| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | 3 | *		operating system.  INET is implemented using the  BSD Socket | 
|  | 4 | *		interface as the means of communication with the user level. | 
|  | 5 | * | 
|  | 6 | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | 7 | * | 
|  | 8 | * Authors:	Ross Biro | 
|  | 9 | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | 10 | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | 11 | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | 12 | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | 13 | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | 14 | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | 15 | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | 16 | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | 17 | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | 18 | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | 19 | */ | 
|  | 20 |  | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/module.h> | 
|  | 23 | #include <linux/slab.h> | 
|  | 24 | #include <linux/sysctl.h> | 
|  | 25 | #include <linux/workqueue.h> | 
|  | 26 | #include <linux/static_key.h> | 
|  | 27 | #include <net/tcp.h> | 
|  | 28 | #include <net/inet_common.h> | 
|  | 29 | #include <net/xfrm.h> | 
|  | 30 | #include <net/busy_poll.h> | 
|  | 31 |  | 
|  | 32 | static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | 
|  | 33 | { | 
|  | 34 | if (seq == s_win) | 
|  | 35 | return true; | 
|  | 36 | if (after(end_seq, s_win) && before(seq, e_win)) | 
|  | 37 | return true; | 
|  | 38 | return seq == e_win && seq == end_seq; | 
|  | 39 | } | 
|  | 40 |  | 
|  | 41 | static enum tcp_tw_status | 
|  | 42 | tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw, | 
|  | 43 | const struct sk_buff *skb, int mib_idx) | 
|  | 44 | { | 
|  | 45 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  | 46 |  | 
|  | 47 | if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx, | 
|  | 48 | &tcptw->tw_last_oow_ack_time)) { | 
|  | 49 | /* Send ACK. Note, we do not put the bucket, | 
|  | 50 | * it will be released by caller. | 
|  | 51 | */ | 
|  | 52 | return TCP_TW_ACK; | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | /* We are rate-limiting, so just release the tw sock and drop skb. */ | 
|  | 56 | inet_twsk_put(tw); | 
|  | 57 | return TCP_TW_SUCCESS; | 
|  | 58 | } | 
|  | 59 |  | 
|  | 60 | /* | 
|  | 61 | * * Main purpose of TIME-WAIT state is to close connection gracefully, | 
|  | 62 | *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | 
|  | 63 | *   (and, probably, tail of data) and one or more our ACKs are lost. | 
|  | 64 | * * What is TIME-WAIT timeout? It is associated with maximal packet | 
|  | 65 | *   lifetime in the internet, which results in wrong conclusion, that | 
|  | 66 | *   it is set to catch "old duplicate segments" wandering out of their path. | 
|  | 67 | *   It is not quite correct. This timeout is calculated so that it exceeds | 
|  | 68 | *   maximal retransmission timeout enough to allow to lose one (or more) | 
|  | 69 | *   segments sent by peer and our ACKs. This time may be calculated from RTO. | 
|  | 70 | * * When TIME-WAIT socket receives RST, it means that another end | 
|  | 71 | *   finally closed and we are allowed to kill TIME-WAIT too. | 
|  | 72 | * * Second purpose of TIME-WAIT is catching old duplicate segments. | 
|  | 73 | *   Well, certainly it is pure paranoia, but if we load TIME-WAIT | 
|  | 74 | *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | 
|  | 75 | * * If we invented some more clever way to catch duplicates | 
|  | 76 | *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | 
|  | 77 | * | 
|  | 78 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | 
|  | 79 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | 
|  | 80 | * from the very beginning. | 
|  | 81 | * | 
|  | 82 | * NOTE. With recycling (and later with fin-wait-2) TW bucket | 
|  | 83 | * is _not_ stateless. It means, that strictly speaking we must | 
|  | 84 | * spinlock it. I do not want! Well, probability of misbehaviour | 
|  | 85 | * is ridiculously low and, seems, we could use some mb() tricks | 
|  | 86 | * to avoid misread sequence numbers, states etc.  --ANK | 
|  | 87 | * | 
|  | 88 | * We don't need to initialize tmp_out.sack_ok as we don't use the results | 
|  | 89 | */ | 
|  | 90 | enum tcp_tw_status | 
|  | 91 | tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, | 
|  | 92 | const struct tcphdr *th) | 
|  | 93 | { | 
|  | 94 | struct tcp_options_received tmp_opt; | 
|  | 95 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  | 96 | bool paws_reject = false; | 
|  | 97 |  | 
|  | 98 | tmp_opt.saw_tstamp = 0; | 
|  | 99 | if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { | 
|  | 100 | tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL); | 
|  | 101 |  | 
|  | 102 | if (tmp_opt.saw_tstamp) { | 
|  | 103 | if (tmp_opt.rcv_tsecr) | 
|  | 104 | tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset; | 
|  | 105 | tmp_opt.ts_recent	= tcptw->tw_ts_recent; | 
|  | 106 | tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp; | 
|  | 107 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 
|  | 108 | } | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | if (tw->tw_substate == TCP_FIN_WAIT2) { | 
|  | 112 | /* Just repeat all the checks of tcp_rcv_state_process() */ | 
|  | 113 |  | 
|  | 114 | /* Out of window, send ACK */ | 
|  | 115 | if (paws_reject || | 
|  | 116 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | 117 | tcptw->tw_rcv_nxt, | 
|  | 118 | tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) | 
|  | 119 | return tcp_timewait_check_oow_rate_limit( | 
|  | 120 | tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2); | 
|  | 121 |  | 
|  | 122 | if (th->rst) | 
|  | 123 | goto kill; | 
|  | 124 |  | 
|  | 125 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) | 
|  | 126 | return TCP_TW_RST; | 
|  | 127 |  | 
|  | 128 | /* Dup ACK? */ | 
|  | 129 | if (!th->ack || | 
|  | 130 | !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || | 
|  | 131 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | 
|  | 132 | inet_twsk_put(tw); | 
|  | 133 | return TCP_TW_SUCCESS; | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | /* New data or FIN. If new data arrive after half-duplex close, | 
|  | 137 | * reset. | 
|  | 138 | */ | 
|  | 139 | if (!th->fin || | 
|  | 140 | TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) | 
|  | 141 | return TCP_TW_RST; | 
|  | 142 |  | 
|  | 143 | /* FIN arrived, enter true time-wait state. */ | 
|  | 144 | tw->tw_substate	  = TCP_TIME_WAIT; | 
|  | 145 | tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | 146 | if (tmp_opt.saw_tstamp) { | 
|  | 147 | tcptw->tw_ts_recent_stamp = ktime_get_seconds(); | 
|  | 148 | tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 152 | return TCP_TW_ACK; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | /* | 
|  | 156 | *	Now real TIME-WAIT state. | 
|  | 157 | * | 
|  | 158 | *	RFC 1122: | 
|  | 159 | *	"When a connection is [...] on TIME-WAIT state [...] | 
|  | 160 | *	[a TCP] MAY accept a new SYN from the remote TCP to | 
|  | 161 | *	reopen the connection directly, if it: | 
|  | 162 | * | 
|  | 163 | *	(1)  assigns its initial sequence number for the new | 
|  | 164 | *	connection to be larger than the largest sequence | 
|  | 165 | *	number it used on the previous connection incarnation, | 
|  | 166 | *	and | 
|  | 167 | * | 
|  | 168 | *	(2)  returns to TIME-WAIT state if the SYN turns out | 
|  | 169 | *	to be an old duplicate". | 
|  | 170 | */ | 
|  | 171 |  | 
|  | 172 | if (!paws_reject && | 
|  | 173 | (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && | 
|  | 174 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | 
|  | 175 | /* In window segment, it may be only reset or bare ack. */ | 
|  | 176 |  | 
|  | 177 | if (th->rst) { | 
|  | 178 | /* This is TIME_WAIT assassination, in two flavors. | 
|  | 179 | * Oh well... nobody has a sufficient solution to this | 
|  | 180 | * protocol bug yet. | 
|  | 181 | */ | 
|  | 182 | if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) { | 
|  | 183 | kill: | 
|  | 184 | inet_twsk_deschedule_put(tw); | 
|  | 185 | return TCP_TW_SUCCESS; | 
|  | 186 | } | 
|  | 187 | } else { | 
|  | 188 | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 189 | } | 
|  | 190 |  | 
|  | 191 | if (tmp_opt.saw_tstamp) { | 
|  | 192 | tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval; | 
|  | 193 | tcptw->tw_ts_recent_stamp = ktime_get_seconds(); | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | inet_twsk_put(tw); | 
|  | 197 | return TCP_TW_SUCCESS; | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | /* Out of window segment. | 
|  | 201 |  | 
|  | 202 | All the segments are ACKed immediately. | 
|  | 203 |  | 
|  | 204 | The only exception is new SYN. We accept it, if it is | 
|  | 205 | not old duplicate and we are not in danger to be killed | 
|  | 206 | by delayed old duplicates. RFC check is that it has | 
|  | 207 | newer sequence number works at rates <40Mbit/sec. | 
|  | 208 | However, if paws works, it is reliable AND even more, | 
|  | 209 | we even may relax silly seq space cutoff. | 
|  | 210 |  | 
|  | 211 | RED-PEN: we violate main RFC requirement, if this SYN will appear | 
|  | 212 | old duplicate (i.e. we receive RST in reply to SYN-ACK), | 
|  | 213 | we must return socket to time-wait state. It is not good, | 
|  | 214 | but not fatal yet. | 
|  | 215 | */ | 
|  | 216 |  | 
|  | 217 | if (th->syn && !th->rst && !th->ack && !paws_reject && | 
|  | 218 | (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || | 
|  | 219 | (tmp_opt.saw_tstamp && | 
|  | 220 | (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | 
|  | 221 | u32 isn = tcptw->tw_snd_nxt + 65535 + 2; | 
|  | 222 | if (isn == 0) | 
|  | 223 | isn++; | 
|  | 224 | TCP_SKB_CB(skb)->tcp_tw_isn = isn; | 
|  | 225 | return TCP_TW_SYN; | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 | if (paws_reject) | 
|  | 229 | __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); | 
|  | 230 |  | 
|  | 231 | if (!th->rst) { | 
|  | 232 | /* In this case we must reset the TIMEWAIT timer. | 
|  | 233 | * | 
|  | 234 | * If it is ACKless SYN it may be both old duplicate | 
|  | 235 | * and new good SYN with random sequence number <rcv_nxt. | 
|  | 236 | * Do not reschedule in the last case. | 
|  | 237 | */ | 
|  | 238 | if (paws_reject || th->ack) | 
|  | 239 | inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); | 
|  | 240 |  | 
|  | 241 | return tcp_timewait_check_oow_rate_limit( | 
|  | 242 | tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT); | 
|  | 243 | } | 
|  | 244 | inet_twsk_put(tw); | 
|  | 245 | return TCP_TW_SUCCESS; | 
|  | 246 | } | 
|  | 247 | EXPORT_SYMBOL(tcp_timewait_state_process); | 
|  | 248 |  | 
|  | 249 | /* | 
|  | 250 | * Move a socket to time-wait or dead fin-wait-2 state. | 
|  | 251 | */ | 
|  | 252 | void tcp_time_wait(struct sock *sk, int state, int timeo) | 
|  | 253 | { | 
|  | 254 | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | 255 | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | 256 | struct inet_timewait_sock *tw; | 
|  | 257 | struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; | 
|  | 258 |  | 
|  | 259 | tw = inet_twsk_alloc(sk, tcp_death_row, state); | 
|  | 260 |  | 
|  | 261 | if (tw) { | 
|  | 262 | struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); | 
|  | 263 | const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); | 
|  | 264 | struct inet_sock *inet = inet_sk(sk); | 
|  | 265 |  | 
|  | 266 | tw->tw_transparent	= inet->transparent; | 
|  | 267 | tw->tw_mark		= sk->sk_mark; | 
|  | 268 | tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale; | 
|  | 269 | tcptw->tw_rcv_nxt	= tp->rcv_nxt; | 
|  | 270 | tcptw->tw_snd_nxt	= tp->snd_nxt; | 
|  | 271 | tcptw->tw_rcv_wnd	= tcp_receive_window(tp); | 
|  | 272 | tcptw->tw_ts_recent	= tp->rx_opt.ts_recent; | 
|  | 273 | tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; | 
|  | 274 | tcptw->tw_ts_offset	= tp->tsoffset; | 
|  | 275 | tcptw->tw_last_oow_ack_time = 0; | 
|  | 276 |  | 
|  | 277 | #if IS_ENABLED(CONFIG_IPV6) | 
|  | 278 | if (tw->tw_family == PF_INET6) { | 
|  | 279 | struct ipv6_pinfo *np = inet6_sk(sk); | 
|  | 280 |  | 
|  | 281 | tw->tw_v6_daddr = sk->sk_v6_daddr; | 
|  | 282 | tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr; | 
|  | 283 | tw->tw_tclass = np->tclass; | 
|  | 284 | tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK); | 
|  | 285 | tw->tw_ipv6only = sk->sk_ipv6only; | 
|  | 286 | } | 
|  | 287 | #endif | 
|  | 288 |  | 
|  | 289 | #ifdef CONFIG_TCP_MD5SIG | 
|  | 290 | /* | 
|  | 291 | * The timewait bucket does not have the key DB from the | 
|  | 292 | * sock structure. We just make a quick copy of the | 
|  | 293 | * md5 key being used (if indeed we are using one) | 
|  | 294 | * so the timewait ack generating code has the key. | 
|  | 295 | */ | 
|  | 296 | do { | 
|  | 297 | struct tcp_md5sig_key *key; | 
|  | 298 | tcptw->tw_md5_key = NULL; | 
|  | 299 | key = tp->af_specific->md5_lookup(sk, sk); | 
|  | 300 | if (key) { | 
|  | 301 | tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC); | 
|  | 302 | BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool()); | 
|  | 303 | } | 
|  | 304 | } while (0); | 
|  | 305 | #endif | 
|  | 306 |  | 
|  | 307 | /* Get the TIME_WAIT timeout firing. */ | 
|  | 308 | if (timeo < rto) | 
|  | 309 | timeo = rto; | 
|  | 310 |  | 
|  | 311 | if (state == TCP_TIME_WAIT) | 
|  | 312 | timeo = TCP_TIMEWAIT_LEN; | 
|  | 313 |  | 
|  | 314 | /* tw_timer is pinned, so we need to make sure BH are disabled | 
|  | 315 | * in following section, otherwise timer handler could run before | 
|  | 316 | * we complete the initialization. | 
|  | 317 | */ | 
|  | 318 | local_bh_disable(); | 
|  | 319 | inet_twsk_schedule(tw, timeo); | 
|  | 320 | /* Linkage updates. | 
|  | 321 | * Note that access to tw after this point is illegal. | 
|  | 322 | */ | 
|  | 323 | inet_twsk_hashdance(tw, sk, &tcp_hashinfo); | 
|  | 324 | local_bh_enable(); | 
|  | 325 | } else { | 
|  | 326 | /* Sorry, if we're out of memory, just CLOSE this | 
|  | 327 | * socket up.  We've got bigger problems than | 
|  | 328 | * non-graceful socket closings. | 
|  | 329 | */ | 
|  | 330 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW); | 
|  | 331 | } | 
|  | 332 |  | 
|  | 333 | tcp_update_metrics(sk); | 
|  | 334 | tcp_done(sk); | 
|  | 335 | } | 
|  | 336 | EXPORT_SYMBOL(tcp_time_wait); | 
|  | 337 |  | 
|  | 338 | void tcp_twsk_destructor(struct sock *sk) | 
|  | 339 | { | 
|  | 340 | #ifdef CONFIG_TCP_MD5SIG | 
|  | 341 | struct tcp_timewait_sock *twsk = tcp_twsk(sk); | 
|  | 342 |  | 
|  | 343 | if (twsk->tw_md5_key) | 
|  | 344 | kfree_rcu(twsk->tw_md5_key, rcu); | 
|  | 345 | #endif | 
|  | 346 | } | 
|  | 347 | EXPORT_SYMBOL_GPL(tcp_twsk_destructor); | 
|  | 348 |  | 
|  | 349 | /* Warning : This function is called without sk_listener being locked. | 
|  | 350 | * Be sure to read socket fields once, as their value could change under us. | 
|  | 351 | */ | 
|  | 352 | void tcp_openreq_init_rwin(struct request_sock *req, | 
|  | 353 | const struct sock *sk_listener, | 
|  | 354 | const struct dst_entry *dst) | 
|  | 355 | { | 
|  | 356 | struct inet_request_sock *ireq = inet_rsk(req); | 
|  | 357 | const struct tcp_sock *tp = tcp_sk(sk_listener); | 
|  | 358 | int full_space = tcp_full_space(sk_listener); | 
|  | 359 | u32 window_clamp; | 
|  | 360 | __u8 rcv_wscale; | 
|  | 361 | u32 rcv_wnd; | 
|  | 362 | int mss; | 
|  | 363 |  | 
|  | 364 | mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); | 
|  | 365 | window_clamp = READ_ONCE(tp->window_clamp); | 
|  | 366 | /* Set this up on the first call only */ | 
|  | 367 | req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW); | 
|  | 368 |  | 
|  | 369 | /* limit the window selection if the user enforce a smaller rx buffer */ | 
|  | 370 | if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK && | 
|  | 371 | (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) | 
|  | 372 | req->rsk_window_clamp = full_space; | 
|  | 373 |  | 
|  | 374 | rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req); | 
|  | 375 | if (rcv_wnd == 0) | 
|  | 376 | rcv_wnd = dst_metric(dst, RTAX_INITRWND); | 
|  | 377 | else if (full_space < rcv_wnd * mss) | 
|  | 378 | full_space = rcv_wnd * mss; | 
|  | 379 |  | 
|  | 380 | /* tcp_full_space because it is guaranteed to be the first packet */ | 
|  | 381 | tcp_select_initial_window(sk_listener, full_space, | 
|  | 382 | mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | 
|  | 383 | &req->rsk_rcv_wnd, | 
|  | 384 | &req->rsk_window_clamp, | 
|  | 385 | ireq->wscale_ok, | 
|  | 386 | &rcv_wscale, | 
|  | 387 | rcv_wnd); | 
|  | 388 | ireq->rcv_wscale = rcv_wscale; | 
|  | 389 | } | 
|  | 390 | EXPORT_SYMBOL(tcp_openreq_init_rwin); | 
|  | 391 |  | 
|  | 392 | static void tcp_ecn_openreq_child(struct tcp_sock *tp, | 
|  | 393 | const struct request_sock *req) | 
|  | 394 | { | 
|  | 395 | tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst) | 
|  | 399 | { | 
|  | 400 | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | 401 | u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); | 
|  | 402 | bool ca_got_dst = false; | 
|  | 403 |  | 
|  | 404 | if (ca_key != TCP_CA_UNSPEC) { | 
|  | 405 | const struct tcp_congestion_ops *ca; | 
|  | 406 |  | 
|  | 407 | rcu_read_lock(); | 
|  | 408 | ca = tcp_ca_find_key(ca_key); | 
|  | 409 | if (likely(ca && try_module_get(ca->owner))) { | 
|  | 410 | icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); | 
|  | 411 | icsk->icsk_ca_ops = ca; | 
|  | 412 | ca_got_dst = true; | 
|  | 413 | } | 
|  | 414 | rcu_read_unlock(); | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* If no valid choice made yet, assign current system default ca. */ | 
|  | 418 | if (!ca_got_dst && | 
|  | 419 | (!icsk->icsk_ca_setsockopt || | 
|  | 420 | !try_module_get(icsk->icsk_ca_ops->owner))) | 
|  | 421 | tcp_assign_congestion_control(sk); | 
|  | 422 |  | 
|  | 423 | tcp_set_ca_state(sk, TCP_CA_Open); | 
|  | 424 | } | 
|  | 425 | EXPORT_SYMBOL_GPL(tcp_ca_openreq_child); | 
|  | 426 |  | 
|  | 427 | static void smc_check_reset_syn_req(struct tcp_sock *oldtp, | 
|  | 428 | struct request_sock *req, | 
|  | 429 | struct tcp_sock *newtp) | 
|  | 430 | { | 
|  | 431 | #if IS_ENABLED(CONFIG_SMC) | 
|  | 432 | struct inet_request_sock *ireq; | 
|  | 433 |  | 
|  | 434 | if (static_branch_unlikely(&tcp_have_smc)) { | 
|  | 435 | ireq = inet_rsk(req); | 
|  | 436 | if (oldtp->syn_smc && !ireq->smc_ok) | 
|  | 437 | newtp->syn_smc = 0; | 
|  | 438 | } | 
|  | 439 | #endif | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | /* This is not only more efficient than what we used to do, it eliminates | 
|  | 443 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | 
|  | 444 | * | 
|  | 445 | * Actually, we could lots of memory writes here. tp of listening | 
|  | 446 | * socket contains all necessary default parameters. | 
|  | 447 | */ | 
|  | 448 | struct sock *tcp_create_openreq_child(const struct sock *sk, | 
|  | 449 | struct request_sock *req, | 
|  | 450 | struct sk_buff *skb) | 
|  | 451 | { | 
|  | 452 | struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); | 
|  | 453 | const struct inet_request_sock *ireq = inet_rsk(req); | 
|  | 454 | struct tcp_request_sock *treq = tcp_rsk(req); | 
|  | 455 | struct inet_connection_sock *newicsk; | 
|  | 456 | struct tcp_sock *oldtp, *newtp; | 
|  | 457 | u32 seq; | 
|  | 458 |  | 
|  | 459 | if (!newsk) | 
|  | 460 | return NULL; | 
|  | 461 |  | 
|  | 462 | newicsk = inet_csk(newsk); | 
|  | 463 | newtp = tcp_sk(newsk); | 
|  | 464 | oldtp = tcp_sk(sk); | 
|  | 465 |  | 
|  | 466 | smc_check_reset_syn_req(oldtp, req, newtp); | 
|  | 467 |  | 
|  | 468 | /* Now setup tcp_sock */ | 
|  | 469 | newtp->pred_flags = 0; | 
|  | 470 |  | 
|  | 471 | seq = treq->rcv_isn + 1; | 
|  | 472 | newtp->rcv_wup = seq; | 
|  | 473 | newtp->copied_seq = seq; | 
|  | 474 | WRITE_ONCE(newtp->rcv_nxt, seq); | 
|  | 475 | newtp->segs_in = 1; | 
|  | 476 |  | 
|  | 477 | newtp->snd_sml = newtp->snd_una = | 
|  | 478 | newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1; | 
|  | 479 |  | 
|  | 480 | INIT_LIST_HEAD(&newtp->tsq_node); | 
|  | 481 | INIT_LIST_HEAD(&newtp->tsorted_sent_queue); | 
|  | 482 |  | 
|  | 483 | tcp_init_wl(newtp, treq->rcv_isn); | 
|  | 484 |  | 
|  | 485 | newtp->srtt_us = 0; | 
|  | 486 | newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); | 
|  | 487 | minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U); | 
|  | 488 | newicsk->icsk_rto = TCP_TIMEOUT_INIT; | 
|  | 489 | newicsk->icsk_ack.lrcvtime = tcp_jiffies32; | 
|  | 490 |  | 
|  | 491 | newtp->packets_out = 0; | 
|  | 492 | newtp->retrans_out = 0; | 
|  | 493 | newtp->sacked_out = 0; | 
|  | 494 | newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH; | 
|  | 495 | newtp->tlp_high_seq = 0; | 
|  | 496 | newtp->lsndtime = tcp_jiffies32; | 
|  | 497 | newsk->sk_txhash = treq->txhash; | 
|  | 498 | newtp->last_oow_ack_time = 0; | 
|  | 499 | newtp->total_retrans = req->num_retrans; | 
|  | 500 |  | 
|  | 501 | /* So many TCP implementations out there (incorrectly) count the | 
|  | 502 | * initial SYN frame in their delayed-ACK and congestion control | 
|  | 503 | * algorithms that we must have the following bandaid to talk | 
|  | 504 | * efficiently to them.  -DaveM | 
|  | 505 | */ | 
|  | 506 | newtp->snd_cwnd = TCP_INIT_CWND; | 
|  | 507 | newtp->snd_cwnd_cnt = 0; | 
|  | 508 |  | 
|  | 509 | /* There's a bubble in the pipe until at least the first ACK. */ | 
|  | 510 | newtp->app_limited = ~0U; | 
|  | 511 |  | 
|  | 512 | tcp_init_xmit_timers(newsk); | 
|  | 513 | newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1; | 
|  | 514 |  | 
|  | 515 | newtp->rx_opt.saw_tstamp = 0; | 
|  | 516 |  | 
|  | 517 | newtp->rx_opt.dsack = 0; | 
|  | 518 | newtp->rx_opt.num_sacks = 0; | 
|  | 519 |  | 
|  | 520 | newtp->urg_data = 0; | 
|  | 521 |  | 
|  | 522 | if (sock_flag(newsk, SOCK_KEEPOPEN)) | 
|  | 523 | inet_csk_reset_keepalive_timer(newsk, | 
|  | 524 | keepalive_time_when(newtp)); | 
|  | 525 |  | 
|  | 526 | newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; | 
|  | 527 | newtp->rx_opt.sack_ok = ireq->sack_ok; | 
|  | 528 | newtp->window_clamp = req->rsk_window_clamp; | 
|  | 529 | newtp->rcv_ssthresh = req->rsk_rcv_wnd; | 
|  | 530 | newtp->rcv_wnd = req->rsk_rcv_wnd; | 
|  | 531 | newtp->rx_opt.wscale_ok = ireq->wscale_ok; | 
|  | 532 | if (newtp->rx_opt.wscale_ok) { | 
|  | 533 | newtp->rx_opt.snd_wscale = ireq->snd_wscale; | 
|  | 534 | newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; | 
|  | 535 | } else { | 
|  | 536 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | 
|  | 537 | newtp->window_clamp = min(newtp->window_clamp, 65535U); | 
|  | 538 | } | 
|  | 539 | newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale; | 
|  | 540 | newtp->max_window = newtp->snd_wnd; | 
|  | 541 |  | 
|  | 542 | if (newtp->rx_opt.tstamp_ok) { | 
|  | 543 | newtp->rx_opt.ts_recent = req->ts_recent; | 
|  | 544 | newtp->rx_opt.ts_recent_stamp = ktime_get_seconds(); | 
|  | 545 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | 546 | } else { | 
|  | 547 | newtp->rx_opt.ts_recent_stamp = 0; | 
|  | 548 | newtp->tcp_header_len = sizeof(struct tcphdr); | 
|  | 549 | } | 
|  | 550 | newtp->tsoffset = treq->ts_off; | 
|  | 551 | #ifdef CONFIG_TCP_MD5SIG | 
|  | 552 | newtp->md5sig_info = NULL;	/*XXX*/ | 
|  | 553 | if (newtp->af_specific->md5_lookup(sk, newsk)) | 
|  | 554 | newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; | 
|  | 555 | #endif | 
|  | 556 | if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) | 
|  | 557 | newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; | 
|  | 558 | newtp->rx_opt.mss_clamp = req->mss; | 
|  | 559 | tcp_ecn_openreq_child(newtp, req); | 
|  | 560 | newtp->fastopen_req = NULL; | 
|  | 561 | newtp->fastopen_rsk = NULL; | 
|  | 562 | newtp->syn_data_acked = 0; | 
|  | 563 | newtp->rack.mstamp = 0; | 
|  | 564 | newtp->rack.advanced = 0; | 
|  | 565 | newtp->rack.reo_wnd_steps = 1; | 
|  | 566 | newtp->rack.last_delivered = 0; | 
|  | 567 | newtp->rack.reo_wnd_persist = 0; | 
|  | 568 | newtp->rack.dsack_seen = 0; | 
|  | 569 |  | 
|  | 570 | __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS); | 
|  | 571 |  | 
|  | 572 | return newsk; | 
|  | 573 | } | 
|  | 574 | EXPORT_SYMBOL(tcp_create_openreq_child); | 
|  | 575 |  | 
|  | 576 | /* | 
|  | 577 | * Process an incoming packet for SYN_RECV sockets represented as a | 
|  | 578 | * request_sock. Normally sk is the listener socket but for TFO it | 
|  | 579 | * points to the child socket. | 
|  | 580 | * | 
|  | 581 | * XXX (TFO) - The current impl contains a special check for ack | 
|  | 582 | * validation and inside tcp_v4_reqsk_send_ack(). Can we do better? | 
|  | 583 | * | 
|  | 584 | * We don't need to initialize tmp_opt.sack_ok as we don't use the results | 
|  | 585 | */ | 
|  | 586 |  | 
|  | 587 | struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, | 
|  | 588 | struct request_sock *req, | 
|  | 589 | bool fastopen, bool *req_stolen) | 
|  | 590 | { | 
|  | 591 | struct tcp_options_received tmp_opt; | 
|  | 592 | struct sock *child; | 
|  | 593 | const struct tcphdr *th = tcp_hdr(skb); | 
|  | 594 | __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | 
|  | 595 | bool paws_reject = false; | 
|  | 596 | bool own_req; | 
|  | 597 |  | 
|  | 598 | tmp_opt.saw_tstamp = 0; | 
|  | 599 | if (th->doff > (sizeof(struct tcphdr)>>2)) { | 
|  | 600 | tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL); | 
|  | 601 |  | 
|  | 602 | if (tmp_opt.saw_tstamp) { | 
|  | 603 | tmp_opt.ts_recent = req->ts_recent; | 
|  | 604 | if (tmp_opt.rcv_tsecr) | 
|  | 605 | tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off; | 
|  | 606 | /* We do not store true stamp, but it is not required, | 
|  | 607 | * it can be estimated (approximately) | 
|  | 608 | * from another data. | 
|  | 609 | */ | 
|  | 610 | tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout); | 
|  | 611 | paws_reject = tcp_paws_reject(&tmp_opt, th->rst); | 
|  | 612 | } | 
|  | 613 | } | 
|  | 614 |  | 
|  | 615 | /* Check for pure retransmitted SYN. */ | 
|  | 616 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && | 
|  | 617 | flg == TCP_FLAG_SYN && | 
|  | 618 | !paws_reject) { | 
|  | 619 | /* | 
|  | 620 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | 
|  | 621 | * this case on figure 6 and figure 8, but formal | 
|  | 622 | * protocol description says NOTHING. | 
|  | 623 | * To be more exact, it says that we should send ACK, | 
|  | 624 | * because this segment (at least, if it has no data) | 
|  | 625 | * is out of window. | 
|  | 626 | * | 
|  | 627 | *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT | 
|  | 628 | *  describe SYN-RECV state. All the description | 
|  | 629 | *  is wrong, we cannot believe to it and should | 
|  | 630 | *  rely only on common sense and implementation | 
|  | 631 | *  experience. | 
|  | 632 | * | 
|  | 633 | * Enforce "SYN-ACK" according to figure 8, figure 6 | 
|  | 634 | * of RFC793, fixed by RFC1122. | 
|  | 635 | * | 
|  | 636 | * Note that even if there is new data in the SYN packet | 
|  | 637 | * they will be thrown away too. | 
|  | 638 | * | 
|  | 639 | * Reset timer after retransmitting SYNACK, similar to | 
|  | 640 | * the idea of fast retransmit in recovery. | 
|  | 641 | */ | 
|  | 642 | if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | 643 | LINUX_MIB_TCPACKSKIPPEDSYNRECV, | 
|  | 644 | &tcp_rsk(req)->last_oow_ack_time) && | 
|  | 645 |  | 
|  | 646 | !inet_rtx_syn_ack(sk, req)) { | 
|  | 647 | unsigned long expires = jiffies; | 
|  | 648 |  | 
|  | 649 | expires += min(TCP_TIMEOUT_INIT << req->num_timeout, | 
|  | 650 | TCP_RTO_MAX); | 
|  | 651 | if (!fastopen) | 
|  | 652 | mod_timer_pending(&req->rsk_timer, expires); | 
|  | 653 | else | 
|  | 654 | req->rsk_timer.expires = expires; | 
|  | 655 | } | 
|  | 656 | return NULL; | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | /* Further reproduces section "SEGMENT ARRIVES" | 
|  | 660 | for state SYN-RECEIVED of RFC793. | 
|  | 661 | It is broken, however, it does not work only | 
|  | 662 | when SYNs are crossed. | 
|  | 663 |  | 
|  | 664 | You would think that SYN crossing is impossible here, since | 
|  | 665 | we should have a SYN_SENT socket (from connect()) on our end, | 
|  | 666 | but this is not true if the crossed SYNs were sent to both | 
|  | 667 | ends by a malicious third party.  We must defend against this, | 
|  | 668 | and to do that we first verify the ACK (as per RFC793, page | 
|  | 669 | 36) and reset if it is invalid.  Is this a true full defense? | 
|  | 670 | To convince ourselves, let us consider a way in which the ACK | 
|  | 671 | test can still pass in this 'malicious crossed SYNs' case. | 
|  | 672 | Malicious sender sends identical SYNs (and thus identical sequence | 
|  | 673 | numbers) to both A and B: | 
|  | 674 |  | 
|  | 675 | A: gets SYN, seq=7 | 
|  | 676 | B: gets SYN, seq=7 | 
|  | 677 |  | 
|  | 678 | By our good fortune, both A and B select the same initial | 
|  | 679 | send sequence number of seven :-) | 
|  | 680 |  | 
|  | 681 | A: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | 682 | B: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | 683 |  | 
|  | 684 | So we are now A eating this SYN|ACK, ACK test passes.  So | 
|  | 685 | does sequence test, SYN is truncated, and thus we consider | 
|  | 686 | it a bare ACK. | 
|  | 687 |  | 
|  | 688 | If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this | 
|  | 689 | bare ACK.  Otherwise, we create an established connection.  Both | 
|  | 690 | ends (listening sockets) accept the new incoming connection and try | 
|  | 691 | to talk to each other. 8-) | 
|  | 692 |  | 
|  | 693 | Note: This case is both harmless, and rare.  Possibility is about the | 
|  | 694 | same as us discovering intelligent life on another plant tomorrow. | 
|  | 695 |  | 
|  | 696 | But generally, we should (RFC lies!) to accept ACK | 
|  | 697 | from SYNACK both here and in tcp_rcv_state_process(). | 
|  | 698 | tcp_rcv_state_process() does not, hence, we do not too. | 
|  | 699 |  | 
|  | 700 | Note that the case is absolutely generic: | 
|  | 701 | we cannot optimize anything here without | 
|  | 702 | violating protocol. All the checks must be made | 
|  | 703 | before attempt to create socket. | 
|  | 704 | */ | 
|  | 705 |  | 
|  | 706 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | 
|  | 707 | *                  and the incoming segment acknowledges something not yet | 
|  | 708 | *                  sent (the segment carries an unacceptable ACK) ... | 
|  | 709 | *                  a reset is sent." | 
|  | 710 | * | 
|  | 711 | * Invalid ACK: reset will be sent by listening socket. | 
|  | 712 | * Note that the ACK validity check for a Fast Open socket is done | 
|  | 713 | * elsewhere and is checked directly against the child socket rather | 
|  | 714 | * than req because user data may have been sent out. | 
|  | 715 | */ | 
|  | 716 | if ((flg & TCP_FLAG_ACK) && !fastopen && | 
|  | 717 | (TCP_SKB_CB(skb)->ack_seq != | 
|  | 718 | tcp_rsk(req)->snt_isn + 1)) | 
|  | 719 | return sk; | 
|  | 720 |  | 
|  | 721 | /* Also, it would be not so bad idea to check rcv_tsecr, which | 
|  | 722 | * is essentially ACK extension and too early or too late values | 
|  | 723 | * should cause reset in unsynchronized states. | 
|  | 724 | */ | 
|  | 725 |  | 
|  | 726 | /* RFC793: "first check sequence number". */ | 
|  | 727 |  | 
|  | 728 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | 729 | tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) { | 
|  | 730 | /* Out of window: send ACK and drop. */ | 
|  | 731 | if (!(flg & TCP_FLAG_RST) && | 
|  | 732 | !tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | 733 | LINUX_MIB_TCPACKSKIPPEDSYNRECV, | 
|  | 734 | &tcp_rsk(req)->last_oow_ack_time)) | 
|  | 735 | req->rsk_ops->send_ack(sk, skb, req); | 
|  | 736 | if (paws_reject) | 
|  | 737 | __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); | 
|  | 738 | return NULL; | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | /* In sequence, PAWS is OK. */ | 
|  | 742 |  | 
|  | 743 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt)) | 
|  | 744 | req->ts_recent = tmp_opt.rcv_tsval; | 
|  | 745 |  | 
|  | 746 | if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { | 
|  | 747 | /* Truncate SYN, it is out of window starting | 
|  | 748 | at tcp_rsk(req)->rcv_isn + 1. */ | 
|  | 749 | flg &= ~TCP_FLAG_SYN; | 
|  | 750 | } | 
|  | 751 |  | 
|  | 752 | /* RFC793: "second check the RST bit" and | 
|  | 753 | *	   "fourth, check the SYN bit" | 
|  | 754 | */ | 
|  | 755 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { | 
|  | 756 | __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); | 
|  | 757 | goto embryonic_reset; | 
|  | 758 | } | 
|  | 759 |  | 
|  | 760 | /* ACK sequence verified above, just make sure ACK is | 
|  | 761 | * set.  If ACK not set, just silently drop the packet. | 
|  | 762 | * | 
|  | 763 | * XXX (TFO) - if we ever allow "data after SYN", the | 
|  | 764 | * following check needs to be removed. | 
|  | 765 | */ | 
|  | 766 | if (!(flg & TCP_FLAG_ACK)) | 
|  | 767 | return NULL; | 
|  | 768 |  | 
|  | 769 | /* For Fast Open no more processing is needed (sk is the | 
|  | 770 | * child socket). | 
|  | 771 | */ | 
|  | 772 | if (fastopen) | 
|  | 773 | return sk; | 
|  | 774 |  | 
|  | 775 | /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */ | 
|  | 776 | if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept && | 
|  | 777 | TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { | 
|  | 778 | inet_rsk(req)->acked = 1; | 
|  | 779 | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP); | 
|  | 780 | return NULL; | 
|  | 781 | } | 
|  | 782 |  | 
|  | 783 | /* OK, ACK is valid, create big socket and | 
|  | 784 | * feed this segment to it. It will repeat all | 
|  | 785 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | 
|  | 786 | * ESTABLISHED STATE. If it will be dropped after | 
|  | 787 | * socket is created, wait for troubles. | 
|  | 788 | */ | 
|  | 789 | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, | 
|  | 790 | req, &own_req); | 
|  | 791 | if (!child) | 
|  | 792 | goto listen_overflow; | 
|  | 793 |  | 
|  | 794 | sock_rps_save_rxhash(child, skb); | 
|  | 795 | tcp_synack_rtt_meas(child, req); | 
|  | 796 | *req_stolen = !own_req; | 
|  | 797 | return inet_csk_complete_hashdance(sk, child, req, own_req); | 
|  | 798 |  | 
|  | 799 | listen_overflow: | 
|  | 800 | if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) { | 
|  | 801 | inet_rsk(req)->acked = 1; | 
|  | 802 | return NULL; | 
|  | 803 | } | 
|  | 804 |  | 
|  | 805 | embryonic_reset: | 
|  | 806 | if (!(flg & TCP_FLAG_RST)) { | 
|  | 807 | /* Received a bad SYN pkt - for TFO We try not to reset | 
|  | 808 | * the local connection unless it's really necessary to | 
|  | 809 | * avoid becoming vulnerable to outside attack aiming at | 
|  | 810 | * resetting legit local connections. | 
|  | 811 | */ | 
|  | 812 | req->rsk_ops->send_reset(sk, skb); | 
|  | 813 | } else if (fastopen) { /* received a valid RST pkt */ | 
|  | 814 | reqsk_fastopen_remove(sk, req, true); | 
|  | 815 | tcp_reset(sk); | 
|  | 816 | } | 
|  | 817 | if (!fastopen) { | 
|  | 818 | inet_csk_reqsk_queue_drop(sk, req); | 
|  | 819 | __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); | 
|  | 820 | } | 
|  | 821 | return NULL; | 
|  | 822 | } | 
|  | 823 | EXPORT_SYMBOL(tcp_check_req); | 
|  | 824 |  | 
|  | 825 | /* | 
|  | 826 | * Queue segment on the new socket if the new socket is active, | 
|  | 827 | * otherwise we just shortcircuit this and continue with | 
|  | 828 | * the new socket. | 
|  | 829 | * | 
|  | 830 | * For the vast majority of cases child->sk_state will be TCP_SYN_RECV | 
|  | 831 | * when entering. But other states are possible due to a race condition | 
|  | 832 | * where after __inet_lookup_established() fails but before the listener | 
|  | 833 | * locked is obtained, other packets cause the same connection to | 
|  | 834 | * be created. | 
|  | 835 | */ | 
|  | 836 |  | 
|  | 837 | int tcp_child_process(struct sock *parent, struct sock *child, | 
|  | 838 | struct sk_buff *skb) | 
|  | 839 | { | 
|  | 840 | int ret = 0; | 
|  | 841 | int state = child->sk_state; | 
|  | 842 |  | 
|  | 843 | /* record NAPI ID of child */ | 
|  | 844 | sk_mark_napi_id(child, skb); | 
|  | 845 |  | 
|  | 846 | tcp_segs_in(tcp_sk(child), skb); | 
|  | 847 | if (!sock_owned_by_user(child)) { | 
|  | 848 | ret = tcp_rcv_state_process(child, skb); | 
|  | 849 | /* Wakeup parent, send SIGIO */ | 
|  | 850 | if (state == TCP_SYN_RECV && child->sk_state != state) | 
|  | 851 | parent->sk_data_ready(parent); | 
|  | 852 | } else { | 
|  | 853 | /* Alas, it is possible again, because we do lookup | 
|  | 854 | * in main socket hash table and lock on listening | 
|  | 855 | * socket does not protect us more. | 
|  | 856 | */ | 
|  | 857 | __sk_add_backlog(child, skb); | 
|  | 858 | } | 
|  | 859 |  | 
|  | 860 | bh_unlock_sock(child); | 
|  | 861 | sock_put(child); | 
|  | 862 | return ret; | 
|  | 863 | } | 
|  | 864 | EXPORT_SYMBOL(tcp_child_process); |