| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * This file implements KASLR memory randomization for x86_64. It randomizes | 
 | 4 |  * the virtual address space of kernel memory regions (physical memory | 
 | 5 |  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates | 
 | 6 |  * exploits relying on predictable kernel addresses. | 
 | 7 |  * | 
 | 8 |  * Entropy is generated using the KASLR early boot functions now shared in | 
 | 9 |  * the lib directory (originally written by Kees Cook). Randomization is | 
 | 10 |  * done on PGD & P4D/PUD page table levels to increase possible addresses. | 
 | 11 |  * The physical memory mapping code was adapted to support P4D/PUD level | 
 | 12 |  * virtual addresses. This implementation on the best configuration provides | 
 | 13 |  * 30,000 possible virtual addresses in average for each memory region. | 
 | 14 |  * An additional low memory page is used to ensure each CPU can start with | 
 | 15 |  * a PGD aligned virtual address (for realmode). | 
 | 16 |  * | 
 | 17 |  * The order of each memory region is not changed. The feature looks at | 
 | 18 |  * the available space for the regions based on different configuration | 
 | 19 |  * options and randomizes the base and space between each. The size of the | 
 | 20 |  * physical memory mapping is the available physical memory. | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | #include <linux/kernel.h> | 
 | 24 | #include <linux/init.h> | 
 | 25 | #include <linux/random.h> | 
 | 26 |  | 
 | 27 | #include <asm/pgalloc.h> | 
 | 28 | #include <asm/pgtable.h> | 
 | 29 | #include <asm/setup.h> | 
 | 30 | #include <asm/kaslr.h> | 
 | 31 |  | 
 | 32 | #include "mm_internal.h" | 
 | 33 |  | 
 | 34 | #define TB_SHIFT 40 | 
 | 35 |  | 
 | 36 | /* | 
 | 37 |  * The end address could depend on more configuration options to make the | 
 | 38 |  * highest amount of space for randomization available, but that's too hard | 
 | 39 |  * to keep straight and caused issues already. | 
 | 40 |  */ | 
 | 41 | static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; | 
 | 42 |  | 
 | 43 | /* | 
 | 44 |  * Memory regions randomized by KASLR (except modules that use a separate logic | 
 | 45 |  * earlier during boot). The list is ordered based on virtual addresses. This | 
 | 46 |  * order is kept after randomization. | 
 | 47 |  */ | 
 | 48 | static __initdata struct kaslr_memory_region { | 
 | 49 | 	unsigned long *base; | 
 | 50 | 	unsigned long size_tb; | 
 | 51 | } kaslr_regions[] = { | 
 | 52 | 	{ &page_offset_base, 0 }, | 
 | 53 | 	{ &vmalloc_base, 0 }, | 
 | 54 | 	{ &vmemmap_base, 0 }, | 
 | 55 | }; | 
 | 56 |  | 
 | 57 | /* Get size in bytes used by the memory region */ | 
 | 58 | static inline unsigned long get_padding(struct kaslr_memory_region *region) | 
 | 59 | { | 
 | 60 | 	return (region->size_tb << TB_SHIFT); | 
 | 61 | } | 
 | 62 |  | 
 | 63 | /* | 
 | 64 |  * Apply no randomization if KASLR was disabled at boot or if KASAN | 
 | 65 |  * is enabled. KASAN shadow mappings rely on regions being PGD aligned. | 
 | 66 |  */ | 
 | 67 | static inline bool kaslr_memory_enabled(void) | 
 | 68 | { | 
 | 69 | 	return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN); | 
 | 70 | } | 
 | 71 |  | 
 | 72 | /* Initialize base and padding for each memory region randomized with KASLR */ | 
 | 73 | void __init kernel_randomize_memory(void) | 
 | 74 | { | 
 | 75 | 	size_t i; | 
 | 76 | 	unsigned long vaddr_start, vaddr; | 
 | 77 | 	unsigned long rand, memory_tb; | 
 | 78 | 	struct rnd_state rand_state; | 
 | 79 | 	unsigned long remain_entropy; | 
 | 80 | 	unsigned long vmemmap_size; | 
 | 81 |  | 
 | 82 | 	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; | 
 | 83 | 	vaddr = vaddr_start; | 
 | 84 |  | 
 | 85 | 	/* | 
 | 86 | 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent | 
 | 87 | 	 * with the vaddr_start/vaddr_end variables. These checks are very | 
 | 88 | 	 * limited.... | 
 | 89 | 	 */ | 
 | 90 | 	BUILD_BUG_ON(vaddr_start >= vaddr_end); | 
 | 91 | 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); | 
 | 92 | 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); | 
 | 93 |  | 
 | 94 | 	if (!kaslr_memory_enabled()) | 
 | 95 | 		return; | 
 | 96 |  | 
 | 97 | 	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT); | 
 | 98 | 	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; | 
 | 99 |  | 
 | 100 | 	/* | 
 | 101 | 	 * Update Physical memory mapping to available and | 
 | 102 | 	 * add padding if needed (especially for memory hotplug support). | 
 | 103 | 	 */ | 
 | 104 | 	BUG_ON(kaslr_regions[0].base != &page_offset_base); | 
 | 105 | 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + | 
 | 106 | 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; | 
 | 107 |  | 
 | 108 | 	/* Adapt phyiscal memory region size based on available memory */ | 
 | 109 | 	if (memory_tb < kaslr_regions[0].size_tb) | 
 | 110 | 		kaslr_regions[0].size_tb = memory_tb; | 
 | 111 |  | 
 | 112 | 	/* | 
 | 113 | 	 * Calculate the vmemmap region size in TBs, aligned to a TB | 
 | 114 | 	 * boundary. | 
 | 115 | 	 */ | 
 | 116 | 	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) * | 
 | 117 | 			sizeof(struct page); | 
 | 118 | 	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT); | 
 | 119 |  | 
 | 120 | 	/* Calculate entropy available between regions */ | 
 | 121 | 	remain_entropy = vaddr_end - vaddr_start; | 
 | 122 | 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) | 
 | 123 | 		remain_entropy -= get_padding(&kaslr_regions[i]); | 
 | 124 |  | 
 | 125 | 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); | 
 | 126 |  | 
 | 127 | 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { | 
 | 128 | 		unsigned long entropy; | 
 | 129 |  | 
 | 130 | 		/* | 
 | 131 | 		 * Select a random virtual address using the extra entropy | 
 | 132 | 		 * available. | 
 | 133 | 		 */ | 
 | 134 | 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); | 
 | 135 | 		prandom_bytes_state(&rand_state, &rand, sizeof(rand)); | 
 | 136 | 		if (pgtable_l5_enabled()) | 
 | 137 | 			entropy = (rand % (entropy + 1)) & P4D_MASK; | 
 | 138 | 		else | 
 | 139 | 			entropy = (rand % (entropy + 1)) & PUD_MASK; | 
 | 140 | 		vaddr += entropy; | 
 | 141 | 		*kaslr_regions[i].base = vaddr; | 
 | 142 |  | 
 | 143 | 		/* | 
 | 144 | 		 * Jump the region and add a minimum padding based on | 
 | 145 | 		 * randomization alignment. | 
 | 146 | 		 */ | 
 | 147 | 		vaddr += get_padding(&kaslr_regions[i]); | 
 | 148 | 		if (pgtable_l5_enabled()) | 
 | 149 | 			vaddr = round_up(vaddr + 1, P4D_SIZE); | 
 | 150 | 		else | 
 | 151 | 			vaddr = round_up(vaddr + 1, PUD_SIZE); | 
 | 152 | 		remain_entropy -= entropy; | 
 | 153 | 	} | 
 | 154 | } | 
 | 155 |  | 
 | 156 | static void __meminit init_trampoline_pud(void) | 
 | 157 | { | 
 | 158 | 	unsigned long paddr, paddr_next; | 
 | 159 | 	pgd_t *pgd; | 
 | 160 | 	pud_t *pud_page, *pud_page_tramp; | 
 | 161 | 	int i; | 
 | 162 |  | 
 | 163 | 	pud_page_tramp = alloc_low_page(); | 
 | 164 |  | 
 | 165 | 	paddr = 0; | 
 | 166 | 	pgd = pgd_offset_k((unsigned long)__va(paddr)); | 
 | 167 | 	pud_page = (pud_t *) pgd_page_vaddr(*pgd); | 
 | 168 |  | 
 | 169 | 	for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) { | 
 | 170 | 		pud_t *pud, *pud_tramp; | 
 | 171 | 		unsigned long vaddr = (unsigned long)__va(paddr); | 
 | 172 |  | 
 | 173 | 		pud_tramp = pud_page_tramp + pud_index(paddr); | 
 | 174 | 		pud = pud_page + pud_index(vaddr); | 
 | 175 | 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE; | 
 | 176 |  | 
 | 177 | 		*pud_tramp = *pud; | 
 | 178 | 	} | 
 | 179 |  | 
 | 180 | 	set_pgd(&trampoline_pgd_entry, | 
 | 181 | 		__pgd(_KERNPG_TABLE | __pa(pud_page_tramp))); | 
 | 182 | } | 
 | 183 |  | 
 | 184 | static void __meminit init_trampoline_p4d(void) | 
 | 185 | { | 
 | 186 | 	unsigned long paddr, paddr_next; | 
 | 187 | 	pgd_t *pgd; | 
 | 188 | 	p4d_t *p4d_page, *p4d_page_tramp; | 
 | 189 | 	int i; | 
 | 190 |  | 
 | 191 | 	p4d_page_tramp = alloc_low_page(); | 
 | 192 |  | 
 | 193 | 	paddr = 0; | 
 | 194 | 	pgd = pgd_offset_k((unsigned long)__va(paddr)); | 
 | 195 | 	p4d_page = (p4d_t *) pgd_page_vaddr(*pgd); | 
 | 196 |  | 
 | 197 | 	for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) { | 
 | 198 | 		p4d_t *p4d, *p4d_tramp; | 
 | 199 | 		unsigned long vaddr = (unsigned long)__va(paddr); | 
 | 200 |  | 
 | 201 | 		p4d_tramp = p4d_page_tramp + p4d_index(paddr); | 
 | 202 | 		p4d = p4d_page + p4d_index(vaddr); | 
 | 203 | 		paddr_next = (paddr & P4D_MASK) + P4D_SIZE; | 
 | 204 |  | 
 | 205 | 		*p4d_tramp = *p4d; | 
 | 206 | 	} | 
 | 207 |  | 
 | 208 | 	set_pgd(&trampoline_pgd_entry, | 
 | 209 | 		__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp))); | 
 | 210 | } | 
 | 211 |  | 
 | 212 | /* | 
 | 213 |  * Create PGD aligned trampoline table to allow real mode initialization | 
 | 214 |  * of additional CPUs. Consume only 1 low memory page. | 
 | 215 |  */ | 
 | 216 | void __meminit init_trampoline(void) | 
 | 217 | { | 
 | 218 |  | 
 | 219 | 	if (!kaslr_memory_enabled()) { | 
 | 220 | 		init_trampoline_default(); | 
 | 221 | 		return; | 
 | 222 | 	} | 
 | 223 |  | 
 | 224 | 	if (pgtable_l5_enabled()) | 
 | 225 | 		init_trampoline_p4d(); | 
 | 226 | 	else | 
 | 227 | 		init_trampoline_pud(); | 
 | 228 | } |