| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | 4 | * All Rights Reserved. | 
|  | 5 | */ | 
|  | 6 | #include "xfs.h" | 
|  | 7 | #include "xfs_fs.h" | 
|  | 8 | #include "xfs_shared.h" | 
|  | 9 | #include "xfs_format.h" | 
|  | 10 | #include "xfs_log_format.h" | 
|  | 11 | #include "xfs_trans_resv.h" | 
|  | 12 | #include "xfs_mount.h" | 
|  | 13 | #include "xfs_da_format.h" | 
|  | 14 | #include "xfs_da_btree.h" | 
|  | 15 | #include "xfs_inode.h" | 
|  | 16 | #include "xfs_trans.h" | 
|  | 17 | #include "xfs_inode_item.h" | 
|  | 18 | #include "xfs_bmap.h" | 
|  | 19 | #include "xfs_bmap_util.h" | 
|  | 20 | #include "xfs_error.h" | 
|  | 21 | #include "xfs_dir2.h" | 
|  | 22 | #include "xfs_dir2_priv.h" | 
|  | 23 | #include "xfs_ioctl.h" | 
|  | 24 | #include "xfs_trace.h" | 
|  | 25 | #include "xfs_log.h" | 
|  | 26 | #include "xfs_icache.h" | 
|  | 27 | #include "xfs_pnfs.h" | 
|  | 28 | #include "xfs_iomap.h" | 
|  | 29 | #include "xfs_reflink.h" | 
|  | 30 |  | 
|  | 31 | #include <linux/dcache.h> | 
|  | 32 | #include <linux/falloc.h> | 
|  | 33 | #include <linux/pagevec.h> | 
|  | 34 | #include <linux/backing-dev.h> | 
|  | 35 | #include <linux/mman.h> | 
|  | 36 |  | 
|  | 37 | static const struct vm_operations_struct xfs_file_vm_ops; | 
|  | 38 |  | 
|  | 39 | int | 
|  | 40 | xfs_update_prealloc_flags( | 
|  | 41 | struct xfs_inode	*ip, | 
|  | 42 | enum xfs_prealloc_flags	flags) | 
|  | 43 | { | 
|  | 44 | struct xfs_trans	*tp; | 
|  | 45 | int			error; | 
|  | 46 |  | 
|  | 47 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, | 
|  | 48 | 0, 0, 0, &tp); | 
|  | 49 | if (error) | 
|  | 50 | return error; | 
|  | 51 |  | 
|  | 52 | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | 53 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  | 54 |  | 
|  | 55 | if (!(flags & XFS_PREALLOC_INVISIBLE)) { | 
|  | 56 | VFS_I(ip)->i_mode &= ~S_ISUID; | 
|  | 57 | if (VFS_I(ip)->i_mode & S_IXGRP) | 
|  | 58 | VFS_I(ip)->i_mode &= ~S_ISGID; | 
|  | 59 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  | 60 | } | 
|  | 61 |  | 
|  | 62 | if (flags & XFS_PREALLOC_SET) | 
|  | 63 | ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; | 
|  | 64 | if (flags & XFS_PREALLOC_CLEAR) | 
|  | 65 | ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; | 
|  | 66 |  | 
|  | 67 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | 68 | if (flags & XFS_PREALLOC_SYNC) | 
|  | 69 | xfs_trans_set_sync(tp); | 
|  | 70 | return xfs_trans_commit(tp); | 
|  | 71 | } | 
|  | 72 |  | 
|  | 73 | /* | 
|  | 74 | * Fsync operations on directories are much simpler than on regular files, | 
|  | 75 | * as there is no file data to flush, and thus also no need for explicit | 
|  | 76 | * cache flush operations, and there are no non-transaction metadata updates | 
|  | 77 | * on directories either. | 
|  | 78 | */ | 
|  | 79 | STATIC int | 
|  | 80 | xfs_dir_fsync( | 
|  | 81 | struct file		*file, | 
|  | 82 | loff_t			start, | 
|  | 83 | loff_t			end, | 
|  | 84 | int			datasync) | 
|  | 85 | { | 
|  | 86 | struct xfs_inode	*ip = XFS_I(file->f_mapping->host); | 
|  | 87 | struct xfs_mount	*mp = ip->i_mount; | 
|  | 88 | xfs_lsn_t		lsn = 0; | 
|  | 89 |  | 
|  | 90 | trace_xfs_dir_fsync(ip); | 
|  | 91 |  | 
|  | 92 | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | 93 | if (xfs_ipincount(ip)) | 
|  | 94 | lsn = ip->i_itemp->ili_last_lsn; | 
|  | 95 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 96 |  | 
|  | 97 | if (!lsn) | 
|  | 98 | return 0; | 
|  | 99 | return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | STATIC int | 
|  | 103 | xfs_file_fsync( | 
|  | 104 | struct file		*file, | 
|  | 105 | loff_t			start, | 
|  | 106 | loff_t			end, | 
|  | 107 | int			datasync) | 
|  | 108 | { | 
|  | 109 | struct inode		*inode = file->f_mapping->host; | 
|  | 110 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 111 | struct xfs_mount	*mp = ip->i_mount; | 
|  | 112 | int			error = 0; | 
|  | 113 | int			log_flushed = 0; | 
|  | 114 | xfs_lsn_t		lsn = 0; | 
|  | 115 |  | 
|  | 116 | trace_xfs_file_fsync(ip); | 
|  | 117 |  | 
|  | 118 | error = file_write_and_wait_range(file, start, end); | 
|  | 119 | if (error) | 
|  | 120 | return error; | 
|  | 121 |  | 
|  | 122 | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | 123 | return -EIO; | 
|  | 124 |  | 
|  | 125 | xfs_iflags_clear(ip, XFS_ITRUNCATED); | 
|  | 126 |  | 
|  | 127 | /* | 
|  | 128 | * If we have an RT and/or log subvolume we need to make sure to flush | 
|  | 129 | * the write cache the device used for file data first.  This is to | 
|  | 130 | * ensure newly written file data make it to disk before logging the new | 
|  | 131 | * inode size in case of an extending write. | 
|  | 132 | */ | 
|  | 133 | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | 134 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); | 
|  | 135 | else if (mp->m_logdev_targp != mp->m_ddev_targp) | 
|  | 136 | xfs_blkdev_issue_flush(mp->m_ddev_targp); | 
|  | 137 |  | 
|  | 138 | /* | 
|  | 139 | * All metadata updates are logged, which means that we just have to | 
|  | 140 | * flush the log up to the latest LSN that touched the inode. If we have | 
|  | 141 | * concurrent fsync/fdatasync() calls, we need them to all block on the | 
|  | 142 | * log force before we clear the ili_fsync_fields field. This ensures | 
|  | 143 | * that we don't get a racing sync operation that does not wait for the | 
|  | 144 | * metadata to hit the journal before returning. If we race with | 
|  | 145 | * clearing the ili_fsync_fields, then all that will happen is the log | 
|  | 146 | * force will do nothing as the lsn will already be on disk. We can't | 
|  | 147 | * race with setting ili_fsync_fields because that is done under | 
|  | 148 | * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared | 
|  | 149 | * until after the ili_fsync_fields is cleared. | 
|  | 150 | */ | 
|  | 151 | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | 152 | if (xfs_ipincount(ip)) { | 
|  | 153 | if (!datasync || | 
|  | 154 | (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) | 
|  | 155 | lsn = ip->i_itemp->ili_last_lsn; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | if (lsn) { | 
|  | 159 | error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); | 
|  | 160 | ip->i_itemp->ili_fsync_fields = 0; | 
|  | 161 | } | 
|  | 162 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 163 |  | 
|  | 164 | /* | 
|  | 165 | * If we only have a single device, and the log force about was | 
|  | 166 | * a no-op we might have to flush the data device cache here. | 
|  | 167 | * This can only happen for fdatasync/O_DSYNC if we were overwriting | 
|  | 168 | * an already allocated file and thus do not have any metadata to | 
|  | 169 | * commit. | 
|  | 170 | */ | 
|  | 171 | if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && | 
|  | 172 | mp->m_logdev_targp == mp->m_ddev_targp) | 
|  | 173 | xfs_blkdev_issue_flush(mp->m_ddev_targp); | 
|  | 174 |  | 
|  | 175 | return error; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | STATIC ssize_t | 
|  | 179 | xfs_file_dio_aio_read( | 
|  | 180 | struct kiocb		*iocb, | 
|  | 181 | struct iov_iter		*to) | 
|  | 182 | { | 
|  | 183 | struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
|  | 184 | size_t			count = iov_iter_count(to); | 
|  | 185 | ssize_t			ret; | 
|  | 186 |  | 
|  | 187 | trace_xfs_file_direct_read(ip, count, iocb->ki_pos); | 
|  | 188 |  | 
|  | 189 | if (!count) | 
|  | 190 | return 0; /* skip atime */ | 
|  | 191 |  | 
|  | 192 | file_accessed(iocb->ki_filp); | 
|  | 193 |  | 
|  | 194 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  | 195 | ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); | 
|  | 196 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | 197 |  | 
|  | 198 | return ret; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | static noinline ssize_t | 
|  | 202 | xfs_file_dax_read( | 
|  | 203 | struct kiocb		*iocb, | 
|  | 204 | struct iov_iter		*to) | 
|  | 205 | { | 
|  | 206 | struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host); | 
|  | 207 | size_t			count = iov_iter_count(to); | 
|  | 208 | ssize_t			ret = 0; | 
|  | 209 |  | 
|  | 210 | trace_xfs_file_dax_read(ip, count, iocb->ki_pos); | 
|  | 211 |  | 
|  | 212 | if (!count) | 
|  | 213 | return 0; /* skip atime */ | 
|  | 214 |  | 
|  | 215 | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | 216 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | 
|  | 217 | return -EAGAIN; | 
|  | 218 | } else { | 
|  | 219 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  | 220 | } | 
|  | 221 |  | 
|  | 222 | ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); | 
|  | 223 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | 224 |  | 
|  | 225 | file_accessed(iocb->ki_filp); | 
|  | 226 | return ret; | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | STATIC ssize_t | 
|  | 230 | xfs_file_buffered_aio_read( | 
|  | 231 | struct kiocb		*iocb, | 
|  | 232 | struct iov_iter		*to) | 
|  | 233 | { | 
|  | 234 | struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp)); | 
|  | 235 | ssize_t			ret; | 
|  | 236 |  | 
|  | 237 | trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); | 
|  | 238 |  | 
|  | 239 | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | 240 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) | 
|  | 241 | return -EAGAIN; | 
|  | 242 | } else { | 
|  | 243 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  | 244 | } | 
|  | 245 | ret = generic_file_read_iter(iocb, to); | 
|  | 246 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | 247 |  | 
|  | 248 | return ret; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | STATIC ssize_t | 
|  | 252 | xfs_file_read_iter( | 
|  | 253 | struct kiocb		*iocb, | 
|  | 254 | struct iov_iter		*to) | 
|  | 255 | { | 
|  | 256 | struct inode		*inode = file_inode(iocb->ki_filp); | 
|  | 257 | struct xfs_mount	*mp = XFS_I(inode)->i_mount; | 
|  | 258 | ssize_t			ret = 0; | 
|  | 259 |  | 
|  | 260 | XFS_STATS_INC(mp, xs_read_calls); | 
|  | 261 |  | 
|  | 262 | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | 263 | return -EIO; | 
|  | 264 |  | 
|  | 265 | if (IS_DAX(inode)) | 
|  | 266 | ret = xfs_file_dax_read(iocb, to); | 
|  | 267 | else if (iocb->ki_flags & IOCB_DIRECT) | 
|  | 268 | ret = xfs_file_dio_aio_read(iocb, to); | 
|  | 269 | else | 
|  | 270 | ret = xfs_file_buffered_aio_read(iocb, to); | 
|  | 271 |  | 
|  | 272 | if (ret > 0) | 
|  | 273 | XFS_STATS_ADD(mp, xs_read_bytes, ret); | 
|  | 274 | return ret; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | /* | 
|  | 278 | * Common pre-write limit and setup checks. | 
|  | 279 | * | 
|  | 280 | * Called with the iolocked held either shared and exclusive according to | 
|  | 281 | * @iolock, and returns with it held.  Might upgrade the iolock to exclusive | 
|  | 282 | * if called for a direct write beyond i_size. | 
|  | 283 | */ | 
|  | 284 | STATIC ssize_t | 
|  | 285 | xfs_file_aio_write_checks( | 
|  | 286 | struct kiocb		*iocb, | 
|  | 287 | struct iov_iter		*from, | 
|  | 288 | int			*iolock) | 
|  | 289 | { | 
|  | 290 | struct file		*file = iocb->ki_filp; | 
|  | 291 | struct inode		*inode = file->f_mapping->host; | 
|  | 292 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 293 | ssize_t			error = 0; | 
|  | 294 | size_t			count = iov_iter_count(from); | 
|  | 295 | bool			drained_dio = false; | 
|  | 296 | loff_t			isize; | 
|  | 297 |  | 
|  | 298 | restart: | 
|  | 299 | error = generic_write_checks(iocb, from); | 
|  | 300 | if (error <= 0) | 
|  | 301 | return error; | 
|  | 302 |  | 
|  | 303 | error = xfs_break_layouts(inode, iolock, BREAK_WRITE); | 
|  | 304 | if (error) | 
|  | 305 | return error; | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * For changing security info in file_remove_privs() we need i_rwsem | 
|  | 309 | * exclusively. | 
|  | 310 | */ | 
|  | 311 | if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { | 
|  | 312 | xfs_iunlock(ip, *iolock); | 
|  | 313 | *iolock = XFS_IOLOCK_EXCL; | 
|  | 314 | xfs_ilock(ip, *iolock); | 
|  | 315 | goto restart; | 
|  | 316 | } | 
|  | 317 | /* | 
|  | 318 | * If the offset is beyond the size of the file, we need to zero any | 
|  | 319 | * blocks that fall between the existing EOF and the start of this | 
|  | 320 | * write.  If zeroing is needed and we are currently holding the | 
|  | 321 | * iolock shared, we need to update it to exclusive which implies | 
|  | 322 | * having to redo all checks before. | 
|  | 323 | * | 
|  | 324 | * We need to serialise against EOF updates that occur in IO | 
|  | 325 | * completions here. We want to make sure that nobody is changing the | 
|  | 326 | * size while we do this check until we have placed an IO barrier (i.e. | 
|  | 327 | * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. | 
|  | 328 | * The spinlock effectively forms a memory barrier once we have the | 
|  | 329 | * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value | 
|  | 330 | * and hence be able to correctly determine if we need to run zeroing. | 
|  | 331 | */ | 
|  | 332 | spin_lock(&ip->i_flags_lock); | 
|  | 333 | isize = i_size_read(inode); | 
|  | 334 | if (iocb->ki_pos > isize) { | 
|  | 335 | spin_unlock(&ip->i_flags_lock); | 
|  | 336 | if (!drained_dio) { | 
|  | 337 | if (*iolock == XFS_IOLOCK_SHARED) { | 
|  | 338 | xfs_iunlock(ip, *iolock); | 
|  | 339 | *iolock = XFS_IOLOCK_EXCL; | 
|  | 340 | xfs_ilock(ip, *iolock); | 
|  | 341 | iov_iter_reexpand(from, count); | 
|  | 342 | } | 
|  | 343 | /* | 
|  | 344 | * We now have an IO submission barrier in place, but | 
|  | 345 | * AIO can do EOF updates during IO completion and hence | 
|  | 346 | * we now need to wait for all of them to drain. Non-AIO | 
|  | 347 | * DIO will have drained before we are given the | 
|  | 348 | * XFS_IOLOCK_EXCL, and so for most cases this wait is a | 
|  | 349 | * no-op. | 
|  | 350 | */ | 
|  | 351 | inode_dio_wait(inode); | 
|  | 352 | drained_dio = true; | 
|  | 353 | goto restart; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); | 
|  | 357 | error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, | 
|  | 358 | NULL, &xfs_iomap_ops); | 
|  | 359 | if (error) | 
|  | 360 | return error; | 
|  | 361 | } else | 
|  | 362 | spin_unlock(&ip->i_flags_lock); | 
|  | 363 |  | 
|  | 364 | /* | 
|  | 365 | * Updating the timestamps will grab the ilock again from | 
|  | 366 | * xfs_fs_dirty_inode, so we have to call it after dropping the | 
|  | 367 | * lock above.  Eventually we should look into a way to avoid | 
|  | 368 | * the pointless lock roundtrip. | 
|  | 369 | */ | 
|  | 370 | if (likely(!(file->f_mode & FMODE_NOCMTIME))) { | 
|  | 371 | error = file_update_time(file); | 
|  | 372 | if (error) | 
|  | 373 | return error; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | /* | 
|  | 377 | * If we're writing the file then make sure to clear the setuid and | 
|  | 378 | * setgid bits if the process is not being run by root.  This keeps | 
|  | 379 | * people from modifying setuid and setgid binaries. | 
|  | 380 | */ | 
|  | 381 | if (!IS_NOSEC(inode)) | 
|  | 382 | return file_remove_privs(file); | 
|  | 383 | return 0; | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | static int | 
|  | 387 | xfs_dio_write_end_io( | 
|  | 388 | struct kiocb		*iocb, | 
|  | 389 | ssize_t			size, | 
|  | 390 | unsigned		flags) | 
|  | 391 | { | 
|  | 392 | struct inode		*inode = file_inode(iocb->ki_filp); | 
|  | 393 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 394 | loff_t			offset = iocb->ki_pos; | 
|  | 395 | int			error = 0; | 
|  | 396 |  | 
|  | 397 | trace_xfs_end_io_direct_write(ip, offset, size); | 
|  | 398 |  | 
|  | 399 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | 400 | return -EIO; | 
|  | 401 |  | 
|  | 402 | if (size <= 0) | 
|  | 403 | return size; | 
|  | 404 |  | 
|  | 405 | /* | 
|  | 406 | * Capture amount written on completion as we can't reliably account | 
|  | 407 | * for it on submission. | 
|  | 408 | */ | 
|  | 409 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); | 
|  | 410 |  | 
|  | 411 | if (flags & IOMAP_DIO_COW) { | 
|  | 412 | error = xfs_reflink_end_cow(ip, offset, size); | 
|  | 413 | if (error) | 
|  | 414 | return error; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* | 
|  | 418 | * Unwritten conversion updates the in-core isize after extent | 
|  | 419 | * conversion but before updating the on-disk size. Updating isize any | 
|  | 420 | * earlier allows a racing dio read to find unwritten extents before | 
|  | 421 | * they are converted. | 
|  | 422 | */ | 
|  | 423 | if (flags & IOMAP_DIO_UNWRITTEN) | 
|  | 424 | return xfs_iomap_write_unwritten(ip, offset, size, true); | 
|  | 425 |  | 
|  | 426 | /* | 
|  | 427 | * We need to update the in-core inode size here so that we don't end up | 
|  | 428 | * with the on-disk inode size being outside the in-core inode size. We | 
|  | 429 | * have no other method of updating EOF for AIO, so always do it here | 
|  | 430 | * if necessary. | 
|  | 431 | * | 
|  | 432 | * We need to lock the test/set EOF update as we can be racing with | 
|  | 433 | * other IO completions here to update the EOF. Failing to serialise | 
|  | 434 | * here can result in EOF moving backwards and Bad Things Happen when | 
|  | 435 | * that occurs. | 
|  | 436 | */ | 
|  | 437 | spin_lock(&ip->i_flags_lock); | 
|  | 438 | if (offset + size > i_size_read(inode)) { | 
|  | 439 | i_size_write(inode, offset + size); | 
|  | 440 | spin_unlock(&ip->i_flags_lock); | 
|  | 441 | error = xfs_setfilesize(ip, offset, size); | 
|  | 442 | } else { | 
|  | 443 | spin_unlock(&ip->i_flags_lock); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | return error; | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | /* | 
|  | 450 | * xfs_file_dio_aio_write - handle direct IO writes | 
|  | 451 | * | 
|  | 452 | * Lock the inode appropriately to prepare for and issue a direct IO write. | 
|  | 453 | * By separating it from the buffered write path we remove all the tricky to | 
|  | 454 | * follow locking changes and looping. | 
|  | 455 | * | 
|  | 456 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL | 
|  | 457 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached | 
|  | 458 | * pages are flushed out. | 
|  | 459 | * | 
|  | 460 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED | 
|  | 461 | * allowing them to be done in parallel with reads and other direct IO writes. | 
|  | 462 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer | 
|  | 463 | * needs to do sub-block zeroing and that requires serialisation against other | 
|  | 464 | * direct IOs to the same block. In this case we need to serialise the | 
|  | 465 | * submission of the unaligned IOs so that we don't get racing block zeroing in | 
|  | 466 | * the dio layer.  To avoid the problem with aio, we also need to wait for | 
|  | 467 | * outstanding IOs to complete so that unwritten extent conversion is completed | 
|  | 468 | * before we try to map the overlapping block. This is currently implemented by | 
|  | 469 | * hitting it with a big hammer (i.e. inode_dio_wait()). | 
|  | 470 | * | 
|  | 471 | * Returns with locks held indicated by @iolock and errors indicated by | 
|  | 472 | * negative return values. | 
|  | 473 | */ | 
|  | 474 | STATIC ssize_t | 
|  | 475 | xfs_file_dio_aio_write( | 
|  | 476 | struct kiocb		*iocb, | 
|  | 477 | struct iov_iter		*from) | 
|  | 478 | { | 
|  | 479 | struct file		*file = iocb->ki_filp; | 
|  | 480 | struct address_space	*mapping = file->f_mapping; | 
|  | 481 | struct inode		*inode = mapping->host; | 
|  | 482 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 483 | struct xfs_mount	*mp = ip->i_mount; | 
|  | 484 | ssize_t			ret = 0; | 
|  | 485 | int			unaligned_io = 0; | 
|  | 486 | int			iolock; | 
|  | 487 | size_t			count = iov_iter_count(from); | 
|  | 488 | struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ? | 
|  | 489 | mp->m_rtdev_targp : mp->m_ddev_targp; | 
|  | 490 |  | 
|  | 491 | /* DIO must be aligned to device logical sector size */ | 
|  | 492 | if ((iocb->ki_pos | count) & target->bt_logical_sectormask) | 
|  | 493 | return -EINVAL; | 
|  | 494 |  | 
|  | 495 | /* | 
|  | 496 | * Don't take the exclusive iolock here unless the I/O is unaligned to | 
|  | 497 | * the file system block size.  We don't need to consider the EOF | 
|  | 498 | * extension case here because xfs_file_aio_write_checks() will relock | 
|  | 499 | * the inode as necessary for EOF zeroing cases and fill out the new | 
|  | 500 | * inode size as appropriate. | 
|  | 501 | */ | 
|  | 502 | if ((iocb->ki_pos & mp->m_blockmask) || | 
|  | 503 | ((iocb->ki_pos + count) & mp->m_blockmask)) { | 
|  | 504 | unaligned_io = 1; | 
|  | 505 |  | 
|  | 506 | /* | 
|  | 507 | * We can't properly handle unaligned direct I/O to reflink | 
|  | 508 | * files yet, as we can't unshare a partial block. | 
|  | 509 | */ | 
|  | 510 | if (xfs_is_reflink_inode(ip)) { | 
|  | 511 | trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); | 
|  | 512 | return -EREMCHG; | 
|  | 513 | } | 
|  | 514 | iolock = XFS_IOLOCK_EXCL; | 
|  | 515 | } else { | 
|  | 516 | iolock = XFS_IOLOCK_SHARED; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | 520 | /* unaligned dio always waits, bail */ | 
|  | 521 | if (unaligned_io) | 
|  | 522 | return -EAGAIN; | 
|  | 523 | if (!xfs_ilock_nowait(ip, iolock)) | 
|  | 524 | return -EAGAIN; | 
|  | 525 | } else { | 
|  | 526 | xfs_ilock(ip, iolock); | 
|  | 527 | } | 
|  | 528 |  | 
|  | 529 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
|  | 530 | if (ret) | 
|  | 531 | goto out; | 
|  | 532 | count = iov_iter_count(from); | 
|  | 533 |  | 
|  | 534 | /* | 
|  | 535 | * If we are doing unaligned IO, we can't allow any other overlapping IO | 
|  | 536 | * in-flight at the same time or we risk data corruption. Wait for all | 
|  | 537 | * other IO to drain before we submit. If the IO is aligned, demote the | 
|  | 538 | * iolock if we had to take the exclusive lock in | 
|  | 539 | * xfs_file_aio_write_checks() for other reasons. | 
|  | 540 | */ | 
|  | 541 | if (unaligned_io) { | 
|  | 542 | inode_dio_wait(inode); | 
|  | 543 | } else if (iolock == XFS_IOLOCK_EXCL) { | 
|  | 544 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); | 
|  | 545 | iolock = XFS_IOLOCK_SHARED; | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos); | 
|  | 549 | ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); | 
|  | 550 |  | 
|  | 551 | /* | 
|  | 552 | * If unaligned, this is the only IO in-flight. If it has not yet | 
|  | 553 | * completed, wait on it before we release the iolock to prevent | 
|  | 554 | * subsequent overlapping IO. | 
|  | 555 | */ | 
|  | 556 | if (ret == -EIOCBQUEUED && unaligned_io) | 
|  | 557 | inode_dio_wait(inode); | 
|  | 558 | out: | 
|  | 559 | xfs_iunlock(ip, iolock); | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * No fallback to buffered IO on errors for XFS, direct IO will either | 
|  | 563 | * complete fully or fail. | 
|  | 564 | */ | 
|  | 565 | ASSERT(ret < 0 || ret == count); | 
|  | 566 | return ret; | 
|  | 567 | } | 
|  | 568 |  | 
|  | 569 | static noinline ssize_t | 
|  | 570 | xfs_file_dax_write( | 
|  | 571 | struct kiocb		*iocb, | 
|  | 572 | struct iov_iter		*from) | 
|  | 573 | { | 
|  | 574 | struct inode		*inode = iocb->ki_filp->f_mapping->host; | 
|  | 575 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 576 | int			iolock = XFS_IOLOCK_EXCL; | 
|  | 577 | ssize_t			ret, error = 0; | 
|  | 578 | size_t			count; | 
|  | 579 | loff_t			pos; | 
|  | 580 |  | 
|  | 581 | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | 582 | if (!xfs_ilock_nowait(ip, iolock)) | 
|  | 583 | return -EAGAIN; | 
|  | 584 | } else { | 
|  | 585 | xfs_ilock(ip, iolock); | 
|  | 586 | } | 
|  | 587 |  | 
|  | 588 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
|  | 589 | if (ret) | 
|  | 590 | goto out; | 
|  | 591 |  | 
|  | 592 | pos = iocb->ki_pos; | 
|  | 593 | count = iov_iter_count(from); | 
|  | 594 |  | 
|  | 595 | trace_xfs_file_dax_write(ip, count, pos); | 
|  | 596 | ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); | 
|  | 597 | if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { | 
|  | 598 | i_size_write(inode, iocb->ki_pos); | 
|  | 599 | error = xfs_setfilesize(ip, pos, ret); | 
|  | 600 | } | 
|  | 601 | out: | 
|  | 602 | xfs_iunlock(ip, iolock); | 
|  | 603 | if (error) | 
|  | 604 | return error; | 
|  | 605 |  | 
|  | 606 | if (ret > 0) { | 
|  | 607 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
|  | 608 |  | 
|  | 609 | /* Handle various SYNC-type writes */ | 
|  | 610 | ret = generic_write_sync(iocb, ret); | 
|  | 611 | } | 
|  | 612 | return ret; | 
|  | 613 | } | 
|  | 614 |  | 
|  | 615 | STATIC ssize_t | 
|  | 616 | xfs_file_buffered_aio_write( | 
|  | 617 | struct kiocb		*iocb, | 
|  | 618 | struct iov_iter		*from) | 
|  | 619 | { | 
|  | 620 | struct file		*file = iocb->ki_filp; | 
|  | 621 | struct address_space	*mapping = file->f_mapping; | 
|  | 622 | struct inode		*inode = mapping->host; | 
|  | 623 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 624 | ssize_t			ret; | 
|  | 625 | int			enospc = 0; | 
|  | 626 | int			iolock; | 
|  | 627 |  | 
|  | 628 | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | 629 | return -EOPNOTSUPP; | 
|  | 630 |  | 
|  | 631 | write_retry: | 
|  | 632 | iolock = XFS_IOLOCK_EXCL; | 
|  | 633 | xfs_ilock(ip, iolock); | 
|  | 634 |  | 
|  | 635 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); | 
|  | 636 | if (ret) | 
|  | 637 | goto out; | 
|  | 638 |  | 
|  | 639 | /* We can write back this queue in page reclaim */ | 
|  | 640 | current->backing_dev_info = inode_to_bdi(inode); | 
|  | 641 |  | 
|  | 642 | trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); | 
|  | 643 | ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); | 
|  | 644 | if (likely(ret >= 0)) | 
|  | 645 | iocb->ki_pos += ret; | 
|  | 646 |  | 
|  | 647 | /* | 
|  | 648 | * If we hit a space limit, try to free up some lingering preallocated | 
|  | 649 | * space before returning an error. In the case of ENOSPC, first try to | 
|  | 650 | * write back all dirty inodes to free up some of the excess reserved | 
|  | 651 | * metadata space. This reduces the chances that the eofblocks scan | 
|  | 652 | * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this | 
|  | 653 | * also behaves as a filter to prevent too many eofblocks scans from | 
|  | 654 | * running at the same time. | 
|  | 655 | */ | 
|  | 656 | if (ret == -EDQUOT && !enospc) { | 
|  | 657 | xfs_iunlock(ip, iolock); | 
|  | 658 | enospc = xfs_inode_free_quota_eofblocks(ip); | 
|  | 659 | if (enospc) | 
|  | 660 | goto write_retry; | 
|  | 661 | enospc = xfs_inode_free_quota_cowblocks(ip); | 
|  | 662 | if (enospc) | 
|  | 663 | goto write_retry; | 
|  | 664 | iolock = 0; | 
|  | 665 | } else if (ret == -ENOSPC && !enospc) { | 
|  | 666 | struct xfs_eofblocks eofb = {0}; | 
|  | 667 |  | 
|  | 668 | enospc = 1; | 
|  | 669 | xfs_flush_inodes(ip->i_mount); | 
|  | 670 |  | 
|  | 671 | xfs_iunlock(ip, iolock); | 
|  | 672 | eofb.eof_flags = XFS_EOF_FLAGS_SYNC; | 
|  | 673 | xfs_icache_free_eofblocks(ip->i_mount, &eofb); | 
|  | 674 | xfs_icache_free_cowblocks(ip->i_mount, &eofb); | 
|  | 675 | goto write_retry; | 
|  | 676 | } | 
|  | 677 |  | 
|  | 678 | current->backing_dev_info = NULL; | 
|  | 679 | out: | 
|  | 680 | if (iolock) | 
|  | 681 | xfs_iunlock(ip, iolock); | 
|  | 682 |  | 
|  | 683 | if (ret > 0) { | 
|  | 684 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); | 
|  | 685 | /* Handle various SYNC-type writes */ | 
|  | 686 | ret = generic_write_sync(iocb, ret); | 
|  | 687 | } | 
|  | 688 | return ret; | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | STATIC ssize_t | 
|  | 692 | xfs_file_write_iter( | 
|  | 693 | struct kiocb		*iocb, | 
|  | 694 | struct iov_iter		*from) | 
|  | 695 | { | 
|  | 696 | struct file		*file = iocb->ki_filp; | 
|  | 697 | struct address_space	*mapping = file->f_mapping; | 
|  | 698 | struct inode		*inode = mapping->host; | 
|  | 699 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 700 | ssize_t			ret; | 
|  | 701 | size_t			ocount = iov_iter_count(from); | 
|  | 702 |  | 
|  | 703 | XFS_STATS_INC(ip->i_mount, xs_write_calls); | 
|  | 704 |  | 
|  | 705 | if (ocount == 0) | 
|  | 706 | return 0; | 
|  | 707 |  | 
|  | 708 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | 709 | return -EIO; | 
|  | 710 |  | 
|  | 711 | if (IS_DAX(inode)) | 
|  | 712 | return xfs_file_dax_write(iocb, from); | 
|  | 713 |  | 
|  | 714 | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | 715 | /* | 
|  | 716 | * Allow a directio write to fall back to a buffered | 
|  | 717 | * write *only* in the case that we're doing a reflink | 
|  | 718 | * CoW.  In all other directio scenarios we do not | 
|  | 719 | * allow an operation to fall back to buffered mode. | 
|  | 720 | */ | 
|  | 721 | ret = xfs_file_dio_aio_write(iocb, from); | 
|  | 722 | if (ret != -EREMCHG) | 
|  | 723 | return ret; | 
|  | 724 | } | 
|  | 725 |  | 
|  | 726 | return xfs_file_buffered_aio_write(iocb, from); | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | static void | 
|  | 730 | xfs_wait_dax_page( | 
|  | 731 | struct inode		*inode) | 
|  | 732 | { | 
|  | 733 | struct xfs_inode        *ip = XFS_I(inode); | 
|  | 734 |  | 
|  | 735 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
|  | 736 | schedule(); | 
|  | 737 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | static int | 
|  | 741 | xfs_break_dax_layouts( | 
|  | 742 | struct inode		*inode, | 
|  | 743 | bool			*retry) | 
|  | 744 | { | 
|  | 745 | struct page		*page; | 
|  | 746 |  | 
|  | 747 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); | 
|  | 748 |  | 
|  | 749 | page = dax_layout_busy_page(inode->i_mapping); | 
|  | 750 | if (!page) | 
|  | 751 | return 0; | 
|  | 752 |  | 
|  | 753 | *retry = true; | 
|  | 754 | return ___wait_var_event(&page->_refcount, | 
|  | 755 | atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, | 
|  | 756 | 0, 0, xfs_wait_dax_page(inode)); | 
|  | 757 | } | 
|  | 758 |  | 
|  | 759 | int | 
|  | 760 | xfs_break_layouts( | 
|  | 761 | struct inode		*inode, | 
|  | 762 | uint			*iolock, | 
|  | 763 | enum layout_break_reason reason) | 
|  | 764 | { | 
|  | 765 | bool			retry; | 
|  | 766 | int			error; | 
|  | 767 |  | 
|  | 768 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); | 
|  | 769 |  | 
|  | 770 | do { | 
|  | 771 | retry = false; | 
|  | 772 | switch (reason) { | 
|  | 773 | case BREAK_UNMAP: | 
|  | 774 | error = xfs_break_dax_layouts(inode, &retry); | 
|  | 775 | if (error || retry) | 
|  | 776 | break; | 
|  | 777 | /* fall through */ | 
|  | 778 | case BREAK_WRITE: | 
|  | 779 | error = xfs_break_leased_layouts(inode, iolock, &retry); | 
|  | 780 | break; | 
|  | 781 | default: | 
|  | 782 | WARN_ON_ONCE(1); | 
|  | 783 | error = -EINVAL; | 
|  | 784 | } | 
|  | 785 | } while (error == 0 && retry); | 
|  | 786 |  | 
|  | 787 | return error; | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | #define	XFS_FALLOC_FL_SUPPORTED						\ | 
|  | 791 | (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\ | 
|  | 792 | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\ | 
|  | 793 | FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) | 
|  | 794 |  | 
|  | 795 | STATIC long | 
|  | 796 | xfs_file_fallocate( | 
|  | 797 | struct file		*file, | 
|  | 798 | int			mode, | 
|  | 799 | loff_t			offset, | 
|  | 800 | loff_t			len) | 
|  | 801 | { | 
|  | 802 | struct inode		*inode = file_inode(file); | 
|  | 803 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 804 | long			error; | 
|  | 805 | enum xfs_prealloc_flags	flags = 0; | 
|  | 806 | uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; | 
|  | 807 | loff_t			new_size = 0; | 
|  | 808 | bool			do_file_insert = false; | 
|  | 809 |  | 
|  | 810 | if (!S_ISREG(inode->i_mode)) | 
|  | 811 | return -EINVAL; | 
|  | 812 | if (mode & ~XFS_FALLOC_FL_SUPPORTED) | 
|  | 813 | return -EOPNOTSUPP; | 
|  | 814 |  | 
|  | 815 | xfs_ilock(ip, iolock); | 
|  | 816 | error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); | 
|  | 817 | if (error) | 
|  | 818 | goto out_unlock; | 
|  | 819 |  | 
|  | 820 | if (mode & FALLOC_FL_PUNCH_HOLE) { | 
|  | 821 | error = xfs_free_file_space(ip, offset, len); | 
|  | 822 | if (error) | 
|  | 823 | goto out_unlock; | 
|  | 824 | } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { | 
|  | 825 | unsigned int blksize_mask = i_blocksize(inode) - 1; | 
|  | 826 |  | 
|  | 827 | if (offset & blksize_mask || len & blksize_mask) { | 
|  | 828 | error = -EINVAL; | 
|  | 829 | goto out_unlock; | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | /* | 
|  | 833 | * There is no need to overlap collapse range with EOF, | 
|  | 834 | * in which case it is effectively a truncate operation | 
|  | 835 | */ | 
|  | 836 | if (offset + len >= i_size_read(inode)) { | 
|  | 837 | error = -EINVAL; | 
|  | 838 | goto out_unlock; | 
|  | 839 | } | 
|  | 840 |  | 
|  | 841 | new_size = i_size_read(inode) - len; | 
|  | 842 |  | 
|  | 843 | error = xfs_collapse_file_space(ip, offset, len); | 
|  | 844 | if (error) | 
|  | 845 | goto out_unlock; | 
|  | 846 | } else if (mode & FALLOC_FL_INSERT_RANGE) { | 
|  | 847 | unsigned int	blksize_mask = i_blocksize(inode) - 1; | 
|  | 848 | loff_t		isize = i_size_read(inode); | 
|  | 849 |  | 
|  | 850 | if (offset & blksize_mask || len & blksize_mask) { | 
|  | 851 | error = -EINVAL; | 
|  | 852 | goto out_unlock; | 
|  | 853 | } | 
|  | 854 |  | 
|  | 855 | /* | 
|  | 856 | * New inode size must not exceed ->s_maxbytes, accounting for | 
|  | 857 | * possible signed overflow. | 
|  | 858 | */ | 
|  | 859 | if (inode->i_sb->s_maxbytes - isize < len) { | 
|  | 860 | error = -EFBIG; | 
|  | 861 | goto out_unlock; | 
|  | 862 | } | 
|  | 863 | new_size = isize + len; | 
|  | 864 |  | 
|  | 865 | /* Offset should be less than i_size */ | 
|  | 866 | if (offset >= isize) { | 
|  | 867 | error = -EINVAL; | 
|  | 868 | goto out_unlock; | 
|  | 869 | } | 
|  | 870 | do_file_insert = true; | 
|  | 871 | } else { | 
|  | 872 | flags |= XFS_PREALLOC_SET; | 
|  | 873 |  | 
|  | 874 | if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
|  | 875 | offset + len > i_size_read(inode)) { | 
|  | 876 | new_size = offset + len; | 
|  | 877 | error = inode_newsize_ok(inode, new_size); | 
|  | 878 | if (error) | 
|  | 879 | goto out_unlock; | 
|  | 880 | } | 
|  | 881 |  | 
|  | 882 | if (mode & FALLOC_FL_ZERO_RANGE) | 
|  | 883 | error = xfs_zero_file_space(ip, offset, len); | 
|  | 884 | else { | 
|  | 885 | if (mode & FALLOC_FL_UNSHARE_RANGE) { | 
|  | 886 | error = xfs_reflink_unshare(ip, offset, len); | 
|  | 887 | if (error) | 
|  | 888 | goto out_unlock; | 
|  | 889 | } | 
|  | 890 | error = xfs_alloc_file_space(ip, offset, len, | 
|  | 891 | XFS_BMAPI_PREALLOC); | 
|  | 892 | } | 
|  | 893 | if (error) | 
|  | 894 | goto out_unlock; | 
|  | 895 | } | 
|  | 896 |  | 
|  | 897 | if (file->f_flags & O_DSYNC) | 
|  | 898 | flags |= XFS_PREALLOC_SYNC; | 
|  | 899 |  | 
|  | 900 | error = xfs_update_prealloc_flags(ip, flags); | 
|  | 901 | if (error) | 
|  | 902 | goto out_unlock; | 
|  | 903 |  | 
|  | 904 | /* Change file size if needed */ | 
|  | 905 | if (new_size) { | 
|  | 906 | struct iattr iattr; | 
|  | 907 |  | 
|  | 908 | iattr.ia_valid = ATTR_SIZE; | 
|  | 909 | iattr.ia_size = new_size; | 
|  | 910 | error = xfs_vn_setattr_size(file_dentry(file), &iattr); | 
|  | 911 | if (error) | 
|  | 912 | goto out_unlock; | 
|  | 913 | } | 
|  | 914 |  | 
|  | 915 | /* | 
|  | 916 | * Perform hole insertion now that the file size has been | 
|  | 917 | * updated so that if we crash during the operation we don't | 
|  | 918 | * leave shifted extents past EOF and hence losing access to | 
|  | 919 | * the data that is contained within them. | 
|  | 920 | */ | 
|  | 921 | if (do_file_insert) | 
|  | 922 | error = xfs_insert_file_space(ip, offset, len); | 
|  | 923 |  | 
|  | 924 | out_unlock: | 
|  | 925 | xfs_iunlock(ip, iolock); | 
|  | 926 | return error; | 
|  | 927 | } | 
|  | 928 |  | 
|  | 929 | STATIC int | 
|  | 930 | xfs_file_clone_range( | 
|  | 931 | struct file	*file_in, | 
|  | 932 | loff_t		pos_in, | 
|  | 933 | struct file	*file_out, | 
|  | 934 | loff_t		pos_out, | 
|  | 935 | u64		len) | 
|  | 936 | { | 
|  | 937 | return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, | 
|  | 938 | len, false); | 
|  | 939 | } | 
|  | 940 |  | 
|  | 941 | STATIC int | 
|  | 942 | xfs_file_dedupe_range( | 
|  | 943 | struct file	*file_in, | 
|  | 944 | loff_t		pos_in, | 
|  | 945 | struct file	*file_out, | 
|  | 946 | loff_t		pos_out, | 
|  | 947 | u64		len) | 
|  | 948 | { | 
|  | 949 | return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, | 
|  | 950 | len, true); | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | STATIC int | 
|  | 954 | xfs_file_open( | 
|  | 955 | struct inode	*inode, | 
|  | 956 | struct file	*file) | 
|  | 957 | { | 
|  | 958 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) | 
|  | 959 | return -EFBIG; | 
|  | 960 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) | 
|  | 961 | return -EIO; | 
|  | 962 | file->f_mode |= FMODE_NOWAIT; | 
|  | 963 | return 0; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | STATIC int | 
|  | 967 | xfs_dir_open( | 
|  | 968 | struct inode	*inode, | 
|  | 969 | struct file	*file) | 
|  | 970 | { | 
|  | 971 | struct xfs_inode *ip = XFS_I(inode); | 
|  | 972 | int		mode; | 
|  | 973 | int		error; | 
|  | 974 |  | 
|  | 975 | error = xfs_file_open(inode, file); | 
|  | 976 | if (error) | 
|  | 977 | return error; | 
|  | 978 |  | 
|  | 979 | /* | 
|  | 980 | * If there are any blocks, read-ahead block 0 as we're almost | 
|  | 981 | * certain to have the next operation be a read there. | 
|  | 982 | */ | 
|  | 983 | mode = xfs_ilock_data_map_shared(ip); | 
|  | 984 | if (ip->i_d.di_nextents > 0) | 
|  | 985 | error = xfs_dir3_data_readahead(ip, 0, -1); | 
|  | 986 | xfs_iunlock(ip, mode); | 
|  | 987 | return error; | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | STATIC int | 
|  | 991 | xfs_file_release( | 
|  | 992 | struct inode	*inode, | 
|  | 993 | struct file	*filp) | 
|  | 994 | { | 
|  | 995 | return xfs_release(XFS_I(inode)); | 
|  | 996 | } | 
|  | 997 |  | 
|  | 998 | STATIC int | 
|  | 999 | xfs_file_readdir( | 
|  | 1000 | struct file	*file, | 
|  | 1001 | struct dir_context *ctx) | 
|  | 1002 | { | 
|  | 1003 | struct inode	*inode = file_inode(file); | 
|  | 1004 | xfs_inode_t	*ip = XFS_I(inode); | 
|  | 1005 | size_t		bufsize; | 
|  | 1006 |  | 
|  | 1007 | /* | 
|  | 1008 | * The Linux API doesn't pass down the total size of the buffer | 
|  | 1009 | * we read into down to the filesystem.  With the filldir concept | 
|  | 1010 | * it's not needed for correct information, but the XFS dir2 leaf | 
|  | 1011 | * code wants an estimate of the buffer size to calculate it's | 
|  | 1012 | * readahead window and size the buffers used for mapping to | 
|  | 1013 | * physical blocks. | 
|  | 1014 | * | 
|  | 1015 | * Try to give it an estimate that's good enough, maybe at some | 
|  | 1016 | * point we can change the ->readdir prototype to include the | 
|  | 1017 | * buffer size.  For now we use the current glibc buffer size. | 
|  | 1018 | */ | 
|  | 1019 | bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); | 
|  | 1020 |  | 
|  | 1021 | return xfs_readdir(NULL, ip, ctx, bufsize); | 
|  | 1022 | } | 
|  | 1023 |  | 
|  | 1024 | STATIC loff_t | 
|  | 1025 | xfs_file_llseek( | 
|  | 1026 | struct file	*file, | 
|  | 1027 | loff_t		offset, | 
|  | 1028 | int		whence) | 
|  | 1029 | { | 
|  | 1030 | struct inode		*inode = file->f_mapping->host; | 
|  | 1031 |  | 
|  | 1032 | if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) | 
|  | 1033 | return -EIO; | 
|  | 1034 |  | 
|  | 1035 | switch (whence) { | 
|  | 1036 | default: | 
|  | 1037 | return generic_file_llseek(file, offset, whence); | 
|  | 1038 | case SEEK_HOLE: | 
|  | 1039 | offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); | 
|  | 1040 | break; | 
|  | 1041 | case SEEK_DATA: | 
|  | 1042 | offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); | 
|  | 1043 | break; | 
|  | 1044 | } | 
|  | 1045 |  | 
|  | 1046 | if (offset < 0) | 
|  | 1047 | return offset; | 
|  | 1048 | return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | 
|  | 1049 | } | 
|  | 1050 |  | 
|  | 1051 | /* | 
|  | 1052 | * Locking for serialisation of IO during page faults. This results in a lock | 
|  | 1053 | * ordering of: | 
|  | 1054 | * | 
|  | 1055 | * mmap_sem (MM) | 
|  | 1056 | *   sb_start_pagefault(vfs, freeze) | 
|  | 1057 | *     i_mmaplock (XFS - truncate serialisation) | 
|  | 1058 | *       page_lock (MM) | 
|  | 1059 | *         i_lock (XFS - extent map serialisation) | 
|  | 1060 | */ | 
|  | 1061 | static vm_fault_t | 
|  | 1062 | __xfs_filemap_fault( | 
|  | 1063 | struct vm_fault		*vmf, | 
|  | 1064 | enum page_entry_size	pe_size, | 
|  | 1065 | bool			write_fault) | 
|  | 1066 | { | 
|  | 1067 | struct inode		*inode = file_inode(vmf->vma->vm_file); | 
|  | 1068 | struct xfs_inode	*ip = XFS_I(inode); | 
|  | 1069 | vm_fault_t		ret; | 
|  | 1070 |  | 
|  | 1071 | trace_xfs_filemap_fault(ip, pe_size, write_fault); | 
|  | 1072 |  | 
|  | 1073 | if (write_fault) { | 
|  | 1074 | sb_start_pagefault(inode->i_sb); | 
|  | 1075 | file_update_time(vmf->vma->vm_file); | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
|  | 1079 | if (IS_DAX(inode)) { | 
|  | 1080 | pfn_t pfn; | 
|  | 1081 |  | 
|  | 1082 | ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); | 
|  | 1083 | if (ret & VM_FAULT_NEEDDSYNC) | 
|  | 1084 | ret = dax_finish_sync_fault(vmf, pe_size, pfn); | 
|  | 1085 | } else { | 
|  | 1086 | if (write_fault) | 
|  | 1087 | ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); | 
|  | 1088 | else | 
|  | 1089 | ret = filemap_fault(vmf); | 
|  | 1090 | } | 
|  | 1091 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); | 
|  | 1092 |  | 
|  | 1093 | if (write_fault) | 
|  | 1094 | sb_end_pagefault(inode->i_sb); | 
|  | 1095 | return ret; | 
|  | 1096 | } | 
|  | 1097 |  | 
|  | 1098 | static vm_fault_t | 
|  | 1099 | xfs_filemap_fault( | 
|  | 1100 | struct vm_fault		*vmf) | 
|  | 1101 | { | 
|  | 1102 | /* DAX can shortcut the normal fault path on write faults! */ | 
|  | 1103 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, | 
|  | 1104 | IS_DAX(file_inode(vmf->vma->vm_file)) && | 
|  | 1105 | (vmf->flags & FAULT_FLAG_WRITE)); | 
|  | 1106 | } | 
|  | 1107 |  | 
|  | 1108 | static vm_fault_t | 
|  | 1109 | xfs_filemap_huge_fault( | 
|  | 1110 | struct vm_fault		*vmf, | 
|  | 1111 | enum page_entry_size	pe_size) | 
|  | 1112 | { | 
|  | 1113 | if (!IS_DAX(file_inode(vmf->vma->vm_file))) | 
|  | 1114 | return VM_FAULT_FALLBACK; | 
|  | 1115 |  | 
|  | 1116 | /* DAX can shortcut the normal fault path on write faults! */ | 
|  | 1117 | return __xfs_filemap_fault(vmf, pe_size, | 
|  | 1118 | (vmf->flags & FAULT_FLAG_WRITE)); | 
|  | 1119 | } | 
|  | 1120 |  | 
|  | 1121 | static vm_fault_t | 
|  | 1122 | xfs_filemap_page_mkwrite( | 
|  | 1123 | struct vm_fault		*vmf) | 
|  | 1124 | { | 
|  | 1125 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
|  | 1126 | } | 
|  | 1127 |  | 
|  | 1128 | /* | 
|  | 1129 | * pfn_mkwrite was originally intended to ensure we capture time stamp updates | 
|  | 1130 | * on write faults. In reality, it needs to serialise against truncate and | 
|  | 1131 | * prepare memory for writing so handle is as standard write fault. | 
|  | 1132 | */ | 
|  | 1133 | static vm_fault_t | 
|  | 1134 | xfs_filemap_pfn_mkwrite( | 
|  | 1135 | struct vm_fault		*vmf) | 
|  | 1136 | { | 
|  | 1137 |  | 
|  | 1138 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); | 
|  | 1139 | } | 
|  | 1140 |  | 
|  | 1141 | static const struct vm_operations_struct xfs_file_vm_ops = { | 
|  | 1142 | .fault		= xfs_filemap_fault, | 
|  | 1143 | .huge_fault	= xfs_filemap_huge_fault, | 
|  | 1144 | .map_pages	= filemap_map_pages, | 
|  | 1145 | .page_mkwrite	= xfs_filemap_page_mkwrite, | 
|  | 1146 | .pfn_mkwrite	= xfs_filemap_pfn_mkwrite, | 
|  | 1147 | }; | 
|  | 1148 |  | 
|  | 1149 | STATIC int | 
|  | 1150 | xfs_file_mmap( | 
|  | 1151 | struct file	*filp, | 
|  | 1152 | struct vm_area_struct *vma) | 
|  | 1153 | { | 
|  | 1154 | /* | 
|  | 1155 | * We don't support synchronous mappings for non-DAX files. At least | 
|  | 1156 | * until someone comes with a sensible use case. | 
|  | 1157 | */ | 
|  | 1158 | if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) | 
|  | 1159 | return -EOPNOTSUPP; | 
|  | 1160 |  | 
|  | 1161 | file_accessed(filp); | 
|  | 1162 | vma->vm_ops = &xfs_file_vm_ops; | 
|  | 1163 | if (IS_DAX(file_inode(filp))) | 
|  | 1164 | vma->vm_flags |= VM_HUGEPAGE; | 
|  | 1165 | return 0; | 
|  | 1166 | } | 
|  | 1167 |  | 
|  | 1168 | const struct file_operations xfs_file_operations = { | 
|  | 1169 | .llseek		= xfs_file_llseek, | 
|  | 1170 | .read_iter	= xfs_file_read_iter, | 
|  | 1171 | .write_iter	= xfs_file_write_iter, | 
|  | 1172 | .splice_read	= generic_file_splice_read, | 
|  | 1173 | .splice_write	= iter_file_splice_write, | 
|  | 1174 | .unlocked_ioctl	= xfs_file_ioctl, | 
|  | 1175 | #ifdef CONFIG_COMPAT | 
|  | 1176 | .compat_ioctl	= xfs_file_compat_ioctl, | 
|  | 1177 | #endif | 
|  | 1178 | .mmap		= xfs_file_mmap, | 
|  | 1179 | .mmap_supported_flags = MAP_SYNC, | 
|  | 1180 | .open		= xfs_file_open, | 
|  | 1181 | .release	= xfs_file_release, | 
|  | 1182 | .fsync		= xfs_file_fsync, | 
|  | 1183 | .get_unmapped_area = thp_get_unmapped_area, | 
|  | 1184 | .fallocate	= xfs_file_fallocate, | 
|  | 1185 | .clone_file_range = xfs_file_clone_range, | 
|  | 1186 | .dedupe_file_range = xfs_file_dedupe_range, | 
|  | 1187 | }; | 
|  | 1188 |  | 
|  | 1189 | const struct file_operations xfs_dir_file_operations = { | 
|  | 1190 | .open		= xfs_dir_open, | 
|  | 1191 | .read		= generic_read_dir, | 
|  | 1192 | .iterate_shared	= xfs_file_readdir, | 
|  | 1193 | .llseek		= generic_file_llseek, | 
|  | 1194 | .unlocked_ioctl	= xfs_file_ioctl, | 
|  | 1195 | #ifdef CONFIG_COMPAT | 
|  | 1196 | .compat_ioctl	= xfs_file_compat_ioctl, | 
|  | 1197 | #endif | 
|  | 1198 | .fsync		= xfs_dir_fsync, | 
|  | 1199 | }; |