| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * inet fragments management | 
|  | 3 | * | 
|  | 4 | *		This program is free software; you can redistribute it and/or | 
|  | 5 | *		modify it under the terms of the GNU General Public License | 
|  | 6 | *		as published by the Free Software Foundation; either version | 
|  | 7 | *		2 of the License, or (at your option) any later version. | 
|  | 8 | * | 
|  | 9 | * 		Authors:	Pavel Emelyanov <xemul@openvz.org> | 
|  | 10 | *				Started as consolidation of ipv4/ip_fragment.c, | 
|  | 11 | *				ipv6/reassembly. and ipv6 nf conntrack reassembly | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/list.h> | 
|  | 15 | #include <linux/spinlock.h> | 
|  | 16 | #include <linux/module.h> | 
|  | 17 | #include <linux/timer.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/random.h> | 
|  | 20 | #include <linux/skbuff.h> | 
|  | 21 | #include <linux/rtnetlink.h> | 
|  | 22 | #include <linux/slab.h> | 
|  | 23 | #include <linux/rhashtable.h> | 
|  | 24 |  | 
|  | 25 | #include <net/sock.h> | 
|  | 26 | #include <net/inet_frag.h> | 
|  | 27 | #include <net/inet_ecn.h> | 
|  | 28 | #include <net/ip.h> | 
|  | 29 | #include <net/ipv6.h> | 
|  | 30 |  | 
|  | 31 | /* Use skb->cb to track consecutive/adjacent fragments coming at | 
|  | 32 | * the end of the queue. Nodes in the rb-tree queue will | 
|  | 33 | * contain "runs" of one or more adjacent fragments. | 
|  | 34 | * | 
|  | 35 | * Invariants: | 
|  | 36 | * - next_frag is NULL at the tail of a "run"; | 
|  | 37 | * - the head of a "run" has the sum of all fragment lengths in frag_run_len. | 
|  | 38 | */ | 
|  | 39 | struct ipfrag_skb_cb { | 
|  | 40 | union { | 
|  | 41 | struct inet_skb_parm	h4; | 
|  | 42 | struct inet6_skb_parm	h6; | 
|  | 43 | }; | 
|  | 44 | struct sk_buff		*next_frag; | 
|  | 45 | int			frag_run_len; | 
|  | 46 | }; | 
|  | 47 |  | 
|  | 48 | #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb)) | 
|  | 49 |  | 
|  | 50 | static void fragcb_clear(struct sk_buff *skb) | 
|  | 51 | { | 
|  | 52 | RB_CLEAR_NODE(&skb->rbnode); | 
|  | 53 | FRAG_CB(skb)->next_frag = NULL; | 
|  | 54 | FRAG_CB(skb)->frag_run_len = skb->len; | 
|  | 55 | } | 
|  | 56 |  | 
|  | 57 | /* Append skb to the last "run". */ | 
|  | 58 | static void fragrun_append_to_last(struct inet_frag_queue *q, | 
|  | 59 | struct sk_buff *skb) | 
|  | 60 | { | 
|  | 61 | fragcb_clear(skb); | 
|  | 62 |  | 
|  | 63 | FRAG_CB(q->last_run_head)->frag_run_len += skb->len; | 
|  | 64 | FRAG_CB(q->fragments_tail)->next_frag = skb; | 
|  | 65 | q->fragments_tail = skb; | 
|  | 66 | } | 
|  | 67 |  | 
|  | 68 | /* Create a new "run" with the skb. */ | 
|  | 69 | static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) | 
|  | 70 | { | 
|  | 71 | BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); | 
|  | 72 | fragcb_clear(skb); | 
|  | 73 |  | 
|  | 74 | if (q->last_run_head) | 
|  | 75 | rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, | 
|  | 76 | &q->last_run_head->rbnode.rb_right); | 
|  | 77 | else | 
|  | 78 | rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); | 
|  | 79 | rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
|  | 80 |  | 
|  | 81 | q->fragments_tail = skb; | 
|  | 82 | q->last_run_head = skb; | 
|  | 83 | } | 
|  | 84 |  | 
|  | 85 | /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements | 
|  | 86 | * Value : 0xff if frame should be dropped. | 
|  | 87 | *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field | 
|  | 88 | */ | 
|  | 89 | const u8 ip_frag_ecn_table[16] = { | 
|  | 90 | /* at least one fragment had CE, and others ECT_0 or ECT_1 */ | 
|  | 91 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE, | 
|  | 92 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE, | 
|  | 93 | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE, | 
|  | 94 |  | 
|  | 95 | /* invalid combinations : drop frame */ | 
|  | 96 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, | 
|  | 97 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, | 
|  | 98 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | 99 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | 100 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, | 
|  | 101 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | 102 | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | 103 | }; | 
|  | 104 | EXPORT_SYMBOL(ip_frag_ecn_table); | 
|  | 105 |  | 
|  | 106 | int inet_frags_init(struct inet_frags *f) | 
|  | 107 | { | 
|  | 108 | f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, | 
|  | 109 | NULL); | 
|  | 110 | if (!f->frags_cachep) | 
|  | 111 | return -ENOMEM; | 
|  | 112 |  | 
|  | 113 | return 0; | 
|  | 114 | } | 
|  | 115 | EXPORT_SYMBOL(inet_frags_init); | 
|  | 116 |  | 
|  | 117 | void inet_frags_fini(struct inet_frags *f) | 
|  | 118 | { | 
|  | 119 | /* We must wait that all inet_frag_destroy_rcu() have completed. */ | 
|  | 120 | rcu_barrier(); | 
|  | 121 |  | 
|  | 122 | kmem_cache_destroy(f->frags_cachep); | 
|  | 123 | f->frags_cachep = NULL; | 
|  | 124 | } | 
|  | 125 | EXPORT_SYMBOL(inet_frags_fini); | 
|  | 126 |  | 
|  | 127 | static void inet_frags_free_cb(void *ptr, void *arg) | 
|  | 128 | { | 
|  | 129 | struct inet_frag_queue *fq = ptr; | 
|  | 130 |  | 
|  | 131 | /* If we can not cancel the timer, it means this frag_queue | 
|  | 132 | * is already disappearing, we have nothing to do. | 
|  | 133 | * Otherwise, we own a refcount until the end of this function. | 
|  | 134 | */ | 
|  | 135 | if (!del_timer(&fq->timer)) | 
|  | 136 | return; | 
|  | 137 |  | 
|  | 138 | spin_lock_bh(&fq->lock); | 
|  | 139 | if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
|  | 140 | fq->flags |= INET_FRAG_COMPLETE; | 
|  | 141 | refcount_dec(&fq->refcnt); | 
|  | 142 | } | 
|  | 143 | spin_unlock_bh(&fq->lock); | 
|  | 144 |  | 
|  | 145 | inet_frag_put(fq); | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | void inet_frags_exit_net(struct netns_frags *nf) | 
|  | 149 | { | 
|  | 150 | nf->high_thresh = 0; /* prevent creation of new frags */ | 
|  | 151 |  | 
|  | 152 | rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL); | 
|  | 153 | } | 
|  | 154 | EXPORT_SYMBOL(inet_frags_exit_net); | 
|  | 155 |  | 
|  | 156 | void inet_frag_kill(struct inet_frag_queue *fq) | 
|  | 157 | { | 
|  | 158 | if (del_timer(&fq->timer)) | 
|  | 159 | refcount_dec(&fq->refcnt); | 
|  | 160 |  | 
|  | 161 | if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
|  | 162 | struct netns_frags *nf = fq->net; | 
|  | 163 |  | 
|  | 164 | fq->flags |= INET_FRAG_COMPLETE; | 
|  | 165 | rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params); | 
|  | 166 | refcount_dec(&fq->refcnt); | 
|  | 167 | } | 
|  | 168 | } | 
|  | 169 | EXPORT_SYMBOL(inet_frag_kill); | 
|  | 170 |  | 
|  | 171 | static void inet_frag_destroy_rcu(struct rcu_head *head) | 
|  | 172 | { | 
|  | 173 | struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, | 
|  | 174 | rcu); | 
|  | 175 | struct inet_frags *f = q->net->f; | 
|  | 176 |  | 
|  | 177 | if (f->destructor) | 
|  | 178 | f->destructor(q); | 
|  | 179 | kmem_cache_free(f->frags_cachep, q); | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | unsigned int inet_frag_rbtree_purge(struct rb_root *root) | 
|  | 183 | { | 
|  | 184 | struct rb_node *p = rb_first(root); | 
|  | 185 | unsigned int sum = 0; | 
|  | 186 |  | 
|  | 187 | while (p) { | 
|  | 188 | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); | 
|  | 189 |  | 
|  | 190 | p = rb_next(p); | 
|  | 191 | rb_erase(&skb->rbnode, root); | 
|  | 192 | while (skb) { | 
|  | 193 | struct sk_buff *next = FRAG_CB(skb)->next_frag; | 
|  | 194 |  | 
|  | 195 | sum += skb->truesize; | 
|  | 196 | kfree_skb(skb); | 
|  | 197 | skb = next; | 
|  | 198 | } | 
|  | 199 | } | 
|  | 200 | return sum; | 
|  | 201 | } | 
|  | 202 | EXPORT_SYMBOL(inet_frag_rbtree_purge); | 
|  | 203 |  | 
|  | 204 | void inet_frag_destroy(struct inet_frag_queue *q) | 
|  | 205 | { | 
|  | 206 | struct sk_buff *fp; | 
|  | 207 | struct netns_frags *nf; | 
|  | 208 | unsigned int sum, sum_truesize = 0; | 
|  | 209 | struct inet_frags *f; | 
|  | 210 |  | 
|  | 211 | WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); | 
|  | 212 | WARN_ON(del_timer(&q->timer) != 0); | 
|  | 213 |  | 
|  | 214 | /* Release all fragment data. */ | 
|  | 215 | fp = q->fragments; | 
|  | 216 | nf = q->net; | 
|  | 217 | f = nf->f; | 
|  | 218 | if (fp) { | 
|  | 219 | do { | 
|  | 220 | struct sk_buff *xp = fp->next; | 
|  | 221 |  | 
|  | 222 | sum_truesize += fp->truesize; | 
|  | 223 | kfree_skb(fp); | 
|  | 224 | fp = xp; | 
|  | 225 | } while (fp); | 
|  | 226 | } else { | 
|  | 227 | sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments); | 
|  | 228 | } | 
|  | 229 | sum = sum_truesize + f->qsize; | 
|  | 230 |  | 
|  | 231 | call_rcu(&q->rcu, inet_frag_destroy_rcu); | 
|  | 232 |  | 
|  | 233 | sub_frag_mem_limit(nf, sum); | 
|  | 234 | } | 
|  | 235 | EXPORT_SYMBOL(inet_frag_destroy); | 
|  | 236 |  | 
|  | 237 | static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf, | 
|  | 238 | struct inet_frags *f, | 
|  | 239 | void *arg) | 
|  | 240 | { | 
|  | 241 | struct inet_frag_queue *q; | 
|  | 242 |  | 
|  | 243 | q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); | 
|  | 244 | if (!q) | 
|  | 245 | return NULL; | 
|  | 246 |  | 
|  | 247 | q->net = nf; | 
|  | 248 | f->constructor(q, arg); | 
|  | 249 | add_frag_mem_limit(nf, f->qsize); | 
|  | 250 |  | 
|  | 251 | timer_setup(&q->timer, f->frag_expire, 0); | 
|  | 252 | spin_lock_init(&q->lock); | 
|  | 253 | refcount_set(&q->refcnt, 3); | 
|  | 254 |  | 
|  | 255 | return q; | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf, | 
|  | 259 | void *arg, | 
|  | 260 | struct inet_frag_queue **prev) | 
|  | 261 | { | 
|  | 262 | struct inet_frags *f = nf->f; | 
|  | 263 | struct inet_frag_queue *q; | 
|  | 264 |  | 
|  | 265 | q = inet_frag_alloc(nf, f, arg); | 
|  | 266 | if (!q) { | 
|  | 267 | *prev = ERR_PTR(-ENOMEM); | 
|  | 268 | return NULL; | 
|  | 269 | } | 
|  | 270 | mod_timer(&q->timer, jiffies + nf->timeout); | 
|  | 271 |  | 
|  | 272 | *prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key, | 
|  | 273 | &q->node, f->rhash_params); | 
|  | 274 | if (*prev) { | 
|  | 275 | q->flags |= INET_FRAG_COMPLETE; | 
|  | 276 | inet_frag_kill(q); | 
|  | 277 | inet_frag_destroy(q); | 
|  | 278 | return NULL; | 
|  | 279 | } | 
|  | 280 | return q; | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ | 
|  | 284 | struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key) | 
|  | 285 | { | 
|  | 286 | struct inet_frag_queue *fq = NULL, *prev; | 
|  | 287 |  | 
|  | 288 | if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh) | 
|  | 289 | return NULL; | 
|  | 290 |  | 
|  | 291 | rcu_read_lock(); | 
|  | 292 |  | 
|  | 293 | prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params); | 
|  | 294 | if (!prev) | 
|  | 295 | fq = inet_frag_create(nf, key, &prev); | 
|  | 296 | if (prev && !IS_ERR(prev)) { | 
|  | 297 | fq = prev; | 
|  | 298 | if (!refcount_inc_not_zero(&fq->refcnt)) | 
|  | 299 | fq = NULL; | 
|  | 300 | } | 
|  | 301 | rcu_read_unlock(); | 
|  | 302 | return fq; | 
|  | 303 | } | 
|  | 304 | EXPORT_SYMBOL(inet_frag_find); | 
|  | 305 |  | 
|  | 306 | int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, | 
|  | 307 | int offset, int end) | 
|  | 308 | { | 
|  | 309 | struct sk_buff *last = q->fragments_tail; | 
|  | 310 |  | 
|  | 311 | /* RFC5722, Section 4, amended by Errata ID : 3089 | 
|  | 312 | *                          When reassembling an IPv6 datagram, if | 
|  | 313 | *   one or more its constituent fragments is determined to be an | 
|  | 314 | *   overlapping fragment, the entire datagram (and any constituent | 
|  | 315 | *   fragments) MUST be silently discarded. | 
|  | 316 | * | 
|  | 317 | * Duplicates, however, should be ignored (i.e. skb dropped, but the | 
|  | 318 | * queue/fragments kept for later reassembly). | 
|  | 319 | */ | 
|  | 320 | if (!last) | 
|  | 321 | fragrun_create(q, skb);  /* First fragment. */ | 
|  | 322 | else if (last->ip_defrag_offset + last->len < end) { | 
|  | 323 | /* This is the common case: skb goes to the end. */ | 
|  | 324 | /* Detect and discard overlaps. */ | 
|  | 325 | if (offset < last->ip_defrag_offset + last->len) | 
|  | 326 | return IPFRAG_OVERLAP; | 
|  | 327 | if (offset == last->ip_defrag_offset + last->len) | 
|  | 328 | fragrun_append_to_last(q, skb); | 
|  | 329 | else | 
|  | 330 | fragrun_create(q, skb); | 
|  | 331 | } else { | 
|  | 332 | /* Binary search. Note that skb can become the first fragment, | 
|  | 333 | * but not the last (covered above). | 
|  | 334 | */ | 
|  | 335 | struct rb_node **rbn, *parent; | 
|  | 336 |  | 
|  | 337 | rbn = &q->rb_fragments.rb_node; | 
|  | 338 | do { | 
|  | 339 | struct sk_buff *curr; | 
|  | 340 | int curr_run_end; | 
|  | 341 |  | 
|  | 342 | parent = *rbn; | 
|  | 343 | curr = rb_to_skb(parent); | 
|  | 344 | curr_run_end = curr->ip_defrag_offset + | 
|  | 345 | FRAG_CB(curr)->frag_run_len; | 
|  | 346 | if (end <= curr->ip_defrag_offset) | 
|  | 347 | rbn = &parent->rb_left; | 
|  | 348 | else if (offset >= curr_run_end) | 
|  | 349 | rbn = &parent->rb_right; | 
|  | 350 | else if (offset >= curr->ip_defrag_offset && | 
|  | 351 | end <= curr_run_end) | 
|  | 352 | return IPFRAG_DUP; | 
|  | 353 | else | 
|  | 354 | return IPFRAG_OVERLAP; | 
|  | 355 | } while (*rbn); | 
|  | 356 | /* Here we have parent properly set, and rbn pointing to | 
|  | 357 | * one of its NULL left/right children. Insert skb. | 
|  | 358 | */ | 
|  | 359 | fragcb_clear(skb); | 
|  | 360 | rb_link_node(&skb->rbnode, parent, rbn); | 
|  | 361 | rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | skb->ip_defrag_offset = offset; | 
|  | 365 |  | 
|  | 366 | return IPFRAG_OK; | 
|  | 367 | } | 
|  | 368 | EXPORT_SYMBOL(inet_frag_queue_insert); | 
|  | 369 |  | 
|  | 370 | void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, | 
|  | 371 | struct sk_buff *parent) | 
|  | 372 | { | 
|  | 373 | struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); | 
|  | 374 | struct sk_buff **nextp; | 
|  | 375 | int delta; | 
|  | 376 |  | 
|  | 377 | if (head != skb) { | 
|  | 378 | fp = skb_clone(skb, GFP_ATOMIC); | 
|  | 379 | if (!fp) | 
|  | 380 | return NULL; | 
|  | 381 | FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; | 
|  | 382 | if (RB_EMPTY_NODE(&skb->rbnode)) | 
|  | 383 | FRAG_CB(parent)->next_frag = fp; | 
|  | 384 | else | 
|  | 385 | rb_replace_node(&skb->rbnode, &fp->rbnode, | 
|  | 386 | &q->rb_fragments); | 
|  | 387 | if (q->fragments_tail == skb) | 
|  | 388 | q->fragments_tail = fp; | 
|  | 389 | skb_morph(skb, head); | 
|  | 390 | FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; | 
|  | 391 | rb_replace_node(&head->rbnode, &skb->rbnode, | 
|  | 392 | &q->rb_fragments); | 
|  | 393 | consume_skb(head); | 
|  | 394 | head = skb; | 
|  | 395 | } | 
|  | 396 | WARN_ON(head->ip_defrag_offset != 0); | 
|  | 397 |  | 
|  | 398 | delta = -head->truesize; | 
|  | 399 |  | 
|  | 400 | /* Head of list must not be cloned. */ | 
|  | 401 | if (skb_unclone(head, GFP_ATOMIC)) | 
|  | 402 | return NULL; | 
|  | 403 |  | 
|  | 404 | delta += head->truesize; | 
|  | 405 | if (delta) | 
|  | 406 | add_frag_mem_limit(q->net, delta); | 
|  | 407 |  | 
|  | 408 | /* If the first fragment is fragmented itself, we split | 
|  | 409 | * it to two chunks: the first with data and paged part | 
|  | 410 | * and the second, holding only fragments. | 
|  | 411 | */ | 
|  | 412 | if (skb_has_frag_list(head)) { | 
|  | 413 | struct sk_buff *clone; | 
|  | 414 | int i, plen = 0; | 
|  | 415 |  | 
|  | 416 | clone = alloc_skb(0, GFP_ATOMIC); | 
|  | 417 | if (!clone) | 
|  | 418 | return NULL; | 
|  | 419 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; | 
|  | 420 | skb_frag_list_init(head); | 
|  | 421 | for (i = 0; i < skb_shinfo(head)->nr_frags; i++) | 
|  | 422 | plen += skb_frag_size(&skb_shinfo(head)->frags[i]); | 
|  | 423 | clone->data_len = head->data_len - plen; | 
|  | 424 | clone->len = clone->data_len; | 
|  | 425 | head->truesize += clone->truesize; | 
|  | 426 | clone->csum = 0; | 
|  | 427 | clone->ip_summed = head->ip_summed; | 
|  | 428 | add_frag_mem_limit(q->net, clone->truesize); | 
|  | 429 | skb_shinfo(head)->frag_list = clone; | 
|  | 430 | nextp = &clone->next; | 
|  | 431 | } else { | 
|  | 432 | nextp = &skb_shinfo(head)->frag_list; | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | return nextp; | 
|  | 436 | } | 
|  | 437 | EXPORT_SYMBOL(inet_frag_reasm_prepare); | 
|  | 438 |  | 
|  | 439 | void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, | 
|  | 440 | void *reasm_data) | 
|  | 441 | { | 
|  | 442 | struct sk_buff **nextp = (struct sk_buff **)reasm_data; | 
|  | 443 | struct rb_node *rbn; | 
|  | 444 | struct sk_buff *fp; | 
|  | 445 |  | 
|  | 446 | skb_push(head, head->data - skb_network_header(head)); | 
|  | 447 |  | 
|  | 448 | /* Traverse the tree in order, to build frag_list. */ | 
|  | 449 | fp = FRAG_CB(head)->next_frag; | 
|  | 450 | rbn = rb_next(&head->rbnode); | 
|  | 451 | rb_erase(&head->rbnode, &q->rb_fragments); | 
|  | 452 | while (rbn || fp) { | 
|  | 453 | /* fp points to the next sk_buff in the current run; | 
|  | 454 | * rbn points to the next run. | 
|  | 455 | */ | 
|  | 456 | /* Go through the current run. */ | 
|  | 457 | while (fp) { | 
|  | 458 | *nextp = fp; | 
|  | 459 | nextp = &fp->next; | 
|  | 460 | fp->prev = NULL; | 
|  | 461 | memset(&fp->rbnode, 0, sizeof(fp->rbnode)); | 
|  | 462 | fp->sk = NULL; | 
|  | 463 | head->data_len += fp->len; | 
|  | 464 | head->len += fp->len; | 
|  | 465 | if (head->ip_summed != fp->ip_summed) | 
|  | 466 | head->ip_summed = CHECKSUM_NONE; | 
|  | 467 | else if (head->ip_summed == CHECKSUM_COMPLETE) | 
|  | 468 | head->csum = csum_add(head->csum, fp->csum); | 
|  | 469 | head->truesize += fp->truesize; | 
|  | 470 | fp = FRAG_CB(fp)->next_frag; | 
|  | 471 | } | 
|  | 472 | /* Move to the next run. */ | 
|  | 473 | if (rbn) { | 
|  | 474 | struct rb_node *rbnext = rb_next(rbn); | 
|  | 475 |  | 
|  | 476 | fp = rb_to_skb(rbn); | 
|  | 477 | rb_erase(rbn, &q->rb_fragments); | 
|  | 478 | rbn = rbnext; | 
|  | 479 | } | 
|  | 480 | } | 
|  | 481 | sub_frag_mem_limit(q->net, head->truesize); | 
|  | 482 |  | 
|  | 483 | *nextp = NULL; | 
|  | 484 | skb_mark_not_on_list(head); | 
|  | 485 | head->prev = NULL; | 
|  | 486 | head->tstamp = q->stamp; | 
|  | 487 | } | 
|  | 488 | EXPORT_SYMBOL(inet_frag_reasm_finish); | 
|  | 489 |  | 
|  | 490 | struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) | 
|  | 491 | { | 
|  | 492 | struct sk_buff *head; | 
|  | 493 |  | 
|  | 494 | if (q->fragments) { | 
|  | 495 | head = q->fragments; | 
|  | 496 | q->fragments = head->next; | 
|  | 497 | } else { | 
|  | 498 | struct sk_buff *skb; | 
|  | 499 |  | 
|  | 500 | head = skb_rb_first(&q->rb_fragments); | 
|  | 501 | if (!head) | 
|  | 502 | return NULL; | 
|  | 503 | skb = FRAG_CB(head)->next_frag; | 
|  | 504 | if (skb) | 
|  | 505 | rb_replace_node(&head->rbnode, &skb->rbnode, | 
|  | 506 | &q->rb_fragments); | 
|  | 507 | else | 
|  | 508 | rb_erase(&head->rbnode, &q->rb_fragments); | 
|  | 509 | memset(&head->rbnode, 0, sizeof(head->rbnode)); | 
|  | 510 | barrier(); | 
|  | 511 | } | 
|  | 512 | if (head == q->fragments_tail) | 
|  | 513 | q->fragments_tail = NULL; | 
|  | 514 |  | 
|  | 515 | sub_frag_mem_limit(q->net, head->truesize); | 
|  | 516 |  | 
|  | 517 | return head; | 
|  | 518 | } | 
|  | 519 | EXPORT_SYMBOL(inet_frag_pull_head); |