  | 1765 | } else if (fd == AT_FDCWD || filename->name[0] == '/') { | 
|  | 1766 | bprm->filename = filename->name; | 
|  | 1767 | } else { | 
|  | 1768 | if (filename->name[0] == '\0') | 
|  | 1769 | pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); | 
|  | 1770 | else | 
|  | 1771 | pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", | 
|  | 1772 | fd, filename->name); | 
|  | 1773 | if (!pathbuf) { | 
|  | 1774 | retval = -ENOMEM; | 
|  | 1775 | goto out_unmark; | 
|  | 1776 | } | 
|  | 1777 | /* | 
|  | 1778 | * Record that a name derived from an O_CLOEXEC fd will be | 
|  | 1779 | * inaccessible after exec. Relies on having exclusive access to | 
|  | 1780 | * current->files (due to unshare_files above). | 
|  | 1781 | */ | 
|  | 1782 | if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) | 
|  | 1783 | bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; | 
|  | 1784 | bprm->filename = pathbuf; | 
|  | 1785 | } | 
|  | 1786 | bprm->interp = bprm->filename; | 
|  | 1787 |  | 
|  | 1788 | retval = bprm_mm_init(bprm); | 
|  | 1789 | if (retval) | 
|  | 1790 | goto out_unmark; | 
|  | 1791 |  | 
|  | 1792 | bprm->argc = count(argv, MAX_ARG_STRINGS); | 
|  | 1793 | if ((retval = bprm->argc) < 0) | 
|  | 1794 | goto out; | 
|  | 1795 |  | 
|  | 1796 | bprm->envc = count(envp, MAX_ARG_STRINGS); | 
|  | 1797 | if ((retval = bprm->envc) < 0) | 
|  | 1798 | goto out; | 
|  | 1799 |  | 
|  | 1800 | retval = prepare_binprm(bprm); | 
|  | 1801 | if (retval < 0) | 
|  | 1802 | goto out; | 
|  | 1803 |  | 
|  | 1804 | retval = copy_strings_kernel(1, &bprm->filename, bprm); | 
|  | 1805 | if (retval < 0) | 
|  | 1806 | goto out; | 
|  | 1807 |  | 
|  | 1808 | bprm->exec = bprm->p; | 
|  | 1809 | retval = copy_strings(bprm->envc, envp, bprm); | 
|  | 1810 | if (retval < 0) | 
|  | 1811 | goto out; | 
|  | 1812 |  | 
|  | 1813 | retval = copy_strings(bprm->argc, argv, bprm); | 
|  | 1814 | if (retval < 0) | 
|  | 1815 | goto out; | 
|  | 1816 |  | 
|  | 1817 | would_dump(bprm, bprm->file); | 
|  | 1818 |  | 
|  | 1819 | retval = exec_binprm(bprm); | 
|  | 1820 | if (retval < 0) | 
|  | 1821 | goto out; | 
|  | 1822 |  | 
|  | 1823 | /* execve succeeded */ | 
|  | 1824 | current->fs->in_exec = 0; | 
|  | 1825 | current->in_execve = 0; | 
|  | 1826 | membarrier_execve(current); | 
|  | 1827 | rseq_execve(current); | 
|  | 1828 | acct_update_integrals(current); | 
|  | 1829 | task_numa_free(current, false); | 
|  | 1830 | free_bprm(bprm); | 
|  | 1831 | kfree(pathbuf); | 
|  | 1832 | if (filename) | 
|  | 1833 | putname(filename); | 
|  | 1834 | if (displaced) | 
|  | 1835 | put_files_struct(displaced); | 
|  | 1836 | return retval; | 
|  | 1837 |  | 
|  | 1838 | out: | 
|  | 1839 | if (bprm->mm) { | 
|  | 1840 | acct_arg_size(bprm, 0); | 
|  | 1841 | mmput(bprm->mm); | 
|  | 1842 | } | 
|  | 1843 |  | 
|  | 1844 | out_unmark: | 
|  | 1845 | current->fs->in_exec = 0; | 
|  | 1846 | current->in_execve = 0; | 
|  | 1847 |  | 
|  | 1848 | out_free: | 
|  | 1849 | free_bprm(bprm); | 
|  | 1850 | kfree(pathbuf); | 
|  | 1851 |  | 
|  | 1852 | out_files: | 
|  | 1853 | if (displaced) | 
|  | 1854 | reset_files_struct(displaced); | 
|  | 1855 | out_ret: | 
|  | 1856 | if (filename) | 
|  | 1857 | putname(filename); | 
|  | 1858 | return retval; | 
|  | 1859 | } | 
|  | 1860 |  | 
|  | 1861 | static int do_execveat_common(int fd, struct filename *filename, | 
|  | 1862 | struct user_arg_ptr argv, | 
|  | 1863 | struct user_arg_ptr envp, | 
|  | 1864 | int flags) | 
|  | 1865 | { | 
|  | 1866 | return __do_execve_file(fd, filename, argv, envp, flags, NULL); | 
|  | 1867 | } | 
|  | 1868 |  | 
|  | 1869 | int do_execve_file(struct file *file, void *__argv, void *__envp) | 
|  | 1870 | { | 
|  | 1871 | struct user_arg_ptr argv = { .ptr.native = __argv }; | 
|  | 1872 | struct user_arg_ptr envp = { .ptr.native = __envp }; | 
|  | 1873 |  | 
|  | 1874 | return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | int do_execve(struct filename *filename, | 
|  | 1878 | const char __user *const __user *__argv, | 
|  | 1879 | const char __user *const __user *__envp) | 
|  | 1880 | { | 
|  | 1881 | struct user_arg_ptr argv = { .ptr.native = __argv }; | 
|  | 1882 | struct user_arg_ptr envp = { .ptr.native = __envp }; | 
|  | 1883 | return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); | 
|  | 1884 | } | 
|  | 1885 |  | 
|  | 1886 | int do_execveat(int fd, struct filename *filename, | 
|  | 1887 | const char __user *const __user *__argv, | 
|  | 1888 | const char __user *const __user *__envp, | 
|  | 1889 | int flags) | 
|  | 1890 | { | 
|  | 1891 | struct user_arg_ptr argv = { .ptr.native = __argv }; | 
|  | 1892 | struct user_arg_ptr envp = { .ptr.native = __envp }; | 
|  | 1893 |  | 
|  | 1894 | return do_execveat_common(fd, filename, argv, envp, flags); | 
|  | 1895 | } | 
|  | 1896 |  | 
|  | 1897 | #ifdef CONFIG_COMPAT | 
|  | 1898 | static int compat_do_execve(struct filename *filename, | 
|  | 1899 | const compat_uptr_t __user *__argv, | 
|  | 1900 | const compat_uptr_t __user *__envp) | 
|  | 1901 | { | 
|  | 1902 | struct user_arg_ptr argv = { | 
|  | 1903 | .is_compat = true, | 
|  | 1904 | .ptr.compat = __argv, | 
|  | 1905 | }; | 
|  | 1906 | struct user_arg_ptr envp = { | 
|  | 1907 | .is_compat = true, | 
|  | 1908 | .ptr.compat = __envp, | 
|  | 1909 | }; | 
|  | 1910 | return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); | 
|  | 1911 | } | 
|  | 1912 |  | 
|  | 1913 | static int compat_do_execveat(int fd, struct filename *filename, | 
|  | 1914 | const compat_uptr_t __user *__argv, | 
|  | 1915 | const compat_uptr_t __user *__envp, | 
|  | 1916 | int flags) | 
|  | 1917 | { | 
|  | 1918 | struct user_arg_ptr argv = { | 
|  | 1919 | .is_compat = true, | 
|  | 1920 | .ptr.compat = __argv, | 
|  | 1921 | }; | 
|  | 1922 | struct user_arg_ptr envp = { | 
|  | 1923 | .is_compat = true, | 
|  | 1924 | .ptr.compat = __envp, | 
|  | 1925 | }; | 
|  | 1926 | return do_execveat_common(fd, filename, argv, envp, flags); | 
|  | 1927 | } | 
|  | 1928 | #endif | 
|  | 1929 |  | 
|  | 1930 | void set_binfmt(struct linux_binfmt *new) | 
|  | 1931 | { | 
|  | 1932 | struct mm_struct *mm = current->mm; | 
|  | 1933 |  | 
|  | 1934 | if (mm->binfmt) | 
|  | 1935 | module_put(mm->binfmt->module); | 
|  | 1936 |  | 
|  | 1937 | mm->binfmt = new; | 
|  | 1938 | if (new) | 
|  | 1939 | __module_get(new->module); | 
|  | 1940 | } | 
|  | 1941 | EXPORT_SYMBOL(set_binfmt); | 
|  | 1942 |  | 
|  | 1943 | /* | 
|  | 1944 | * set_dumpable stores three-value SUID_DUMP_* into mm->flags. | 
|  | 1945 | */ | 
|  | 1946 | void set_dumpable(struct mm_struct *mm, int value) | 
|  | 1947 | { | 
|  | 1948 | unsigned long old, new; | 
|  | 1949 |  | 
|  | 1950 | if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) | 
|  | 1951 | return; | 
|  | 1952 |  | 
|  | 1953 | do { | 
|  | 1954 | old = READ_ONCE(mm->flags); | 
|  | 1955 | new = (old & ~MMF_DUMPABLE_MASK) | value; | 
|  | 1956 | } while (cmpxchg(&mm->flags, old, new) != old); | 
|  | 1957 | } | 
|  | 1958 |  | 
|  | 1959 | SYSCALL_DEFINE3(execve, | 
|  | 1960 | const char __user *, filename, | 
|  | 1961 | const char __user *const __user *, argv, | 
|  | 1962 | const char __user *const __user *, envp) | 
|  | 1963 | { | 
|  | 1964 | return do_execve(getname(filename), argv, envp); | 
|  | 1965 | } | 
|  | 1966 |  | 
|  | 1967 | SYSCALL_DEFINE5(execveat, | 
|  | 1968 | int, fd, const char __user *, filename, | 
|  | 1969 | const char __user *const __user *, argv, | 
|  | 1970 | const char __user *const __user *, envp, | 
|  | 1971 | int, flags) | 
|  | 1972 | { | 
|  | 1973 | int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; | 
|  | 1974 |  | 
|  | 1975 | return do_execveat(fd, | 
|  | 1976 | getname_flags(filename, lookup_flags, NULL), | 
|  | 1977 | argv, envp, flags); | 
|  | 1978 | } | 
|  | 1979 |  | 
|  | 1980 | #ifdef CONFIG_COMPAT | 
|  | 1981 | COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, | 
|  | 1982 | const compat_uptr_t __user *, argv, | 
|  | 1983 | const compat_uptr_t __user *, envp) | 
|  | 1984 | { | 
|  | 1985 | return compat_do_execve(getname(filename), argv, envp); | 
|  | 1986 | } | 
|  | 1987 |  | 
|  | 1988 | COMPAT_SYSCALL_DEFINE5(execveat, int, fd, | 
|  | 1989 | const char __user *, filename, | 
|  | 1990 | const compat_uptr_t __user *, argv, | 
|  | 1991 | const compat_uptr_t __user *, envp, | 
|  | 1992 | int,  flags) | 
|  | 1993 | { | 
|  | 1994 | int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; | 
|  | 1995 |  | 
|  | 1996 | return compat_do_execveat(fd, | 
|  | 1997 | getname_flags(filename, lookup_flags, NULL), | 
|  | 1998 | argv, envp, flags); | 
|  | 1999 | } | 
|  | 2000 | #endif |