blob: 78490e544c91eb61e4c64035c038af5fd12ee375 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/pagemap.h>
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
11#include <linux/backing-dev.h>
12#include <linux/falloc.h>
13#include <linux/writeback.h>
14#include <linux/compat.h>
15#include <linux/slab.h>
16#include <linux/btrfs.h>
17#include <linux/uio.h>
18#include <linux/iversion.h>
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
23#include "print-tree.h"
24#include "tree-log.h"
25#include "locking.h"
26#include "volumes.h"
27#include "qgroup.h"
28#include "compression.h"
29
30static struct kmem_cache *btrfs_inode_defrag_cachep;
31/*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54};
55
56static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58{
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69}
70
71/* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
80static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
81 struct inode_defrag *defrag)
82{
83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
87 int ret;
88
89 p = &fs_info->defrag_inodes.rb_node;
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
96 p = &parent->rb_left;
97 else if (ret > 0)
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
108 return -EEXIST;
109 }
110 }
111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
112 rb_link_node(&defrag->rb_node, parent, p);
113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
114 return 0;
115}
116
117static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
118{
119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
120 return 0;
121
122 if (btrfs_fs_closing(fs_info))
123 return 0;
124
125 return 1;
126}
127
128/*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
133 struct btrfs_inode *inode)
134{
135 struct btrfs_root *root = inode->root;
136 struct btrfs_fs_info *fs_info = root->fs_info;
137 struct inode_defrag *defrag;
138 u64 transid;
139 int ret;
140
141 if (!__need_auto_defrag(fs_info))
142 return 0;
143
144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
150 transid = inode->root->last_trans;
151
152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
153 if (!defrag)
154 return -ENOMEM;
155
156 defrag->ino = btrfs_ino(inode);
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
160 spin_lock(&fs_info->defrag_inodes_lock);
161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 }
173 spin_unlock(&fs_info->defrag_inodes_lock);
174 return 0;
175}
176
177/*
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
181 */
182static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
183 struct inode_defrag *defrag)
184{
185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 int ret;
187
188 if (!__need_auto_defrag(fs_info))
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
195 spin_lock(&fs_info->defrag_inodes_lock);
196 ret = __btrfs_add_inode_defrag(inode, defrag);
197 spin_unlock(&fs_info->defrag_inodes_lock);
198 if (ret)
199 goto out;
200 return;
201out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203}
204
205/*
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
208 */
209static struct inode_defrag *
210btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
211{
212 struct inode_defrag *entry = NULL;
213 struct inode_defrag tmp;
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
220
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
229 p = parent->rb_left;
230 else if (ret > 0)
231 p = parent->rb_right;
232 else
233 goto out;
234 }
235
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 else
241 entry = NULL;
242 }
243out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
248}
249
250void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
251{
252 struct inode_defrag *defrag;
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
262 cond_resched_lock(&fs_info->defrag_inodes_lock);
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267}
268
269#define BTRFS_DEFRAG_BATCH 1024
270
271static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273{
274 struct btrfs_root *inode_root;
275 struct inode *inode;
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
278 int num_defrag;
279 int index;
280 int ret;
281
282 /* get the inode */
283 key.objectid = defrag->root;
284 key.type = BTRFS_ROOT_ITEM_KEY;
285 key.offset = (u64)-1;
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
294
295 key.objectid = defrag->ino;
296 key.type = BTRFS_INODE_ITEM_KEY;
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
300 ret = PTR_ERR(inode);
301 goto cleanup;
302 }
303 srcu_read_unlock(&fs_info->subvol_srcu, index);
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
309 range.start = defrag->last_offset;
310
311 sb_start_write(fs_info->sb);
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
314 sb_end_write(fs_info->sb);
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
338cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
342}
343
344/*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349{
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
353
354 atomic_inc(&fs_info->defrag_running);
355 while (1) {
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
361 if (!__need_auto_defrag(fs_info))
362 break;
363
364 /* find an inode to defrag */
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
367 if (!defrag) {
368 if (root_objectid || first_ino) {
369 root_objectid = 0;
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
377 first_ino = defrag->ino + 1;
378 root_objectid = defrag->root;
379
380 __btrfs_run_defrag_inode(fs_info, defrag);
381 }
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390}
391
392/* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
395static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
396 struct page **prepared_pages,
397 struct iov_iter *i)
398{
399 size_t copied = 0;
400 size_t total_copied = 0;
401 int pg = 0;
402 int offset = pos & (PAGE_SIZE - 1);
403
404 while (write_bytes > 0) {
405 size_t count = min_t(size_t,
406 PAGE_SIZE - offset, write_bytes);
407 struct page *page = prepared_pages[pg];
408 /*
409 * Copy data from userspace to the current page
410 */
411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
412
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
430 total_copied += copied;
431
432 /* Return to btrfs_file_write_iter to fault page */
433 if (unlikely(copied == 0))
434 break;
435
436 if (copied < PAGE_SIZE - offset) {
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
442 }
443 return total_copied;
444}
445
446/*
447 * unlocks pages after btrfs_file_write is done with them
448 */
449static void btrfs_drop_pages(struct page **pages, size_t num_pages)
450{
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
458 */
459 ClearPageChecked(pages[i]);
460 unlock_page(pages[i]);
461 put_page(pages[i]);
462 }
463}
464
465static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469{
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504}
505
506/*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
514int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
517{
518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 int err = 0;
520 int i;
521 u64 num_bytes;
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
526 unsigned int extra_bits = 0;
527
528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529 num_bytes = round_up(write_bytes + pos - start_pos,
530 fs_info->sectorsize);
531
532 end_of_last_block = start_pos + num_bytes - 1;
533
534 /*
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
537 */
538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 EXTENT_DIRTY | EXTENT_DELALLOC |
540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 if (start_pos >= isize &&
544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 /*
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
548 * directly.
549 */
550 extra_bits |= EXTENT_DELALLOC_NEW;
551 } else {
552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 start_pos,
554 num_bytes, cached);
555 if (err)
556 return err;
557 }
558 }
559
560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
561 extra_bits, cached, 0);
562 if (err)
563 return err;
564
565 for (i = 0; i < num_pages; i++) {
566 struct page *p = pages[i];
567 SetPageUptodate(p);
568 ClearPageChecked(p);
569 set_page_dirty(p);
570 }
571
572 /*
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
575 * at this time.
576 */
577 if (end_pos > isize)
578 i_size_write(inode, end_pos);
579 return 0;
580}
581
582/*
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
585 */
586void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
587 int skip_pinned)
588{
589 struct extent_map *em;
590 struct extent_map *split = NULL;
591 struct extent_map *split2 = NULL;
592 struct extent_map_tree *em_tree = &inode->extent_tree;
593 u64 len = end - start + 1;
594 u64 gen;
595 int ret;
596 int testend = 1;
597 unsigned long flags;
598 int compressed = 0;
599 bool modified;
600
601 WARN_ON(end < start);
602 if (end == (u64)-1) {
603 len = (u64)-1;
604 testend = 0;
605 }
606 while (1) {
607 int no_splits = 0;
608
609 modified = false;
610 if (!split)
611 split = alloc_extent_map();
612 if (!split2)
613 split2 = alloc_extent_map();
614 if (!split || !split2)
615 no_splits = 1;
616
617 write_lock(&em_tree->lock);
618 em = lookup_extent_mapping(em_tree, start, len);
619 if (!em) {
620 write_unlock(&em_tree->lock);
621 break;
622 }
623 flags = em->flags;
624 gen = em->generation;
625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
626 if (testend && em->start + em->len >= start + len) {
627 free_extent_map(em);
628 write_unlock(&em_tree->lock);
629 break;
630 }
631 start = em->start + em->len;
632 if (testend)
633 len = start + len - (em->start + em->len);
634 free_extent_map(em);
635 write_unlock(&em_tree->lock);
636 continue;
637 }
638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
639 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
640 clear_bit(EXTENT_FLAG_LOGGING, &flags);
641 modified = !list_empty(&em->list);
642 if (no_splits)
643 goto next;
644
645 if (em->start < start) {
646 split->start = em->start;
647 split->len = start - em->start;
648
649 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 split->orig_start = em->orig_start;
651 split->block_start = em->block_start;
652
653 if (compressed)
654 split->block_len = em->block_len;
655 else
656 split->block_len = split->len;
657 split->orig_block_len = max(split->block_len,
658 em->orig_block_len);
659 split->ram_bytes = em->ram_bytes;
660 } else {
661 split->orig_start = split->start;
662 split->block_len = 0;
663 split->block_start = em->block_start;
664 split->orig_block_len = 0;
665 split->ram_bytes = split->len;
666 }
667
668 split->generation = gen;
669 split->bdev = em->bdev;
670 split->flags = flags;
671 split->compress_type = em->compress_type;
672 replace_extent_mapping(em_tree, em, split, modified);
673 free_extent_map(split);
674 split = split2;
675 split2 = NULL;
676 }
677 if (testend && em->start + em->len > start + len) {
678 u64 diff = start + len - em->start;
679
680 split->start = start + len;
681 split->len = em->start + em->len - (start + len);
682 split->bdev = em->bdev;
683 split->flags = flags;
684 split->compress_type = em->compress_type;
685 split->generation = gen;
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
689 em->orig_block_len);
690
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
702 } else {
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
708 }
709
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
718 free_extent_map(split);
719 split = NULL;
720 }
721next:
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
724 write_unlock(&em_tree->lock);
725
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
735}
736
737/*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
746int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
753{
754 struct btrfs_fs_info *fs_info = root->fs_info;
755 struct extent_buffer *leaf;
756 struct btrfs_file_extent_item *fi;
757 struct btrfs_key key;
758 struct btrfs_key new_key;
759 u64 ino = btrfs_ino(BTRFS_I(inode));
760 u64 search_start = start;
761 u64 disk_bytenr = 0;
762 u64 num_bytes = 0;
763 u64 extent_offset = 0;
764 u64 extent_end = 0;
765 u64 last_end = start;
766 int del_nr = 0;
767 int del_slot = 0;
768 int extent_type;
769 int recow;
770 int ret;
771 int modify_tree = -1;
772 int update_refs;
773 int found = 0;
774 int leafs_visited = 0;
775
776 if (drop_cache)
777 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
778
779 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
780 modify_tree = 0;
781
782 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
783 root == fs_info->tree_root);
784 while (1) {
785 recow = 0;
786 ret = btrfs_lookup_file_extent(trans, root, path, ino,
787 search_start, modify_tree);
788 if (ret < 0)
789 break;
790 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
791 leaf = path->nodes[0];
792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
793 if (key.objectid == ino &&
794 key.type == BTRFS_EXTENT_DATA_KEY)
795 path->slots[0]--;
796 }
797 ret = 0;
798 leafs_visited++;
799next_slot:
800 leaf = path->nodes[0];
801 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
802 BUG_ON(del_nr > 0);
803 ret = btrfs_next_leaf(root, path);
804 if (ret < 0)
805 break;
806 if (ret > 0) {
807 ret = 0;
808 break;
809 }
810 leafs_visited++;
811 leaf = path->nodes[0];
812 recow = 1;
813 }
814
815 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
816
817 if (key.objectid > ino)
818 break;
819 if (WARN_ON_ONCE(key.objectid < ino) ||
820 key.type < BTRFS_EXTENT_DATA_KEY) {
821 ASSERT(del_nr == 0);
822 path->slots[0]++;
823 goto next_slot;
824 }
825 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
826 break;
827
828 fi = btrfs_item_ptr(leaf, path->slots[0],
829 struct btrfs_file_extent_item);
830 extent_type = btrfs_file_extent_type(leaf, fi);
831
832 if (extent_type == BTRFS_FILE_EXTENT_REG ||
833 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
834 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
835 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
836 extent_offset = btrfs_file_extent_offset(leaf, fi);
837 extent_end = key.offset +
838 btrfs_file_extent_num_bytes(leaf, fi);
839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
840 extent_end = key.offset +
841 btrfs_file_extent_ram_bytes(leaf, fi);
842 } else {
843 /* can't happen */
844 BUG();
845 }
846
847 /*
848 * Don't skip extent items representing 0 byte lengths. They
849 * used to be created (bug) if while punching holes we hit
850 * -ENOSPC condition. So if we find one here, just ensure we
851 * delete it, otherwise we would insert a new file extent item
852 * with the same key (offset) as that 0 bytes length file
853 * extent item in the call to setup_items_for_insert() later
854 * in this function.
855 */
856 if (extent_end == key.offset && extent_end >= search_start) {
857 last_end = extent_end;
858 goto delete_extent_item;
859 }
860
861 if (extent_end <= search_start) {
862 path->slots[0]++;
863 goto next_slot;
864 }
865
866 found = 1;
867 search_start = max(key.offset, start);
868 if (recow || !modify_tree) {
869 modify_tree = -1;
870 btrfs_release_path(path);
871 continue;
872 }
873
874 /*
875 * | - range to drop - |
876 * | -------- extent -------- |
877 */
878 if (start > key.offset && end < extent_end) {
879 BUG_ON(del_nr > 0);
880 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
881 ret = -EOPNOTSUPP;
882 break;
883 }
884
885 memcpy(&new_key, &key, sizeof(new_key));
886 new_key.offset = start;
887 ret = btrfs_duplicate_item(trans, root, path,
888 &new_key);
889 if (ret == -EAGAIN) {
890 btrfs_release_path(path);
891 continue;
892 }
893 if (ret < 0)
894 break;
895
896 leaf = path->nodes[0];
897 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
898 struct btrfs_file_extent_item);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901
902 fi = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_file_extent_item);
904
905 extent_offset += start - key.offset;
906 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 extent_end - start);
909 btrfs_mark_buffer_dirty(leaf);
910
911 if (update_refs && disk_bytenr > 0) {
912 ret = btrfs_inc_extent_ref(trans, root,
913 disk_bytenr, num_bytes, 0,
914 root->root_key.objectid,
915 new_key.objectid,
916 start - extent_offset);
917 BUG_ON(ret); /* -ENOMEM */
918 }
919 key.offset = start;
920 }
921 /*
922 * From here on out we will have actually dropped something, so
923 * last_end can be updated.
924 */
925 last_end = extent_end;
926
927 /*
928 * | ---- range to drop ----- |
929 * | -------- extent -------- |
930 */
931 if (start <= key.offset && end < extent_end) {
932 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
933 ret = -EOPNOTSUPP;
934 break;
935 }
936
937 memcpy(&new_key, &key, sizeof(new_key));
938 new_key.offset = end;
939 btrfs_set_item_key_safe(fs_info, path, &new_key);
940
941 extent_offset += end - key.offset;
942 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
943 btrfs_set_file_extent_num_bytes(leaf, fi,
944 extent_end - end);
945 btrfs_mark_buffer_dirty(leaf);
946 if (update_refs && disk_bytenr > 0)
947 inode_sub_bytes(inode, end - key.offset);
948 break;
949 }
950
951 search_start = extent_end;
952 /*
953 * | ---- range to drop ----- |
954 * | -------- extent -------- |
955 */
956 if (start > key.offset && end >= extent_end) {
957 BUG_ON(del_nr > 0);
958 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
959 ret = -EOPNOTSUPP;
960 break;
961 }
962
963 btrfs_set_file_extent_num_bytes(leaf, fi,
964 start - key.offset);
965 btrfs_mark_buffer_dirty(leaf);
966 if (update_refs && disk_bytenr > 0)
967 inode_sub_bytes(inode, extent_end - start);
968 if (end == extent_end)
969 break;
970
971 path->slots[0]++;
972 goto next_slot;
973 }
974
975 /*
976 * | ---- range to drop ----- |
977 * | ------ extent ------ |
978 */
979 if (start <= key.offset && end >= extent_end) {
980delete_extent_item:
981 if (del_nr == 0) {
982 del_slot = path->slots[0];
983 del_nr = 1;
984 } else {
985 BUG_ON(del_slot + del_nr != path->slots[0]);
986 del_nr++;
987 }
988
989 if (update_refs &&
990 extent_type == BTRFS_FILE_EXTENT_INLINE) {
991 inode_sub_bytes(inode,
992 extent_end - key.offset);
993 extent_end = ALIGN(extent_end,
994 fs_info->sectorsize);
995 } else if (update_refs && disk_bytenr > 0) {
996 ret = btrfs_free_extent(trans, root,
997 disk_bytenr, num_bytes, 0,
998 root->root_key.objectid,
999 key.objectid, key.offset -
1000 extent_offset);
1001 BUG_ON(ret); /* -ENOMEM */
1002 inode_sub_bytes(inode,
1003 extent_end - key.offset);
1004 }
1005
1006 if (end == extent_end)
1007 break;
1008
1009 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1010 path->slots[0]++;
1011 goto next_slot;
1012 }
1013
1014 ret = btrfs_del_items(trans, root, path, del_slot,
1015 del_nr);
1016 if (ret) {
1017 btrfs_abort_transaction(trans, ret);
1018 break;
1019 }
1020
1021 del_nr = 0;
1022 del_slot = 0;
1023
1024 btrfs_release_path(path);
1025 continue;
1026 }
1027
1028 BUG_ON(1);
1029 }
1030
1031 if (!ret && del_nr > 0) {
1032 /*
1033 * Set path->slots[0] to first slot, so that after the delete
1034 * if items are move off from our leaf to its immediate left or
1035 * right neighbor leafs, we end up with a correct and adjusted
1036 * path->slots[0] for our insertion (if replace_extent != 0).
1037 */
1038 path->slots[0] = del_slot;
1039 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1040 if (ret)
1041 btrfs_abort_transaction(trans, ret);
1042 }
1043
1044 leaf = path->nodes[0];
1045 /*
1046 * If btrfs_del_items() was called, it might have deleted a leaf, in
1047 * which case it unlocked our path, so check path->locks[0] matches a
1048 * write lock.
1049 */
1050 if (!ret && replace_extent && leafs_visited == 1 &&
1051 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1052 path->locks[0] == BTRFS_WRITE_LOCK) &&
1053 btrfs_leaf_free_space(fs_info, leaf) >=
1054 sizeof(struct btrfs_item) + extent_item_size) {
1055
1056 key.objectid = ino;
1057 key.type = BTRFS_EXTENT_DATA_KEY;
1058 key.offset = start;
1059 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1060 struct btrfs_key slot_key;
1061
1062 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1063 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1064 path->slots[0]++;
1065 }
1066 setup_items_for_insert(root, path, &key,
1067 &extent_item_size,
1068 extent_item_size,
1069 sizeof(struct btrfs_item) +
1070 extent_item_size, 1);
1071 *key_inserted = 1;
1072 }
1073
1074 if (!replace_extent || !(*key_inserted))
1075 btrfs_release_path(path);
1076 if (drop_end)
1077 *drop_end = found ? min(end, last_end) : end;
1078 return ret;
1079}
1080
1081int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root, struct inode *inode, u64 start,
1083 u64 end, int drop_cache)
1084{
1085 struct btrfs_path *path;
1086 int ret;
1087
1088 path = btrfs_alloc_path();
1089 if (!path)
1090 return -ENOMEM;
1091 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1092 drop_cache, 0, 0, NULL);
1093 btrfs_free_path(path);
1094 return ret;
1095}
1096
1097static int extent_mergeable(struct extent_buffer *leaf, int slot,
1098 u64 objectid, u64 bytenr, u64 orig_offset,
1099 u64 *start, u64 *end)
1100{
1101 struct btrfs_file_extent_item *fi;
1102 struct btrfs_key key;
1103 u64 extent_end;
1104
1105 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1106 return 0;
1107
1108 btrfs_item_key_to_cpu(leaf, &key, slot);
1109 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1110 return 0;
1111
1112 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1113 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1114 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1115 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1116 btrfs_file_extent_compression(leaf, fi) ||
1117 btrfs_file_extent_encryption(leaf, fi) ||
1118 btrfs_file_extent_other_encoding(leaf, fi))
1119 return 0;
1120
1121 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1122 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1123 return 0;
1124
1125 *start = key.offset;
1126 *end = extent_end;
1127 return 1;
1128}
1129
1130/*
1131 * Mark extent in the range start - end as written.
1132 *
1133 * This changes extent type from 'pre-allocated' to 'regular'. If only
1134 * part of extent is marked as written, the extent will be split into
1135 * two or three.
1136 */
1137int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1138 struct btrfs_inode *inode, u64 start, u64 end)
1139{
1140 struct btrfs_fs_info *fs_info = trans->fs_info;
1141 struct btrfs_root *root = inode->root;
1142 struct extent_buffer *leaf;
1143 struct btrfs_path *path;
1144 struct btrfs_file_extent_item *fi;
1145 struct btrfs_key key;
1146 struct btrfs_key new_key;
1147 u64 bytenr;
1148 u64 num_bytes;
1149 u64 extent_end;
1150 u64 orig_offset;
1151 u64 other_start;
1152 u64 other_end;
1153 u64 split;
1154 int del_nr = 0;
1155 int del_slot = 0;
1156 int recow;
1157 int ret;
1158 u64 ino = btrfs_ino(inode);
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163again:
1164 recow = 0;
1165 split = start;
1166 key.objectid = ino;
1167 key.type = BTRFS_EXTENT_DATA_KEY;
1168 key.offset = split;
1169
1170 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1171 if (ret < 0)
1172 goto out;
1173 if (ret > 0 && path->slots[0] > 0)
1174 path->slots[0]--;
1175
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (key.objectid != ino ||
1179 key.type != BTRFS_EXTENT_DATA_KEY) {
1180 ret = -EINVAL;
1181 btrfs_abort_transaction(trans, ret);
1182 goto out;
1183 }
1184 fi = btrfs_item_ptr(leaf, path->slots[0],
1185 struct btrfs_file_extent_item);
1186 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1187 ret = -EINVAL;
1188 btrfs_abort_transaction(trans, ret);
1189 goto out;
1190 }
1191 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1192 if (key.offset > start || extent_end < end) {
1193 ret = -EINVAL;
1194 btrfs_abort_transaction(trans, ret);
1195 goto out;
1196 }
1197
1198 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1199 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1200 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1201 memcpy(&new_key, &key, sizeof(new_key));
1202
1203 if (start == key.offset && end < extent_end) {
1204 other_start = 0;
1205 other_end = start;
1206 if (extent_mergeable(leaf, path->slots[0] - 1,
1207 ino, bytenr, orig_offset,
1208 &other_start, &other_end)) {
1209 new_key.offset = end;
1210 btrfs_set_item_key_safe(fs_info, path, &new_key);
1211 fi = btrfs_item_ptr(leaf, path->slots[0],
1212 struct btrfs_file_extent_item);
1213 btrfs_set_file_extent_generation(leaf, fi,
1214 trans->transid);
1215 btrfs_set_file_extent_num_bytes(leaf, fi,
1216 extent_end - end);
1217 btrfs_set_file_extent_offset(leaf, fi,
1218 end - orig_offset);
1219 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1220 struct btrfs_file_extent_item);
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 end - other_start);
1225 btrfs_mark_buffer_dirty(leaf);
1226 goto out;
1227 }
1228 }
1229
1230 if (start > key.offset && end == extent_end) {
1231 other_start = end;
1232 other_end = 0;
1233 if (extent_mergeable(leaf, path->slots[0] + 1,
1234 ino, bytenr, orig_offset,
1235 &other_start, &other_end)) {
1236 fi = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_file_extent_item);
1238 btrfs_set_file_extent_num_bytes(leaf, fi,
1239 start - key.offset);
1240 btrfs_set_file_extent_generation(leaf, fi,
1241 trans->transid);
1242 path->slots[0]++;
1243 new_key.offset = start;
1244 btrfs_set_item_key_safe(fs_info, path, &new_key);
1245
1246 fi = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_file_extent_item);
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
1250 btrfs_set_file_extent_num_bytes(leaf, fi,
1251 other_end - start);
1252 btrfs_set_file_extent_offset(leaf, fi,
1253 start - orig_offset);
1254 btrfs_mark_buffer_dirty(leaf);
1255 goto out;
1256 }
1257 }
1258
1259 while (start > key.offset || end < extent_end) {
1260 if (key.offset == start)
1261 split = end;
1262
1263 new_key.offset = split;
1264 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1265 if (ret == -EAGAIN) {
1266 btrfs_release_path(path);
1267 goto again;
1268 }
1269 if (ret < 0) {
1270 btrfs_abort_transaction(trans, ret);
1271 goto out;
1272 }
1273
1274 leaf = path->nodes[0];
1275 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1276 struct btrfs_file_extent_item);
1277 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1278 btrfs_set_file_extent_num_bytes(leaf, fi,
1279 split - key.offset);
1280
1281 fi = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_file_extent_item);
1283
1284 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1285 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1286 btrfs_set_file_extent_num_bytes(leaf, fi,
1287 extent_end - split);
1288 btrfs_mark_buffer_dirty(leaf);
1289
1290 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1291 0, root->root_key.objectid,
1292 ino, orig_offset);
1293 if (ret) {
1294 btrfs_abort_transaction(trans, ret);
1295 goto out;
1296 }
1297
1298 if (split == start) {
1299 key.offset = start;
1300 } else {
1301 if (start != key.offset) {
1302 ret = -EINVAL;
1303 btrfs_abort_transaction(trans, ret);
1304 goto out;
1305 }
1306 path->slots[0]--;
1307 extent_end = end;
1308 }
1309 recow = 1;
1310 }
1311
1312 other_start = end;
1313 other_end = 0;
1314 if (extent_mergeable(leaf, path->slots[0] + 1,
1315 ino, bytenr, orig_offset,
1316 &other_start, &other_end)) {
1317 if (recow) {
1318 btrfs_release_path(path);
1319 goto again;
1320 }
1321 extent_end = other_end;
1322 del_slot = path->slots[0] + 1;
1323 del_nr++;
1324 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1325 0, root->root_key.objectid,
1326 ino, orig_offset);
1327 if (ret) {
1328 btrfs_abort_transaction(trans, ret);
1329 goto out;
1330 }
1331 }
1332 other_start = 0;
1333 other_end = start;
1334 if (extent_mergeable(leaf, path->slots[0] - 1,
1335 ino, bytenr, orig_offset,
1336 &other_start, &other_end)) {
1337 if (recow) {
1338 btrfs_release_path(path);
1339 goto again;
1340 }
1341 key.offset = other_start;
1342 del_slot = path->slots[0];
1343 del_nr++;
1344 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1345 0, root->root_key.objectid,
1346 ino, orig_offset);
1347 if (ret) {
1348 btrfs_abort_transaction(trans, ret);
1349 goto out;
1350 }
1351 }
1352 if (del_nr == 0) {
1353 fi = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_file_extent_item);
1355 btrfs_set_file_extent_type(leaf, fi,
1356 BTRFS_FILE_EXTENT_REG);
1357 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1358 btrfs_mark_buffer_dirty(leaf);
1359 } else {
1360 fi = btrfs_item_ptr(leaf, del_slot - 1,
1361 struct btrfs_file_extent_item);
1362 btrfs_set_file_extent_type(leaf, fi,
1363 BTRFS_FILE_EXTENT_REG);
1364 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1365 btrfs_set_file_extent_num_bytes(leaf, fi,
1366 extent_end - key.offset);
1367 btrfs_mark_buffer_dirty(leaf);
1368
1369 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1370 if (ret < 0) {
1371 btrfs_abort_transaction(trans, ret);
1372 goto out;
1373 }
1374 }
1375out:
1376 btrfs_free_path(path);
1377 return 0;
1378}
1379
1380/*
1381 * on error we return an unlocked page and the error value
1382 * on success we return a locked page and 0
1383 */
1384static int prepare_uptodate_page(struct inode *inode,
1385 struct page *page, u64 pos,
1386 bool force_uptodate)
1387{
1388 int ret = 0;
1389
1390 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1391 !PageUptodate(page)) {
1392 ret = btrfs_readpage(NULL, page);
1393 if (ret)
1394 return ret;
1395 lock_page(page);
1396 if (!PageUptodate(page)) {
1397 unlock_page(page);
1398 return -EIO;
1399 }
1400 if (page->mapping != inode->i_mapping) {
1401 unlock_page(page);
1402 return -EAGAIN;
1403 }
1404 }
1405 return 0;
1406}
1407
1408/*
1409 * this just gets pages into the page cache and locks them down.
1410 */
1411static noinline int prepare_pages(struct inode *inode, struct page **pages,
1412 size_t num_pages, loff_t pos,
1413 size_t write_bytes, bool force_uptodate)
1414{
1415 int i;
1416 unsigned long index = pos >> PAGE_SHIFT;
1417 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1418 int err = 0;
1419 int faili;
1420
1421 for (i = 0; i < num_pages; i++) {
1422again:
1423 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1424 mask | __GFP_WRITE);
1425 if (!pages[i]) {
1426 faili = i - 1;
1427 err = -ENOMEM;
1428 goto fail;
1429 }
1430
1431 if (i == 0)
1432 err = prepare_uptodate_page(inode, pages[i], pos,
1433 force_uptodate);
1434 if (!err && i == num_pages - 1)
1435 err = prepare_uptodate_page(inode, pages[i],
1436 pos + write_bytes, false);
1437 if (err) {
1438 put_page(pages[i]);
1439 if (err == -EAGAIN) {
1440 err = 0;
1441 goto again;
1442 }
1443 faili = i - 1;
1444 goto fail;
1445 }
1446 wait_on_page_writeback(pages[i]);
1447 }
1448
1449 return 0;
1450fail:
1451 while (faili >= 0) {
1452 unlock_page(pages[faili]);
1453 put_page(pages[faili]);
1454 faili--;
1455 }
1456 return err;
1457
1458}
1459
1460/*
1461 * This function locks the extent and properly waits for data=ordered extents
1462 * to finish before allowing the pages to be modified if need.
1463 *
1464 * The return value:
1465 * 1 - the extent is locked
1466 * 0 - the extent is not locked, and everything is OK
1467 * -EAGAIN - need re-prepare the pages
1468 * the other < 0 number - Something wrong happens
1469 */
1470static noinline int
1471lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1472 size_t num_pages, loff_t pos,
1473 size_t write_bytes,
1474 u64 *lockstart, u64 *lockend,
1475 struct extent_state **cached_state)
1476{
1477 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1478 u64 start_pos;
1479 u64 last_pos;
1480 int i;
1481 int ret = 0;
1482
1483 start_pos = round_down(pos, fs_info->sectorsize);
1484 last_pos = start_pos
1485 + round_up(pos + write_bytes - start_pos,
1486 fs_info->sectorsize) - 1;
1487
1488 if (start_pos < inode->vfs_inode.i_size) {
1489 struct btrfs_ordered_extent *ordered;
1490
1491 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1492 cached_state);
1493 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1494 last_pos - start_pos + 1);
1495 if (ordered &&
1496 ordered->file_offset + ordered->len > start_pos &&
1497 ordered->file_offset <= last_pos) {
1498 unlock_extent_cached(&inode->io_tree, start_pos,
1499 last_pos, cached_state);
1500 for (i = 0; i < num_pages; i++) {
1501 unlock_page(pages[i]);
1502 put_page(pages[i]);
1503 }
1504 btrfs_start_ordered_extent(&inode->vfs_inode,
1505 ordered, 1);
1506 btrfs_put_ordered_extent(ordered);
1507 return -EAGAIN;
1508 }
1509 if (ordered)
1510 btrfs_put_ordered_extent(ordered);
1511
1512 *lockstart = start_pos;
1513 *lockend = last_pos;
1514 ret = 1;
1515 }
1516
1517 /*
1518 * It's possible the pages are dirty right now, but we don't want
1519 * to clean them yet because copy_from_user may catch a page fault
1520 * and we might have to fall back to one page at a time. If that
1521 * happens, we'll unlock these pages and we'd have a window where
1522 * reclaim could sneak in and drop the once-dirty page on the floor
1523 * without writing it.
1524 *
1525 * We have the pages locked and the extent range locked, so there's
1526 * no way someone can start IO on any dirty pages in this range.
1527 *
1528 * We'll call btrfs_dirty_pages() later on, and that will flip around
1529 * delalloc bits and dirty the pages as required.
1530 */
1531 for (i = 0; i < num_pages; i++) {
1532 set_page_extent_mapped(pages[i]);
1533 WARN_ON(!PageLocked(pages[i]));
1534 }
1535
1536 return ret;
1537}
1538
1539static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1540 size_t *write_bytes)
1541{
1542 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1543 struct btrfs_root *root = inode->root;
1544 struct btrfs_ordered_extent *ordered;
1545 u64 lockstart, lockend;
1546 u64 num_bytes;
1547 int ret;
1548
1549 ret = btrfs_start_write_no_snapshotting(root);
1550 if (!ret)
1551 return -ENOSPC;
1552
1553 lockstart = round_down(pos, fs_info->sectorsize);
1554 lockend = round_up(pos + *write_bytes,
1555 fs_info->sectorsize) - 1;
1556
1557 while (1) {
1558 lock_extent(&inode->io_tree, lockstart, lockend);
1559 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 lockend - lockstart + 1);
1561 if (!ordered) {
1562 break;
1563 }
1564 unlock_extent(&inode->io_tree, lockstart, lockend);
1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1566 btrfs_put_ordered_extent(ordered);
1567 }
1568
1569 num_bytes = lockend - lockstart + 1;
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
1572 if (ret <= 0) {
1573 ret = 0;
1574 btrfs_end_write_no_snapshotting(root);
1575 } else {
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
1578 }
1579
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582 return ret;
1583}
1584
1585static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
1587{
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
1590 struct inode *inode = file_inode(file);
1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct page **pages = NULL;
1594 struct extent_changeset *data_reserved = NULL;
1595 u64 release_bytes = 0;
1596 u64 lockstart;
1597 u64 lockend;
1598 size_t num_written = 0;
1599 int nrptrs;
1600 int ret = 0;
1601 bool only_release_metadata = false;
1602 bool force_page_uptodate = false;
1603
1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 PAGE_SIZE / (sizeof(struct page *)));
1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 nrptrs = max(nrptrs, 8);
1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1609 if (!pages)
1610 return -ENOMEM;
1611
1612 while (iov_iter_count(i) > 0) {
1613 size_t offset = pos & (PAGE_SIZE - 1);
1614 struct extent_state *cached_state = NULL;
1615 size_t sector_offset;
1616 size_t write_bytes = min(iov_iter_count(i),
1617 nrptrs * (size_t)PAGE_SIZE -
1618 offset);
1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 PAGE_SIZE);
1621 size_t reserve_bytes;
1622 size_t dirty_pages;
1623 size_t copied;
1624 size_t dirty_sectors;
1625 size_t num_sectors;
1626 int extents_locked;
1627
1628 WARN_ON(num_pages > nrptrs);
1629
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635 ret = -EFAULT;
1636 break;
1637 }
1638
1639 only_release_metadata = false;
1640 sector_offset = pos & (fs_info->sectorsize - 1);
1641 reserve_bytes = round_up(write_bytes + sector_offset,
1642 fs_info->sectorsize);
1643
1644 extent_changeset_release(data_reserved);
1645 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1646 write_bytes);
1647 if (ret < 0) {
1648 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1649 BTRFS_INODE_PREALLOC)) &&
1650 check_can_nocow(BTRFS_I(inode), pos,
1651 &write_bytes) > 0) {
1652 /*
1653 * For nodata cow case, no need to reserve
1654 * data space.
1655 */
1656 only_release_metadata = true;
1657 /*
1658 * our prealloc extent may be smaller than
1659 * write_bytes, so scale down.
1660 */
1661 num_pages = DIV_ROUND_UP(write_bytes + offset,
1662 PAGE_SIZE);
1663 reserve_bytes = round_up(write_bytes +
1664 sector_offset,
1665 fs_info->sectorsize);
1666 } else {
1667 break;
1668 }
1669 }
1670
1671 WARN_ON(reserve_bytes == 0);
1672 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1673 reserve_bytes);
1674 if (ret) {
1675 if (!only_release_metadata)
1676 btrfs_free_reserved_data_space(inode,
1677 data_reserved, pos,
1678 write_bytes);
1679 else
1680 btrfs_end_write_no_snapshotting(root);
1681 break;
1682 }
1683
1684 release_bytes = reserve_bytes;
1685again:
1686 /*
1687 * This is going to setup the pages array with the number of
1688 * pages we want, so we don't really need to worry about the
1689 * contents of pages from loop to loop
1690 */
1691 ret = prepare_pages(inode, pages, num_pages,
1692 pos, write_bytes,
1693 force_page_uptodate);
1694 if (ret) {
1695 btrfs_delalloc_release_extents(BTRFS_I(inode),
1696 reserve_bytes);
1697 break;
1698 }
1699
1700 extents_locked = lock_and_cleanup_extent_if_need(
1701 BTRFS_I(inode), pages,
1702 num_pages, pos, write_bytes, &lockstart,
1703 &lockend, &cached_state);
1704 if (extents_locked < 0) {
1705 if (extents_locked == -EAGAIN)
1706 goto again;
1707 btrfs_delalloc_release_extents(BTRFS_I(inode),
1708 reserve_bytes);
1709 ret = extents_locked;
1710 break;
1711 }
1712
1713 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1714
1715 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1716 dirty_sectors = round_up(copied + sector_offset,
1717 fs_info->sectorsize);
1718 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1719
1720 /*
1721 * if we have trouble faulting in the pages, fall
1722 * back to one page at a time
1723 */
1724 if (copied < write_bytes)
1725 nrptrs = 1;
1726
1727 if (copied == 0) {
1728 force_page_uptodate = true;
1729 dirty_sectors = 0;
1730 dirty_pages = 0;
1731 } else {
1732 force_page_uptodate = false;
1733 dirty_pages = DIV_ROUND_UP(copied + offset,
1734 PAGE_SIZE);
1735 }
1736
1737 if (num_sectors > dirty_sectors) {
1738 /* release everything except the sectors we dirtied */
1739 release_bytes -= dirty_sectors <<
1740 fs_info->sb->s_blocksize_bits;
1741 if (only_release_metadata) {
1742 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1743 release_bytes, true);
1744 } else {
1745 u64 __pos;
1746
1747 __pos = round_down(pos,
1748 fs_info->sectorsize) +
1749 (dirty_pages << PAGE_SHIFT);
1750 btrfs_delalloc_release_space(inode,
1751 data_reserved, __pos,
1752 release_bytes, true);
1753 }
1754 }
1755
1756 release_bytes = round_up(copied + sector_offset,
1757 fs_info->sectorsize);
1758
1759 if (copied > 0)
1760 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1761 pos, copied, &cached_state);
1762
1763 /*
1764 * If we have not locked the extent range, because the range's
1765 * start offset is >= i_size, we might still have a non-NULL
1766 * cached extent state, acquired while marking the extent range
1767 * as delalloc through btrfs_dirty_pages(). Therefore free any
1768 * possible cached extent state to avoid a memory leak.
1769 */
1770 if (extents_locked)
1771 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1772 lockstart, lockend, &cached_state);
1773 else
1774 free_extent_state(cached_state);
1775
1776 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1777 if (ret) {
1778 btrfs_drop_pages(pages, num_pages);
1779 break;
1780 }
1781
1782 release_bytes = 0;
1783 if (only_release_metadata)
1784 btrfs_end_write_no_snapshotting(root);
1785
1786 if (only_release_metadata && copied > 0) {
1787 lockstart = round_down(pos,
1788 fs_info->sectorsize);
1789 lockend = round_up(pos + copied,
1790 fs_info->sectorsize) - 1;
1791
1792 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1793 lockend, EXTENT_NORESERVE, NULL,
1794 NULL, GFP_NOFS);
1795 }
1796
1797 btrfs_drop_pages(pages, num_pages);
1798
1799 cond_resched();
1800
1801 balance_dirty_pages_ratelimited(inode->i_mapping);
1802 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1803 btrfs_btree_balance_dirty(fs_info);
1804
1805 pos += copied;
1806 num_written += copied;
1807 }
1808
1809 kfree(pages);
1810
1811 if (release_bytes) {
1812 if (only_release_metadata) {
1813 btrfs_end_write_no_snapshotting(root);
1814 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1815 release_bytes, true);
1816 } else {
1817 btrfs_delalloc_release_space(inode, data_reserved,
1818 round_down(pos, fs_info->sectorsize),
1819 release_bytes, true);
1820 }
1821 }
1822
1823 extent_changeset_free(data_reserved);
1824 return num_written ? num_written : ret;
1825}
1826
1827static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1828{
1829 struct file *file = iocb->ki_filp;
1830 struct inode *inode = file_inode(file);
1831 loff_t pos;
1832 ssize_t written;
1833 ssize_t written_buffered;
1834 loff_t endbyte;
1835 int err;
1836
1837 written = generic_file_direct_write(iocb, from);
1838
1839 if (written < 0 || !iov_iter_count(from))
1840 return written;
1841
1842 pos = iocb->ki_pos;
1843 written_buffered = btrfs_buffered_write(iocb, from);
1844 if (written_buffered < 0) {
1845 err = written_buffered;
1846 goto out;
1847 }
1848 /*
1849 * Ensure all data is persisted. We want the next direct IO read to be
1850 * able to read what was just written.
1851 */
1852 endbyte = pos + written_buffered - 1;
1853 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1854 if (err)
1855 goto out;
1856 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1857 if (err)
1858 goto out;
1859 written += written_buffered;
1860 iocb->ki_pos = pos + written_buffered;
1861 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1862 endbyte >> PAGE_SHIFT);
1863out:
1864 return written ? written : err;
1865}
1866
1867static void update_time_for_write(struct inode *inode)
1868{
1869 struct timespec64 now;
1870
1871 if (IS_NOCMTIME(inode))
1872 return;
1873
1874 now = current_time(inode);
1875 if (!timespec64_equal(&inode->i_mtime, &now))
1876 inode->i_mtime = now;
1877
1878 if (!timespec64_equal(&inode->i_ctime, &now))
1879 inode->i_ctime = now;
1880
1881 if (IS_I_VERSION(inode))
1882 inode_inc_iversion(inode);
1883}
1884
1885static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1886 struct iov_iter *from)
1887{
1888 struct file *file = iocb->ki_filp;
1889 struct inode *inode = file_inode(file);
1890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
1892 u64 start_pos;
1893 u64 end_pos;
1894 ssize_t num_written = 0;
1895 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1896 ssize_t err;
1897 loff_t pos;
1898 size_t count = iov_iter_count(from);
1899 loff_t oldsize;
1900 int clean_page = 0;
1901
1902 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1903 (iocb->ki_flags & IOCB_NOWAIT))
1904 return -EOPNOTSUPP;
1905
1906 if (iocb->ki_flags & IOCB_NOWAIT) {
1907 if (!inode_trylock(inode))
1908 return -EAGAIN;
1909 } else {
1910 inode_lock(inode);
1911 }
1912
1913 err = generic_write_checks(iocb, from);
1914 if (err <= 0) {
1915 inode_unlock(inode);
1916 return err;
1917 }
1918
1919 pos = iocb->ki_pos;
1920 if (iocb->ki_flags & IOCB_NOWAIT) {
1921 /*
1922 * We will allocate space in case nodatacow is not set,
1923 * so bail
1924 */
1925 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1926 BTRFS_INODE_PREALLOC)) ||
1927 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1928 inode_unlock(inode);
1929 return -EAGAIN;
1930 }
1931 }
1932
1933 current->backing_dev_info = inode_to_bdi(inode);
1934 err = file_remove_privs(file);
1935 if (err) {
1936 inode_unlock(inode);
1937 goto out;
1938 }
1939
1940 /*
1941 * If BTRFS flips readonly due to some impossible error
1942 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1943 * although we have opened a file as writable, we have
1944 * to stop this write operation to ensure FS consistency.
1945 */
1946 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1947 inode_unlock(inode);
1948 err = -EROFS;
1949 goto out;
1950 }
1951
1952 /*
1953 * We reserve space for updating the inode when we reserve space for the
1954 * extent we are going to write, so we will enospc out there. We don't
1955 * need to start yet another transaction to update the inode as we will
1956 * update the inode when we finish writing whatever data we write.
1957 */
1958 update_time_for_write(inode);
1959
1960 start_pos = round_down(pos, fs_info->sectorsize);
1961 oldsize = i_size_read(inode);
1962 if (start_pos > oldsize) {
1963 /* Expand hole size to cover write data, preventing empty gap */
1964 end_pos = round_up(pos + count,
1965 fs_info->sectorsize);
1966 err = btrfs_cont_expand(inode, oldsize, end_pos);
1967 if (err) {
1968 inode_unlock(inode);
1969 goto out;
1970 }
1971 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1972 clean_page = 1;
1973 }
1974
1975 if (sync)
1976 atomic_inc(&BTRFS_I(inode)->sync_writers);
1977
1978 if (iocb->ki_flags & IOCB_DIRECT) {
1979 num_written = __btrfs_direct_write(iocb, from);
1980 } else {
1981 num_written = btrfs_buffered_write(iocb, from);
1982 if (num_written > 0)
1983 iocb->ki_pos = pos + num_written;
1984 if (clean_page)
1985 pagecache_isize_extended(inode, oldsize,
1986 i_size_read(inode));
1987 }
1988
1989 inode_unlock(inode);
1990
1991 /*
1992 * We also have to set last_sub_trans to the current log transid,
1993 * otherwise subsequent syncs to a file that's been synced in this
1994 * transaction will appear to have already occurred.
1995 */
1996 spin_lock(&BTRFS_I(inode)->lock);
1997 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1998 spin_unlock(&BTRFS_I(inode)->lock);
1999 if (num_written > 0)
2000 num_written = generic_write_sync(iocb, num_written);
2001
2002 if (sync)
2003 atomic_dec(&BTRFS_I(inode)->sync_writers);
2004out:
2005 current->backing_dev_info = NULL;
2006 return num_written ? num_written : err;
2007}
2008
2009int btrfs_release_file(struct inode *inode, struct file *filp)
2010{
2011 struct btrfs_file_private *private = filp->private_data;
2012
2013 if (private && private->filldir_buf)
2014 kfree(private->filldir_buf);
2015 kfree(private);
2016 filp->private_data = NULL;
2017
2018 /*
2019 * ordered_data_close is set by settattr when we are about to truncate
2020 * a file from a non-zero size to a zero size. This tries to
2021 * flush down new bytes that may have been written if the
2022 * application were using truncate to replace a file in place.
2023 */
2024 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2025 &BTRFS_I(inode)->runtime_flags))
2026 filemap_flush(inode->i_mapping);
2027 return 0;
2028}
2029
2030static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2031{
2032 int ret;
2033 struct blk_plug plug;
2034
2035 /*
2036 * This is only called in fsync, which would do synchronous writes, so
2037 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2038 * multiple disks using raid profile, a large IO can be split to
2039 * several segments of stripe length (currently 64K).
2040 */
2041 blk_start_plug(&plug);
2042 atomic_inc(&BTRFS_I(inode)->sync_writers);
2043 ret = btrfs_fdatawrite_range(inode, start, end);
2044 atomic_dec(&BTRFS_I(inode)->sync_writers);
2045 blk_finish_plug(&plug);
2046
2047 return ret;
2048}
2049
2050/*
2051 * fsync call for both files and directories. This logs the inode into
2052 * the tree log instead of forcing full commits whenever possible.
2053 *
2054 * It needs to call filemap_fdatawait so that all ordered extent updates are
2055 * in the metadata btree are up to date for copying to the log.
2056 *
2057 * It drops the inode mutex before doing the tree log commit. This is an
2058 * important optimization for directories because holding the mutex prevents
2059 * new operations on the dir while we write to disk.
2060 */
2061int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2062{
2063 struct dentry *dentry = file_dentry(file);
2064 struct inode *inode = d_inode(dentry);
2065 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2066 struct btrfs_root *root = BTRFS_I(inode)->root;
2067 struct btrfs_trans_handle *trans;
2068 struct btrfs_log_ctx ctx;
2069 int ret = 0, err;
2070
2071 trace_btrfs_sync_file(file, datasync);
2072
2073 btrfs_init_log_ctx(&ctx, inode);
2074
2075 /*
2076 * We write the dirty pages in the range and wait until they complete
2077 * out of the ->i_mutex. If so, we can flush the dirty pages by
2078 * multi-task, and make the performance up. See
2079 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2080 */
2081 ret = start_ordered_ops(inode, start, end);
2082 if (ret)
2083 goto out;
2084
2085 inode_lock(inode);
2086
2087 /*
2088 * We take the dio_sem here because the tree log stuff can race with
2089 * lockless dio writes and get an extent map logged for an extent we
2090 * never waited on. We need it this high up for lockdep reasons.
2091 */
2092 down_write(&BTRFS_I(inode)->dio_sem);
2093
2094 atomic_inc(&root->log_batch);
2095
2096 /*
2097 * If the inode needs a full sync, make sure we use a full range to
2098 * avoid log tree corruption, due to hole detection racing with ordered
2099 * extent completion for adjacent ranges, and assertion failures during
2100 * hole detection. Do this while holding the inode lock, to avoid races
2101 * with other tasks.
2102 */
2103 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2104 &BTRFS_I(inode)->runtime_flags)) {
2105 start = 0;
2106 end = LLONG_MAX;
2107 }
2108
2109 /*
2110 * Before we acquired the inode's lock, someone may have dirtied more
2111 * pages in the target range. We need to make sure that writeback for
2112 * any such pages does not start while we are logging the inode, because
2113 * if it does, any of the following might happen when we are not doing a
2114 * full inode sync:
2115 *
2116 * 1) We log an extent after its writeback finishes but before its
2117 * checksums are added to the csum tree, leading to -EIO errors
2118 * when attempting to read the extent after a log replay.
2119 *
2120 * 2) We can end up logging an extent before its writeback finishes.
2121 * Therefore after the log replay we will have a file extent item
2122 * pointing to an unwritten extent (and no data checksums as well).
2123 *
2124 * So trigger writeback for any eventual new dirty pages and then we
2125 * wait for all ordered extents to complete below.
2126 */
2127 ret = start_ordered_ops(inode, start, end);
2128 if (ret) {
2129 inode_unlock(inode);
2130 goto out;
2131 }
2132
2133 /*
2134 * We have to do this here to avoid the priority inversion of waiting on
2135 * IO of a lower priority task while holding a transaciton open.
2136 *
2137 * Also, the range length can be represented by u64, we have to do the
2138 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2139 */
2140 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2141 if (ret) {
2142 up_write(&BTRFS_I(inode)->dio_sem);
2143 inode_unlock(inode);
2144 goto out;
2145 }
2146 atomic_inc(&root->log_batch);
2147
2148 smp_mb();
2149 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2150 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2151 /*
2152 * We've had everything committed since the last time we were
2153 * modified so clear this flag in case it was set for whatever
2154 * reason, it's no longer relevant.
2155 */
2156 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2157 &BTRFS_I(inode)->runtime_flags);
2158 /*
2159 * An ordered extent might have started before and completed
2160 * already with io errors, in which case the inode was not
2161 * updated and we end up here. So check the inode's mapping
2162 * for any errors that might have happened since we last
2163 * checked called fsync.
2164 */
2165 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2166 up_write(&BTRFS_I(inode)->dio_sem);
2167 inode_unlock(inode);
2168 goto out;
2169 }
2170
2171 /*
2172 * We use start here because we will need to wait on the IO to complete
2173 * in btrfs_sync_log, which could require joining a transaction (for
2174 * example checking cross references in the nocow path). If we use join
2175 * here we could get into a situation where we're waiting on IO to
2176 * happen that is blocked on a transaction trying to commit. With start
2177 * we inc the extwriter counter, so we wait for all extwriters to exit
2178 * before we start blocking join'ers. This comment is to keep somebody
2179 * from thinking they are super smart and changing this to
2180 * btrfs_join_transaction *cough*Josef*cough*.
2181 */
2182 trans = btrfs_start_transaction(root, 0);
2183 if (IS_ERR(trans)) {
2184 ret = PTR_ERR(trans);
2185 up_write(&BTRFS_I(inode)->dio_sem);
2186 inode_unlock(inode);
2187 goto out;
2188 }
2189 trans->sync = true;
2190
2191 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2192 if (ret < 0) {
2193 /* Fallthrough and commit/free transaction. */
2194 ret = 1;
2195 }
2196
2197 /* we've logged all the items and now have a consistent
2198 * version of the file in the log. It is possible that
2199 * someone will come in and modify the file, but that's
2200 * fine because the log is consistent on disk, and we
2201 * have references to all of the file's extents
2202 *
2203 * It is possible that someone will come in and log the
2204 * file again, but that will end up using the synchronization
2205 * inside btrfs_sync_log to keep things safe.
2206 */
2207 up_write(&BTRFS_I(inode)->dio_sem);
2208 inode_unlock(inode);
2209
2210 /*
2211 * If any of the ordered extents had an error, just return it to user
2212 * space, so that the application knows some writes didn't succeed and
2213 * can take proper action (retry for e.g.). Blindly committing the
2214 * transaction in this case, would fool userspace that everything was
2215 * successful. And we also want to make sure our log doesn't contain
2216 * file extent items pointing to extents that weren't fully written to -
2217 * just like in the non fast fsync path, where we check for the ordered
2218 * operation's error flag before writing to the log tree and return -EIO
2219 * if any of them had this flag set (btrfs_wait_ordered_range) -
2220 * therefore we need to check for errors in the ordered operations,
2221 * which are indicated by ctx.io_err.
2222 */
2223 if (ctx.io_err) {
2224 btrfs_end_transaction(trans);
2225 ret = ctx.io_err;
2226 goto out;
2227 }
2228
2229 if (ret != BTRFS_NO_LOG_SYNC) {
2230 if (!ret) {
2231 ret = btrfs_sync_log(trans, root, &ctx);
2232 if (!ret) {
2233 ret = btrfs_end_transaction(trans);
2234 goto out;
2235 }
2236 }
2237 ret = btrfs_commit_transaction(trans);
2238 } else {
2239 ret = btrfs_end_transaction(trans);
2240 }
2241out:
2242 ASSERT(list_empty(&ctx.list));
2243 err = file_check_and_advance_wb_err(file);
2244 if (!ret)
2245 ret = err;
2246 return ret > 0 ? -EIO : ret;
2247}
2248
2249static const struct vm_operations_struct btrfs_file_vm_ops = {
2250 .fault = filemap_fault,
2251 .map_pages = filemap_map_pages,
2252 .page_mkwrite = btrfs_page_mkwrite,
2253};
2254
2255static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2256{
2257 struct address_space *mapping = filp->f_mapping;
2258
2259 if (!mapping->a_ops->readpage)
2260 return -ENOEXEC;
2261
2262 file_accessed(filp);
2263 vma->vm_ops = &btrfs_file_vm_ops;
2264
2265 return 0;
2266}
2267
2268static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2269 int slot, u64 start, u64 end)
2270{
2271 struct btrfs_file_extent_item *fi;
2272 struct btrfs_key key;
2273
2274 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2275 return 0;
2276
2277 btrfs_item_key_to_cpu(leaf, &key, slot);
2278 if (key.objectid != btrfs_ino(inode) ||
2279 key.type != BTRFS_EXTENT_DATA_KEY)
2280 return 0;
2281
2282 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2283
2284 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2285 return 0;
2286
2287 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2288 return 0;
2289
2290 if (key.offset == end)
2291 return 1;
2292 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2293 return 1;
2294 return 0;
2295}
2296
2297static int fill_holes(struct btrfs_trans_handle *trans,
2298 struct btrfs_inode *inode,
2299 struct btrfs_path *path, u64 offset, u64 end)
2300{
2301 struct btrfs_fs_info *fs_info = trans->fs_info;
2302 struct btrfs_root *root = inode->root;
2303 struct extent_buffer *leaf;
2304 struct btrfs_file_extent_item *fi;
2305 struct extent_map *hole_em;
2306 struct extent_map_tree *em_tree = &inode->extent_tree;
2307 struct btrfs_key key;
2308 int ret;
2309
2310 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2311 goto out;
2312
2313 key.objectid = btrfs_ino(inode);
2314 key.type = BTRFS_EXTENT_DATA_KEY;
2315 key.offset = offset;
2316
2317 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2318 if (ret <= 0) {
2319 /*
2320 * We should have dropped this offset, so if we find it then
2321 * something has gone horribly wrong.
2322 */
2323 if (ret == 0)
2324 ret = -EINVAL;
2325 return ret;
2326 }
2327
2328 leaf = path->nodes[0];
2329 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2330 u64 num_bytes;
2331
2332 path->slots[0]--;
2333 fi = btrfs_item_ptr(leaf, path->slots[0],
2334 struct btrfs_file_extent_item);
2335 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2336 end - offset;
2337 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2338 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2339 btrfs_set_file_extent_offset(leaf, fi, 0);
2340 btrfs_mark_buffer_dirty(leaf);
2341 goto out;
2342 }
2343
2344 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2345 u64 num_bytes;
2346
2347 key.offset = offset;
2348 btrfs_set_item_key_safe(fs_info, path, &key);
2349 fi = btrfs_item_ptr(leaf, path->slots[0],
2350 struct btrfs_file_extent_item);
2351 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2352 offset;
2353 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2354 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2355 btrfs_set_file_extent_offset(leaf, fi, 0);
2356 btrfs_mark_buffer_dirty(leaf);
2357 goto out;
2358 }
2359 btrfs_release_path(path);
2360
2361 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2362 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2363 if (ret)
2364 return ret;
2365
2366out:
2367 btrfs_release_path(path);
2368
2369 hole_em = alloc_extent_map();
2370 if (!hole_em) {
2371 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2372 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2373 } else {
2374 hole_em->start = offset;
2375 hole_em->len = end - offset;
2376 hole_em->ram_bytes = hole_em->len;
2377 hole_em->orig_start = offset;
2378
2379 hole_em->block_start = EXTENT_MAP_HOLE;
2380 hole_em->block_len = 0;
2381 hole_em->orig_block_len = 0;
2382 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2383 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2384 hole_em->generation = trans->transid;
2385
2386 do {
2387 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2388 write_lock(&em_tree->lock);
2389 ret = add_extent_mapping(em_tree, hole_em, 1);
2390 write_unlock(&em_tree->lock);
2391 } while (ret == -EEXIST);
2392 free_extent_map(hole_em);
2393 if (ret)
2394 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2395 &inode->runtime_flags);
2396 }
2397
2398 return 0;
2399}
2400
2401/*
2402 * Find a hole extent on given inode and change start/len to the end of hole
2403 * extent.(hole/vacuum extent whose em->start <= start &&
2404 * em->start + em->len > start)
2405 * When a hole extent is found, return 1 and modify start/len.
2406 */
2407static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2408{
2409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2410 struct extent_map *em;
2411 int ret = 0;
2412
2413 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2414 round_down(*start, fs_info->sectorsize),
2415 round_up(*len, fs_info->sectorsize), 0);
2416 if (IS_ERR(em))
2417 return PTR_ERR(em);
2418
2419 /* Hole or vacuum extent(only exists in no-hole mode) */
2420 if (em->block_start == EXTENT_MAP_HOLE) {
2421 ret = 1;
2422 *len = em->start + em->len > *start + *len ?
2423 0 : *start + *len - em->start - em->len;
2424 *start = em->start + em->len;
2425 }
2426 free_extent_map(em);
2427 return ret;
2428}
2429
2430static int btrfs_punch_hole_lock_range(struct inode *inode,
2431 const u64 lockstart,
2432 const u64 lockend,
2433 struct extent_state **cached_state)
2434{
2435 while (1) {
2436 struct btrfs_ordered_extent *ordered;
2437 int ret;
2438
2439 truncate_pagecache_range(inode, lockstart, lockend);
2440
2441 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2442 cached_state);
2443 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2444
2445 /*
2446 * We need to make sure we have no ordered extents in this range
2447 * and nobody raced in and read a page in this range, if we did
2448 * we need to try again.
2449 */
2450 if ((!ordered ||
2451 (ordered->file_offset + ordered->len <= lockstart ||
2452 ordered->file_offset > lockend)) &&
2453 !filemap_range_has_page(inode->i_mapping,
2454 lockstart, lockend)) {
2455 if (ordered)
2456 btrfs_put_ordered_extent(ordered);
2457 break;
2458 }
2459 if (ordered)
2460 btrfs_put_ordered_extent(ordered);
2461 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2462 lockend, cached_state);
2463 ret = btrfs_wait_ordered_range(inode, lockstart,
2464 lockend - lockstart + 1);
2465 if (ret)
2466 return ret;
2467 }
2468 return 0;
2469}
2470
2471static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2472{
2473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2474 struct btrfs_root *root = BTRFS_I(inode)->root;
2475 struct extent_state *cached_state = NULL;
2476 struct btrfs_path *path;
2477 struct btrfs_block_rsv *rsv;
2478 struct btrfs_trans_handle *trans;
2479 u64 lockstart;
2480 u64 lockend;
2481 u64 tail_start;
2482 u64 tail_len;
2483 u64 orig_start = offset;
2484 u64 cur_offset;
2485 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2486 u64 drop_end;
2487 int ret = 0;
2488 int err = 0;
2489 unsigned int rsv_count;
2490 bool same_block;
2491 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2492 u64 ino_size;
2493 bool truncated_block = false;
2494 bool updated_inode = false;
2495
2496 ret = btrfs_wait_ordered_range(inode, offset, len);
2497 if (ret)
2498 return ret;
2499
2500 inode_lock(inode);
2501 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2502 ret = find_first_non_hole(inode, &offset, &len);
2503 if (ret < 0)
2504 goto out_only_mutex;
2505 if (ret && !len) {
2506 /* Already in a large hole */
2507 ret = 0;
2508 goto out_only_mutex;
2509 }
2510
2511 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2512 lockend = round_down(offset + len,
2513 btrfs_inode_sectorsize(inode)) - 1;
2514 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2515 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2516 /*
2517 * We needn't truncate any block which is beyond the end of the file
2518 * because we are sure there is no data there.
2519 */
2520 /*
2521 * Only do this if we are in the same block and we aren't doing the
2522 * entire block.
2523 */
2524 if (same_block && len < fs_info->sectorsize) {
2525 if (offset < ino_size) {
2526 truncated_block = true;
2527 ret = btrfs_truncate_block(inode, offset, len, 0);
2528 } else {
2529 ret = 0;
2530 }
2531 goto out_only_mutex;
2532 }
2533
2534 /* zero back part of the first block */
2535 if (offset < ino_size) {
2536 truncated_block = true;
2537 ret = btrfs_truncate_block(inode, offset, 0, 0);
2538 if (ret) {
2539 inode_unlock(inode);
2540 return ret;
2541 }
2542 }
2543
2544 /* Check the aligned pages after the first unaligned page,
2545 * if offset != orig_start, which means the first unaligned page
2546 * including several following pages are already in holes,
2547 * the extra check can be skipped */
2548 if (offset == orig_start) {
2549 /* after truncate page, check hole again */
2550 len = offset + len - lockstart;
2551 offset = lockstart;
2552 ret = find_first_non_hole(inode, &offset, &len);
2553 if (ret < 0)
2554 goto out_only_mutex;
2555 if (ret && !len) {
2556 ret = 0;
2557 goto out_only_mutex;
2558 }
2559 lockstart = offset;
2560 }
2561
2562 /* Check the tail unaligned part is in a hole */
2563 tail_start = lockend + 1;
2564 tail_len = offset + len - tail_start;
2565 if (tail_len) {
2566 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2567 if (unlikely(ret < 0))
2568 goto out_only_mutex;
2569 if (!ret) {
2570 /* zero the front end of the last page */
2571 if (tail_start + tail_len < ino_size) {
2572 truncated_block = true;
2573 ret = btrfs_truncate_block(inode,
2574 tail_start + tail_len,
2575 0, 1);
2576 if (ret)
2577 goto out_only_mutex;
2578 }
2579 }
2580 }
2581
2582 if (lockend < lockstart) {
2583 ret = 0;
2584 goto out_only_mutex;
2585 }
2586
2587 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2588 &cached_state);
2589 if (ret)
2590 goto out_only_mutex;
2591
2592 path = btrfs_alloc_path();
2593 if (!path) {
2594 ret = -ENOMEM;
2595 goto out;
2596 }
2597
2598 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2599 if (!rsv) {
2600 ret = -ENOMEM;
2601 goto out_free;
2602 }
2603 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2604 rsv->failfast = 1;
2605
2606 /*
2607 * 1 - update the inode
2608 * 1 - removing the extents in the range
2609 * 1 - adding the hole extent if no_holes isn't set
2610 */
2611 rsv_count = no_holes ? 2 : 3;
2612 trans = btrfs_start_transaction(root, rsv_count);
2613 if (IS_ERR(trans)) {
2614 err = PTR_ERR(trans);
2615 goto out_free;
2616 }
2617
2618 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2619 min_size, 0);
2620 BUG_ON(ret);
2621 trans->block_rsv = rsv;
2622
2623 cur_offset = lockstart;
2624 len = lockend - cur_offset;
2625 while (cur_offset < lockend) {
2626 ret = __btrfs_drop_extents(trans, root, inode, path,
2627 cur_offset, lockend + 1,
2628 &drop_end, 1, 0, 0, NULL);
2629 if (ret != -ENOSPC)
2630 break;
2631
2632 trans->block_rsv = &fs_info->trans_block_rsv;
2633
2634 if (cur_offset < drop_end && cur_offset < ino_size) {
2635 ret = fill_holes(trans, BTRFS_I(inode), path,
2636 cur_offset, drop_end);
2637 if (ret) {
2638 /*
2639 * If we failed then we didn't insert our hole
2640 * entries for the area we dropped, so now the
2641 * fs is corrupted, so we must abort the
2642 * transaction.
2643 */
2644 btrfs_abort_transaction(trans, ret);
2645 err = ret;
2646 break;
2647 }
2648 }
2649
2650 cur_offset = drop_end;
2651
2652 ret = btrfs_update_inode(trans, root, inode);
2653 if (ret) {
2654 err = ret;
2655 break;
2656 }
2657
2658 btrfs_end_transaction(trans);
2659 btrfs_btree_balance_dirty(fs_info);
2660
2661 trans = btrfs_start_transaction(root, rsv_count);
2662 if (IS_ERR(trans)) {
2663 ret = PTR_ERR(trans);
2664 trans = NULL;
2665 break;
2666 }
2667
2668 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2669 rsv, min_size, 0);
2670 BUG_ON(ret); /* shouldn't happen */
2671 trans->block_rsv = rsv;
2672
2673 ret = find_first_non_hole(inode, &cur_offset, &len);
2674 if (unlikely(ret < 0))
2675 break;
2676 if (ret && !len) {
2677 ret = 0;
2678 break;
2679 }
2680 }
2681
2682 if (ret) {
2683 err = ret;
2684 goto out_trans;
2685 }
2686
2687 trans->block_rsv = &fs_info->trans_block_rsv;
2688 /*
2689 * If we are using the NO_HOLES feature we might have had already an
2690 * hole that overlaps a part of the region [lockstart, lockend] and
2691 * ends at (or beyond) lockend. Since we have no file extent items to
2692 * represent holes, drop_end can be less than lockend and so we must
2693 * make sure we have an extent map representing the existing hole (the
2694 * call to __btrfs_drop_extents() might have dropped the existing extent
2695 * map representing the existing hole), otherwise the fast fsync path
2696 * will not record the existence of the hole region
2697 * [existing_hole_start, lockend].
2698 */
2699 if (drop_end <= lockend)
2700 drop_end = lockend + 1;
2701 /*
2702 * Don't insert file hole extent item if it's for a range beyond eof
2703 * (because it's useless) or if it represents a 0 bytes range (when
2704 * cur_offset == drop_end).
2705 */
2706 if (cur_offset < ino_size && cur_offset < drop_end) {
2707 ret = fill_holes(trans, BTRFS_I(inode), path,
2708 cur_offset, drop_end);
2709 if (ret) {
2710 /* Same comment as above. */
2711 btrfs_abort_transaction(trans, ret);
2712 err = ret;
2713 goto out_trans;
2714 }
2715 }
2716
2717out_trans:
2718 if (!trans)
2719 goto out_free;
2720
2721 inode_inc_iversion(inode);
2722 inode->i_mtime = inode->i_ctime = current_time(inode);
2723
2724 trans->block_rsv = &fs_info->trans_block_rsv;
2725 ret = btrfs_update_inode(trans, root, inode);
2726 updated_inode = true;
2727 btrfs_end_transaction(trans);
2728 btrfs_btree_balance_dirty(fs_info);
2729out_free:
2730 btrfs_free_path(path);
2731 btrfs_free_block_rsv(fs_info, rsv);
2732out:
2733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2734 &cached_state);
2735out_only_mutex:
2736 if (!updated_inode && truncated_block && !ret && !err) {
2737 /*
2738 * If we only end up zeroing part of a page, we still need to
2739 * update the inode item, so that all the time fields are
2740 * updated as well as the necessary btrfs inode in memory fields
2741 * for detecting, at fsync time, if the inode isn't yet in the
2742 * log tree or it's there but not up to date.
2743 */
2744 struct timespec64 now = current_time(inode);
2745
2746 inode_inc_iversion(inode);
2747 inode->i_mtime = now;
2748 inode->i_ctime = now;
2749 trans = btrfs_start_transaction(root, 1);
2750 if (IS_ERR(trans)) {
2751 err = PTR_ERR(trans);
2752 } else {
2753 err = btrfs_update_inode(trans, root, inode);
2754 ret = btrfs_end_transaction(trans);
2755 }
2756 }
2757 inode_unlock(inode);
2758 if (ret && !err)
2759 err = ret;
2760 return err;
2761}
2762
2763/* Helper structure to record which range is already reserved */
2764struct falloc_range {
2765 struct list_head list;
2766 u64 start;
2767 u64 len;
2768};
2769
2770/*
2771 * Helper function to add falloc range
2772 *
2773 * Caller should have locked the larger range of extent containing
2774 * [start, len)
2775 */
2776static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2777{
2778 struct falloc_range *prev = NULL;
2779 struct falloc_range *range = NULL;
2780
2781 if (list_empty(head))
2782 goto insert;
2783
2784 /*
2785 * As fallocate iterate by bytenr order, we only need to check
2786 * the last range.
2787 */
2788 prev = list_entry(head->prev, struct falloc_range, list);
2789 if (prev->start + prev->len == start) {
2790 prev->len += len;
2791 return 0;
2792 }
2793insert:
2794 range = kmalloc(sizeof(*range), GFP_KERNEL);
2795 if (!range)
2796 return -ENOMEM;
2797 range->start = start;
2798 range->len = len;
2799 list_add_tail(&range->list, head);
2800 return 0;
2801}
2802
2803static int btrfs_fallocate_update_isize(struct inode *inode,
2804 const u64 end,
2805 const int mode)
2806{
2807 struct btrfs_trans_handle *trans;
2808 struct btrfs_root *root = BTRFS_I(inode)->root;
2809 int ret;
2810 int ret2;
2811
2812 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2813 return 0;
2814
2815 trans = btrfs_start_transaction(root, 1);
2816 if (IS_ERR(trans))
2817 return PTR_ERR(trans);
2818
2819 inode->i_ctime = current_time(inode);
2820 i_size_write(inode, end);
2821 btrfs_ordered_update_i_size(inode, end, NULL);
2822 ret = btrfs_update_inode(trans, root, inode);
2823 ret2 = btrfs_end_transaction(trans);
2824
2825 return ret ? ret : ret2;
2826}
2827
2828enum {
2829 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2830 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2831 RANGE_BOUNDARY_HOLE = 2,
2832};
2833
2834static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2835 u64 offset)
2836{
2837 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2838 struct extent_map *em;
2839 int ret;
2840
2841 offset = round_down(offset, sectorsize);
2842 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2843 if (IS_ERR(em))
2844 return PTR_ERR(em);
2845
2846 if (em->block_start == EXTENT_MAP_HOLE)
2847 ret = RANGE_BOUNDARY_HOLE;
2848 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2849 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2850 else
2851 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2852
2853 free_extent_map(em);
2854 return ret;
2855}
2856
2857static int btrfs_zero_range(struct inode *inode,
2858 loff_t offset,
2859 loff_t len,
2860 const int mode)
2861{
2862 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2863 struct extent_map *em;
2864 struct extent_changeset *data_reserved = NULL;
2865 int ret;
2866 u64 alloc_hint = 0;
2867 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2868 u64 alloc_start = round_down(offset, sectorsize);
2869 u64 alloc_end = round_up(offset + len, sectorsize);
2870 u64 bytes_to_reserve = 0;
2871 bool space_reserved = false;
2872
2873 inode_dio_wait(inode);
2874
2875 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2876 alloc_start, alloc_end - alloc_start, 0);
2877 if (IS_ERR(em)) {
2878 ret = PTR_ERR(em);
2879 goto out;
2880 }
2881
2882 /*
2883 * Avoid hole punching and extent allocation for some cases. More cases
2884 * could be considered, but these are unlikely common and we keep things
2885 * as simple as possible for now. Also, intentionally, if the target
2886 * range contains one or more prealloc extents together with regular
2887 * extents and holes, we drop all the existing extents and allocate a
2888 * new prealloc extent, so that we get a larger contiguous disk extent.
2889 */
2890 if (em->start <= alloc_start &&
2891 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2892 const u64 em_end = em->start + em->len;
2893
2894 if (em_end >= offset + len) {
2895 /*
2896 * The whole range is already a prealloc extent,
2897 * do nothing except updating the inode's i_size if
2898 * needed.
2899 */
2900 free_extent_map(em);
2901 ret = btrfs_fallocate_update_isize(inode, offset + len,
2902 mode);
2903 goto out;
2904 }
2905 /*
2906 * Part of the range is already a prealloc extent, so operate
2907 * only on the remaining part of the range.
2908 */
2909 alloc_start = em_end;
2910 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2911 len = offset + len - alloc_start;
2912 offset = alloc_start;
2913 alloc_hint = em->block_start + em->len;
2914 }
2915 free_extent_map(em);
2916
2917 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2918 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2919 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2920 alloc_start, sectorsize, 0);
2921 if (IS_ERR(em)) {
2922 ret = PTR_ERR(em);
2923 goto out;
2924 }
2925
2926 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2927 free_extent_map(em);
2928 ret = btrfs_fallocate_update_isize(inode, offset + len,
2929 mode);
2930 goto out;
2931 }
2932 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2933 free_extent_map(em);
2934 ret = btrfs_truncate_block(inode, offset, len, 0);
2935 if (!ret)
2936 ret = btrfs_fallocate_update_isize(inode,
2937 offset + len,
2938 mode);
2939 return ret;
2940 }
2941 free_extent_map(em);
2942 alloc_start = round_down(offset, sectorsize);
2943 alloc_end = alloc_start + sectorsize;
2944 goto reserve_space;
2945 }
2946
2947 alloc_start = round_up(offset, sectorsize);
2948 alloc_end = round_down(offset + len, sectorsize);
2949
2950 /*
2951 * For unaligned ranges, check the pages at the boundaries, they might
2952 * map to an extent, in which case we need to partially zero them, or
2953 * they might map to a hole, in which case we need our allocation range
2954 * to cover them.
2955 */
2956 if (!IS_ALIGNED(offset, sectorsize)) {
2957 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2958 if (ret < 0)
2959 goto out;
2960 if (ret == RANGE_BOUNDARY_HOLE) {
2961 alloc_start = round_down(offset, sectorsize);
2962 ret = 0;
2963 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2964 ret = btrfs_truncate_block(inode, offset, 0, 0);
2965 if (ret)
2966 goto out;
2967 } else {
2968 ret = 0;
2969 }
2970 }
2971
2972 if (!IS_ALIGNED(offset + len, sectorsize)) {
2973 ret = btrfs_zero_range_check_range_boundary(inode,
2974 offset + len);
2975 if (ret < 0)
2976 goto out;
2977 if (ret == RANGE_BOUNDARY_HOLE) {
2978 alloc_end = round_up(offset + len, sectorsize);
2979 ret = 0;
2980 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2981 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2982 if (ret)
2983 goto out;
2984 } else {
2985 ret = 0;
2986 }
2987 }
2988
2989reserve_space:
2990 if (alloc_start < alloc_end) {
2991 struct extent_state *cached_state = NULL;
2992 const u64 lockstart = alloc_start;
2993 const u64 lockend = alloc_end - 1;
2994
2995 bytes_to_reserve = alloc_end - alloc_start;
2996 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2997 bytes_to_reserve);
2998 if (ret < 0)
2999 goto out;
3000 space_reserved = true;
3001 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3002 alloc_start, bytes_to_reserve);
3003 if (ret)
3004 goto out;
3005 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3006 &cached_state);
3007 if (ret)
3008 goto out;
3009 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3010 alloc_end - alloc_start,
3011 i_blocksize(inode),
3012 offset + len, &alloc_hint);
3013 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3014 lockend, &cached_state);
3015 /* btrfs_prealloc_file_range releases reserved space on error */
3016 if (ret) {
3017 space_reserved = false;
3018 goto out;
3019 }
3020 }
3021 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3022 out:
3023 if (ret && space_reserved)
3024 btrfs_free_reserved_data_space(inode, data_reserved,
3025 alloc_start, bytes_to_reserve);
3026 extent_changeset_free(data_reserved);
3027
3028 return ret;
3029}
3030
3031static long btrfs_fallocate(struct file *file, int mode,
3032 loff_t offset, loff_t len)
3033{
3034 struct inode *inode = file_inode(file);
3035 struct extent_state *cached_state = NULL;
3036 struct extent_changeset *data_reserved = NULL;
3037 struct falloc_range *range;
3038 struct falloc_range *tmp;
3039 struct list_head reserve_list;
3040 u64 cur_offset;
3041 u64 last_byte;
3042 u64 alloc_start;
3043 u64 alloc_end;
3044 u64 alloc_hint = 0;
3045 u64 locked_end;
3046 u64 actual_end = 0;
3047 struct extent_map *em;
3048 int blocksize = btrfs_inode_sectorsize(inode);
3049 int ret;
3050
3051 alloc_start = round_down(offset, blocksize);
3052 alloc_end = round_up(offset + len, blocksize);
3053 cur_offset = alloc_start;
3054
3055 /* Make sure we aren't being give some crap mode */
3056 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3057 FALLOC_FL_ZERO_RANGE))
3058 return -EOPNOTSUPP;
3059
3060 if (mode & FALLOC_FL_PUNCH_HOLE)
3061 return btrfs_punch_hole(inode, offset, len);
3062
3063 /*
3064 * Only trigger disk allocation, don't trigger qgroup reserve
3065 *
3066 * For qgroup space, it will be checked later.
3067 */
3068 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3069 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3070 alloc_end - alloc_start);
3071 if (ret < 0)
3072 return ret;
3073 }
3074
3075 inode_lock(inode);
3076
3077 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3078 ret = inode_newsize_ok(inode, offset + len);
3079 if (ret)
3080 goto out;
3081 }
3082
3083 /*
3084 * TODO: Move these two operations after we have checked
3085 * accurate reserved space, or fallocate can still fail but
3086 * with page truncated or size expanded.
3087 *
3088 * But that's a minor problem and won't do much harm BTW.
3089 */
3090 if (alloc_start > inode->i_size) {
3091 ret = btrfs_cont_expand(inode, i_size_read(inode),
3092 alloc_start);
3093 if (ret)
3094 goto out;
3095 } else if (offset + len > inode->i_size) {
3096 /*
3097 * If we are fallocating from the end of the file onward we
3098 * need to zero out the end of the block if i_size lands in the
3099 * middle of a block.
3100 */
3101 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3102 if (ret)
3103 goto out;
3104 }
3105
3106 /*
3107 * wait for ordered IO before we have any locks. We'll loop again
3108 * below with the locks held.
3109 */
3110 ret = btrfs_wait_ordered_range(inode, alloc_start,
3111 alloc_end - alloc_start);
3112 if (ret)
3113 goto out;
3114
3115 if (mode & FALLOC_FL_ZERO_RANGE) {
3116 ret = btrfs_zero_range(inode, offset, len, mode);
3117 inode_unlock(inode);
3118 return ret;
3119 }
3120
3121 locked_end = alloc_end - 1;
3122 while (1) {
3123 struct btrfs_ordered_extent *ordered;
3124
3125 /* the extent lock is ordered inside the running
3126 * transaction
3127 */
3128 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3129 locked_end, &cached_state);
3130 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3131
3132 if (ordered &&
3133 ordered->file_offset + ordered->len > alloc_start &&
3134 ordered->file_offset < alloc_end) {
3135 btrfs_put_ordered_extent(ordered);
3136 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3137 alloc_start, locked_end,
3138 &cached_state);
3139 /*
3140 * we can't wait on the range with the transaction
3141 * running or with the extent lock held
3142 */
3143 ret = btrfs_wait_ordered_range(inode, alloc_start,
3144 alloc_end - alloc_start);
3145 if (ret)
3146 goto out;
3147 } else {
3148 if (ordered)
3149 btrfs_put_ordered_extent(ordered);
3150 break;
3151 }
3152 }
3153
3154 /* First, check if we exceed the qgroup limit */
3155 INIT_LIST_HEAD(&reserve_list);
3156 while (cur_offset < alloc_end) {
3157 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3158 alloc_end - cur_offset, 0);
3159 if (IS_ERR(em)) {
3160 ret = PTR_ERR(em);
3161 break;
3162 }
3163 last_byte = min(extent_map_end(em), alloc_end);
3164 actual_end = min_t(u64, extent_map_end(em), offset + len);
3165 last_byte = ALIGN(last_byte, blocksize);
3166 if (em->block_start == EXTENT_MAP_HOLE ||
3167 (cur_offset >= inode->i_size &&
3168 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3169 ret = add_falloc_range(&reserve_list, cur_offset,
3170 last_byte - cur_offset);
3171 if (ret < 0) {
3172 free_extent_map(em);
3173 break;
3174 }
3175 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3176 cur_offset, last_byte - cur_offset);
3177 if (ret < 0) {
3178 cur_offset = last_byte;
3179 free_extent_map(em);
3180 break;
3181 }
3182 } else {
3183 /*
3184 * Do not need to reserve unwritten extent for this
3185 * range, free reserved data space first, otherwise
3186 * it'll result in false ENOSPC error.
3187 */
3188 btrfs_free_reserved_data_space(inode, data_reserved,
3189 cur_offset, last_byte - cur_offset);
3190 }
3191 free_extent_map(em);
3192 cur_offset = last_byte;
3193 }
3194
3195 /*
3196 * If ret is still 0, means we're OK to fallocate.
3197 * Or just cleanup the list and exit.
3198 */
3199 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3200 if (!ret)
3201 ret = btrfs_prealloc_file_range(inode, mode,
3202 range->start,
3203 range->len, i_blocksize(inode),
3204 offset + len, &alloc_hint);
3205 else
3206 btrfs_free_reserved_data_space(inode,
3207 data_reserved, range->start,
3208 range->len);
3209 list_del(&range->list);
3210 kfree(range);
3211 }
3212 if (ret < 0)
3213 goto out_unlock;
3214
3215 /*
3216 * We didn't need to allocate any more space, but we still extended the
3217 * size of the file so we need to update i_size and the inode item.
3218 */
3219 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3220out_unlock:
3221 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3222 &cached_state);
3223out:
3224 inode_unlock(inode);
3225 /* Let go of our reservation. */
3226 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3227 btrfs_free_reserved_data_space(inode, data_reserved,
3228 cur_offset, alloc_end - cur_offset);
3229 extent_changeset_free(data_reserved);
3230 return ret;
3231}
3232
3233static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3234{
3235 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3236 struct extent_map *em = NULL;
3237 struct extent_state *cached_state = NULL;
3238 u64 lockstart;
3239 u64 lockend;
3240 u64 start;
3241 u64 len;
3242 int ret = 0;
3243
3244 if (inode->i_size == 0)
3245 return -ENXIO;
3246
3247 /*
3248 * *offset can be negative, in this case we start finding DATA/HOLE from
3249 * the very start of the file.
3250 */
3251 start = max_t(loff_t, 0, *offset);
3252
3253 lockstart = round_down(start, fs_info->sectorsize);
3254 lockend = round_up(i_size_read(inode),
3255 fs_info->sectorsize);
3256 if (lockend <= lockstart)
3257 lockend = lockstart + fs_info->sectorsize;
3258 lockend--;
3259 len = lockend - lockstart + 1;
3260
3261 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3262 &cached_state);
3263
3264 while (start < inode->i_size) {
3265 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3266 start, len, 0);
3267 if (IS_ERR(em)) {
3268 ret = PTR_ERR(em);
3269 em = NULL;
3270 break;
3271 }
3272
3273 if (whence == SEEK_HOLE &&
3274 (em->block_start == EXTENT_MAP_HOLE ||
3275 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3276 break;
3277 else if (whence == SEEK_DATA &&
3278 (em->block_start != EXTENT_MAP_HOLE &&
3279 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3280 break;
3281
3282 start = em->start + em->len;
3283 free_extent_map(em);
3284 em = NULL;
3285 cond_resched();
3286 }
3287 free_extent_map(em);
3288 if (!ret) {
3289 if (whence == SEEK_DATA && start >= inode->i_size)
3290 ret = -ENXIO;
3291 else
3292 *offset = min_t(loff_t, start, inode->i_size);
3293 }
3294 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3295 &cached_state);
3296 return ret;
3297}
3298
3299static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3300{
3301 struct inode *inode = file->f_mapping->host;
3302 int ret;
3303
3304 inode_lock(inode);
3305 switch (whence) {
3306 case SEEK_END:
3307 case SEEK_CUR:
3308 offset = generic_file_llseek(file, offset, whence);
3309 goto out;
3310 case SEEK_DATA:
3311 case SEEK_HOLE:
3312 if (offset >= i_size_read(inode)) {
3313 inode_unlock(inode);
3314 return -ENXIO;
3315 }
3316
3317 ret = find_desired_extent(inode, &offset, whence);
3318 if (ret) {
3319 inode_unlock(inode);
3320 return ret;
3321 }
3322 }
3323
3324 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3325out:
3326 inode_unlock(inode);
3327 return offset;
3328}
3329
3330static int btrfs_file_open(struct inode *inode, struct file *filp)
3331{
3332 filp->f_mode |= FMODE_NOWAIT;
3333 return generic_file_open(inode, filp);
3334}
3335
3336const struct file_operations btrfs_file_operations = {
3337 .llseek = btrfs_file_llseek,
3338 .read_iter = generic_file_read_iter,
3339 .splice_read = generic_file_splice_read,
3340 .write_iter = btrfs_file_write_iter,
3341 .mmap = btrfs_file_mmap,
3342 .open = btrfs_file_open,
3343 .release = btrfs_release_file,
3344 .fsync = btrfs_sync_file,
3345 .fallocate = btrfs_fallocate,
3346 .unlocked_ioctl = btrfs_ioctl,
3347#ifdef CONFIG_COMPAT
3348 .compat_ioctl = btrfs_compat_ioctl,
3349#endif
3350 .clone_file_range = btrfs_clone_file_range,
3351 .dedupe_file_range = btrfs_dedupe_file_range,
3352};
3353
3354void __cold btrfs_auto_defrag_exit(void)
3355{
3356 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3357}
3358
3359int __init btrfs_auto_defrag_init(void)
3360{
3361 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3362 sizeof(struct inode_defrag), 0,
3363 SLAB_MEM_SPREAD,
3364 NULL);
3365 if (!btrfs_inode_defrag_cachep)
3366 return -ENOMEM;
3367
3368 return 0;
3369}
3370
3371int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3372{
3373 int ret;
3374
3375 /*
3376 * So with compression we will find and lock a dirty page and clear the
3377 * first one as dirty, setup an async extent, and immediately return
3378 * with the entire range locked but with nobody actually marked with
3379 * writeback. So we can't just filemap_write_and_wait_range() and
3380 * expect it to work since it will just kick off a thread to do the
3381 * actual work. So we need to call filemap_fdatawrite_range _again_
3382 * since it will wait on the page lock, which won't be unlocked until
3383 * after the pages have been marked as writeback and so we're good to go
3384 * from there. We have to do this otherwise we'll miss the ordered
3385 * extents and that results in badness. Please Josef, do not think you
3386 * know better and pull this out at some point in the future, it is
3387 * right and you are wrong.
3388 */
3389 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3390 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3391 &BTRFS_I(inode)->runtime_flags))
3392 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3393
3394 return ret;
3395}