blob: 6cf0fd37cbf001c54ef77bc5a8a792691d1e1ba2 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <linux/slab.h>
12#include <net/sock.h>
13#include <linux/sunrpc/addr.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17#include <linux/sunrpc/xprt.h>
18#include <linux/module.h>
19#include <linux/netdevice.h>
20#include <trace/events/sunrpc.h>
21
22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24static unsigned int svc_rpc_per_connection_limit __read_mostly;
25module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29static int svc_deferred_recv(struct svc_rqst *rqstp);
30static struct cache_deferred_req *svc_defer(struct cache_req *req);
31static void svc_age_temp_xprts(struct timer_list *t);
32static void svc_delete_xprt(struct svc_xprt *xprt);
33
34/* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39static int svc_conn_age_period = 6*60;
40
41/* List of registered transport classes */
42static DEFINE_SPINLOCK(svc_xprt_class_lock);
43static LIST_HEAD(svc_xprt_class_list);
44
45/* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76{
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94}
95EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98{
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103}
104EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106/*
107 * Format the transport list for printing
108 */
109int svc_print_xprts(char *buf, int maxlen)
110{
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130}
131
132static void svc_xprt_free(struct kref *kref)
133{
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147}
148
149void svc_xprt_put(struct svc_xprt *xprt)
150{
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152}
153EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155/*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161{
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 strcpy(xprt->xpt_remotebuf, "uninitialized");
177}
178EXPORT_SYMBOL_GPL(svc_xprt_init);
179
180static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 struct svc_serv *serv,
182 struct net *net,
183 const int family,
184 const unsigned short port,
185 int flags)
186{
187 struct sockaddr_in sin = {
188 .sin_family = AF_INET,
189 .sin_addr.s_addr = htonl(INADDR_ANY),
190 .sin_port = htons(port),
191 };
192#if IS_ENABLED(CONFIG_IPV6)
193 struct sockaddr_in6 sin6 = {
194 .sin6_family = AF_INET6,
195 .sin6_addr = IN6ADDR_ANY_INIT,
196 .sin6_port = htons(port),
197 };
198#endif
199 struct sockaddr *sap;
200 size_t len;
201
202 switch (family) {
203 case PF_INET:
204 sap = (struct sockaddr *)&sin;
205 len = sizeof(sin);
206 break;
207#if IS_ENABLED(CONFIG_IPV6)
208 case PF_INET6:
209 sap = (struct sockaddr *)&sin6;
210 len = sizeof(sin6);
211 break;
212#endif
213 default:
214 return ERR_PTR(-EAFNOSUPPORT);
215 }
216
217 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218}
219
220/*
221 * svc_xprt_received conditionally queues the transport for processing
222 * by another thread. The caller must hold the XPT_BUSY bit and must
223 * not thereafter touch transport data.
224 *
225 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226 * insufficient) data.
227 */
228static void svc_xprt_received(struct svc_xprt *xprt)
229{
230 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 return;
233 }
234
235 /* As soon as we clear busy, the xprt could be closed and
236 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 */
238 svc_xprt_get(xprt);
239 smp_mb__before_atomic();
240 clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 svc_xprt_put(xprt);
243}
244
245void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246{
247 clear_bit(XPT_TEMP, &new->xpt_flags);
248 spin_lock_bh(&serv->sv_lock);
249 list_add(&new->xpt_list, &serv->sv_permsocks);
250 spin_unlock_bh(&serv->sv_lock);
251 svc_xprt_received(new);
252}
253
254static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 struct net *net, const int family,
256 const unsigned short port, int flags)
257{
258 struct svc_xprt_class *xcl;
259
260 spin_lock(&svc_xprt_class_lock);
261 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
262 struct svc_xprt *newxprt;
263 unsigned short newport;
264
265 if (strcmp(xprt_name, xcl->xcl_name))
266 continue;
267
268 if (!try_module_get(xcl->xcl_owner))
269 goto err;
270
271 spin_unlock(&svc_xprt_class_lock);
272 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
273 if (IS_ERR(newxprt)) {
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 svc_add_new_perm_xprt(serv, newxprt);
278 newport = svc_xprt_local_port(newxprt);
279 return newport;
280 }
281 err:
282 spin_unlock(&svc_xprt_class_lock);
283 /* This errno is exposed to user space. Provide a reasonable
284 * perror msg for a bad transport. */
285 return -EPROTONOSUPPORT;
286}
287
288int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags)
291{
292 int err;
293
294 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
295 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
296 if (err == -EPROTONOSUPPORT) {
297 request_module("svc%s", xprt_name);
298 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 }
300 if (err)
301 dprintk("svc: transport %s not found, err %d\n",
302 xprt_name, err);
303 return err;
304}
305EXPORT_SYMBOL_GPL(svc_create_xprt);
306
307/*
308 * Copy the local and remote xprt addresses to the rqstp structure
309 */
310void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311{
312 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
313 rqstp->rq_addrlen = xprt->xpt_remotelen;
314
315 /*
316 * Destination address in request is needed for binding the
317 * source address in RPC replies/callbacks later.
318 */
319 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
320 rqstp->rq_daddrlen = xprt->xpt_locallen;
321}
322EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
323
324/**
325 * svc_print_addr - Format rq_addr field for printing
326 * @rqstp: svc_rqst struct containing address to print
327 * @buf: target buffer for formatted address
328 * @len: length of target buffer
329 *
330 */
331char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332{
333 return __svc_print_addr(svc_addr(rqstp), buf, len);
334}
335EXPORT_SYMBOL_GPL(svc_print_addr);
336
337static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338{
339 unsigned int limit = svc_rpc_per_connection_limit;
340 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341
342 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
343}
344
345static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346{
347 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
348 if (!svc_xprt_slots_in_range(xprt))
349 return false;
350 atomic_inc(&xprt->xpt_nr_rqsts);
351 set_bit(RQ_DATA, &rqstp->rq_flags);
352 }
353 return true;
354}
355
356static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357{
358 struct svc_xprt *xprt = rqstp->rq_xprt;
359 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
360 atomic_dec(&xprt->xpt_nr_rqsts);
361 svc_xprt_enqueue(xprt);
362 }
363}
364
365static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366{
367 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
368 return true;
369 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
370 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
371 svc_xprt_slots_in_range(xprt))
372 return true;
373 trace_svc_xprt_no_write_space(xprt);
374 return false;
375 }
376 return false;
377}
378
379void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380{
381 struct svc_pool *pool;
382 struct svc_rqst *rqstp = NULL;
383 int cpu;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 return;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
394 return;
395
396 cpu = get_cpu();
397 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
398
399 atomic_long_inc(&pool->sp_stats.packets);
400
401 spin_lock_bh(&pool->sp_lock);
402 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
403 pool->sp_stats.sockets_queued++;
404 spin_unlock_bh(&pool->sp_lock);
405
406 /* find a thread for this xprt */
407 rcu_read_lock();
408 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
409 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411 atomic_long_inc(&pool->sp_stats.threads_woken);
412 rqstp->rq_qtime = ktime_get();
413 wake_up_process(rqstp->rq_task);
414 goto out_unlock;
415 }
416 set_bit(SP_CONGESTED, &pool->sp_flags);
417 rqstp = NULL;
418out_unlock:
419 rcu_read_unlock();
420 put_cpu();
421 trace_svc_xprt_do_enqueue(xprt, rqstp);
422}
423EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
424
425/*
426 * Queue up a transport with data pending. If there are idle nfsd
427 * processes, wake 'em up.
428 *
429 */
430void svc_xprt_enqueue(struct svc_xprt *xprt)
431{
432 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
433 return;
434 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435}
436EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
437
438/*
439 * Dequeue the first transport, if there is one.
440 */
441static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442{
443 struct svc_xprt *xprt = NULL;
444
445 if (list_empty(&pool->sp_sockets))
446 goto out;
447
448 spin_lock_bh(&pool->sp_lock);
449 if (likely(!list_empty(&pool->sp_sockets))) {
450 xprt = list_first_entry(&pool->sp_sockets,
451 struct svc_xprt, xpt_ready);
452 list_del_init(&xprt->xpt_ready);
453 svc_xprt_get(xprt);
454 }
455 spin_unlock_bh(&pool->sp_lock);
456out:
457 return xprt;
458}
459
460/**
461 * svc_reserve - change the space reserved for the reply to a request.
462 * @rqstp: The request in question
463 * @space: new max space to reserve
464 *
465 * Each request reserves some space on the output queue of the transport
466 * to make sure the reply fits. This function reduces that reserved
467 * space to be the amount of space used already, plus @space.
468 *
469 */
470void svc_reserve(struct svc_rqst *rqstp, int space)
471{
472 struct svc_xprt *xprt = rqstp->rq_xprt;
473
474 space += rqstp->rq_res.head[0].iov_len;
475
476 if (xprt && space < rqstp->rq_reserved) {
477 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
478 rqstp->rq_reserved = space;
479
480 svc_xprt_enqueue(xprt);
481 }
482}
483EXPORT_SYMBOL_GPL(svc_reserve);
484
485static void svc_xprt_release(struct svc_rqst *rqstp)
486{
487 struct svc_xprt *xprt = rqstp->rq_xprt;
488
489 xprt->xpt_ops->xpo_release_rqst(rqstp);
490
491 kfree(rqstp->rq_deferred);
492 rqstp->rq_deferred = NULL;
493
494 svc_free_res_pages(rqstp);
495 rqstp->rq_res.page_len = 0;
496 rqstp->rq_res.page_base = 0;
497
498 /* Reset response buffer and release
499 * the reservation.
500 * But first, check that enough space was reserved
501 * for the reply, otherwise we have a bug!
502 */
503 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
504 printk(KERN_ERR "RPC request reserved %d but used %d\n",
505 rqstp->rq_reserved,
506 rqstp->rq_res.len);
507
508 rqstp->rq_res.head[0].iov_len = 0;
509 svc_reserve(rqstp, 0);
510 svc_xprt_release_slot(rqstp);
511 rqstp->rq_xprt = NULL;
512 svc_xprt_put(xprt);
513}
514
515/*
516 * Some svc_serv's will have occasional work to do, even when a xprt is not
517 * waiting to be serviced. This function is there to "kick" a task in one of
518 * those services so that it can wake up and do that work. Note that we only
519 * bother with pool 0 as we don't need to wake up more than one thread for
520 * this purpose.
521 */
522void svc_wake_up(struct svc_serv *serv)
523{
524 struct svc_rqst *rqstp;
525 struct svc_pool *pool;
526
527 pool = &serv->sv_pools[0];
528
529 rcu_read_lock();
530 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
531 /* skip any that aren't queued */
532 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
533 continue;
534 rcu_read_unlock();
535 wake_up_process(rqstp->rq_task);
536 trace_svc_wake_up(rqstp->rq_task->pid);
537 return;
538 }
539 rcu_read_unlock();
540
541 /* No free entries available */
542 set_bit(SP_TASK_PENDING, &pool->sp_flags);
543 smp_wmb();
544 trace_svc_wake_up(0);
545}
546EXPORT_SYMBOL_GPL(svc_wake_up);
547
548int svc_port_is_privileged(struct sockaddr *sin)
549{
550 switch (sin->sa_family) {
551 case AF_INET:
552 return ntohs(((struct sockaddr_in *)sin)->sin_port)
553 < PROT_SOCK;
554 case AF_INET6:
555 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
556 < PROT_SOCK;
557 default:
558 return 0;
559 }
560}
561
562/*
563 * Make sure that we don't have too many active connections. If we have,
564 * something must be dropped. It's not clear what will happen if we allow
565 * "too many" connections, but when dealing with network-facing software,
566 * we have to code defensively. Here we do that by imposing hard limits.
567 *
568 * There's no point in trying to do random drop here for DoS
569 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
570 * attacker can easily beat that.
571 *
572 * The only somewhat efficient mechanism would be if drop old
573 * connections from the same IP first. But right now we don't even
574 * record the client IP in svc_sock.
575 *
576 * single-threaded services that expect a lot of clients will probably
577 * need to set sv_maxconn to override the default value which is based
578 * on the number of threads
579 */
580static void svc_check_conn_limits(struct svc_serv *serv)
581{
582 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
583 (serv->sv_nrthreads+3) * 20;
584
585 if (serv->sv_tmpcnt > limit) {
586 struct svc_xprt *xprt = NULL;
587 spin_lock_bh(&serv->sv_lock);
588 if (!list_empty(&serv->sv_tempsocks)) {
589 /* Try to help the admin */
590 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
591 serv->sv_name, serv->sv_maxconn ?
592 "max number of connections" :
593 "number of threads");
594 /*
595 * Always select the oldest connection. It's not fair,
596 * but so is life
597 */
598 xprt = list_entry(serv->sv_tempsocks.prev,
599 struct svc_xprt,
600 xpt_list);
601 set_bit(XPT_CLOSE, &xprt->xpt_flags);
602 svc_xprt_get(xprt);
603 }
604 spin_unlock_bh(&serv->sv_lock);
605
606 if (xprt) {
607 svc_xprt_enqueue(xprt);
608 svc_xprt_put(xprt);
609 }
610 }
611}
612
613static int svc_alloc_arg(struct svc_rqst *rqstp)
614{
615 struct svc_serv *serv = rqstp->rq_server;
616 struct xdr_buf *arg;
617 int pages;
618 int i;
619
620 /* now allocate needed pages. If we get a failure, sleep briefly */
621 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
622 if (pages > RPCSVC_MAXPAGES) {
623 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
624 pages, RPCSVC_MAXPAGES);
625 /* use as many pages as possible */
626 pages = RPCSVC_MAXPAGES;
627 }
628 for (i = 0; i < pages ; i++)
629 while (rqstp->rq_pages[i] == NULL) {
630 struct page *p = alloc_page(GFP_KERNEL);
631 if (!p) {
632 set_current_state(TASK_INTERRUPTIBLE);
633 if (signalled() || kthread_should_stop()) {
634 set_current_state(TASK_RUNNING);
635 return -EINTR;
636 }
637 schedule_timeout(msecs_to_jiffies(500));
638 }
639 rqstp->rq_pages[i] = p;
640 }
641 rqstp->rq_page_end = &rqstp->rq_pages[i];
642 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
643
644 /* Make arg->head point to first page and arg->pages point to rest */
645 arg = &rqstp->rq_arg;
646 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
647 arg->head[0].iov_len = PAGE_SIZE;
648 arg->pages = rqstp->rq_pages + 1;
649 arg->page_base = 0;
650 /* save at least one page for response */
651 arg->page_len = (pages-2)*PAGE_SIZE;
652 arg->len = (pages-1)*PAGE_SIZE;
653 arg->tail[0].iov_len = 0;
654 return 0;
655}
656
657static bool
658rqst_should_sleep(struct svc_rqst *rqstp)
659{
660 struct svc_pool *pool = rqstp->rq_pool;
661
662 /* did someone call svc_wake_up? */
663 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
664 return false;
665
666 /* was a socket queued? */
667 if (!list_empty(&pool->sp_sockets))
668 return false;
669
670 /* are we shutting down? */
671 if (signalled() || kthread_should_stop())
672 return false;
673
674 /* are we freezing? */
675 if (freezing(current))
676 return false;
677
678 return true;
679}
680
681static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
682{
683 struct svc_pool *pool = rqstp->rq_pool;
684 long time_left = 0;
685
686 /* rq_xprt should be clear on entry */
687 WARN_ON_ONCE(rqstp->rq_xprt);
688
689 rqstp->rq_xprt = svc_xprt_dequeue(pool);
690 if (rqstp->rq_xprt)
691 goto out_found;
692
693 /*
694 * We have to be able to interrupt this wait
695 * to bring down the daemons ...
696 */
697 set_current_state(TASK_INTERRUPTIBLE);
698 smp_mb__before_atomic();
699 clear_bit(SP_CONGESTED, &pool->sp_flags);
700 clear_bit(RQ_BUSY, &rqstp->rq_flags);
701 smp_mb__after_atomic();
702
703 if (likely(rqst_should_sleep(rqstp)))
704 time_left = schedule_timeout(timeout);
705 else
706 __set_current_state(TASK_RUNNING);
707
708 try_to_freeze();
709
710 set_bit(RQ_BUSY, &rqstp->rq_flags);
711 smp_mb__after_atomic();
712 rqstp->rq_xprt = svc_xprt_dequeue(pool);
713 if (rqstp->rq_xprt)
714 goto out_found;
715
716 if (!time_left)
717 atomic_long_inc(&pool->sp_stats.threads_timedout);
718
719 if (signalled() || kthread_should_stop())
720 return ERR_PTR(-EINTR);
721 return ERR_PTR(-EAGAIN);
722out_found:
723 /* Normally we will wait up to 5 seconds for any required
724 * cache information to be provided.
725 */
726 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
727 rqstp->rq_chandle.thread_wait = 5*HZ;
728 else
729 rqstp->rq_chandle.thread_wait = 1*HZ;
730 trace_svc_xprt_dequeue(rqstp);
731 return rqstp->rq_xprt;
732}
733
734static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
735{
736 spin_lock_bh(&serv->sv_lock);
737 set_bit(XPT_TEMP, &newxpt->xpt_flags);
738 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
739 serv->sv_tmpcnt++;
740 if (serv->sv_temptimer.function == NULL) {
741 /* setup timer to age temp transports */
742 serv->sv_temptimer.function = svc_age_temp_xprts;
743 mod_timer(&serv->sv_temptimer,
744 jiffies + svc_conn_age_period * HZ);
745 }
746 spin_unlock_bh(&serv->sv_lock);
747 svc_xprt_received(newxpt);
748}
749
750static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
751{
752 struct svc_serv *serv = rqstp->rq_server;
753 int len = 0;
754
755 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
756 dprintk("svc_recv: found XPT_CLOSE\n");
757 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
758 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
759 svc_delete_xprt(xprt);
760 /* Leave XPT_BUSY set on the dead xprt: */
761 goto out;
762 }
763 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
764 struct svc_xprt *newxpt;
765 /*
766 * We know this module_get will succeed because the
767 * listener holds a reference too
768 */
769 __module_get(xprt->xpt_class->xcl_owner);
770 svc_check_conn_limits(xprt->xpt_server);
771 newxpt = xprt->xpt_ops->xpo_accept(xprt);
772 if (newxpt)
773 svc_add_new_temp_xprt(serv, newxpt);
774 else
775 module_put(xprt->xpt_class->xcl_owner);
776 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
777 /* XPT_DATA|XPT_DEFERRED case: */
778 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
779 rqstp, rqstp->rq_pool->sp_id, xprt,
780 kref_read(&xprt->xpt_ref));
781 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
782 if (rqstp->rq_deferred)
783 len = svc_deferred_recv(rqstp);
784 else
785 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
786 rqstp->rq_stime = ktime_get();
787 rqstp->rq_reserved = serv->sv_max_mesg;
788 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
789 }
790 /* clear XPT_BUSY: */
791 svc_xprt_received(xprt);
792out:
793 trace_svc_handle_xprt(xprt, len);
794 return len;
795}
796
797/*
798 * Receive the next request on any transport. This code is carefully
799 * organised not to touch any cachelines in the shared svc_serv
800 * structure, only cachelines in the local svc_pool.
801 */
802int svc_recv(struct svc_rqst *rqstp, long timeout)
803{
804 struct svc_xprt *xprt = NULL;
805 struct svc_serv *serv = rqstp->rq_server;
806 int len, err;
807
808 dprintk("svc: server %p waiting for data (to = %ld)\n",
809 rqstp, timeout);
810
811 if (rqstp->rq_xprt)
812 printk(KERN_ERR
813 "svc_recv: service %p, transport not NULL!\n",
814 rqstp);
815
816 err = svc_alloc_arg(rqstp);
817 if (err)
818 goto out;
819
820 try_to_freeze();
821 cond_resched();
822 err = -EINTR;
823 if (signalled() || kthread_should_stop())
824 goto out;
825
826 xprt = svc_get_next_xprt(rqstp, timeout);
827 if (IS_ERR(xprt)) {
828 err = PTR_ERR(xprt);
829 goto out;
830 }
831
832 len = svc_handle_xprt(rqstp, xprt);
833
834 /* No data, incomplete (TCP) read, or accept() */
835 err = -EAGAIN;
836 if (len <= 0)
837 goto out_release;
838
839 clear_bit(XPT_OLD, &xprt->xpt_flags);
840
841 xprt->xpt_ops->xpo_secure_port(rqstp);
842 rqstp->rq_chandle.defer = svc_defer;
843 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
844
845 if (serv->sv_stats)
846 serv->sv_stats->netcnt++;
847 trace_svc_recv(rqstp, len);
848 return len;
849out_release:
850 rqstp->rq_res.len = 0;
851 svc_xprt_release(rqstp);
852out:
853 return err;
854}
855EXPORT_SYMBOL_GPL(svc_recv);
856
857/*
858 * Drop request
859 */
860void svc_drop(struct svc_rqst *rqstp)
861{
862 trace_svc_drop(rqstp);
863 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
864 svc_xprt_release(rqstp);
865}
866EXPORT_SYMBOL_GPL(svc_drop);
867
868/*
869 * Return reply to client.
870 */
871int svc_send(struct svc_rqst *rqstp)
872{
873 struct svc_xprt *xprt;
874 int len = -EFAULT;
875 struct xdr_buf *xb;
876
877 xprt = rqstp->rq_xprt;
878 if (!xprt)
879 goto out;
880
881 /* release the receive skb before sending the reply */
882 xprt->xpt_ops->xpo_release_rqst(rqstp);
883
884 /* calculate over-all length */
885 xb = &rqstp->rq_res;
886 xb->len = xb->head[0].iov_len +
887 xb->page_len +
888 xb->tail[0].iov_len;
889
890 /* Grab mutex to serialize outgoing data. */
891 mutex_lock(&xprt->xpt_mutex);
892 trace_svc_stats_latency(rqstp);
893 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
894 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
895 len = -ENOTCONN;
896 else
897 len = xprt->xpt_ops->xpo_sendto(rqstp);
898 mutex_unlock(&xprt->xpt_mutex);
899 rpc_wake_up(&xprt->xpt_bc_pending);
900 trace_svc_send(rqstp, len);
901 svc_xprt_release(rqstp);
902
903 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
904 len = 0;
905out:
906 return len;
907}
908
909/*
910 * Timer function to close old temporary transports, using
911 * a mark-and-sweep algorithm.
912 */
913static void svc_age_temp_xprts(struct timer_list *t)
914{
915 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
916 struct svc_xprt *xprt;
917 struct list_head *le, *next;
918
919 dprintk("svc_age_temp_xprts\n");
920
921 if (!spin_trylock_bh(&serv->sv_lock)) {
922 /* busy, try again 1 sec later */
923 dprintk("svc_age_temp_xprts: busy\n");
924 mod_timer(&serv->sv_temptimer, jiffies + HZ);
925 return;
926 }
927
928 list_for_each_safe(le, next, &serv->sv_tempsocks) {
929 xprt = list_entry(le, struct svc_xprt, xpt_list);
930
931 /* First time through, just mark it OLD. Second time
932 * through, close it. */
933 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
934 continue;
935 if (kref_read(&xprt->xpt_ref) > 1 ||
936 test_bit(XPT_BUSY, &xprt->xpt_flags))
937 continue;
938 list_del_init(le);
939 set_bit(XPT_CLOSE, &xprt->xpt_flags);
940 dprintk("queuing xprt %p for closing\n", xprt);
941
942 /* a thread will dequeue and close it soon */
943 svc_xprt_enqueue(xprt);
944 }
945 spin_unlock_bh(&serv->sv_lock);
946
947 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
948}
949
950/* Close temporary transports whose xpt_local matches server_addr immediately
951 * instead of waiting for them to be picked up by the timer.
952 *
953 * This is meant to be called from a notifier_block that runs when an ip
954 * address is deleted.
955 */
956void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
957{
958 struct svc_xprt *xprt;
959 struct list_head *le, *next;
960 LIST_HEAD(to_be_closed);
961
962 spin_lock_bh(&serv->sv_lock);
963 list_for_each_safe(le, next, &serv->sv_tempsocks) {
964 xprt = list_entry(le, struct svc_xprt, xpt_list);
965 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
966 &xprt->xpt_local)) {
967 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
968 list_move(le, &to_be_closed);
969 }
970 }
971 spin_unlock_bh(&serv->sv_lock);
972
973 while (!list_empty(&to_be_closed)) {
974 le = to_be_closed.next;
975 list_del_init(le);
976 xprt = list_entry(le, struct svc_xprt, xpt_list);
977 set_bit(XPT_CLOSE, &xprt->xpt_flags);
978 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
979 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
980 xprt);
981 svc_xprt_enqueue(xprt);
982 }
983}
984EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
985
986static void call_xpt_users(struct svc_xprt *xprt)
987{
988 struct svc_xpt_user *u;
989
990 spin_lock(&xprt->xpt_lock);
991 while (!list_empty(&xprt->xpt_users)) {
992 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
993 list_del_init(&u->list);
994 u->callback(u);
995 }
996 spin_unlock(&xprt->xpt_lock);
997}
998
999/*
1000 * Remove a dead transport
1001 */
1002static void svc_delete_xprt(struct svc_xprt *xprt)
1003{
1004 struct svc_serv *serv = xprt->xpt_server;
1005 struct svc_deferred_req *dr;
1006
1007 /* Only do this once */
1008 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1009 BUG();
1010
1011 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1012 xprt->xpt_ops->xpo_detach(xprt);
1013
1014 spin_lock_bh(&serv->sv_lock);
1015 list_del_init(&xprt->xpt_list);
1016 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1017 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1018 serv->sv_tmpcnt--;
1019 spin_unlock_bh(&serv->sv_lock);
1020
1021 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1022 kfree(dr);
1023
1024 call_xpt_users(xprt);
1025 svc_xprt_put(xprt);
1026}
1027
1028void svc_close_xprt(struct svc_xprt *xprt)
1029{
1030 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1031 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1032 /* someone else will have to effect the close */
1033 return;
1034 /*
1035 * We expect svc_close_xprt() to work even when no threads are
1036 * running (e.g., while configuring the server before starting
1037 * any threads), so if the transport isn't busy, we delete
1038 * it ourself:
1039 */
1040 svc_delete_xprt(xprt);
1041}
1042EXPORT_SYMBOL_GPL(svc_close_xprt);
1043
1044static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1045{
1046 struct svc_xprt *xprt;
1047 int ret = 0;
1048
1049 spin_lock(&serv->sv_lock);
1050 list_for_each_entry(xprt, xprt_list, xpt_list) {
1051 if (xprt->xpt_net != net)
1052 continue;
1053 ret++;
1054 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 svc_xprt_enqueue(xprt);
1056 }
1057 spin_unlock(&serv->sv_lock);
1058 return ret;
1059}
1060
1061static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1062{
1063 struct svc_pool *pool;
1064 struct svc_xprt *xprt;
1065 struct svc_xprt *tmp;
1066 int i;
1067
1068 for (i = 0; i < serv->sv_nrpools; i++) {
1069 pool = &serv->sv_pools[i];
1070
1071 spin_lock_bh(&pool->sp_lock);
1072 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1073 if (xprt->xpt_net != net)
1074 continue;
1075 list_del_init(&xprt->xpt_ready);
1076 spin_unlock_bh(&pool->sp_lock);
1077 return xprt;
1078 }
1079 spin_unlock_bh(&pool->sp_lock);
1080 }
1081 return NULL;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086 struct svc_xprt *xprt;
1087
1088 while ((xprt = svc_dequeue_net(serv, net))) {
1089 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1090 svc_delete_xprt(xprt);
1091 }
1092}
1093
1094/*
1095 * Server threads may still be running (especially in the case where the
1096 * service is still running in other network namespaces).
1097 *
1098 * So we shut down sockets the same way we would on a running server, by
1099 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1100 * the close. In the case there are no such other threads,
1101 * threads running, svc_clean_up_xprts() does a simple version of a
1102 * server's main event loop, and in the case where there are other
1103 * threads, we may need to wait a little while and then check again to
1104 * see if they're done.
1105 */
1106void svc_close_net(struct svc_serv *serv, struct net *net)
1107{
1108 int delay = 0;
1109
1110 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1111 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1112
1113 svc_clean_up_xprts(serv, net);
1114 msleep(delay++);
1115 }
1116}
1117
1118/*
1119 * Handle defer and revisit of requests
1120 */
1121
1122static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1123{
1124 struct svc_deferred_req *dr =
1125 container_of(dreq, struct svc_deferred_req, handle);
1126 struct svc_xprt *xprt = dr->xprt;
1127
1128 spin_lock(&xprt->xpt_lock);
1129 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1130 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1131 spin_unlock(&xprt->xpt_lock);
1132 dprintk("revisit canceled\n");
1133 svc_xprt_put(xprt);
1134 trace_svc_drop_deferred(dr);
1135 kfree(dr);
1136 return;
1137 }
1138 dprintk("revisit queued\n");
1139 dr->xprt = NULL;
1140 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1141 spin_unlock(&xprt->xpt_lock);
1142 svc_xprt_enqueue(xprt);
1143 svc_xprt_put(xprt);
1144}
1145
1146/*
1147 * Save the request off for later processing. The request buffer looks
1148 * like this:
1149 *
1150 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1151 *
1152 * This code can only handle requests that consist of an xprt-header
1153 * and rpc-header.
1154 */
1155static struct cache_deferred_req *svc_defer(struct cache_req *req)
1156{
1157 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1158 struct svc_deferred_req *dr;
1159
1160 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1161 return NULL; /* if more than a page, give up FIXME */
1162 if (rqstp->rq_deferred) {
1163 dr = rqstp->rq_deferred;
1164 rqstp->rq_deferred = NULL;
1165 } else {
1166 size_t skip;
1167 size_t size;
1168 /* FIXME maybe discard if size too large */
1169 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1170 dr = kmalloc(size, GFP_KERNEL);
1171 if (dr == NULL)
1172 return NULL;
1173
1174 dr->handle.owner = rqstp->rq_server;
1175 dr->prot = rqstp->rq_prot;
1176 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1177 dr->addrlen = rqstp->rq_addrlen;
1178 dr->daddr = rqstp->rq_daddr;
1179 dr->argslen = rqstp->rq_arg.len >> 2;
1180 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1181
1182 /* back up head to the start of the buffer and copy */
1183 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1184 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1185 dr->argslen << 2);
1186 }
1187 svc_xprt_get(rqstp->rq_xprt);
1188 dr->xprt = rqstp->rq_xprt;
1189 set_bit(RQ_DROPME, &rqstp->rq_flags);
1190
1191 dr->handle.revisit = svc_revisit;
1192 trace_svc_defer(rqstp);
1193 return &dr->handle;
1194}
1195
1196/*
1197 * recv data from a deferred request into an active one
1198 */
1199static int svc_deferred_recv(struct svc_rqst *rqstp)
1200{
1201 struct svc_deferred_req *dr = rqstp->rq_deferred;
1202
1203 /* setup iov_base past transport header */
1204 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1205 /* The iov_len does not include the transport header bytes */
1206 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1207 rqstp->rq_arg.page_len = 0;
1208 /* The rq_arg.len includes the transport header bytes */
1209 rqstp->rq_arg.len = dr->argslen<<2;
1210 rqstp->rq_prot = dr->prot;
1211 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1212 rqstp->rq_addrlen = dr->addrlen;
1213 /* Save off transport header len in case we get deferred again */
1214 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1215 rqstp->rq_daddr = dr->daddr;
1216 rqstp->rq_respages = rqstp->rq_pages;
1217 return (dr->argslen<<2) - dr->xprt_hlen;
1218}
1219
1220
1221static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1222{
1223 struct svc_deferred_req *dr = NULL;
1224
1225 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1226 return NULL;
1227 spin_lock(&xprt->xpt_lock);
1228 if (!list_empty(&xprt->xpt_deferred)) {
1229 dr = list_entry(xprt->xpt_deferred.next,
1230 struct svc_deferred_req,
1231 handle.recent);
1232 list_del_init(&dr->handle.recent);
1233 trace_svc_revisit_deferred(dr);
1234 } else
1235 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1236 spin_unlock(&xprt->xpt_lock);
1237 return dr;
1238}
1239
1240/**
1241 * svc_find_xprt - find an RPC transport instance
1242 * @serv: pointer to svc_serv to search
1243 * @xcl_name: C string containing transport's class name
1244 * @net: owner net pointer
1245 * @af: Address family of transport's local address
1246 * @port: transport's IP port number
1247 *
1248 * Return the transport instance pointer for the endpoint accepting
1249 * connections/peer traffic from the specified transport class,
1250 * address family and port.
1251 *
1252 * Specifying 0 for the address family or port is effectively a
1253 * wild-card, and will result in matching the first transport in the
1254 * service's list that has a matching class name.
1255 */
1256struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1257 struct net *net, const sa_family_t af,
1258 const unsigned short port)
1259{
1260 struct svc_xprt *xprt;
1261 struct svc_xprt *found = NULL;
1262
1263 /* Sanity check the args */
1264 if (serv == NULL || xcl_name == NULL)
1265 return found;
1266
1267 spin_lock_bh(&serv->sv_lock);
1268 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1269 if (xprt->xpt_net != net)
1270 continue;
1271 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1272 continue;
1273 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1274 continue;
1275 if (port != 0 && port != svc_xprt_local_port(xprt))
1276 continue;
1277 found = xprt;
1278 svc_xprt_get(xprt);
1279 break;
1280 }
1281 spin_unlock_bh(&serv->sv_lock);
1282 return found;
1283}
1284EXPORT_SYMBOL_GPL(svc_find_xprt);
1285
1286static int svc_one_xprt_name(const struct svc_xprt *xprt,
1287 char *pos, int remaining)
1288{
1289 int len;
1290
1291 len = snprintf(pos, remaining, "%s %u\n",
1292 xprt->xpt_class->xcl_name,
1293 svc_xprt_local_port(xprt));
1294 if (len >= remaining)
1295 return -ENAMETOOLONG;
1296 return len;
1297}
1298
1299/**
1300 * svc_xprt_names - format a buffer with a list of transport names
1301 * @serv: pointer to an RPC service
1302 * @buf: pointer to a buffer to be filled in
1303 * @buflen: length of buffer to be filled in
1304 *
1305 * Fills in @buf with a string containing a list of transport names,
1306 * each name terminated with '\n'.
1307 *
1308 * Returns positive length of the filled-in string on success; otherwise
1309 * a negative errno value is returned if an error occurs.
1310 */
1311int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1312{
1313 struct svc_xprt *xprt;
1314 int len, totlen;
1315 char *pos;
1316
1317 /* Sanity check args */
1318 if (!serv)
1319 return 0;
1320
1321 spin_lock_bh(&serv->sv_lock);
1322
1323 pos = buf;
1324 totlen = 0;
1325 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1326 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1327 if (len < 0) {
1328 *buf = '\0';
1329 totlen = len;
1330 }
1331 if (len <= 0)
1332 break;
1333
1334 pos += len;
1335 totlen += len;
1336 }
1337
1338 spin_unlock_bh(&serv->sv_lock);
1339 return totlen;
1340}
1341EXPORT_SYMBOL_GPL(svc_xprt_names);
1342
1343
1344/*----------------------------------------------------------------------------*/
1345
1346static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1347{
1348 unsigned int pidx = (unsigned int)*pos;
1349 struct svc_serv *serv = m->private;
1350
1351 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1352
1353 if (!pidx)
1354 return SEQ_START_TOKEN;
1355 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1356}
1357
1358static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1359{
1360 struct svc_pool *pool = p;
1361 struct svc_serv *serv = m->private;
1362
1363 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1364
1365 if (p == SEQ_START_TOKEN) {
1366 pool = &serv->sv_pools[0];
1367 } else {
1368 unsigned int pidx = (pool - &serv->sv_pools[0]);
1369 if (pidx < serv->sv_nrpools-1)
1370 pool = &serv->sv_pools[pidx+1];
1371 else
1372 pool = NULL;
1373 }
1374 ++*pos;
1375 return pool;
1376}
1377
1378static void svc_pool_stats_stop(struct seq_file *m, void *p)
1379{
1380}
1381
1382static int svc_pool_stats_show(struct seq_file *m, void *p)
1383{
1384 struct svc_pool *pool = p;
1385
1386 if (p == SEQ_START_TOKEN) {
1387 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1388 return 0;
1389 }
1390
1391 seq_printf(m, "%u %lu %lu %lu %lu\n",
1392 pool->sp_id,
1393 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1394 pool->sp_stats.sockets_queued,
1395 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1396 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1397
1398 return 0;
1399}
1400
1401static const struct seq_operations svc_pool_stats_seq_ops = {
1402 .start = svc_pool_stats_start,
1403 .next = svc_pool_stats_next,
1404 .stop = svc_pool_stats_stop,
1405 .show = svc_pool_stats_show,
1406};
1407
1408int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1409{
1410 int err;
1411
1412 err = seq_open(file, &svc_pool_stats_seq_ops);
1413 if (!err)
1414 ((struct seq_file *) file->private_data)->private = serv;
1415 return err;
1416}
1417EXPORT_SYMBOL(svc_pool_stats_open);
1418
1419/*----------------------------------------------------------------------------*/