| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Driver for Pondicherry2 memory controller. |
| 3 | * |
| 4 | * Copyright (c) 2016, Intel Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms and conditions of the GNU General Public License, |
| 8 | * version 2, as published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * [Derived from sb_edac.c] |
| 16 | * |
| 17 | * Translation of system physical addresses to DIMM addresses |
| 18 | * is a two stage process: |
| 19 | * |
| 20 | * First the Pondicherry 2 memory controller handles slice and channel interleaving |
| 21 | * in "sys2pmi()". This is (almost) completley common between platforms. |
| 22 | * |
| 23 | * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, |
| 24 | * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. |
| 25 | */ |
| 26 | |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/init.h> |
| 29 | #include <linux/pci.h> |
| 30 | #include <linux/pci_ids.h> |
| 31 | #include <linux/slab.h> |
| 32 | #include <linux/delay.h> |
| 33 | #include <linux/edac.h> |
| 34 | #include <linux/mmzone.h> |
| 35 | #include <linux/smp.h> |
| 36 | #include <linux/bitmap.h> |
| 37 | #include <linux/math64.h> |
| 38 | #include <linux/mod_devicetable.h> |
| 39 | #include <asm/cpu_device_id.h> |
| 40 | #include <asm/intel-family.h> |
| 41 | #include <asm/processor.h> |
| 42 | #include <asm/mce.h> |
| 43 | |
| 44 | #include "edac_mc.h" |
| 45 | #include "edac_module.h" |
| 46 | #include "pnd2_edac.h" |
| 47 | |
| 48 | #define EDAC_MOD_STR "pnd2_edac" |
| 49 | |
| 50 | #define APL_NUM_CHANNELS 4 |
| 51 | #define DNV_NUM_CHANNELS 2 |
| 52 | #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ |
| 53 | |
| 54 | enum type { |
| 55 | APL, |
| 56 | DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ |
| 57 | }; |
| 58 | |
| 59 | struct dram_addr { |
| 60 | int chan; |
| 61 | int dimm; |
| 62 | int rank; |
| 63 | int bank; |
| 64 | int row; |
| 65 | int col; |
| 66 | }; |
| 67 | |
| 68 | struct pnd2_pvt { |
| 69 | int dimm_geom[APL_NUM_CHANNELS]; |
| 70 | u64 tolm, tohm; |
| 71 | }; |
| 72 | |
| 73 | /* |
| 74 | * System address space is divided into multiple regions with |
| 75 | * different interleave rules in each. The as0/as1 regions |
| 76 | * have no interleaving at all. The as2 region is interleaved |
| 77 | * between two channels. The mot region is magic and may overlap |
| 78 | * other regions, with its interleave rules taking precedence. |
| 79 | * Addresses not in any of these regions are interleaved across |
| 80 | * all four channels. |
| 81 | */ |
| 82 | static struct region { |
| 83 | u64 base; |
| 84 | u64 limit; |
| 85 | u8 enabled; |
| 86 | } mot, as0, as1, as2; |
| 87 | |
| 88 | static struct dunit_ops { |
| 89 | char *name; |
| 90 | enum type type; |
| 91 | int pmiaddr_shift; |
| 92 | int pmiidx_shift; |
| 93 | int channels; |
| 94 | int dimms_per_channel; |
| 95 | int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); |
| 96 | int (*get_registers)(void); |
| 97 | int (*check_ecc)(void); |
| 98 | void (*mk_region)(char *name, struct region *rp, void *asym); |
| 99 | void (*get_dimm_config)(struct mem_ctl_info *mci); |
| 100 | int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| 101 | struct dram_addr *daddr, char *msg); |
| 102 | } *ops; |
| 103 | |
| 104 | static struct mem_ctl_info *pnd2_mci; |
| 105 | |
| 106 | #define PND2_MSG_SIZE 256 |
| 107 | |
| 108 | /* Debug macros */ |
| 109 | #define pnd2_printk(level, fmt, arg...) \ |
| 110 | edac_printk(level, "pnd2", fmt, ##arg) |
| 111 | |
| 112 | #define pnd2_mc_printk(mci, level, fmt, arg...) \ |
| 113 | edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) |
| 114 | |
| 115 | #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 |
| 116 | #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 |
| 117 | #define SELECTOR_DISABLED (-1) |
| 118 | #define _4GB (1ul << 32) |
| 119 | |
| 120 | #define PMI_ADDRESS_WIDTH 31 |
| 121 | #define PND_MAX_PHYS_BIT 39 |
| 122 | |
| 123 | #define APL_ASYMSHIFT 28 |
| 124 | #define DNV_ASYMSHIFT 31 |
| 125 | #define CH_HASH_MASK_LSB 6 |
| 126 | #define SLICE_HASH_MASK_LSB 6 |
| 127 | #define MOT_SLC_INTLV_BIT 12 |
| 128 | #define LOG2_PMI_ADDR_GRANULARITY 5 |
| 129 | #define MOT_SHIFT 24 |
| 130 | |
| 131 | #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) |
| 132 | #define U64_LSHIFT(val, s) ((u64)(val) << (s)) |
| 133 | |
| 134 | /* |
| 135 | * On Apollo Lake we access memory controller registers via a |
| 136 | * side-band mailbox style interface in a hidden PCI device |
| 137 | * configuration space. |
| 138 | */ |
| 139 | static struct pci_bus *p2sb_bus; |
| 140 | #define P2SB_DEVFN PCI_DEVFN(0xd, 0) |
| 141 | #define P2SB_ADDR_OFF 0xd0 |
| 142 | #define P2SB_DATA_OFF 0xd4 |
| 143 | #define P2SB_STAT_OFF 0xd8 |
| 144 | #define P2SB_ROUT_OFF 0xda |
| 145 | #define P2SB_EADD_OFF 0xdc |
| 146 | #define P2SB_HIDE_OFF 0xe1 |
| 147 | |
| 148 | #define P2SB_BUSY 1 |
| 149 | |
| 150 | #define P2SB_READ(size, off, ptr) \ |
| 151 | pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) |
| 152 | #define P2SB_WRITE(size, off, val) \ |
| 153 | pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) |
| 154 | |
| 155 | static bool p2sb_is_busy(u16 *status) |
| 156 | { |
| 157 | P2SB_READ(word, P2SB_STAT_OFF, status); |
| 158 | |
| 159 | return !!(*status & P2SB_BUSY); |
| 160 | } |
| 161 | |
| 162 | static int _apl_rd_reg(int port, int off, int op, u32 *data) |
| 163 | { |
| 164 | int retries = 0xff, ret; |
| 165 | u16 status; |
| 166 | u8 hidden; |
| 167 | |
| 168 | /* Unhide the P2SB device, if it's hidden */ |
| 169 | P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); |
| 170 | if (hidden) |
| 171 | P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); |
| 172 | |
| 173 | if (p2sb_is_busy(&status)) { |
| 174 | ret = -EAGAIN; |
| 175 | goto out; |
| 176 | } |
| 177 | |
| 178 | P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); |
| 179 | P2SB_WRITE(dword, P2SB_DATA_OFF, 0); |
| 180 | P2SB_WRITE(dword, P2SB_EADD_OFF, 0); |
| 181 | P2SB_WRITE(word, P2SB_ROUT_OFF, 0); |
| 182 | P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); |
| 183 | |
| 184 | while (p2sb_is_busy(&status)) { |
| 185 | if (retries-- == 0) { |
| 186 | ret = -EBUSY; |
| 187 | goto out; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | P2SB_READ(dword, P2SB_DATA_OFF, data); |
| 192 | ret = (status >> 1) & 0x3; |
| 193 | out: |
| 194 | /* Hide the P2SB device, if it was hidden before */ |
| 195 | if (hidden) |
| 196 | P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); |
| 197 | |
| 198 | return ret; |
| 199 | } |
| 200 | |
| 201 | static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) |
| 202 | { |
| 203 | int ret = 0; |
| 204 | |
| 205 | edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); |
| 206 | switch (sz) { |
| 207 | case 8: |
| 208 | ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); |
| 209 | /* fall through */ |
| 210 | case 4: |
| 211 | ret |= _apl_rd_reg(port, off, op, (u32 *)data); |
| 212 | pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, |
| 213 | sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); |
| 214 | break; |
| 215 | } |
| 216 | |
| 217 | return ret; |
| 218 | } |
| 219 | |
| 220 | static u64 get_mem_ctrl_hub_base_addr(void) |
| 221 | { |
| 222 | struct b_cr_mchbar_lo_pci lo; |
| 223 | struct b_cr_mchbar_hi_pci hi; |
| 224 | struct pci_dev *pdev; |
| 225 | |
| 226 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); |
| 227 | if (pdev) { |
| 228 | pci_read_config_dword(pdev, 0x48, (u32 *)&lo); |
| 229 | pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); |
| 230 | pci_dev_put(pdev); |
| 231 | } else { |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | if (!lo.enable) { |
| 236 | edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); |
| 241 | } |
| 242 | |
| 243 | static u64 get_sideband_reg_base_addr(void) |
| 244 | { |
| 245 | struct pci_dev *pdev; |
| 246 | u32 hi, lo; |
| 247 | u8 hidden; |
| 248 | |
| 249 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); |
| 250 | if (pdev) { |
| 251 | /* Unhide the P2SB device, if it's hidden */ |
| 252 | pci_read_config_byte(pdev, 0xe1, &hidden); |
| 253 | if (hidden) |
| 254 | pci_write_config_byte(pdev, 0xe1, 0); |
| 255 | |
| 256 | pci_read_config_dword(pdev, 0x10, &lo); |
| 257 | pci_read_config_dword(pdev, 0x14, &hi); |
| 258 | lo &= 0xfffffff0; |
| 259 | |
| 260 | /* Hide the P2SB device, if it was hidden before */ |
| 261 | if (hidden) |
| 262 | pci_write_config_byte(pdev, 0xe1, hidden); |
| 263 | |
| 264 | pci_dev_put(pdev); |
| 265 | return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); |
| 266 | } else { |
| 267 | return 0xfd000000; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | #define DNV_MCHBAR_SIZE 0x8000 |
| 272 | #define DNV_SB_PORT_SIZE 0x10000 |
| 273 | static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) |
| 274 | { |
| 275 | struct pci_dev *pdev; |
| 276 | char *base; |
| 277 | u64 addr; |
| 278 | unsigned long size; |
| 279 | |
| 280 | if (op == 4) { |
| 281 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); |
| 282 | if (!pdev) |
| 283 | return -ENODEV; |
| 284 | |
| 285 | pci_read_config_dword(pdev, off, data); |
| 286 | pci_dev_put(pdev); |
| 287 | } else { |
| 288 | /* MMIO via memory controller hub base address */ |
| 289 | if (op == 0 && port == 0x4c) { |
| 290 | addr = get_mem_ctrl_hub_base_addr(); |
| 291 | if (!addr) |
| 292 | return -ENODEV; |
| 293 | size = DNV_MCHBAR_SIZE; |
| 294 | } else { |
| 295 | /* MMIO via sideband register base address */ |
| 296 | addr = get_sideband_reg_base_addr(); |
| 297 | if (!addr) |
| 298 | return -ENODEV; |
| 299 | addr += (port << 16); |
| 300 | size = DNV_SB_PORT_SIZE; |
| 301 | } |
| 302 | |
| 303 | base = ioremap((resource_size_t)addr, size); |
| 304 | if (!base) |
| 305 | return -ENODEV; |
| 306 | |
| 307 | if (sz == 8) |
| 308 | *(u32 *)(data + 4) = *(u32 *)(base + off + 4); |
| 309 | *(u32 *)data = *(u32 *)(base + off); |
| 310 | |
| 311 | iounmap(base); |
| 312 | } |
| 313 | |
| 314 | edac_dbg(2, "Read %s=%.8x_%.8x\n", name, |
| 315 | (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); |
| 316 | |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | #define RD_REGP(regp, regname, port) \ |
| 321 | ops->rd_reg(port, \ |
| 322 | regname##_offset, \ |
| 323 | regname##_r_opcode, \ |
| 324 | regp, sizeof(struct regname), \ |
| 325 | #regname) |
| 326 | |
| 327 | #define RD_REG(regp, regname) \ |
| 328 | ops->rd_reg(regname ## _port, \ |
| 329 | regname##_offset, \ |
| 330 | regname##_r_opcode, \ |
| 331 | regp, sizeof(struct regname), \ |
| 332 | #regname) |
| 333 | |
| 334 | static u64 top_lm, top_hm; |
| 335 | static bool two_slices; |
| 336 | static bool two_channels; /* Both PMI channels in one slice enabled */ |
| 337 | |
| 338 | static u8 sym_chan_mask; |
| 339 | static u8 asym_chan_mask; |
| 340 | static u8 chan_mask; |
| 341 | |
| 342 | static int slice_selector = -1; |
| 343 | static int chan_selector = -1; |
| 344 | static u64 slice_hash_mask; |
| 345 | static u64 chan_hash_mask; |
| 346 | |
| 347 | static void mk_region(char *name, struct region *rp, u64 base, u64 limit) |
| 348 | { |
| 349 | rp->enabled = 1; |
| 350 | rp->base = base; |
| 351 | rp->limit = limit; |
| 352 | edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); |
| 353 | } |
| 354 | |
| 355 | static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) |
| 356 | { |
| 357 | if (mask == 0) { |
| 358 | pr_info(FW_BUG "MOT mask cannot be zero\n"); |
| 359 | return; |
| 360 | } |
| 361 | if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { |
| 362 | pr_info(FW_BUG "MOT mask not power of two\n"); |
| 363 | return; |
| 364 | } |
| 365 | if (base & ~mask) { |
| 366 | pr_info(FW_BUG "MOT region base/mask alignment error\n"); |
| 367 | return; |
| 368 | } |
| 369 | rp->base = base; |
| 370 | rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); |
| 371 | rp->enabled = 1; |
| 372 | edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); |
| 373 | } |
| 374 | |
| 375 | static bool in_region(struct region *rp, u64 addr) |
| 376 | { |
| 377 | if (!rp->enabled) |
| 378 | return false; |
| 379 | |
| 380 | return rp->base <= addr && addr <= rp->limit; |
| 381 | } |
| 382 | |
| 383 | static int gen_sym_mask(struct b_cr_slice_channel_hash *p) |
| 384 | { |
| 385 | int mask = 0; |
| 386 | |
| 387 | if (!p->slice_0_mem_disabled) |
| 388 | mask |= p->sym_slice0_channel_enabled; |
| 389 | |
| 390 | if (!p->slice_1_disabled) |
| 391 | mask |= p->sym_slice1_channel_enabled << 2; |
| 392 | |
| 393 | if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) |
| 394 | mask &= 0x5; |
| 395 | |
| 396 | return mask; |
| 397 | } |
| 398 | |
| 399 | static int gen_asym_mask(struct b_cr_slice_channel_hash *p, |
| 400 | struct b_cr_asym_mem_region0_mchbar *as0, |
| 401 | struct b_cr_asym_mem_region1_mchbar *as1, |
| 402 | struct b_cr_asym_2way_mem_region_mchbar *as2way) |
| 403 | { |
| 404 | const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; |
| 405 | int mask = 0; |
| 406 | |
| 407 | if (as2way->asym_2way_interleave_enable) |
| 408 | mask = intlv[as2way->asym_2way_intlv_mode]; |
| 409 | if (as0->slice0_asym_enable) |
| 410 | mask |= (1 << as0->slice0_asym_channel_select); |
| 411 | if (as1->slice1_asym_enable) |
| 412 | mask |= (4 << as1->slice1_asym_channel_select); |
| 413 | if (p->slice_0_mem_disabled) |
| 414 | mask &= 0xc; |
| 415 | if (p->slice_1_disabled) |
| 416 | mask &= 0x3; |
| 417 | if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) |
| 418 | mask &= 0x5; |
| 419 | |
| 420 | return mask; |
| 421 | } |
| 422 | |
| 423 | static struct b_cr_tolud_pci tolud; |
| 424 | static struct b_cr_touud_lo_pci touud_lo; |
| 425 | static struct b_cr_touud_hi_pci touud_hi; |
| 426 | static struct b_cr_asym_mem_region0_mchbar asym0; |
| 427 | static struct b_cr_asym_mem_region1_mchbar asym1; |
| 428 | static struct b_cr_asym_2way_mem_region_mchbar asym_2way; |
| 429 | static struct b_cr_mot_out_base_mchbar mot_base; |
| 430 | static struct b_cr_mot_out_mask_mchbar mot_mask; |
| 431 | static struct b_cr_slice_channel_hash chash; |
| 432 | |
| 433 | /* Apollo Lake dunit */ |
| 434 | /* |
| 435 | * Validated on board with just two DIMMs in the [0] and [2] positions |
| 436 | * in this array. Other port number matches documentation, but caution |
| 437 | * advised. |
| 438 | */ |
| 439 | static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; |
| 440 | static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; |
| 441 | |
| 442 | /* Denverton dunit */ |
| 443 | static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; |
| 444 | static struct d_cr_dsch dsch; |
| 445 | static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; |
| 446 | static struct d_cr_drp drp[DNV_NUM_CHANNELS]; |
| 447 | static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; |
| 448 | static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; |
| 449 | static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; |
| 450 | static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; |
| 451 | static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; |
| 452 | static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; |
| 453 | |
| 454 | static void apl_mk_region(char *name, struct region *rp, void *asym) |
| 455 | { |
| 456 | struct b_cr_asym_mem_region0_mchbar *a = asym; |
| 457 | |
| 458 | mk_region(name, rp, |
| 459 | U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), |
| 460 | U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + |
| 461 | GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); |
| 462 | } |
| 463 | |
| 464 | static void dnv_mk_region(char *name, struct region *rp, void *asym) |
| 465 | { |
| 466 | struct b_cr_asym_mem_region_denverton *a = asym; |
| 467 | |
| 468 | mk_region(name, rp, |
| 469 | U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), |
| 470 | U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + |
| 471 | GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); |
| 472 | } |
| 473 | |
| 474 | static int apl_get_registers(void) |
| 475 | { |
| 476 | int ret = -ENODEV; |
| 477 | int i; |
| 478 | |
| 479 | if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) |
| 480 | return -ENODEV; |
| 481 | |
| 482 | /* |
| 483 | * RD_REGP() will fail for unpopulated or non-existent |
| 484 | * DIMM slots. Return success if we find at least one DIMM. |
| 485 | */ |
| 486 | for (i = 0; i < APL_NUM_CHANNELS; i++) |
| 487 | if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) |
| 488 | ret = 0; |
| 489 | |
| 490 | return ret; |
| 491 | } |
| 492 | |
| 493 | static int dnv_get_registers(void) |
| 494 | { |
| 495 | int i; |
| 496 | |
| 497 | if (RD_REG(&dsch, d_cr_dsch)) |
| 498 | return -ENODEV; |
| 499 | |
| 500 | for (i = 0; i < DNV_NUM_CHANNELS; i++) |
| 501 | if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || |
| 502 | RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || |
| 503 | RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || |
| 504 | RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || |
| 505 | RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || |
| 506 | RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || |
| 507 | RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || |
| 508 | RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) |
| 509 | return -ENODEV; |
| 510 | |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * Read all the h/w config registers once here (they don't |
| 516 | * change at run time. Figure out which address ranges have |
| 517 | * which interleave characteristics. |
| 518 | */ |
| 519 | static int get_registers(void) |
| 520 | { |
| 521 | const int intlv[] = { 10, 11, 12, 12 }; |
| 522 | |
| 523 | if (RD_REG(&tolud, b_cr_tolud_pci) || |
| 524 | RD_REG(&touud_lo, b_cr_touud_lo_pci) || |
| 525 | RD_REG(&touud_hi, b_cr_touud_hi_pci) || |
| 526 | RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || |
| 527 | RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || |
| 528 | RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || |
| 529 | RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || |
| 530 | RD_REG(&chash, b_cr_slice_channel_hash)) |
| 531 | return -ENODEV; |
| 532 | |
| 533 | if (ops->get_registers()) |
| 534 | return -ENODEV; |
| 535 | |
| 536 | if (ops->type == DNV) { |
| 537 | /* PMI channel idx (always 0) for asymmetric region */ |
| 538 | asym0.slice0_asym_channel_select = 0; |
| 539 | asym1.slice1_asym_channel_select = 0; |
| 540 | /* PMI channel bitmap (always 1) for symmetric region */ |
| 541 | chash.sym_slice0_channel_enabled = 0x1; |
| 542 | chash.sym_slice1_channel_enabled = 0x1; |
| 543 | } |
| 544 | |
| 545 | if (asym0.slice0_asym_enable) |
| 546 | ops->mk_region("as0", &as0, &asym0); |
| 547 | |
| 548 | if (asym1.slice1_asym_enable) |
| 549 | ops->mk_region("as1", &as1, &asym1); |
| 550 | |
| 551 | if (asym_2way.asym_2way_interleave_enable) { |
| 552 | mk_region("as2way", &as2, |
| 553 | U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), |
| 554 | U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + |
| 555 | GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); |
| 556 | } |
| 557 | |
| 558 | if (mot_base.imr_en) { |
| 559 | mk_region_mask("mot", &mot, |
| 560 | U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), |
| 561 | U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); |
| 562 | } |
| 563 | |
| 564 | top_lm = U64_LSHIFT(tolud.tolud, 20); |
| 565 | top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); |
| 566 | |
| 567 | two_slices = !chash.slice_1_disabled && |
| 568 | !chash.slice_0_mem_disabled && |
| 569 | (chash.sym_slice0_channel_enabled != 0) && |
| 570 | (chash.sym_slice1_channel_enabled != 0); |
| 571 | two_channels = !chash.ch_1_disabled && |
| 572 | !chash.enable_pmi_dual_data_mode && |
| 573 | ((chash.sym_slice0_channel_enabled == 3) || |
| 574 | (chash.sym_slice1_channel_enabled == 3)); |
| 575 | |
| 576 | sym_chan_mask = gen_sym_mask(&chash); |
| 577 | asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); |
| 578 | chan_mask = sym_chan_mask | asym_chan_mask; |
| 579 | |
| 580 | if (two_slices && !two_channels) { |
| 581 | if (chash.hvm_mode) |
| 582 | slice_selector = 29; |
| 583 | else |
| 584 | slice_selector = intlv[chash.interleave_mode]; |
| 585 | } else if (!two_slices && two_channels) { |
| 586 | if (chash.hvm_mode) |
| 587 | chan_selector = 29; |
| 588 | else |
| 589 | chan_selector = intlv[chash.interleave_mode]; |
| 590 | } else if (two_slices && two_channels) { |
| 591 | if (chash.hvm_mode) { |
| 592 | slice_selector = 29; |
| 593 | chan_selector = 30; |
| 594 | } else { |
| 595 | slice_selector = intlv[chash.interleave_mode]; |
| 596 | chan_selector = intlv[chash.interleave_mode] + 1; |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | if (two_slices) { |
| 601 | if (!chash.hvm_mode) |
| 602 | slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; |
| 603 | if (!two_channels) |
| 604 | slice_hash_mask |= BIT_ULL(slice_selector); |
| 605 | } |
| 606 | |
| 607 | if (two_channels) { |
| 608 | if (!chash.hvm_mode) |
| 609 | chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; |
| 610 | if (!two_slices) |
| 611 | chan_hash_mask |= BIT_ULL(chan_selector); |
| 612 | } |
| 613 | |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | /* Get a contiguous memory address (remove the MMIO gap) */ |
| 618 | static u64 remove_mmio_gap(u64 sys) |
| 619 | { |
| 620 | return (sys < _4GB) ? sys : sys - (_4GB - top_lm); |
| 621 | } |
| 622 | |
| 623 | /* Squeeze out one address bit, shift upper part down to fill gap */ |
| 624 | static void remove_addr_bit(u64 *addr, int bitidx) |
| 625 | { |
| 626 | u64 mask; |
| 627 | |
| 628 | if (bitidx == -1) |
| 629 | return; |
| 630 | |
| 631 | mask = (1ull << bitidx) - 1; |
| 632 | *addr = ((*addr >> 1) & ~mask) | (*addr & mask); |
| 633 | } |
| 634 | |
| 635 | /* XOR all the bits from addr specified in mask */ |
| 636 | static int hash_by_mask(u64 addr, u64 mask) |
| 637 | { |
| 638 | u64 result = addr & mask; |
| 639 | |
| 640 | result = (result >> 32) ^ result; |
| 641 | result = (result >> 16) ^ result; |
| 642 | result = (result >> 8) ^ result; |
| 643 | result = (result >> 4) ^ result; |
| 644 | result = (result >> 2) ^ result; |
| 645 | result = (result >> 1) ^ result; |
| 646 | |
| 647 | return (int)result & 1; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * First stage decode. Take the system address and figure out which |
| 652 | * second stage will deal with it based on interleave modes. |
| 653 | */ |
| 654 | static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) |
| 655 | { |
| 656 | u64 contig_addr, contig_base, contig_offset, contig_base_adj; |
| 657 | int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : |
| 658 | MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| 659 | int slice_intlv_bit_rm = SELECTOR_DISABLED; |
| 660 | int chan_intlv_bit_rm = SELECTOR_DISABLED; |
| 661 | /* Determine if address is in the MOT region. */ |
| 662 | bool mot_hit = in_region(&mot, addr); |
| 663 | /* Calculate the number of symmetric regions enabled. */ |
| 664 | int sym_channels = hweight8(sym_chan_mask); |
| 665 | |
| 666 | /* |
| 667 | * The amount we need to shift the asym base can be determined by the |
| 668 | * number of enabled symmetric channels. |
| 669 | * NOTE: This can only work because symmetric memory is not supposed |
| 670 | * to do a 3-way interleave. |
| 671 | */ |
| 672 | int sym_chan_shift = sym_channels >> 1; |
| 673 | |
| 674 | /* Give up if address is out of range, or in MMIO gap */ |
| 675 | if (addr >= (1ul << PND_MAX_PHYS_BIT) || |
| 676 | (addr >= top_lm && addr < _4GB) || addr >= top_hm) { |
| 677 | snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); |
| 678 | return -EINVAL; |
| 679 | } |
| 680 | |
| 681 | /* Get a contiguous memory address (remove the MMIO gap) */ |
| 682 | contig_addr = remove_mmio_gap(addr); |
| 683 | |
| 684 | if (in_region(&as0, addr)) { |
| 685 | *pmiidx = asym0.slice0_asym_channel_select; |
| 686 | |
| 687 | contig_base = remove_mmio_gap(as0.base); |
| 688 | contig_offset = contig_addr - contig_base; |
| 689 | contig_base_adj = (contig_base >> sym_chan_shift) * |
| 690 | ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); |
| 691 | contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); |
| 692 | } else if (in_region(&as1, addr)) { |
| 693 | *pmiidx = 2u + asym1.slice1_asym_channel_select; |
| 694 | |
| 695 | contig_base = remove_mmio_gap(as1.base); |
| 696 | contig_offset = contig_addr - contig_base; |
| 697 | contig_base_adj = (contig_base >> sym_chan_shift) * |
| 698 | ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); |
| 699 | contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); |
| 700 | } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { |
| 701 | bool channel1; |
| 702 | |
| 703 | mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| 704 | *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; |
| 705 | channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : |
| 706 | hash_by_mask(contig_addr, chan_hash_mask); |
| 707 | *pmiidx |= (u32)channel1; |
| 708 | |
| 709 | contig_base = remove_mmio_gap(as2.base); |
| 710 | chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; |
| 711 | contig_offset = contig_addr - contig_base; |
| 712 | remove_addr_bit(&contig_offset, chan_intlv_bit_rm); |
| 713 | contig_addr = (contig_base >> sym_chan_shift) + contig_offset; |
| 714 | } else { |
| 715 | /* Otherwise we're in normal, boring symmetric mode. */ |
| 716 | *pmiidx = 0u; |
| 717 | |
| 718 | if (two_slices) { |
| 719 | bool slice1; |
| 720 | |
| 721 | if (mot_hit) { |
| 722 | slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; |
| 723 | slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; |
| 724 | } else { |
| 725 | slice_intlv_bit_rm = slice_selector; |
| 726 | slice1 = hash_by_mask(addr, slice_hash_mask); |
| 727 | } |
| 728 | |
| 729 | *pmiidx = (u32)slice1 << 1; |
| 730 | } |
| 731 | |
| 732 | if (two_channels) { |
| 733 | bool channel1; |
| 734 | |
| 735 | mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : |
| 736 | MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| 737 | |
| 738 | if (mot_hit) { |
| 739 | chan_intlv_bit_rm = mot_intlv_bit; |
| 740 | channel1 = (addr >> mot_intlv_bit) & 1; |
| 741 | } else { |
| 742 | chan_intlv_bit_rm = chan_selector; |
| 743 | channel1 = hash_by_mask(contig_addr, chan_hash_mask); |
| 744 | } |
| 745 | |
| 746 | *pmiidx |= (u32)channel1; |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | /* Remove the chan_selector bit first */ |
| 751 | remove_addr_bit(&contig_addr, chan_intlv_bit_rm); |
| 752 | /* Remove the slice bit (we remove it second because it must be lower */ |
| 753 | remove_addr_bit(&contig_addr, slice_intlv_bit_rm); |
| 754 | *pmiaddr = contig_addr; |
| 755 | |
| 756 | return 0; |
| 757 | } |
| 758 | |
| 759 | /* Translate PMI address to memory (rank, row, bank, column) */ |
| 760 | #define C(n) (0x10 | (n)) /* column */ |
| 761 | #define B(n) (0x20 | (n)) /* bank */ |
| 762 | #define R(n) (0x40 | (n)) /* row */ |
| 763 | #define RS (0x80) /* rank */ |
| 764 | |
| 765 | /* addrdec values */ |
| 766 | #define AMAP_1KB 0 |
| 767 | #define AMAP_2KB 1 |
| 768 | #define AMAP_4KB 2 |
| 769 | #define AMAP_RSVD 3 |
| 770 | |
| 771 | /* dden values */ |
| 772 | #define DEN_4Gb 0 |
| 773 | #define DEN_8Gb 2 |
| 774 | |
| 775 | /* dwid values */ |
| 776 | #define X8 0 |
| 777 | #define X16 1 |
| 778 | |
| 779 | static struct dimm_geometry { |
| 780 | u8 addrdec; |
| 781 | u8 dden; |
| 782 | u8 dwid; |
| 783 | u8 rowbits, colbits; |
| 784 | u16 bits[PMI_ADDRESS_WIDTH]; |
| 785 | } dimms[] = { |
| 786 | { |
| 787 | .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, |
| 788 | .rowbits = 15, .colbits = 10, |
| 789 | .bits = { |
| 790 | C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| 791 | R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| 792 | R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 793 | 0, 0, 0, 0 |
| 794 | } |
| 795 | }, |
| 796 | { |
| 797 | .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, |
| 798 | .rowbits = 16, .colbits = 10, |
| 799 | .bits = { |
| 800 | C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| 801 | R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| 802 | R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 803 | R(15), 0, 0, 0 |
| 804 | } |
| 805 | }, |
| 806 | { |
| 807 | .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, |
| 808 | .rowbits = 16, .colbits = 10, |
| 809 | .bits = { |
| 810 | C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| 811 | R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| 812 | R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 813 | R(15), 0, 0, 0 |
| 814 | } |
| 815 | }, |
| 816 | { |
| 817 | .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, |
| 818 | .rowbits = 16, .colbits = 11, |
| 819 | .bits = { |
| 820 | C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| 821 | R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| 822 | R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), |
| 823 | R(14), R(15), 0, 0 |
| 824 | } |
| 825 | }, |
| 826 | { |
| 827 | .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, |
| 828 | .rowbits = 15, .colbits = 10, |
| 829 | .bits = { |
| 830 | C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| 831 | R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| 832 | R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 833 | 0, 0, 0, 0 |
| 834 | } |
| 835 | }, |
| 836 | { |
| 837 | .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, |
| 838 | .rowbits = 16, .colbits = 10, |
| 839 | .bits = { |
| 840 | C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| 841 | R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| 842 | R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 843 | R(15), 0, 0, 0 |
| 844 | } |
| 845 | }, |
| 846 | { |
| 847 | .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, |
| 848 | .rowbits = 16, .colbits = 10, |
| 849 | .bits = { |
| 850 | C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| 851 | R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| 852 | R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 853 | R(15), 0, 0, 0 |
| 854 | } |
| 855 | }, |
| 856 | { |
| 857 | .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, |
| 858 | .rowbits = 16, .colbits = 11, |
| 859 | .bits = { |
| 860 | C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| 861 | R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| 862 | R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), |
| 863 | R(14), R(15), 0, 0 |
| 864 | } |
| 865 | }, |
| 866 | { |
| 867 | .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, |
| 868 | .rowbits = 15, .colbits = 10, |
| 869 | .bits = { |
| 870 | C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| 871 | B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| 872 | R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| 873 | 0, 0, 0, 0 |
| 874 | } |
| 875 | }, |
| 876 | { |
| 877 | .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, |
| 878 | .rowbits = 16, .colbits = 10, |
| 879 | .bits = { |
| 880 | C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| 881 | B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| 882 | R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| 883 | R(15), 0, 0, 0 |
| 884 | } |
| 885 | }, |
| 886 | { |
| 887 | .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, |
| 888 | .rowbits = 16, .colbits = 10, |
| 889 | .bits = { |
| 890 | C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| 891 | B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| 892 | R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| 893 | R(15), 0, 0, 0 |
| 894 | } |
| 895 | }, |
| 896 | { |
| 897 | .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, |
| 898 | .rowbits = 16, .colbits = 11, |
| 899 | .bits = { |
| 900 | C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| 901 | B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| 902 | R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), |
| 903 | R(14), R(15), 0, 0 |
| 904 | } |
| 905 | } |
| 906 | }; |
| 907 | |
| 908 | static int bank_hash(u64 pmiaddr, int idx, int shft) |
| 909 | { |
| 910 | int bhash = 0; |
| 911 | |
| 912 | switch (idx) { |
| 913 | case 0: |
| 914 | bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; |
| 915 | break; |
| 916 | case 1: |
| 917 | bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; |
| 918 | bhash ^= ((pmiaddr >> 22) & 1) << 1; |
| 919 | break; |
| 920 | case 2: |
| 921 | bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; |
| 922 | break; |
| 923 | } |
| 924 | |
| 925 | return bhash; |
| 926 | } |
| 927 | |
| 928 | static int rank_hash(u64 pmiaddr) |
| 929 | { |
| 930 | return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; |
| 931 | } |
| 932 | |
| 933 | /* Second stage decode. Compute rank, bank, row & column. */ |
| 934 | static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| 935 | struct dram_addr *daddr, char *msg) |
| 936 | { |
| 937 | struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; |
| 938 | struct pnd2_pvt *pvt = mci->pvt_info; |
| 939 | int g = pvt->dimm_geom[pmiidx]; |
| 940 | struct dimm_geometry *d = &dimms[g]; |
| 941 | int column = 0, bank = 0, row = 0, rank = 0; |
| 942 | int i, idx, type, skiprs = 0; |
| 943 | |
| 944 | for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { |
| 945 | int bit = (pmiaddr >> i) & 1; |
| 946 | |
| 947 | if (i + skiprs >= PMI_ADDRESS_WIDTH) { |
| 948 | snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); |
| 949 | return -EINVAL; |
| 950 | } |
| 951 | |
| 952 | type = d->bits[i + skiprs] & ~0xf; |
| 953 | idx = d->bits[i + skiprs] & 0xf; |
| 954 | |
| 955 | /* |
| 956 | * On single rank DIMMs ignore the rank select bit |
| 957 | * and shift remainder of "bits[]" down one place. |
| 958 | */ |
| 959 | if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { |
| 960 | skiprs = 1; |
| 961 | type = d->bits[i + skiprs] & ~0xf; |
| 962 | idx = d->bits[i + skiprs] & 0xf; |
| 963 | } |
| 964 | |
| 965 | switch (type) { |
| 966 | case C(0): |
| 967 | column |= (bit << idx); |
| 968 | break; |
| 969 | case B(0): |
| 970 | bank |= (bit << idx); |
| 971 | if (cr_drp0->bahen) |
| 972 | bank ^= bank_hash(pmiaddr, idx, d->addrdec); |
| 973 | break; |
| 974 | case R(0): |
| 975 | row |= (bit << idx); |
| 976 | break; |
| 977 | case RS: |
| 978 | rank = bit; |
| 979 | if (cr_drp0->rsien) |
| 980 | rank ^= rank_hash(pmiaddr); |
| 981 | break; |
| 982 | default: |
| 983 | if (bit) { |
| 984 | snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); |
| 985 | return -EINVAL; |
| 986 | } |
| 987 | goto done; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | done: |
| 992 | daddr->col = column; |
| 993 | daddr->bank = bank; |
| 994 | daddr->row = row; |
| 995 | daddr->rank = rank; |
| 996 | daddr->dimm = 0; |
| 997 | |
| 998 | return 0; |
| 999 | } |
| 1000 | |
| 1001 | /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ |
| 1002 | #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) |
| 1003 | |
| 1004 | static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| 1005 | struct dram_addr *daddr, char *msg) |
| 1006 | { |
| 1007 | /* Rank 0 or 1 */ |
| 1008 | daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); |
| 1009 | /* Rank 2 or 3 */ |
| 1010 | daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); |
| 1011 | |
| 1012 | /* |
| 1013 | * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we |
| 1014 | * flip them if DIMM1 is larger than DIMM0. |
| 1015 | */ |
| 1016 | daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; |
| 1017 | |
| 1018 | daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); |
| 1019 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); |
| 1020 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); |
| 1021 | if (dsch.ddr4en) |
| 1022 | daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); |
| 1023 | if (dmap1[pmiidx].bxor) { |
| 1024 | if (dsch.ddr4en) { |
| 1025 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); |
| 1026 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); |
| 1027 | if (dsch.chan_width == 0) |
| 1028 | /* 64/72 bit dram channel width */ |
| 1029 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); |
| 1030 | else |
| 1031 | /* 32/40 bit dram channel width */ |
| 1032 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); |
| 1033 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); |
| 1034 | } else { |
| 1035 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); |
| 1036 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); |
| 1037 | if (dsch.chan_width == 0) |
| 1038 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); |
| 1039 | else |
| 1040 | daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); |
| 1045 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); |
| 1046 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); |
| 1047 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); |
| 1048 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); |
| 1049 | daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); |
| 1050 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); |
| 1051 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); |
| 1052 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); |
| 1053 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); |
| 1054 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); |
| 1055 | daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); |
| 1056 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); |
| 1057 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); |
| 1058 | if (dmap4[pmiidx].row14 != 31) |
| 1059 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); |
| 1060 | if (dmap4[pmiidx].row15 != 31) |
| 1061 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); |
| 1062 | if (dmap4[pmiidx].row16 != 31) |
| 1063 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); |
| 1064 | if (dmap4[pmiidx].row17 != 31) |
| 1065 | daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); |
| 1066 | |
| 1067 | daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); |
| 1068 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); |
| 1069 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); |
| 1070 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); |
| 1071 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); |
| 1072 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); |
| 1073 | daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); |
| 1074 | if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) |
| 1075 | daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); |
| 1076 | |
| 1077 | return 0; |
| 1078 | } |
| 1079 | |
| 1080 | static int check_channel(int ch) |
| 1081 | { |
| 1082 | if (drp0[ch].dramtype != 0) { |
| 1083 | pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); |
| 1084 | return 1; |
| 1085 | } else if (drp0[ch].eccen == 0) { |
| 1086 | pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); |
| 1087 | return 1; |
| 1088 | } |
| 1089 | return 0; |
| 1090 | } |
| 1091 | |
| 1092 | static int apl_check_ecc_active(void) |
| 1093 | { |
| 1094 | int i, ret = 0; |
| 1095 | |
| 1096 | /* Check dramtype and ECC mode for each present DIMM */ |
| 1097 | for (i = 0; i < APL_NUM_CHANNELS; i++) |
| 1098 | if (chan_mask & BIT(i)) |
| 1099 | ret += check_channel(i); |
| 1100 | return ret ? -EINVAL : 0; |
| 1101 | } |
| 1102 | |
| 1103 | #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) |
| 1104 | |
| 1105 | static int check_unit(int ch) |
| 1106 | { |
| 1107 | struct d_cr_drp *d = &drp[ch]; |
| 1108 | |
| 1109 | if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { |
| 1110 | pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); |
| 1111 | return 1; |
| 1112 | } |
| 1113 | return 0; |
| 1114 | } |
| 1115 | |
| 1116 | static int dnv_check_ecc_active(void) |
| 1117 | { |
| 1118 | int i, ret = 0; |
| 1119 | |
| 1120 | for (i = 0; i < DNV_NUM_CHANNELS; i++) |
| 1121 | ret += check_unit(i); |
| 1122 | return ret ? -EINVAL : 0; |
| 1123 | } |
| 1124 | |
| 1125 | static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, |
| 1126 | struct dram_addr *daddr, char *msg) |
| 1127 | { |
| 1128 | u64 pmiaddr; |
| 1129 | u32 pmiidx; |
| 1130 | int ret; |
| 1131 | |
| 1132 | ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); |
| 1133 | if (ret) |
| 1134 | return ret; |
| 1135 | |
| 1136 | pmiaddr >>= ops->pmiaddr_shift; |
| 1137 | /* pmi channel idx to dimm channel idx */ |
| 1138 | pmiidx >>= ops->pmiidx_shift; |
| 1139 | daddr->chan = pmiidx; |
| 1140 | |
| 1141 | ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); |
| 1142 | if (ret) |
| 1143 | return ret; |
| 1144 | |
| 1145 | edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", |
| 1146 | addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); |
| 1147 | |
| 1148 | return 0; |
| 1149 | } |
| 1150 | |
| 1151 | static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, |
| 1152 | struct dram_addr *daddr) |
| 1153 | { |
| 1154 | enum hw_event_mc_err_type tp_event; |
| 1155 | char *optype, msg[PND2_MSG_SIZE]; |
| 1156 | bool ripv = m->mcgstatus & MCG_STATUS_RIPV; |
| 1157 | bool overflow = m->status & MCI_STATUS_OVER; |
| 1158 | bool uc_err = m->status & MCI_STATUS_UC; |
| 1159 | bool recov = m->status & MCI_STATUS_S; |
| 1160 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| 1161 | u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| 1162 | u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| 1163 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| 1164 | int rc; |
| 1165 | |
| 1166 | tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : |
| 1167 | HW_EVENT_ERR_CORRECTED; |
| 1168 | |
| 1169 | /* |
| 1170 | * According with Table 15-9 of the Intel Architecture spec vol 3A, |
| 1171 | * memory errors should fit in this mask: |
| 1172 | * 000f 0000 1mmm cccc (binary) |
| 1173 | * where: |
| 1174 | * f = Correction Report Filtering Bit. If 1, subsequent errors |
| 1175 | * won't be shown |
| 1176 | * mmm = error type |
| 1177 | * cccc = channel |
| 1178 | * If the mask doesn't match, report an error to the parsing logic |
| 1179 | */ |
| 1180 | if (!((errcode & 0xef80) == 0x80)) { |
| 1181 | optype = "Can't parse: it is not a mem"; |
| 1182 | } else { |
| 1183 | switch (optypenum) { |
| 1184 | case 0: |
| 1185 | optype = "generic undef request error"; |
| 1186 | break; |
| 1187 | case 1: |
| 1188 | optype = "memory read error"; |
| 1189 | break; |
| 1190 | case 2: |
| 1191 | optype = "memory write error"; |
| 1192 | break; |
| 1193 | case 3: |
| 1194 | optype = "addr/cmd error"; |
| 1195 | break; |
| 1196 | case 4: |
| 1197 | optype = "memory scrubbing error"; |
| 1198 | break; |
| 1199 | default: |
| 1200 | optype = "reserved"; |
| 1201 | break; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | /* Only decode errors with an valid address (ADDRV) */ |
| 1206 | if (!(m->status & MCI_STATUS_ADDRV)) |
| 1207 | return; |
| 1208 | |
| 1209 | rc = get_memory_error_data(mci, m->addr, daddr, msg); |
| 1210 | if (rc) |
| 1211 | goto address_error; |
| 1212 | |
| 1213 | snprintf(msg, sizeof(msg), |
| 1214 | "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", |
| 1215 | overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, |
| 1216 | errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); |
| 1217 | |
| 1218 | edac_dbg(0, "%s\n", msg); |
| 1219 | |
| 1220 | /* Call the helper to output message */ |
| 1221 | edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, |
| 1222 | m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); |
| 1223 | |
| 1224 | return; |
| 1225 | |
| 1226 | address_error: |
| 1227 | edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); |
| 1228 | } |
| 1229 | |
| 1230 | static void apl_get_dimm_config(struct mem_ctl_info *mci) |
| 1231 | { |
| 1232 | struct pnd2_pvt *pvt = mci->pvt_info; |
| 1233 | struct dimm_info *dimm; |
| 1234 | struct d_cr_drp0 *d; |
| 1235 | u64 capacity; |
| 1236 | int i, g; |
| 1237 | |
| 1238 | for (i = 0; i < APL_NUM_CHANNELS; i++) { |
| 1239 | if (!(chan_mask & BIT(i))) |
| 1240 | continue; |
| 1241 | |
| 1242 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); |
| 1243 | if (!dimm) { |
| 1244 | edac_dbg(0, "No allocated DIMM for channel %d\n", i); |
| 1245 | continue; |
| 1246 | } |
| 1247 | |
| 1248 | d = &drp0[i]; |
| 1249 | for (g = 0; g < ARRAY_SIZE(dimms); g++) |
| 1250 | if (dimms[g].addrdec == d->addrdec && |
| 1251 | dimms[g].dden == d->dden && |
| 1252 | dimms[g].dwid == d->dwid) |
| 1253 | break; |
| 1254 | |
| 1255 | if (g == ARRAY_SIZE(dimms)) { |
| 1256 | edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); |
| 1257 | continue; |
| 1258 | } |
| 1259 | |
| 1260 | pvt->dimm_geom[i] = g; |
| 1261 | capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * |
| 1262 | (1ul << dimms[g].colbits); |
| 1263 | edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); |
| 1264 | dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); |
| 1265 | dimm->grain = 32; |
| 1266 | dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; |
| 1267 | dimm->mtype = MEM_DDR3; |
| 1268 | dimm->edac_mode = EDAC_SECDED; |
| 1269 | snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | static const int dnv_dtypes[] = { |
| 1274 | DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN |
| 1275 | }; |
| 1276 | |
| 1277 | static void dnv_get_dimm_config(struct mem_ctl_info *mci) |
| 1278 | { |
| 1279 | int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; |
| 1280 | struct dimm_info *dimm; |
| 1281 | struct d_cr_drp *d; |
| 1282 | u64 capacity; |
| 1283 | |
| 1284 | if (dsch.ddr4en) { |
| 1285 | memtype = MEM_DDR4; |
| 1286 | banks = 16; |
| 1287 | colbits = 10; |
| 1288 | } else { |
| 1289 | memtype = MEM_DDR3; |
| 1290 | banks = 8; |
| 1291 | } |
| 1292 | |
| 1293 | for (i = 0; i < DNV_NUM_CHANNELS; i++) { |
| 1294 | if (dmap4[i].row14 == 31) |
| 1295 | rowbits = 14; |
| 1296 | else if (dmap4[i].row15 == 31) |
| 1297 | rowbits = 15; |
| 1298 | else if (dmap4[i].row16 == 31) |
| 1299 | rowbits = 16; |
| 1300 | else if (dmap4[i].row17 == 31) |
| 1301 | rowbits = 17; |
| 1302 | else |
| 1303 | rowbits = 18; |
| 1304 | |
| 1305 | if (memtype == MEM_DDR3) { |
| 1306 | if (dmap1[i].ca11 != 0x3f) |
| 1307 | colbits = 12; |
| 1308 | else |
| 1309 | colbits = 10; |
| 1310 | } |
| 1311 | |
| 1312 | d = &drp[i]; |
| 1313 | /* DIMM0 is present if rank0 and/or rank1 is enabled */ |
| 1314 | ranks_of_dimm[0] = d->rken0 + d->rken1; |
| 1315 | /* DIMM1 is present if rank2 and/or rank3 is enabled */ |
| 1316 | ranks_of_dimm[1] = d->rken2 + d->rken3; |
| 1317 | |
| 1318 | for (j = 0; j < DNV_MAX_DIMMS; j++) { |
| 1319 | if (!ranks_of_dimm[j]) |
| 1320 | continue; |
| 1321 | |
| 1322 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); |
| 1323 | if (!dimm) { |
| 1324 | edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); |
| 1325 | continue; |
| 1326 | } |
| 1327 | |
| 1328 | capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); |
| 1329 | edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); |
| 1330 | dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); |
| 1331 | dimm->grain = 32; |
| 1332 | dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; |
| 1333 | dimm->mtype = memtype; |
| 1334 | dimm->edac_mode = EDAC_SECDED; |
| 1335 | snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); |
| 1336 | } |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | static int pnd2_register_mci(struct mem_ctl_info **ppmci) |
| 1341 | { |
| 1342 | struct edac_mc_layer layers[2]; |
| 1343 | struct mem_ctl_info *mci; |
| 1344 | struct pnd2_pvt *pvt; |
| 1345 | int rc; |
| 1346 | |
| 1347 | rc = ops->check_ecc(); |
| 1348 | if (rc < 0) |
| 1349 | return rc; |
| 1350 | |
| 1351 | /* Allocate a new MC control structure */ |
| 1352 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| 1353 | layers[0].size = ops->channels; |
| 1354 | layers[0].is_virt_csrow = false; |
| 1355 | layers[1].type = EDAC_MC_LAYER_SLOT; |
| 1356 | layers[1].size = ops->dimms_per_channel; |
| 1357 | layers[1].is_virt_csrow = true; |
| 1358 | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| 1359 | if (!mci) |
| 1360 | return -ENOMEM; |
| 1361 | |
| 1362 | pvt = mci->pvt_info; |
| 1363 | memset(pvt, 0, sizeof(*pvt)); |
| 1364 | |
| 1365 | mci->mod_name = EDAC_MOD_STR; |
| 1366 | mci->dev_name = ops->name; |
| 1367 | mci->ctl_name = "Pondicherry2"; |
| 1368 | |
| 1369 | /* Get dimm basic config and the memory layout */ |
| 1370 | ops->get_dimm_config(mci); |
| 1371 | |
| 1372 | if (edac_mc_add_mc(mci)) { |
| 1373 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| 1374 | edac_mc_free(mci); |
| 1375 | return -EINVAL; |
| 1376 | } |
| 1377 | |
| 1378 | *ppmci = mci; |
| 1379 | |
| 1380 | return 0; |
| 1381 | } |
| 1382 | |
| 1383 | static void pnd2_unregister_mci(struct mem_ctl_info *mci) |
| 1384 | { |
| 1385 | if (unlikely(!mci || !mci->pvt_info)) { |
| 1386 | pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); |
| 1387 | return; |
| 1388 | } |
| 1389 | |
| 1390 | /* Remove MC sysfs nodes */ |
| 1391 | edac_mc_del_mc(NULL); |
| 1392 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| 1393 | edac_mc_free(mci); |
| 1394 | } |
| 1395 | |
| 1396 | /* |
| 1397 | * Callback function registered with core kernel mce code. |
| 1398 | * Called once for each logged error. |
| 1399 | */ |
| 1400 | static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) |
| 1401 | { |
| 1402 | struct mce *mce = (struct mce *)data; |
| 1403 | struct mem_ctl_info *mci; |
| 1404 | struct dram_addr daddr; |
| 1405 | char *type; |
| 1406 | |
| 1407 | if (edac_get_report_status() == EDAC_REPORTING_DISABLED) |
| 1408 | return NOTIFY_DONE; |
| 1409 | |
| 1410 | mci = pnd2_mci; |
| 1411 | if (!mci) |
| 1412 | return NOTIFY_DONE; |
| 1413 | |
| 1414 | /* |
| 1415 | * Just let mcelog handle it if the error is |
| 1416 | * outside the memory controller. A memory error |
| 1417 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. |
| 1418 | * bit 12 has an special meaning. |
| 1419 | */ |
| 1420 | if ((mce->status & 0xefff) >> 7 != 1) |
| 1421 | return NOTIFY_DONE; |
| 1422 | |
| 1423 | if (mce->mcgstatus & MCG_STATUS_MCIP) |
| 1424 | type = "Exception"; |
| 1425 | else |
| 1426 | type = "Event"; |
| 1427 | |
| 1428 | pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); |
| 1429 | pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", |
| 1430 | mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); |
| 1431 | pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); |
| 1432 | pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); |
| 1433 | pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); |
| 1434 | pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", |
| 1435 | mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); |
| 1436 | |
| 1437 | pnd2_mce_output_error(mci, mce, &daddr); |
| 1438 | |
| 1439 | /* Advice mcelog that the error were handled */ |
| 1440 | return NOTIFY_STOP; |
| 1441 | } |
| 1442 | |
| 1443 | static struct notifier_block pnd2_mce_dec = { |
| 1444 | .notifier_call = pnd2_mce_check_error, |
| 1445 | }; |
| 1446 | |
| 1447 | #ifdef CONFIG_EDAC_DEBUG |
| 1448 | /* |
| 1449 | * Write an address to this file to exercise the address decode |
| 1450 | * logic in this driver. |
| 1451 | */ |
| 1452 | static u64 pnd2_fake_addr; |
| 1453 | #define PND2_BLOB_SIZE 1024 |
| 1454 | static char pnd2_result[PND2_BLOB_SIZE]; |
| 1455 | static struct dentry *pnd2_test; |
| 1456 | static struct debugfs_blob_wrapper pnd2_blob = { |
| 1457 | .data = pnd2_result, |
| 1458 | .size = 0 |
| 1459 | }; |
| 1460 | |
| 1461 | static int debugfs_u64_set(void *data, u64 val) |
| 1462 | { |
| 1463 | struct dram_addr daddr; |
| 1464 | struct mce m; |
| 1465 | |
| 1466 | *(u64 *)data = val; |
| 1467 | m.mcgstatus = 0; |
| 1468 | /* ADDRV + MemRd + Unknown channel */ |
| 1469 | m.status = MCI_STATUS_ADDRV + 0x9f; |
| 1470 | m.addr = val; |
| 1471 | pnd2_mce_output_error(pnd2_mci, &m, &daddr); |
| 1472 | snprintf(pnd2_blob.data, PND2_BLOB_SIZE, |
| 1473 | "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", |
| 1474 | m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); |
| 1475 | pnd2_blob.size = strlen(pnd2_blob.data); |
| 1476 | |
| 1477 | return 0; |
| 1478 | } |
| 1479 | DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| 1480 | |
| 1481 | static void setup_pnd2_debug(void) |
| 1482 | { |
| 1483 | pnd2_test = edac_debugfs_create_dir("pnd2_test"); |
| 1484 | edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, |
| 1485 | &pnd2_fake_addr, &fops_u64_wo); |
| 1486 | debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); |
| 1487 | } |
| 1488 | |
| 1489 | static void teardown_pnd2_debug(void) |
| 1490 | { |
| 1491 | debugfs_remove_recursive(pnd2_test); |
| 1492 | } |
| 1493 | #else |
| 1494 | static void setup_pnd2_debug(void) {} |
| 1495 | static void teardown_pnd2_debug(void) {} |
| 1496 | #endif /* CONFIG_EDAC_DEBUG */ |
| 1497 | |
| 1498 | |
| 1499 | static int pnd2_probe(void) |
| 1500 | { |
| 1501 | int rc; |
| 1502 | |
| 1503 | edac_dbg(2, "\n"); |
| 1504 | rc = get_registers(); |
| 1505 | if (rc) |
| 1506 | return rc; |
| 1507 | |
| 1508 | return pnd2_register_mci(&pnd2_mci); |
| 1509 | } |
| 1510 | |
| 1511 | static void pnd2_remove(void) |
| 1512 | { |
| 1513 | edac_dbg(0, "\n"); |
| 1514 | pnd2_unregister_mci(pnd2_mci); |
| 1515 | } |
| 1516 | |
| 1517 | static struct dunit_ops apl_ops = { |
| 1518 | .name = "pnd2/apl", |
| 1519 | .type = APL, |
| 1520 | .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, |
| 1521 | .pmiidx_shift = 0, |
| 1522 | .channels = APL_NUM_CHANNELS, |
| 1523 | .dimms_per_channel = 1, |
| 1524 | .rd_reg = apl_rd_reg, |
| 1525 | .get_registers = apl_get_registers, |
| 1526 | .check_ecc = apl_check_ecc_active, |
| 1527 | .mk_region = apl_mk_region, |
| 1528 | .get_dimm_config = apl_get_dimm_config, |
| 1529 | .pmi2mem = apl_pmi2mem, |
| 1530 | }; |
| 1531 | |
| 1532 | static struct dunit_ops dnv_ops = { |
| 1533 | .name = "pnd2/dnv", |
| 1534 | .type = DNV, |
| 1535 | .pmiaddr_shift = 0, |
| 1536 | .pmiidx_shift = 1, |
| 1537 | .channels = DNV_NUM_CHANNELS, |
| 1538 | .dimms_per_channel = 2, |
| 1539 | .rd_reg = dnv_rd_reg, |
| 1540 | .get_registers = dnv_get_registers, |
| 1541 | .check_ecc = dnv_check_ecc_active, |
| 1542 | .mk_region = dnv_mk_region, |
| 1543 | .get_dimm_config = dnv_get_dimm_config, |
| 1544 | .pmi2mem = dnv_pmi2mem, |
| 1545 | }; |
| 1546 | |
| 1547 | static const struct x86_cpu_id pnd2_cpuids[] = { |
| 1548 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, |
| 1549 | { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X, 0, (kernel_ulong_t)&dnv_ops }, |
| 1550 | { } |
| 1551 | }; |
| 1552 | MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); |
| 1553 | |
| 1554 | static int __init pnd2_init(void) |
| 1555 | { |
| 1556 | const struct x86_cpu_id *id; |
| 1557 | const char *owner; |
| 1558 | int rc; |
| 1559 | |
| 1560 | edac_dbg(2, "\n"); |
| 1561 | |
| 1562 | owner = edac_get_owner(); |
| 1563 | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) |
| 1564 | return -EBUSY; |
| 1565 | |
| 1566 | id = x86_match_cpu(pnd2_cpuids); |
| 1567 | if (!id) |
| 1568 | return -ENODEV; |
| 1569 | |
| 1570 | ops = (struct dunit_ops *)id->driver_data; |
| 1571 | |
| 1572 | if (ops->type == APL) { |
| 1573 | p2sb_bus = pci_find_bus(0, 0); |
| 1574 | if (!p2sb_bus) |
| 1575 | return -ENODEV; |
| 1576 | } |
| 1577 | |
| 1578 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| 1579 | opstate_init(); |
| 1580 | |
| 1581 | rc = pnd2_probe(); |
| 1582 | if (rc < 0) { |
| 1583 | pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); |
| 1584 | return rc; |
| 1585 | } |
| 1586 | |
| 1587 | if (!pnd2_mci) |
| 1588 | return -ENODEV; |
| 1589 | |
| 1590 | mce_register_decode_chain(&pnd2_mce_dec); |
| 1591 | setup_pnd2_debug(); |
| 1592 | |
| 1593 | return 0; |
| 1594 | } |
| 1595 | |
| 1596 | static void __exit pnd2_exit(void) |
| 1597 | { |
| 1598 | edac_dbg(2, "\n"); |
| 1599 | teardown_pnd2_debug(); |
| 1600 | mce_unregister_decode_chain(&pnd2_mce_dec); |
| 1601 | pnd2_remove(); |
| 1602 | } |
| 1603 | |
| 1604 | module_init(pnd2_init); |
| 1605 | module_exit(pnd2_exit); |
| 1606 | |
| 1607 | module_param(edac_op_state, int, 0444); |
| 1608 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| 1609 | |
| 1610 | MODULE_LICENSE("GPL v2"); |
| 1611 | MODULE_AUTHOR("Tony Luck"); |
| 1612 | MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); |