blob: 78d77fa795844ac52e0270875694c2545f4f5f9e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Framework for buffer objects that can be shared across devices/subsystems.
3 *
4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
5 * Author: Sumit Semwal <sumit.semwal@ti.com>
6 *
7 * Many thanks to linaro-mm-sig list, and specially
8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
10 * refining of this idea.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/dma-buf.h>
28#include <linux/dma-fence.h>
29#include <linux/anon_inodes.h>
30#include <linux/export.h>
31#include <linux/debugfs.h>
32#include <linux/module.h>
33#include <linux/seq_file.h>
34#include <linux/poll.h>
35#include <linux/reservation.h>
36#include <linux/mm.h>
37#include <linux/mount.h>
38#include <linux/module.h>
39
40#include <uapi/linux/dma-buf.h>
41#include <uapi/linux/magic.h>
42
43static inline int is_dma_buf_file(struct file *);
44
45struct dma_buf_list {
46 struct list_head head;
47 struct mutex lock;
48};
49
50static struct dma_buf_list db_list;
51
52static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
53{
54 struct dma_buf *dmabuf;
55 char name[DMA_BUF_NAME_LEN];
56 size_t ret = 0;
57
58 dmabuf = dentry->d_fsdata;
59 mutex_lock(&dmabuf->lock);
60 if (dmabuf->name)
61 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
62 mutex_unlock(&dmabuf->lock);
63
64 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
65 dentry->d_name.name, ret > 0 ? name : "");
66}
67
68static const struct dentry_operations dma_buf_dentry_ops = {
69 .d_dname = dmabuffs_dname,
70};
71
72static struct vfsmount *dma_buf_mnt;
73
74static struct dentry *dma_buf_fs_mount(struct file_system_type *fs_type,
75 int flags, const char *name, void *data)
76{
77 return mount_pseudo(fs_type, "dmabuf:", NULL, &dma_buf_dentry_ops,
78 DMA_BUF_MAGIC);
79}
80
81static struct file_system_type dma_buf_fs_type = {
82 .name = "dmabuf",
83 .mount = dma_buf_fs_mount,
84 .kill_sb = kill_anon_super,
85};
86
87static int dma_buf_release(struct inode *inode, struct file *file)
88{
89 struct dma_buf *dmabuf;
90
91 if (!is_dma_buf_file(file))
92 return -EINVAL;
93
94 dmabuf = file->private_data;
95
96 BUG_ON(dmabuf->vmapping_counter);
97
98 /*
99 * Any fences that a dma-buf poll can wait on should be signaled
100 * before releasing dma-buf. This is the responsibility of each
101 * driver that uses the reservation objects.
102 *
103 * If you hit this BUG() it means someone dropped their ref to the
104 * dma-buf while still having pending operation to the buffer.
105 */
106 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
107
108 dmabuf->ops->release(dmabuf);
109
110 mutex_lock(&db_list.lock);
111 list_del(&dmabuf->list_node);
112 mutex_unlock(&db_list.lock);
113
114 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
115 reservation_object_fini(dmabuf->resv);
116
117 module_put(dmabuf->owner);
118 kfree(dmabuf);
119 return 0;
120}
121
122static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
123{
124 struct dma_buf *dmabuf;
125
126 if (!is_dma_buf_file(file))
127 return -EINVAL;
128
129 dmabuf = file->private_data;
130
131 /* check for overflowing the buffer's size */
132 if (vma->vm_pgoff + vma_pages(vma) >
133 dmabuf->size >> PAGE_SHIFT)
134 return -EINVAL;
135
136 return dmabuf->ops->mmap(dmabuf, vma);
137}
138
139static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
140{
141 struct dma_buf *dmabuf;
142 loff_t base;
143
144 if (!is_dma_buf_file(file))
145 return -EBADF;
146
147 dmabuf = file->private_data;
148
149 /* only support discovering the end of the buffer,
150 but also allow SEEK_SET to maintain the idiomatic
151 SEEK_END(0), SEEK_CUR(0) pattern */
152 if (whence == SEEK_END)
153 base = dmabuf->size;
154 else if (whence == SEEK_SET)
155 base = 0;
156 else
157 return -EINVAL;
158
159 if (offset != 0)
160 return -EINVAL;
161
162 return base + offset;
163}
164
165/**
166 * DOC: fence polling
167 *
168 * To support cross-device and cross-driver synchronization of buffer access
169 * implicit fences (represented internally in the kernel with &struct fence) can
170 * be attached to a &dma_buf. The glue for that and a few related things are
171 * provided in the &reservation_object structure.
172 *
173 * Userspace can query the state of these implicitly tracked fences using poll()
174 * and related system calls:
175 *
176 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
177 * most recent write or exclusive fence.
178 *
179 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
180 * all attached fences, shared and exclusive ones.
181 *
182 * Note that this only signals the completion of the respective fences, i.e. the
183 * DMA transfers are complete. Cache flushing and any other necessary
184 * preparations before CPU access can begin still need to happen.
185 */
186
187static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
188{
189 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
190 unsigned long flags;
191
192 spin_lock_irqsave(&dcb->poll->lock, flags);
193 wake_up_locked_poll(dcb->poll, dcb->active);
194 dcb->active = 0;
195 spin_unlock_irqrestore(&dcb->poll->lock, flags);
196}
197
198static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
199{
200 struct dma_buf *dmabuf;
201 struct reservation_object *resv;
202 struct reservation_object_list *fobj;
203 struct dma_fence *fence_excl;
204 __poll_t events;
205 unsigned shared_count, seq;
206
207 dmabuf = file->private_data;
208 if (!dmabuf || !dmabuf->resv)
209 return EPOLLERR;
210
211 resv = dmabuf->resv;
212
213 poll_wait(file, &dmabuf->poll, poll);
214
215 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
216 if (!events)
217 return 0;
218
219retry:
220 seq = read_seqcount_begin(&resv->seq);
221 rcu_read_lock();
222
223 fobj = rcu_dereference(resv->fence);
224 if (fobj)
225 shared_count = fobj->shared_count;
226 else
227 shared_count = 0;
228 fence_excl = rcu_dereference(resv->fence_excl);
229 if (read_seqcount_retry(&resv->seq, seq)) {
230 rcu_read_unlock();
231 goto retry;
232 }
233
234 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
235 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
236 __poll_t pevents = EPOLLIN;
237
238 if (shared_count == 0)
239 pevents |= EPOLLOUT;
240
241 spin_lock_irq(&dmabuf->poll.lock);
242 if (dcb->active) {
243 dcb->active |= pevents;
244 events &= ~pevents;
245 } else
246 dcb->active = pevents;
247 spin_unlock_irq(&dmabuf->poll.lock);
248
249 if (events & pevents) {
250 if (!dma_fence_get_rcu(fence_excl)) {
251 /* force a recheck */
252 events &= ~pevents;
253 dma_buf_poll_cb(NULL, &dcb->cb);
254 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
255 dma_buf_poll_cb)) {
256 events &= ~pevents;
257 dma_fence_put(fence_excl);
258 } else {
259 /*
260 * No callback queued, wake up any additional
261 * waiters.
262 */
263 dma_fence_put(fence_excl);
264 dma_buf_poll_cb(NULL, &dcb->cb);
265 }
266 }
267 }
268
269 if ((events & EPOLLOUT) && shared_count > 0) {
270 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
271 int i;
272
273 /* Only queue a new callback if no event has fired yet */
274 spin_lock_irq(&dmabuf->poll.lock);
275 if (dcb->active)
276 events &= ~EPOLLOUT;
277 else
278 dcb->active = EPOLLOUT;
279 spin_unlock_irq(&dmabuf->poll.lock);
280
281 if (!(events & EPOLLOUT))
282 goto out;
283
284 for (i = 0; i < shared_count; ++i) {
285 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
286
287 if (!dma_fence_get_rcu(fence)) {
288 /*
289 * fence refcount dropped to zero, this means
290 * that fobj has been freed
291 *
292 * call dma_buf_poll_cb and force a recheck!
293 */
294 events &= ~EPOLLOUT;
295 dma_buf_poll_cb(NULL, &dcb->cb);
296 break;
297 }
298 if (!dma_fence_add_callback(fence, &dcb->cb,
299 dma_buf_poll_cb)) {
300 dma_fence_put(fence);
301 events &= ~EPOLLOUT;
302 break;
303 }
304 dma_fence_put(fence);
305 }
306
307 /* No callback queued, wake up any additional waiters. */
308 if (i == shared_count)
309 dma_buf_poll_cb(NULL, &dcb->cb);
310 }
311
312out:
313 rcu_read_unlock();
314 return events;
315}
316
317/**
318 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
319 * The name of the dma-buf buffer can only be set when the dma-buf is not
320 * attached to any devices. It could theoritically support changing the
321 * name of the dma-buf if the same piece of memory is used for multiple
322 * purpose between different devices.
323 *
324 * @dmabuf [in] dmabuf buffer that will be renamed.
325 * @buf: [in] A piece of userspace memory that contains the name of
326 * the dma-buf.
327 *
328 * Returns 0 on success. If the dma-buf buffer is already attached to
329 * devices, return -EBUSY.
330 *
331 */
332static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
333{
334 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
335 long ret = 0;
336
337 if (IS_ERR(name))
338 return PTR_ERR(name);
339
340 mutex_lock(&dmabuf->lock);
341 if (!list_empty(&dmabuf->attachments)) {
342 ret = -EBUSY;
343 kfree(name);
344 goto out_unlock;
345 }
346 kfree(dmabuf->name);
347 dmabuf->name = name;
348
349out_unlock:
350 mutex_unlock(&dmabuf->lock);
351 return ret;
352}
353
354static long dma_buf_ioctl(struct file *file,
355 unsigned int cmd, unsigned long arg)
356{
357 struct dma_buf *dmabuf;
358 struct dma_buf_sync sync;
359 enum dma_data_direction direction;
360 int ret;
361
362 dmabuf = file->private_data;
363
364 switch (cmd) {
365 case DMA_BUF_IOCTL_SYNC:
366 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
367 return -EFAULT;
368
369 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
370 return -EINVAL;
371
372 switch (sync.flags & DMA_BUF_SYNC_RW) {
373 case DMA_BUF_SYNC_READ:
374 direction = DMA_FROM_DEVICE;
375 break;
376 case DMA_BUF_SYNC_WRITE:
377 direction = DMA_TO_DEVICE;
378 break;
379 case DMA_BUF_SYNC_RW:
380 direction = DMA_BIDIRECTIONAL;
381 break;
382 default:
383 return -EINVAL;
384 }
385
386 if (sync.flags & DMA_BUF_SYNC_END)
387 ret = dma_buf_end_cpu_access(dmabuf, direction);
388 else
389 ret = dma_buf_begin_cpu_access(dmabuf, direction);
390
391 return ret;
392
393 case DMA_BUF_SET_NAME:
394 return dma_buf_set_name(dmabuf, (const char __user *)arg);
395
396 default:
397 return -ENOTTY;
398 }
399}
400
401static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
402{
403 struct dma_buf *dmabuf = file->private_data;
404
405 seq_printf(m, "size:\t%zu\n", dmabuf->size);
406 /* Don't count the temporary reference taken inside procfs seq_show */
407 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
408 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
409 mutex_lock(&dmabuf->lock);
410 if (dmabuf->name)
411 seq_printf(m, "name:\t%s\n", dmabuf->name);
412 mutex_unlock(&dmabuf->lock);
413}
414
415static const struct file_operations dma_buf_fops = {
416 .release = dma_buf_release,
417 .mmap = dma_buf_mmap_internal,
418 .llseek = dma_buf_llseek,
419 .poll = dma_buf_poll,
420 .unlocked_ioctl = dma_buf_ioctl,
421#ifdef CONFIG_COMPAT
422 .compat_ioctl = dma_buf_ioctl,
423#endif
424 .show_fdinfo = dma_buf_show_fdinfo,
425};
426
427/*
428 * is_dma_buf_file - Check if struct file* is associated with dma_buf
429 */
430static inline int is_dma_buf_file(struct file *file)
431{
432 return file->f_op == &dma_buf_fops;
433}
434
435static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
436{
437 struct file *file;
438 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
439
440 if (IS_ERR(inode))
441 return ERR_CAST(inode);
442
443 inode->i_size = dmabuf->size;
444 inode_set_bytes(inode, dmabuf->size);
445
446 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
447 flags, &dma_buf_fops);
448 if (IS_ERR(file))
449 goto err_alloc_file;
450 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
451 file->private_data = dmabuf;
452 file->f_path.dentry->d_fsdata = dmabuf;
453
454 return file;
455
456err_alloc_file:
457 iput(inode);
458 return file;
459}
460
461/**
462 * DOC: dma buf device access
463 *
464 * For device DMA access to a shared DMA buffer the usual sequence of operations
465 * is fairly simple:
466 *
467 * 1. The exporter defines his exporter instance using
468 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
469 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
470 * as a file descriptor by calling dma_buf_fd().
471 *
472 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
473 * to share with: First the filedescriptor is converted to a &dma_buf using
474 * dma_buf_get(). Then the buffer is attached to the device using
475 * dma_buf_attach().
476 *
477 * Up to this stage the exporter is still free to migrate or reallocate the
478 * backing storage.
479 *
480 * 3. Once the buffer is attached to all devices userspace can initiate DMA
481 * access to the shared buffer. In the kernel this is done by calling
482 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
483 *
484 * 4. Once a driver is done with a shared buffer it needs to call
485 * dma_buf_detach() (after cleaning up any mappings) and then release the
486 * reference acquired with dma_buf_get by calling dma_buf_put().
487 *
488 * For the detailed semantics exporters are expected to implement see
489 * &dma_buf_ops.
490 */
491
492/**
493 * dma_buf_export - Creates a new dma_buf, and associates an anon file
494 * with this buffer, so it can be exported.
495 * Also connect the allocator specific data and ops to the buffer.
496 * Additionally, provide a name string for exporter; useful in debugging.
497 *
498 * @exp_info: [in] holds all the export related information provided
499 * by the exporter. see &struct dma_buf_export_info
500 * for further details.
501 *
502 * Returns, on success, a newly created dma_buf object, which wraps the
503 * supplied private data and operations for dma_buf_ops. On either missing
504 * ops, or error in allocating struct dma_buf, will return negative error.
505 *
506 * For most cases the easiest way to create @exp_info is through the
507 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
508 */
509struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
510{
511 struct dma_buf *dmabuf;
512 struct reservation_object *resv = exp_info->resv;
513 struct file *file;
514 size_t alloc_size = sizeof(struct dma_buf);
515 int ret;
516
517 if (!exp_info->resv)
518 alloc_size += sizeof(struct reservation_object);
519 else
520 /* prevent &dma_buf[1] == dma_buf->resv */
521 alloc_size += 1;
522
523 if (WARN_ON(!exp_info->priv
524 || !exp_info->ops
525 || !exp_info->ops->map_dma_buf
526 || !exp_info->ops->unmap_dma_buf
527 || !exp_info->ops->release
528 || !exp_info->ops->map
529 || !exp_info->ops->mmap)) {
530 return ERR_PTR(-EINVAL);
531 }
532
533 if (!try_module_get(exp_info->owner))
534 return ERR_PTR(-ENOENT);
535
536 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
537 if (!dmabuf) {
538 ret = -ENOMEM;
539 goto err_module;
540 }
541
542 dmabuf->priv = exp_info->priv;
543 dmabuf->ops = exp_info->ops;
544 dmabuf->size = exp_info->size;
545 dmabuf->exp_name = exp_info->exp_name;
546 dmabuf->owner = exp_info->owner;
547 init_waitqueue_head(&dmabuf->poll);
548 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
549 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
550
551 if (!resv) {
552 resv = (struct reservation_object *)&dmabuf[1];
553 reservation_object_init(resv);
554 }
555 dmabuf->resv = resv;
556
557 file = dma_buf_getfile(dmabuf, exp_info->flags);
558 if (IS_ERR(file)) {
559 ret = PTR_ERR(file);
560 goto err_dmabuf;
561 }
562
563 file->f_mode |= FMODE_LSEEK;
564 dmabuf->file = file;
565
566 mutex_init(&dmabuf->lock);
567 INIT_LIST_HEAD(&dmabuf->attachments);
568
569 mutex_lock(&db_list.lock);
570 list_add(&dmabuf->list_node, &db_list.head);
571 mutex_unlock(&db_list.lock);
572
573 return dmabuf;
574
575err_dmabuf:
576 kfree(dmabuf);
577err_module:
578 module_put(exp_info->owner);
579 return ERR_PTR(ret);
580}
581EXPORT_SYMBOL_GPL(dma_buf_export);
582
583/**
584 * dma_buf_fd - returns a file descriptor for the given dma_buf
585 * @dmabuf: [in] pointer to dma_buf for which fd is required.
586 * @flags: [in] flags to give to fd
587 *
588 * On success, returns an associated 'fd'. Else, returns error.
589 */
590int dma_buf_fd(struct dma_buf *dmabuf, int flags)
591{
592 int fd;
593
594 if (!dmabuf || !dmabuf->file)
595 return -EINVAL;
596
597 fd = get_unused_fd_flags(flags);
598 if (fd < 0)
599 return fd;
600
601 fd_install(fd, dmabuf->file);
602
603 return fd;
604}
605EXPORT_SYMBOL_GPL(dma_buf_fd);
606
607/**
608 * dma_buf_get - returns the dma_buf structure related to an fd
609 * @fd: [in] fd associated with the dma_buf to be returned
610 *
611 * On success, returns the dma_buf structure associated with an fd; uses
612 * file's refcounting done by fget to increase refcount. returns ERR_PTR
613 * otherwise.
614 */
615struct dma_buf *dma_buf_get(int fd)
616{
617 struct file *file;
618
619 file = fget(fd);
620
621 if (!file)
622 return ERR_PTR(-EBADF);
623
624 if (!is_dma_buf_file(file)) {
625 fput(file);
626 return ERR_PTR(-EINVAL);
627 }
628
629 return file->private_data;
630}
631EXPORT_SYMBOL_GPL(dma_buf_get);
632
633/**
634 * dma_buf_put - decreases refcount of the buffer
635 * @dmabuf: [in] buffer to reduce refcount of
636 *
637 * Uses file's refcounting done implicitly by fput().
638 *
639 * If, as a result of this call, the refcount becomes 0, the 'release' file
640 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
641 * in turn, and frees the memory allocated for dmabuf when exported.
642 */
643void dma_buf_put(struct dma_buf *dmabuf)
644{
645 if (WARN_ON(!dmabuf || !dmabuf->file))
646 return;
647
648 fput(dmabuf->file);
649}
650EXPORT_SYMBOL_GPL(dma_buf_put);
651
652/**
653 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
654 * calls attach() of dma_buf_ops to allow device-specific attach functionality
655 * @dmabuf: [in] buffer to attach device to.
656 * @dev: [in] device to be attached.
657 *
658 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
659 * must be cleaned up by calling dma_buf_detach().
660 *
661 * Returns:
662 *
663 * A pointer to newly created &dma_buf_attachment on success, or a negative
664 * error code wrapped into a pointer on failure.
665 *
666 * Note that this can fail if the backing storage of @dmabuf is in a place not
667 * accessible to @dev, and cannot be moved to a more suitable place. This is
668 * indicated with the error code -EBUSY.
669 */
670struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
671 struct device *dev)
672{
673 struct dma_buf_attachment *attach;
674 int ret;
675
676 if (WARN_ON(!dmabuf || !dev))
677 return ERR_PTR(-EINVAL);
678
679 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
680 if (!attach)
681 return ERR_PTR(-ENOMEM);
682
683 attach->dev = dev;
684 attach->dmabuf = dmabuf;
685
686 mutex_lock(&dmabuf->lock);
687
688 if (dmabuf->ops->attach) {
689 ret = dmabuf->ops->attach(dmabuf, attach);
690 if (ret)
691 goto err_attach;
692 }
693 list_add(&attach->node, &dmabuf->attachments);
694
695 mutex_unlock(&dmabuf->lock);
696 return attach;
697
698err_attach:
699 kfree(attach);
700 mutex_unlock(&dmabuf->lock);
701 return ERR_PTR(ret);
702}
703EXPORT_SYMBOL_GPL(dma_buf_attach);
704
705/**
706 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
707 * optionally calls detach() of dma_buf_ops for device-specific detach
708 * @dmabuf: [in] buffer to detach from.
709 * @attach: [in] attachment to be detached; is free'd after this call.
710 *
711 * Clean up a device attachment obtained by calling dma_buf_attach().
712 */
713void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
714{
715 if (WARN_ON(!dmabuf || !attach))
716 return;
717
718 mutex_lock(&dmabuf->lock);
719 list_del(&attach->node);
720 if (dmabuf->ops->detach)
721 dmabuf->ops->detach(dmabuf, attach);
722
723 mutex_unlock(&dmabuf->lock);
724 kfree(attach);
725}
726EXPORT_SYMBOL_GPL(dma_buf_detach);
727
728/**
729 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
730 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
731 * dma_buf_ops.
732 * @attach: [in] attachment whose scatterlist is to be returned
733 * @direction: [in] direction of DMA transfer
734 *
735 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
736 * on error. May return -EINTR if it is interrupted by a signal.
737 *
738 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
739 * the underlying backing storage is pinned for as long as a mapping exists,
740 * therefore users/importers should not hold onto a mapping for undue amounts of
741 * time.
742 */
743struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
744 enum dma_data_direction direction)
745{
746 struct sg_table *sg_table;
747
748 might_sleep();
749
750 if (WARN_ON(!attach || !attach->dmabuf))
751 return ERR_PTR(-EINVAL);
752
753 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
754 if (!sg_table)
755 sg_table = ERR_PTR(-ENOMEM);
756
757 return sg_table;
758}
759EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
760
761/**
762 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
763 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
764 * dma_buf_ops.
765 * @attach: [in] attachment to unmap buffer from
766 * @sg_table: [in] scatterlist info of the buffer to unmap
767 * @direction: [in] direction of DMA transfer
768 *
769 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
770 */
771void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
772 struct sg_table *sg_table,
773 enum dma_data_direction direction)
774{
775 might_sleep();
776
777 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
778 return;
779
780 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
781 direction);
782}
783EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
784
785/**
786 * DOC: cpu access
787 *
788 * There are mutliple reasons for supporting CPU access to a dma buffer object:
789 *
790 * - Fallback operations in the kernel, for example when a device is connected
791 * over USB and the kernel needs to shuffle the data around first before
792 * sending it away. Cache coherency is handled by braketing any transactions
793 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
794 * access.
795 *
796 * To support dma_buf objects residing in highmem cpu access is page-based
797 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
798 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
799 * returns a pointer in kernel virtual address space. Afterwards the chunk
800 * needs to be unmapped again. There is no limit on how often a given chunk
801 * can be mapped and unmapped, i.e. the importer does not need to call
802 * begin_cpu_access again before mapping the same chunk again.
803 *
804 * Interfaces::
805 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
806 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
807 *
808 * Implementing the functions is optional for exporters and for importers all
809 * the restrictions of using kmap apply.
810 *
811 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
812 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
813 * the partial chunks at the beginning and end but may return stale or bogus
814 * data outside of the range (in these partial chunks).
815 *
816 * For some cases the overhead of kmap can be too high, a vmap interface
817 * is introduced. This interface should be used very carefully, as vmalloc
818 * space is a limited resources on many architectures.
819 *
820 * Interfaces::
821 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
822 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
823 *
824 * The vmap call can fail if there is no vmap support in the exporter, or if
825 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
826 * that the dma-buf layer keeps a reference count for all vmap access and
827 * calls down into the exporter's vmap function only when no vmapping exists,
828 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
829 * provided by taking the dma_buf->lock mutex.
830 *
831 * - For full compatibility on the importer side with existing userspace
832 * interfaces, which might already support mmap'ing buffers. This is needed in
833 * many processing pipelines (e.g. feeding a software rendered image into a
834 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
835 * framework already supported this and for DMA buffer file descriptors to
836 * replace ION buffers mmap support was needed.
837 *
838 * There is no special interfaces, userspace simply calls mmap on the dma-buf
839 * fd. But like for CPU access there's a need to braket the actual access,
840 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
841 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
842 * be restarted.
843 *
844 * Some systems might need some sort of cache coherency management e.g. when
845 * CPU and GPU domains are being accessed through dma-buf at the same time.
846 * To circumvent this problem there are begin/end coherency markers, that
847 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
848 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
849 * sequence would be used like following:
850 *
851 * - mmap dma-buf fd
852 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
853 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
854 * want (with the new data being consumed by say the GPU or the scanout
855 * device)
856 * - munmap once you don't need the buffer any more
857 *
858 * For correctness and optimal performance, it is always required to use
859 * SYNC_START and SYNC_END before and after, respectively, when accessing the
860 * mapped address. Userspace cannot rely on coherent access, even when there
861 * are systems where it just works without calling these ioctls.
862 *
863 * - And as a CPU fallback in userspace processing pipelines.
864 *
865 * Similar to the motivation for kernel cpu access it is again important that
866 * the userspace code of a given importing subsystem can use the same
867 * interfaces with a imported dma-buf buffer object as with a native buffer
868 * object. This is especially important for drm where the userspace part of
869 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
870 * use a different way to mmap a buffer rather invasive.
871 *
872 * The assumption in the current dma-buf interfaces is that redirecting the
873 * initial mmap is all that's needed. A survey of some of the existing
874 * subsystems shows that no driver seems to do any nefarious thing like
875 * syncing up with outstanding asynchronous processing on the device or
876 * allocating special resources at fault time. So hopefully this is good
877 * enough, since adding interfaces to intercept pagefaults and allow pte
878 * shootdowns would increase the complexity quite a bit.
879 *
880 * Interface::
881 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
882 * unsigned long);
883 *
884 * If the importing subsystem simply provides a special-purpose mmap call to
885 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
886 * equally achieve that for a dma-buf object.
887 */
888
889static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
890 enum dma_data_direction direction)
891{
892 bool write = (direction == DMA_BIDIRECTIONAL ||
893 direction == DMA_TO_DEVICE);
894 struct reservation_object *resv = dmabuf->resv;
895 long ret;
896
897 /* Wait on any implicit rendering fences */
898 ret = reservation_object_wait_timeout_rcu(resv, write, true,
899 MAX_SCHEDULE_TIMEOUT);
900 if (ret < 0)
901 return ret;
902
903 return 0;
904}
905
906/**
907 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
908 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
909 * preparations. Coherency is only guaranteed in the specified range for the
910 * specified access direction.
911 * @dmabuf: [in] buffer to prepare cpu access for.
912 * @direction: [in] length of range for cpu access.
913 *
914 * After the cpu access is complete the caller should call
915 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
916 * it guaranteed to be coherent with other DMA access.
917 *
918 * Can return negative error values, returns 0 on success.
919 */
920int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
921 enum dma_data_direction direction)
922{
923 int ret = 0;
924
925 if (WARN_ON(!dmabuf))
926 return -EINVAL;
927
928 if (dmabuf->ops->begin_cpu_access)
929 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
930
931 /* Ensure that all fences are waited upon - but we first allow
932 * the native handler the chance to do so more efficiently if it
933 * chooses. A double invocation here will be reasonably cheap no-op.
934 */
935 if (ret == 0)
936 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
937
938 return ret;
939}
940EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
941
942/**
943 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
944 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
945 * actions. Coherency is only guaranteed in the specified range for the
946 * specified access direction.
947 * @dmabuf: [in] buffer to complete cpu access for.
948 * @direction: [in] length of range for cpu access.
949 *
950 * This terminates CPU access started with dma_buf_begin_cpu_access().
951 *
952 * Can return negative error values, returns 0 on success.
953 */
954int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
955 enum dma_data_direction direction)
956{
957 int ret = 0;
958
959 WARN_ON(!dmabuf);
960
961 if (dmabuf->ops->end_cpu_access)
962 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
963
964 return ret;
965}
966EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
967
968/**
969 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
970 * same restrictions as for kmap and friends apply.
971 * @dmabuf: [in] buffer to map page from.
972 * @page_num: [in] page in PAGE_SIZE units to map.
973 *
974 * This call must always succeed, any necessary preparations that might fail
975 * need to be done in begin_cpu_access.
976 */
977void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
978{
979 WARN_ON(!dmabuf);
980
981 if (!dmabuf->ops->map)
982 return NULL;
983 return dmabuf->ops->map(dmabuf, page_num);
984}
985EXPORT_SYMBOL_GPL(dma_buf_kmap);
986
987/**
988 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
989 * @dmabuf: [in] buffer to unmap page from.
990 * @page_num: [in] page in PAGE_SIZE units to unmap.
991 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
992 *
993 * This call must always succeed.
994 */
995void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
996 void *vaddr)
997{
998 WARN_ON(!dmabuf);
999
1000 if (dmabuf->ops->unmap)
1001 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1002}
1003EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1004
1005
1006/**
1007 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1008 * @dmabuf: [in] buffer that should back the vma
1009 * @vma: [in] vma for the mmap
1010 * @pgoff: [in] offset in pages where this mmap should start within the
1011 * dma-buf buffer.
1012 *
1013 * This function adjusts the passed in vma so that it points at the file of the
1014 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1015 * checking on the size of the vma. Then it calls the exporters mmap function to
1016 * set up the mapping.
1017 *
1018 * Can return negative error values, returns 0 on success.
1019 */
1020int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1021 unsigned long pgoff)
1022{
1023 struct file *oldfile;
1024 int ret;
1025
1026 if (WARN_ON(!dmabuf || !vma))
1027 return -EINVAL;
1028
1029 /* check for offset overflow */
1030 if (pgoff + vma_pages(vma) < pgoff)
1031 return -EOVERFLOW;
1032
1033 /* check for overflowing the buffer's size */
1034 if (pgoff + vma_pages(vma) >
1035 dmabuf->size >> PAGE_SHIFT)
1036 return -EINVAL;
1037
1038 /* readjust the vma */
1039 get_file(dmabuf->file);
1040 oldfile = vma->vm_file;
1041 vma->vm_file = dmabuf->file;
1042 vma->vm_pgoff = pgoff;
1043
1044 ret = dmabuf->ops->mmap(dmabuf, vma);
1045 if (ret) {
1046 /* restore old parameters on failure */
1047 vma->vm_file = oldfile;
1048 fput(dmabuf->file);
1049 } else {
1050 if (oldfile)
1051 fput(oldfile);
1052 }
1053 return ret;
1054
1055}
1056EXPORT_SYMBOL_GPL(dma_buf_mmap);
1057
1058/**
1059 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1060 * address space. Same restrictions as for vmap and friends apply.
1061 * @dmabuf: [in] buffer to vmap
1062 *
1063 * This call may fail due to lack of virtual mapping address space.
1064 * These calls are optional in drivers. The intended use for them
1065 * is for mapping objects linear in kernel space for high use objects.
1066 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1067 *
1068 * Returns NULL on error.
1069 */
1070void *dma_buf_vmap(struct dma_buf *dmabuf)
1071{
1072 void *ptr;
1073
1074 if (WARN_ON(!dmabuf))
1075 return NULL;
1076
1077 if (!dmabuf->ops->vmap)
1078 return NULL;
1079
1080 mutex_lock(&dmabuf->lock);
1081 if (dmabuf->vmapping_counter) {
1082 dmabuf->vmapping_counter++;
1083 BUG_ON(!dmabuf->vmap_ptr);
1084 ptr = dmabuf->vmap_ptr;
1085 goto out_unlock;
1086 }
1087
1088 BUG_ON(dmabuf->vmap_ptr);
1089
1090 ptr = dmabuf->ops->vmap(dmabuf);
1091 if (WARN_ON_ONCE(IS_ERR(ptr)))
1092 ptr = NULL;
1093 if (!ptr)
1094 goto out_unlock;
1095
1096 dmabuf->vmap_ptr = ptr;
1097 dmabuf->vmapping_counter = 1;
1098
1099out_unlock:
1100 mutex_unlock(&dmabuf->lock);
1101 return ptr;
1102}
1103EXPORT_SYMBOL_GPL(dma_buf_vmap);
1104
1105/**
1106 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1107 * @dmabuf: [in] buffer to vunmap
1108 * @vaddr: [in] vmap to vunmap
1109 */
1110void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1111{
1112 if (WARN_ON(!dmabuf))
1113 return;
1114
1115 BUG_ON(!dmabuf->vmap_ptr);
1116 BUG_ON(dmabuf->vmapping_counter == 0);
1117 BUG_ON(dmabuf->vmap_ptr != vaddr);
1118
1119 mutex_lock(&dmabuf->lock);
1120 if (--dmabuf->vmapping_counter == 0) {
1121 if (dmabuf->ops->vunmap)
1122 dmabuf->ops->vunmap(dmabuf, vaddr);
1123 dmabuf->vmap_ptr = NULL;
1124 }
1125 mutex_unlock(&dmabuf->lock);
1126}
1127EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1128
1129#ifdef CONFIG_DEBUG_FS
1130static int dma_buf_debug_show(struct seq_file *s, void *unused)
1131{
1132 int ret;
1133 struct dma_buf *buf_obj;
1134 struct dma_buf_attachment *attach_obj;
1135 struct reservation_object *robj;
1136 struct reservation_object_list *fobj;
1137 struct dma_fence *fence;
1138 unsigned seq;
1139 int count = 0, attach_count, shared_count, i;
1140 size_t size = 0;
1141
1142 ret = mutex_lock_interruptible(&db_list.lock);
1143
1144 if (ret)
1145 return ret;
1146
1147 seq_puts(s, "\nDma-buf Objects:\n");
1148 seq_printf(s, "%-18s\t%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1149 "priv", "size", "flags", "mode", "count", "ino");
1150
1151 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1152 ret = mutex_lock_interruptible(&buf_obj->lock);
1153
1154 if (ret) {
1155 seq_puts(s,
1156 "\tERROR locking buffer object: skipping\n");
1157 continue;
1158 }
1159
1160 seq_printf(s, "0x%p\t%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1161 buf_obj->priv,
1162 buf_obj->size,
1163 buf_obj->file->f_flags, buf_obj->file->f_mode,
1164 file_count(buf_obj->file),
1165 buf_obj->exp_name,
1166 file_inode(buf_obj->file)->i_ino,
1167 buf_obj->name ?: "");
1168
1169 robj = buf_obj->resv;
1170 while (true) {
1171 seq = read_seqcount_begin(&robj->seq);
1172 rcu_read_lock();
1173 fobj = rcu_dereference(robj->fence);
1174 shared_count = fobj ? fobj->shared_count : 0;
1175 fence = rcu_dereference(robj->fence_excl);
1176 if (!read_seqcount_retry(&robj->seq, seq))
1177 break;
1178 rcu_read_unlock();
1179 }
1180
1181 if (fence)
1182 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1183 fence->ops->get_driver_name(fence),
1184 fence->ops->get_timeline_name(fence),
1185 dma_fence_is_signaled(fence) ? "" : "un");
1186 for (i = 0; i < shared_count; i++) {
1187 fence = rcu_dereference(fobj->shared[i]);
1188 if (!dma_fence_get_rcu(fence))
1189 continue;
1190 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1191 fence->ops->get_driver_name(fence),
1192 fence->ops->get_timeline_name(fence),
1193 dma_fence_is_signaled(fence) ? "" : "un");
1194 dma_fence_put(fence);
1195 }
1196 rcu_read_unlock();
1197
1198 seq_puts(s, "\tAttached Devices:\n");
1199 attach_count = 0;
1200
1201 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1202 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1203 attach_count++;
1204 }
1205
1206 seq_printf(s, "Total %d devices attached\n\n",
1207 attach_count);
1208
1209 count++;
1210 size += buf_obj->size;
1211 mutex_unlock(&buf_obj->lock);
1212 }
1213
1214 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1215
1216 mutex_unlock(&db_list.lock);
1217 return 0;
1218}
1219
1220static int dma_buf_debug_open(struct inode *inode, struct file *file)
1221{
1222 return single_open(file, dma_buf_debug_show, NULL);
1223}
1224
1225static const struct file_operations dma_buf_debug_fops = {
1226 .open = dma_buf_debug_open,
1227 .read = seq_read,
1228 .llseek = seq_lseek,
1229 .release = single_release,
1230};
1231
1232static struct dentry *dma_buf_debugfs_dir;
1233
1234static int dma_buf_init_debugfs(void)
1235{
1236 struct dentry *d;
1237 int err = 0;
1238
1239 d = debugfs_create_dir("dma_buf", NULL);
1240 if (IS_ERR(d))
1241 return PTR_ERR(d);
1242
1243 dma_buf_debugfs_dir = d;
1244
1245 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1246 NULL, &dma_buf_debug_fops);
1247 if (IS_ERR(d)) {
1248 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1249 debugfs_remove_recursive(dma_buf_debugfs_dir);
1250 dma_buf_debugfs_dir = NULL;
1251 err = PTR_ERR(d);
1252 }
1253
1254 return err;
1255}
1256
1257static void dma_buf_uninit_debugfs(void)
1258{
1259 debugfs_remove_recursive(dma_buf_debugfs_dir);
1260}
1261#else
1262static inline int dma_buf_init_debugfs(void)
1263{
1264 return 0;
1265}
1266static inline void dma_buf_uninit_debugfs(void)
1267{
1268}
1269#endif
1270
1271static int __init dma_buf_init(void)
1272{
1273 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1274 if (IS_ERR(dma_buf_mnt))
1275 return PTR_ERR(dma_buf_mnt);
1276
1277 mutex_init(&db_list.lock);
1278 INIT_LIST_HEAD(&db_list.head);
1279 dma_buf_init_debugfs();
1280 return 0;
1281}
1282subsys_initcall(dma_buf_init);
1283
1284static void __exit dma_buf_deinit(void)
1285{
1286 dma_buf_uninit_debugfs();
1287 kern_unmount(dma_buf_mnt);
1288}
1289module_exit(dma_buf_deinit);
1290MODULE_LICENSE("GPL");